WO2024045470A1 - 一种稀土铁硼永磁单晶的助熔剂生长方法 - Google Patents

一种稀土铁硼永磁单晶的助熔剂生长方法 Download PDF

Info

Publication number
WO2024045470A1
WO2024045470A1 PCT/CN2023/071246 CN2023071246W WO2024045470A1 WO 2024045470 A1 WO2024045470 A1 WO 2024045470A1 CN 2023071246 W CN2023071246 W CN 2023071246W WO 2024045470 A1 WO2024045470 A1 WO 2024045470A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
master alloy
rare earth
quartz tube
permanent magnet
Prior art date
Application number
PCT/CN2023/071246
Other languages
English (en)
French (fr)
Inventor
周庆
廖雪峰
吴岱丰
唐永利
卢其云
曾炜炜
卢赐福
唐仁衡
Original Assignee
广东省科学院资源利用与稀土开发研究所
惠州市福益乐永磁科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省科学院资源利用与稀土开发研究所, 惠州市福益乐永磁科技有限公司 filed Critical 广东省科学院资源利用与稀土开发研究所
Publication of WO2024045470A1 publication Critical patent/WO2024045470A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/12Salt solvents, e.g. flux growth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys

Definitions

  • the invention belongs to the field of preparation of rare earth iron boron permanent magnet crystals, and particularly relates to a flux growth method for rare earth iron boron permanent magnet single crystals.
  • Rare earth permanent magnet materials are key functional materials for the development of emerging industries and the implementation of "Made in China 2025". They are widely used in new energy, intelligent equipment, rail transportation, electronic information and other fields.
  • the third generation of rare earth permanent magnets - rare earth iron boron series (RE 2 Fe 14 B series) has excellent magnetic properties and currently occupies a dominant position in the field of rare earth (RE) permanent magnet materials.
  • RE 2 Fe 14 B series rare earth iron boron series
  • the magnetism of RE 2 Fe 14 B series magnets originates from the RE 2 Fe 14 B main phase. Therefore, studying the intrinsic properties of the RE 2 Fe 14 B main phase will help improve the basic understanding of RE 2 Fe 14 B series magnets.
  • Early researchers measured the intrinsic properties of the RE 2 Fe 14 B main phase by crushing the master alloy ingot into micron-sized single-crystal magnetic powder and then conducting magnetic field orientation. This method is limited by the quality and orientation of single crystal magnetic powder, and the measured data is not ideal.
  • Obtaining high-quality, bulk single crystals is one of the important conditions for in-depth research on the structure, magnetic properties and other physical properties of RE 2 Fe 14 B materials. Therefore, carrying out research on the growth of RE 2 Fe 14 B single crystal will definitely promote the basic research work of RE 2 Fe 14 B system.
  • RE 2 Fe 14 B is a melting of different components, and its single crystal formation and growth process are affected by the initial composition and temperature conditions. Larger; 2 The RE 2 Fe 14 B alloy system can easily react with most crucible materials under high temperature conditions; 3 Neodymium (Nd) can easily form oxides with oxygen, affecting the composition of the RE 2 Fe 14 B system.
  • Nd Neodymium
  • both the Czochralski single crystal manufacturing method Journal of Crystal Growth, 1986, 75: 277-280
  • the moving solution zone melting method Thermal Processing Technology, 2014, 43(13): 14-16
  • both methods require special equipment and high preparation costs.
  • only one RE 2 Fe 14 B single crystal can be obtained after each complicated process, and the preparation efficiency is low. Therefore, there is an urgent need for a new preparation process that provides a low-cost, high-efficiency method for preparing RE 2 Fe 14 B single crystals.
  • the purpose of the present invention is to provide a low-cost, high-efficiency method for preparing RE 2 Fe 14 B single crystal, so as to overcome the problems of high equipment requirements, complicated operations, and low efficiency in the existing technology.
  • This method has low cost, simple process, can prepare multiple high-quality single crystals at one time, is universal, and is suitable for laboratory and industrial research.
  • the invention provides a flux growth method for rare earth iron boron permanent magnet single crystal.
  • the RE-Fe-BM growth system is used to grow RE 2 Fe 14 B single crystal, which includes the following steps:
  • step (2) Mix the master alloy particles from step (1) evenly with the co-solvent M in a certain proportion and place them in a crucible, then place the crucible in a quartz tube, and then seal the quartz tube in a vacuum so that the inside of the quartz tube is External gas isolation;
  • step (3) Place the sealed quartz tube from step (2) in any muffle furnace, raise the temperature to 1250 ⁇ 1300°C, keep it at constant temperature for 1 ⁇ 2h, and then slowly cool it to 1100 ⁇ 1100°C at a cooling rate of 5 ⁇ 10°C/h. 1150°C, then, keep it at constant temperature for 120 to 240 hours. Finally, take out the water from the quartz tube and quench it to room temperature;
  • the composition of the master alloy in step (1) is RE 30;
  • RE is one or a mixture of rare earth elements neodymium (Nd), praseodymium (Pr), dysprosium (Dy), terbium (Tb), cerium (Ce) and yttrium (Y).
  • the particle size of the particles formed after crushing the master alloy ingot in step (1) is ⁇ 1 mm.
  • the co-solvent M in the step (2) is one of magnesium (Mg), copper (Cu) and gallium (Ga), in the form of granules, with a particle size ⁇ 1 mm.
  • the mass ratio of master alloy particles and co-solvent in step (2) is 10-20:1.
  • the material of the crucible in step (2) is high-purity zirconia.
  • the corrosive liquid in step (4) is one of 10% hydrochloric acid and 10% nitric acid.
  • the present invention adopts conventional equipment and processes, has higher universality and low cost; and this method can obtain multiple high-quality single crystals at one time. Crystal, high efficiency.
  • a quartz tube is used to seal the tube to obtain a sealed environment, but some oxygen may still remain in the closed system.
  • Using a low-melting-point metal with more active chemical properties as a cosolvent can absorb most of the oxygen, thus preventing rare earth elements from combining with oxygen. Affects single crystal quality.
  • the present invention provides a low-cost, high-efficiency method for preparing RE 2 Fe 14 B single crystal, which has the beneficial effects of low cost, simple process, and high efficiency.
  • Figure 1 is an SEM image of a polished cross-section of a single crystal sample without grain boundary corrosion after the RE 2 Fe 14 B single crystal growth is completed in Example 1.
  • Figure 2 is a morphology diagram of the medium-sized RE 2 Fe 14 B single crystal peeled off after etching in Example 1.
