WO2024045201A1 - 一种高烧结活性氧化铝陶瓷粉体及其制备方法 - Google Patents
一种高烧结活性氧化铝陶瓷粉体及其制备方法 Download PDFInfo
- Publication number
- WO2024045201A1 WO2024045201A1 PCT/CN2022/116925 CN2022116925W WO2024045201A1 WO 2024045201 A1 WO2024045201 A1 WO 2024045201A1 CN 2022116925 W CN2022116925 W CN 2022116925W WO 2024045201 A1 WO2024045201 A1 WO 2024045201A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- ceramic powder
- alumina ceramic
- aluminum
- activated alumina
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 158
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract description 96
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 238000005245 sintering Methods 0.000 title abstract description 35
- 230000000694 effects Effects 0.000 title abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 59
- 239000000243 solution Substances 0.000 claims abstract description 27
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000004094 surface-active agent Substances 0.000 claims abstract description 21
- 238000001354 calcination Methods 0.000 claims abstract description 17
- 239000008367 deionised water Substances 0.000 claims abstract description 16
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 239000002244 precipitate Substances 0.000 claims abstract description 13
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000001035 drying Methods 0.000 claims abstract description 11
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 54
- 239000000919 ceramic Substances 0.000 claims description 29
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 26
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 23
- 238000012546 transfer Methods 0.000 claims description 14
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical group [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 12
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 12
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 8
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 8
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 claims description 7
- HDYRYUINDGQKMC-UHFFFAOYSA-M acetyloxyaluminum;dihydrate Chemical compound O.O.CC(=O)O[Al] HDYRYUINDGQKMC-UHFFFAOYSA-M 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 229940009827 aluminum acetate Drugs 0.000 claims description 7
- 239000012266 salt solution Substances 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 4
- 230000001089 mineralizing effect Effects 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 22
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 abstract description 5
- 239000007864 aqueous solution Substances 0.000 abstract description 3
- 238000002156 mixing Methods 0.000 abstract description 3
- 230000008569 process Effects 0.000 description 19
- 238000003756 stirring Methods 0.000 description 18
- 238000006460 hydrolysis reaction Methods 0.000 description 15
- 230000007062 hydrolysis Effects 0.000 description 14
- 238000009388 chemical precipitation Methods 0.000 description 12
- 238000010335 hydrothermal treatment Methods 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000001556 precipitation Methods 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 150000004703 alkoxides Chemical class 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- 238000012512 characterization method Methods 0.000 description 6
- 238000000280 densification Methods 0.000 description 6
- 238000007088 Archimedes method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 229910010293 ceramic material Inorganic materials 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 229910017053 inorganic salt Inorganic materials 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- -1 alkoxide salt Chemical class 0.000 description 1
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033558 biomineral tissue development Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000010437 gem Substances 0.000 description 1
- 229910001751 gemstone Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000011240 wet gel Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
Definitions
- the invention relates to the field of ceramic materials, and