  • Figure 3 is a transmission Laue method X-ray diffraction pattern of a medium-sized RE 2 Fe 14 B single crystal peeled off after etching in Example 1.
  • Figure 4 is a morphology diagram of the medium-sized RE 2 Fe 14 B single crystal peeled off after etching in Example 2.
  • Nd 0.5 Tb 0.5 10 Fe 55 B 15 (at.%).
  • the prepared master alloy raw materials with a total mass of 50g are put into an induction melting furnace and smelted in high-purity argon gas until they are completely melted and uniform. After cooling in the furnace, a master alloy ingot is obtained. Due to the high boron content, the master alloy ingot is relatively brittle, and the master alloy ingot can be directly broken into master alloy particles with a particle size of less than 1 mm by external force.
  • Select elemental Ga metal with a purity of 99.9% and a particle size of ⁇ 1mm as a co-solvent mix the master alloy particles and Ga particles at a mass ratio of 20:1 (mass 50g and 2.5g respectively), and place them in a high-purity zirconia crucible. middle. Place the crucible in a quartz tube, use a mechanical pump to evacuate and flush it repeatedly with argon three times. After flushing the argon gas to 0.5 bar, vacuum seal the quartz tube to isolate the inside of the quartz tube from outside gas.
  • Nd 0.5 Ce 0.5 35 Fe 40 B 25 (at.%).
  • the prepared master alloy raw material with a total mass of 50g is put into an induction melting furnace and smelted in high-purity Ar until it is completely melted and uniform. After cooling in the furnace, a master alloy ingot is obtained. Due to the high boron content, the master alloy ingot is relatively brittle, and external force can be used to directly break the master alloy ingot into master alloy particles with a particle size of ⁇ 1mm.
  • Select elemental Ga metal with a purity of 99.9% and a particle size of ⁇ 1mm as a co-solvent mix the master alloy particles and Ga particles at a mass ratio of 20:1 (mass 50g and 2.5g respectively), and place them in a high-purity zirconia crucible. middle. Place the crucible in a quartz tube, use a mechanical pump to evacuate and flush it repeatedly with argon three times. After flushing the argon gas to 0.5 bar, vacuum seal the quartz tube to isolate the inside of the quartz tube from outside gas.
  • the sample was taken out, coarsely crushed, and then placed in a 10% hydrochloric acid solution for more than 1 hour. During this process, the Ga-containing rare earth-rich grain boundary phase was corroded, and finally peeled off to obtain multiple (Nd, Ce) 2 Fe of different sizes. 14B single crystal.
  • a medium-sized single crystal was selected for morphology characterization. As shown in Figure 4, the RE 2 Fe 14 B single crystal grains are elongated, with a length of about 4mm and a width of about 3mm.
  • Nd 0.5 Ce 0.5 35 Fe 45 B 20 (at.%).
  • the prepared master alloy raw material with a total mass of 49.5g was put into an induction melting furnace and smelted in high-purity Ar until it was completely melted and uniform. After cooling in the furnace, a master alloy ingot was obtained. Due to the high boron content, the master alloy ingot is relatively brittle, and the master alloy ingot can be directly broken into master alloy particles with a particle size of less than 1 mm by external force.
  • the sample was taken out and roughly crushed, and then placed in 10% hydrochloric acid solution for more than 1 hour. During this process, the Mg-containing rare earth-rich grain boundary phase was corroded and finally peeled off to obtain multiple (Nd, Ce) 2 Fe of different sizes. 14B single crystal.
  • Nd, Ce, Y, Fe, and FeB with a purity of 99.9% as the master alloy raw materials, and batch them according to the following chemical formula: (Nd 0.6 Ce 0.2 Y 0.2 ) 30 Fe 40 B 30 (at.%).
  • the prepared master alloy raw material with a total mass of 50g is put into an induction melting furnace and smelted in high-purity Ar until it is completely melted and uniform. After cooling in the furnace, a master alloy ingot is obtained. Due to the high boron content, the master alloy ingot is relatively brittle, and external force can be used to directly break the master alloy ingot into master alloy particles with a particle size of ⁇ 1 mm.
  • the sample was taken out, coarsely crushed, and then placed in a 10% nitric acid solution for more than 1 hour. During this process, the rare earth-rich grain boundary phase containing Mg was corroded, and finally peeled off to obtain multiple (Nd, Ce, Y) of different sizes. 2 Fe 14 B single crystal.
  • Nd, Pr, Dy, Fe, and FeB with a purity of 99.9% as raw materials for the master alloy, and mix according to the following chemical formula: (Nd 0.6 Pr 0.2 Dy 0.2 ) 40 Fe 40 B 20 (at.%).
  • the prepared master alloy raw material with a total mass of 50g is put into an induction melting furnace and smelted in high-purity Ar until it is completely melted and uniform. After cooling in the furnace, a master alloy ingot is obtained. Due to the high boron content, the master alloy ingot is relatively brittle, and the master alloy ingot can be directly broken into master alloy particles with a particle size of ⁇ 1 mm by external force.
  • Select elemental Cu metal with a purity of 99.9% and a particle size of ⁇ 1mm as a co-solvent Mix the master alloy particles and Cu particles in a mass ratio of 10:1 (mass: 50g and 5g respectively) and place them in a high-purity zirconia crucible. . Place the crucible in a quartz tube, use a mechanical pump to evacuate and flush it repeatedly with argon three times. After flushing the argon gas to 0.5 bar, vacuum seal the quartz tube to isolate the inside of the quartz tube from outside gas.
  • the sample was taken out and roughly crushed, and then placed in 10% nitric acid solution for more than 1 hour. During this process, the Cu-containing rare earth-rich grain boundary phase was corroded and finally peeled off to obtain multiple (Nd, Pr, Dy) of different sizes. 2 Fe 14 B single crystal.
  • Select elemental Cu metal with a purity of 99.9% and a particle size of ⁇ 1mm as a co-solvent Mix the master alloy particles and Cu particles in a mass ratio of 10:1 (mass: 50g and 5g respectively) and place them in a high-purity zirconia crucible. . Place the crucible in a quartz tube, use a mechanical pump to evacuate and flush it repeatedly with argon three times. After flushing the argon gas to 0.5 bar, vacuum seal the quartz tube to isolate the inside of the quartz tube from outside gas.
  • the sample was taken out, coarsely crushed, and then placed in 10% nitric acid solution for more than 1 hour. During this process, the Cu-containing rare earth-rich grain boundary phase was corroded and finally peeled off to obtain multiple (Nd) 2 Fe 14 B of different sizes. Single crystal.

Abstract

一种稀土铁硼永磁单晶的助熔剂生长方法,采用RE-Fe-B-M生长体系进行RE 2Fe 14B单晶生长。母合金原料RE xFe 100 - x - yB y(25≤x≤40;15≤y≤30)中RE为稀土元素Nd、Pr、Dy、Tb、Ce和Y的其中一种或多种混合,熔炼形成母合金铸锭,破碎后与助溶剂M混合置于氧化锆坩埚中,助溶剂M为Mg、Cu和Ga的其中一种,再将坩埚置于石英管中进行真空封管。然后,将密闭石英管置于马弗炉中,进行升温-保温-缓冷降温-水淬。最后,将样品取出后粗破碎,放入腐蚀液体中进行晶界腐蚀,最后剥离得到若干RE 2Fe 14B单晶颗粒。该RE 2Fe 14B单晶制备方法的设备成本低、流程简单、一次可制备多个高质量单晶,适用于普遍实验室和工业化研究。

Description

一种稀土铁硼永磁单晶的助熔剂生长方法 技术领域
本发明属于稀土铁硼永磁晶体的制备领域,特别涉及一种稀土铁硼永磁单晶的助熔剂生长方法。
背景技术
稀土永磁材料是发展新兴产业、实施《中国制造2025》的关键功能性材料,被广泛应用于新能源、智能装备、轨道交通、电子信息等领域。第三代稀土永磁——稀土铁硼系(RE 2Fe 14B系)拥有优异的磁性能,目前在稀土(RE)永磁材料领域占主要地位。经过近四十年的发展,工业和实验室制备微米晶和纳米晶RE 2Fe 14B磁体的工艺成熟稳定。但是,目前关于RE 2Fe 14B单晶的研究很少,鲜有研究者关注如何制备RE 2Fe 14B单晶。
RE 2Fe 14B系磁体的磁性来源于RE 2Fe 14B主相,因此,研究RE 2Fe 14B主相内禀性能有助于提高对RE 2Fe 14B系磁体的基础认识。早期研究者通过将母合金铸锭破碎成微米级单晶磁粉,再进行磁场取向,测量得到RE 2Fe 14B主相内禀性能。这种方式受限于单晶磁粉质量以及取向程度,测得的数据并不理想。高质量、大块单晶的获得是对RE 2Fe 14B材料的结构、磁性和其他物性进行深入研究的重要条件之一。因此开展RE 2Fe 14B单晶生长的研究,必将有力地促进RE 2Fe 14B体系的基础研究工作。
目前,大尺寸RE 2Fe 14B单晶制备过面临的主要是困难有以下三个方面:①RE 2Fe 14B属于异成分熔化,其单晶形成和长大过程受初始成分和温度条件的影响较大;②RE 2Fe 14B合金体系在高温条件下极易与多数坩埚材料发生反应;③钕(Nd)极易与氧形成氧化物,影响RE 2Fe 14B体系成分。针对以上问题,本领域技术人员一般采用专用的单晶生长设备和方法制备RE 2Fe 14B单晶。比如,采用直拉单晶制造法(Journal of Crystal Growth,1986,75:277-280)和移动溶液区熔法(热加工工艺,2014,43(13):14-16)均能制备得到质量较好的单晶,但是,这两种方法都要用到专用设备,制备成本高。并且,每次繁杂工艺过后只能得到一个RE 2Fe 14B单晶、制备效率低。因此,目前急需一种新的制备工艺,提供低成本、高效率制备RE 2Fe 14B单晶的方法。
发明内容
本发明的目的在于提供一种低成本、高效率制备RE 2Fe 14B单晶的方法,以克服现有技术中对设备要求高、操作繁杂、效率低等问题。该方法成本低、流程简单、一次可制备多个高 质量单晶,具有普适性,适用于实验室和工业化研究。
本发明技术方案如下:
本发明提供一种稀土铁硼永磁单晶的助熔剂生长方法,采用RE-Fe-B-M生长体系进行RE 2Fe 14B单晶生长,包括如下步骤:
(1)将原料RE xFe 100-x-vB y混合置于感应熔炼炉中,在氩气(Ar)保护条件下进行熔炼至完全熔融均匀,随炉冷却至室温,得到成分均匀的母合金铸锭,随后破碎,母合金铸锭中硼含量高,因此较脆,可以直接用外力将母合金铸锭破碎成母合金颗粒;
(2)将步骤(1)的母合金颗粒按一定的比例与助溶剂M混合均匀置于坩埚中,再将坩埚置于石英管中,随后对石英管进行真空封管,使石英管内部与外界气体隔离;
(3)将步骤(2)的密闭石英管置于任意马弗炉中,升温至1250~1300℃,恒温保温1~2h,随后,以5~10℃/h的降温速率缓冷至1100~1150℃,接着,在此温度下恒温保温120~240h,最后,将石英管取出水淬至室温;
(4)将步骤(3)的石英管内的样品取出后进行破碎,将破碎后的样品放入腐蚀液中进行晶界腐蚀,最后剥离其他杂质后得到RE 2Fe 14B单晶。
优选地,所述步骤(1)中母合金成分按原子比计为RE xFe 100-x-yB y(at.%),其中x和y满足以下关系:25≤x≤40,15≤y≤30;RE为稀土元素钕(Nd)、镨(Pr)、镝(Dy)、铽(Tb)、铈(Ce)和钇(Y)的其中一种或多种混合。
优选地,所述步骤(1)中母合金铸锭破碎后形成的颗粒的粒度≤1mm。
优选地,所述步骤(2)中助溶剂M为镁(Mg)、铜(Cu)和镓(Ga)的其中一种,颗粒状,粒度≤1mm。
优选地,所述步骤(2)中母合金颗粒和助溶剂的质量比为10~20∶1。
优选地,所述步骤(2)中坩埚的材质为高纯氧化锆。
优选地,所述步骤(4)中腐蚀液是10%盐酸和10%硝酸中的一种。
本发明的有益效果为:
(1)与现有直拉单晶制造法和移动溶液区熔法相比,本发明采用常规设备和工艺,具有更高的普适性,成本低;并且本方法一次可获得多个高质量单晶,效率高。
(2)采用低熔点金属作为助溶剂,能降低生长体系熔化温度,并采用高纯氧化锆坩埚,避免RE 2Fe 14B体系在高温条件下与坩埚材料发生反应。
(3)采用石英管封管得到密闭环境,但封闭系统仍可能残留部分氧气,而采用化学性质更为活泼的低熔点金属作为助溶剂,能吸收大部分氧,从而避免稀土元素与氧结合,影响单晶质量。
综上所述,本发明提供一种低成本、高效率制备RE 2Fe 14B单晶的方法,具有成本低、流程简单、效率高的有益效果。
附图说明
图1为实施例1中RE 2Fe 14B单晶生长完成后、未经晶界腐蚀的单晶样品截面抛光后的SEM图。
图2为实施例1中经腐蚀后剥离出中等大小的RE 2Fe 14B单晶形貌图。
图3为实施例1中经腐蚀后剥离出中等大小的RE 2Fe 14B单晶的透射Laue法X射线衍射图。
图4为实施例2中经腐蚀后剥离出中等大小的RE 2Fe 14B单晶形貌图。
具体实施方式
实施例1:
用纯度为99.9%的稀土Nd、Tb、Fe、FeB为母合金原料,按照以下化学式配料:(Nd 0.5Tb 0.5) 30Fe 55B 15(at.%)。将配好的总质量为50g的母合金原料放入感应熔炼炉中在高纯氩气中熔炼至完全熔融均匀,随炉冷却后得到母合金铸锭。由于硼含量高,母合金铸锭较脆,可以直接用外力将母合金铸锭破碎成粒度<1mm的母合金颗粒。
选用纯度为99.9%、粒度<1mm的单质Ga金属作为助溶剂,将母合金颗粒与Ga颗粒按质量比20∶1(质量分别为50g和2.5g)进行混合均匀,置于高纯氧化锆坩埚中。将坩埚置于石英管中,采用机械泵抽真空和氩气反复冲洗三次,冲氩气至0.5bar后对石英管进行真空封管,使石英管内部与外界气体隔离。
将密闭石英管置于任意马弗炉中,升温至1250℃,恒温保温1h。随后,以5℃/h的降温速率缓冷至1100℃。接着,在此温度下恒温保温120h。最后,将石英管取出水淬至室温,得到外层包裹大量晶界相的单晶样品。将样品截面抛光后进行扫描电镜分析(SEM),如附图 1所示,可以看到经过单晶生长过程后,样品中形成了大量各向异性的长条状RE 2Fe 14B单晶颗粒(深灰色),并且在单晶颗粒周围存在两种晶界(浅灰色和白色),下一步将晶界和单晶界面处腐蚀,即可剥离得到单晶。
将样品取出后进行粗破碎,随后放入10%盐酸溶液中1h以上,在此过程中含Ga的富稀土晶界相被腐蚀,最后剥离得到多个大小不一的(Nd,Tb) 2Fe 14B单晶。选取中等大小单晶进行SEM和X射线衍射(XRD)表征,分别如附图2和3所示,附图2中单晶晶粒呈现长条状,长度约为4mm,宽度约为2mm,附图3中XRD结果说明RE 2Fe 14B晶粒为单晶。
实施例2:
用纯度为99.9%的稀土Nd、Ce、Fe、FeB为母合金原料,按照以下化学式配料:(Nd 0.5Ce 0.5) 35Fe 40B 25(at.%)。将配好的总质量为50g的母合金原料放入感应熔炼炉中在高纯Ar中熔炼至完全熔融均匀,随炉冷却后得到母合金铸锭。由于硼含量高,母合金铸锭较脆,可以直接用外力将母合金铸锭破碎成粒度<1mm的母合金颗粒。
选用纯度为99.9%、粒度<1mm的单质Ga金属作为助溶剂,将母合金颗粒与Ga颗粒按质量比20∶1(质量分别为50g和2.5g)进行混合均匀,置于高纯氧化锆坩埚中。将坩埚置于石英管中,采用机械泵抽真空和氩气反复冲洗三次,冲氩气至0.5bar后对石英管进行真空封管,使石英管内部与外界气体隔离。
将密闭石英管置于任意马弗炉中,升温至1250℃,恒温保温1h。随后,以8℃/h的降温速率缓冷至1120℃。接着,在此温度下恒温保温240h。最后,将石英管取出水淬至室温,得到外层包裹大量晶界相的单晶样品。
将样品取出后进行粗破碎,随后放入10%盐酸溶液中1h以上,在此过程中含Ga的富稀土晶界相被腐蚀,最后剥离得到多个大小不一的(Nd,Ce) 2Fe 14B单晶。选取中等大小单晶进行形貌表征,如附图4所示,RE 2Fe 14B单晶晶粒呈现长条状,长度约为4mm,宽度约为3mm。
实施例3:
用纯度为99.9%的稀土Nd、Ce、Fe、FeB为母合金原料,按照以下化学式配料:(Nd 0.5Ce 0.5) 35Fe 45B 20(at.%)。将配好的总质量为49.5g的母合金原料放入感应熔炼炉中在高纯Ar中熔炼至完全熔融均匀,随炉冷却后得到母合金铸锭。由于硼含量高,母合金铸锭较脆,可以直接用外力将母合金铸锭破碎成粒度<1mm的母合金颗粒。
选用纯度为99.9%、粒度<1mm的单质Mg金属作为助溶剂,将母合金颗粒与Mg颗粒按质量比15∶1(质量分别为49.5g和3.3g)进行混合均匀,置于高纯氧化锆坩埚中。将坩埚置于石英管中,采用机械泵抽真空和氩气反复冲洗三次,冲氩气至0.5bar后对石英管进行真 空封管,使石英管内部与外界气体隔离。
将密闭石英管置于任意马弗炉中,升温至1250℃,恒温保温1h。随后,以5℃/h的降温速率缓冷至1100℃。接着,在此温度下恒温保温120h。最后,将石英管取出水淬至室温,得到外层包裹大量晶界相的单晶样品。
将样品取出后进行粗破碎,随后放入10%盐酸溶液中1h以上,在此过程中含Mg的富稀土晶界相被腐蚀,最后剥离得到多个大小不一的(Nd,Ce) 2Fe 14B单晶。
实施例4
用纯度为99.9%的稀土Nd、Ce、Y、Fe、FeB为母合金原料,按照以下化学式配料:(Nd 0.6Ce 0.2Y 0.2) 30Fe 40B 30(at.%)。将配好的总质量为50g的母合金原料放入感应熔炼炉中在高纯Ar中熔炼至完全熔融均匀,随炉冷却后得到母合金铸锭。由于硼含量高,因此母合金铸锭较脆,可以直接用外力将母合金铸锭破碎成粒度<1mm的母合金颗粒。
选用纯度为99.9%、粒度<1mm的单质Mg金属作为助溶剂,将母合金颗粒与Mg颗粒按质量比10∶1(质量分别为50g和5g)进行混合均匀,置于高纯氧化锆坩埚中。将坩埚置于石英管中,采用机械泵抽真空和氩气反复冲洗三次,冲氩气至0.5bar后对石英管进行真空封管,使石英管内部与外界气体隔离。
将密闭石英管置于任意马弗炉中,升温至1280℃,恒温保温2h。随后,以5℃/h的降温速率缓冷至1100℃。接着,在此温度下恒温保温180h。最后,将石英管取出水淬至室温,得到外层包裹大量晶界相的单晶样品。
将样品取出后进行粗破碎,随后放入10%硝酸溶液中1h以上,在此过程中含Mg的富稀土晶界相被腐蚀,最后剥离得到多个大小不一的(Nd,Ce,Y) 2Fe 14B单晶。
实施例5
用纯度为99.9%的稀土Nd、Pr、Dy、Fe、FeB为母合金原料,按照以下化学式配料:(Nd 0.6Pr 0.2Dy 0.2) 40Fe 40B 20(at.%)。将配好的总质量为50g的母合金原料放入感应熔炼炉中在高纯Ar中熔炼至完全熔融均匀,随炉冷却后得到母合金铸锭。由于硼含量高,因此母合金铸锭较脆,可以直接用外力将母合金铸锭破碎成粒度≤1mm的母合金颗粒。
选用纯度为99.9%、粒度≤1mm的单质Cu金属作为助溶剂,将母合金颗粒与Cu颗粒按质量比10∶1(质量分别为50g和5g)进行混合均匀,置于高纯氧化锆坩埚中。将坩埚置于石英管中,采用机械泵抽真空和氩气反复冲洗三次,冲氩气至0.5bar后对石英管进行真空封管,使石英管内部与外界气体隔离。
将密闭石英管置于任意马弗炉中,升温至1280℃,恒温保温2h。随后,以10℃/h的降 温速率缓冷至1150℃。接着,在此温度下恒温保温180h。最后,将石英管取出水淬至室温,得到外层包裹大量晶界相的单晶样品。
将样品取出后进行粗破碎,随后放入10%硝酸溶液中1h以上,在此过程中含Cu的富稀土晶界相被腐蚀,最后剥离得到多个大小不一的(Nd,Pr,Dy) 2Fe 14B单晶。
实施例6
用纯度为99.9%的稀土Nd、Fe、FeB为母合金原料,按照以下化学式配料:(Nd) 25Fe 50B 25(at.%)。将配好的总质量为50g的母合金原料放入感应熔炼炉中在高纯Ar中熔炼至完全熔融均匀,随炉冷却后得到母合金铸锭。由于硼含量高,因此母合金铸锭较脆,可以直接用外力将母合金铸锭破碎成粒度≤1mm的母合金颗粒。
选用纯度为99.9%、粒度≤1mm的单质Cu金属作为助溶剂,将母合金颗粒与Cu颗粒按质量比10∶1(质量分别为50g和5g)进行混合均匀,置于高纯氧化锆坩埚中。将坩埚置于石英管中,采用机械泵抽真空和氩气反复冲洗三次,冲氩气至0.5bar后对石英管进行真空封管,使石英管内部与外界气体隔离。
将密闭石英管置于任意马弗炉中,升温至1300℃,恒温保温2h。随后,以5℃/h的降温速率缓冷至1100℃。接着,在此温度下恒温保温180h。最后,将石英管取出水淬至室温,得到外层包裹大量晶界相的单晶样品。
将样品取出后进行粗破碎,随后放入10%硝酸溶液中1h以上,在此过程中含Cu的富稀土晶界相被腐蚀,最后剥离得到多个大小不一的(Nd) 2Fe 14B单晶。
本发明未尽事宜为公知技术。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (7)

  1. 一种稀土铁硼永磁单晶的助熔剂生长方法,其特征在于,包括以下步骤:
    (1)将原料RE xFe 100-x-yB y混合置于感应熔炼炉中,在氩气保护条件下进行熔炼至完全熔融均匀,随炉冷却至室温,得到成分均匀的母合金铸锭,随后破碎,母合金铸锭中硼含量高,因此较脆,可以直接用外力将母合金铸锭破碎成母合金颗粒;
    (2)将步骤(1)的母合金颗粒按一定的比例与助溶剂M颗粒混合均匀置于坩埚中,再将坩埚置于石英管中,随后对石英管进行真空封管,使石英管内部与外界气体隔离;
    (3)将步骤(2)的密闭石英管置于任意马弗炉中,升温至1250~1300℃,恒温保温1~2h,随后,以5~10℃/h的降温速率缓冷至1100~1150℃,接着,在此温度下恒温保温120~240h,最后,将石英管取出水淬至室温;
    (4)将步骤(3)的石英管内的样品取出后进行破碎,将破碎后的样品放入腐蚀液体中进行晶界腐蚀,最后剥离其他杂质后得到RE 2Fe 14B单晶。
  2. 按照权利要求1所述的一种稀土铁硼永磁单晶的助熔剂生长方法,其特征在于,所述步骤(1)中母合金成分按原子比计为RE xFe 100-x-yB y,其中x和y满足以下关系:25≤x≤40,15≤y≤30;RE为稀土元素钕、镨、镝、铽、铈和钇的其中一种或多种混合。
  3. 按照权利要求1所述的一种稀土铁硼永磁单晶的助熔剂生长方法,其特征在于,所述步骤(1)中母合金铸锭破碎粒度≤1mm。
  4. 按照权利要求1所述的一种稀土铁硼永磁单晶的助熔剂生长方法,其特征在于,所述步骤(2)中助溶剂M为镁、铜和镓其中一种,颗粒状,粒度≤1mm。
  5. 按照权利要求1所述的一种稀土铁硼永磁单晶的助熔剂生长方法,其特征在于,所述步骤(2)中母合金颗粒和助溶剂的质量比为10~20∶1。
  6. 按照权利要求1所述的一种稀土铁硼永磁单晶的助熔剂生长方法,其特征在于,所述步骤(2)中,坩埚材质为高纯氧化锆。
  7. 按照权利要求1所述的一种稀土铁硼永磁单晶的助熔剂生长方法,其特征在于,所述步骤(4)中,腐蚀液10%盐酸和10%硝酸中的一种。
PCT/CN2023/071246 2022-08-30 2023-01-09 一种稀土铁硼永磁单晶的助熔剂生长方法 WO2024045470A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211048823.2A CN115418704B (zh) 2022-08-30 2022-08-30 一种稀土铁硼永磁单晶的助熔剂生长方法
CN202211048823.2 2022-08-30

Publications (1)

Publication Number Publication Date
WO2024045470A1 true WO2024045470A1 (zh) 2024-03-07

Family

ID=84200015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071246 WO2024045470A1 (zh) 2022-08-30 2023-01-09 一种稀土铁硼永磁单晶的助熔剂生长方法

Country Status (2)

Country Link
CN (1) CN115418704B (zh)
WO (1) WO2024045470A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115418704B (zh) * 2022-08-30 2023-10-03 广东省科学院资源利用与稀土开发研究所 一种稀土铁硼永磁单晶的助熔剂生长方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218647A (ja) * 2007-03-02 2008-09-18 Osaka Industrial Promotion Organization 希土類磁石の酸洗浄方法および前記方法によって酸洗浄された希土類磁石
CN106024244A (zh) * 2016-07-21 2016-10-12 江西理工大学 一种高热稳定性的纳米晶稀土永磁材料及其制备方法
CN109065311A (zh) * 2018-06-25 2018-12-21 江西理工大学 一种高矫顽力钕铈铁硼永磁合金及制备方法
CN109440182A (zh) * 2018-11-28 2019-03-08 北京工业大学 一种还原扩散法制造尺寸可调的单晶钕铁硼颗粒及氢破除钙的方法
US20220148771A1 (en) * 2019-03-14 2022-05-12 National Institute Of Advanced Industrial Science And Technology Metastable single-crystal rare earth magnet fine powder and method for producing same
CN115418704A (zh) * 2022-08-30 2022-12-02 广东省科学院资源利用与稀土开发研究所 一种稀土铁硼永磁单晶的助熔剂生长方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2607520B1 (fr) * 1986-11-27 1992-06-19 Comurhex Procede d'elaboration par metallothermie d'alliages purs a base de terres rares et de metaux de transition
JP2596835B2 (ja) * 1989-08-04 1997-04-02 新日本製鐵株式会社 希土類系異方性粉末および希土類系異方性磁石
JPH0757695B2 (ja) * 1990-08-10 1995-06-21 宇部興産株式会社 ガーネット微粒子粉末の製造方法
JP2696726B2 (ja) * 1990-08-10 1998-01-14 宇部興産株式会社 ガーネット微粒子粉末
US6309441B1 (en) * 1996-10-08 2001-10-30 General Electric Company Reduction-melting process to form rare earth-transition metal alloys and the alloys
DE60131699T2 (de) * 2000-06-13 2008-11-20 Shin-Etsu Chemical Co., Ltd. Dauermagnetmaterialien auf R-Fe-B-Basis
US20030177975A1 (en) * 2000-09-18 2003-09-25 Akio Ikesue Rare earth-iron garnet single crystal material and method for preparation thereof and device using rare earth-iron garnet single crystal material
US7550047B2 (en) * 2001-12-19 2009-06-23 Hitachi Metals, Ltd. Rare earth element-iron-boron alloy and magnetically anisotropic permanent magnet powder and method for production thereof
KR100483318B1 (ko) * 2002-03-18 2005-04-15 주식회사 컴텍스 상온 강자성 반도체 단결정 및 그 제조방법
JP4867281B2 (ja) * 2005-10-18 2012-02-01 Tdk株式会社 単結晶の製造方法
TWI300811B (en) * 2004-11-19 2008-09-11 Tdk Corp Magnetic garnet single crystal and optical device using the same, and method of single crystal
JP2006225204A (ja) * 2005-02-17 2006-08-31 Fdk Corp ビスマス置換希土類鉄ガーネット単結晶の製造方法
CN101582317B (zh) * 2008-05-15 2012-09-19 三环瓦克华(北京)磁性器件有限公司 新型烧结钕铁硼稀土永磁材料及其制造方法
JP5910437B2 (ja) * 2011-09-28 2016-04-27 住友金属鉱山株式会社 Cu含有希土類−鉄−硼素系合金粉末とその製造方法
CN102436892B (zh) * 2011-12-15 2016-02-24 钢铁研究总院 一种低钕、无重稀土高性能磁体及制备方法
US10566116B2 (en) * 2015-01-29 2020-02-18 The Florida State University Research Foundation, Inc. Method for tuning the ferromagnetic ordering temperature of aluminum iron boride
CN111653407B (zh) * 2020-07-20 2021-02-02 江西金力永磁科技股份有限公司 梯度分布的钕铁硼磁体及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218647A (ja) * 2007-03-02 2008-09-18 Osaka Industrial Promotion Organization 希土類磁石の酸洗浄方法および前記方法によって酸洗浄された希土類磁石
CN106024244A (zh) * 2016-07-21 2016-10-12 江西理工大学 一种高热稳定性的纳米晶稀土永磁材料及其制备方法
CN109065311A (zh) * 2018-06-25 2018-12-21 江西理工大学 一种高矫顽力钕铈铁硼永磁合金及制备方法
CN109440182A (zh) * 2018-11-28 2019-03-08 北京工业大学 一种还原扩散法制造尺寸可调的单晶钕铁硼颗粒及氢破除钙的方法
US20220148771A1 (en) * 2019-03-14 2022-05-12 National Institute Of Advanced Industrial Science And Technology Metastable single-crystal rare earth magnet fine powder and method for producing same
CN115418704A (zh) * 2022-08-30 2022-12-02 广东省科学院资源利用与稀土开发研究所 一种稀土铁硼永磁单晶的助熔剂生长方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
D. E. SWETS ET AL.: "Growth of Single Crystals of Nd2Fe14B", JOURNAL OF CRYSTAL GROWTH, vol. 75, no. 2, 2 May 1986 (1986-05-02), XP024421152, ISSN: 0022-0248, DOI: 10.1016/0022-0248(86)90038-2 *
DALIANG SUN, CHEN HUANCHU; SONG YONGYUAN : "Cold Crucible Technique and Its Application to Crystal Growth", JOURNAL OF SYNTHETIC CRYSTALS, vol. 19, no. 2, 2 July 1990 (1990-07-02), pages 172 - 176, XP093145162 *
G. BOCELLI ET AL.: "Crystallographic and Mossbauer study of RE2Fe14B", SOLID STATE COMMUNICATIONS, vol. 61, no. 7, 28 February 1987 (1987-02-28), XP024494139, ISSN: 0038-1098, DOI: 10.1016/0038-1098(87)90137-2 *
KONSTANTIN P. SKOKOV ET AL.: "Rotational Magnetocaloric Effect in the Er2Fe14B Single Crystal", IEEE TRANSACTIONS ON MAGNETICS, vol. 52, no. 5, 15 February 2016 (2016-02-15), XP011606339, ISSN: 0018-9464, DOI: 10.1109/TMAG.2016.2530138 *
SUSNER MICHAEL A.; CONNER BENJAMIN S.; SAPAROV BAYRAMMURAD I.; MCGUIRE MICHAEL A.; CRUMLIN ETHAN J.; VEITH GABRIEL M.; CAO HUIBO; : "Flux growth and characterization of Ce-substitutedNd2Fe14Bsingle crystals", JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, ELSEVIER, AMSTERDAM, NL, vol. 434, 27 October 2016 (2016-10-27), AMSTERDAM, NL , pages 1 - 9, XP029977812, ISSN: 0304-8853, DOI: 10.1016/j.jmmm.2016.10.127 *
YIKU XU, LIN LIU, ZHANG JUN: "Single Crystal Growth of Nd2Fe14B Applying Traveling Solvent Floating Zone Method", HOT WORKING TECHNOLOGY, vol. 43, no. 13, 10 July 2014 (2014-07-10), pages 14 - 16, XP093145159, DOI: 10.14158/j.cnki.1001-3814.2014.13.001 *

Also Published As

Publication number Publication date
CN115418704B (zh) 2023-10-03
CN115418704A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
US10096411B2 (en) Bonded La(Fe,Si)13-based magnetocaloric material and preparation and use thereof
CN1076853C (zh) 用边废料制作钕铁硼系永磁体的方法
US9657971B2 (en) First-order phase-transition La(Fe,Si)13-based magnetocaloric material showing small hysteresis loss and preparation and use thereof
WO2019169875A1 (zh) 一种高矫顽力钕铁硼磁体及其制备方法
CN108274016B (zh) 一种喷雾热分解还原法直接制备钐铁合金粉末的方法
CN101748326B (zh) 一种具有NaZn13结构的含碳稀土-铁钴硅化合物的制备方法
WO2024045470A1 (zh) 一种稀土铁硼永磁单晶的助熔剂生长方法
CN110343931B (zh) 一种室温磁致伸缩材料及其制备方法
CN104575902A (zh) 一种添加铈的钕铁硼磁体及其制备方法
CN110534279A (zh) 一种纯高丰度稀土Ce,La,Y基多元纳米晶永磁合金及制备
CN111230127B (zh) 一种复合磁性粉末的制备方法
JP7187920B2 (ja) 多結晶希土類遷移金属合金粉末およびその製造方法
CN106997800A (zh) 一种无稀土MnAlCuC永磁合金及其制备方法
CN112071543B (zh) 一种高矫顽力稀土永磁体及其制备方法
CN107393670A (zh) 一种高性能MnBi基永磁合金及其制备方法
Li et al. Structural evolution and improvement of magnetic properties of hot-deformed CeFeB magnets with Nd70Cu30 addition
CN111254338B (zh) 一种磁致伸缩材料及其制备方法
CN110634638B (zh) 一种(Pr,Gd)Co永磁材料及其制备方法
CN101210294B (zh) 一种a5b19型合金的制备方法
CN112575270B (zh) 一种氢化重稀土高熵复合材料及其制备方法和应用
CN117352249A (zh) 一种具有超低温高矫顽力的MnBiCu永磁合金及其制备方法
Ilayaraja et al. Mechanism and Synthesis of Yttrium Iron (Y-Fe) Alloy by Low Temperature Process Using Calcium as Reductant
CN117316572A (zh) 一种高纯度LTP-MnBi相永磁合金条带及其制备方法与应用
Materials Science International Team, MSIT® info@ msiwp. com et al. Boron–Iron–Neodymium: iron systems: phase diagrams, crystallographic and thermodynamic data
CN107578869B (zh) 一种混合稀土-铁基永磁材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858513

Country of ref document: EP

Kind code of ref document: A1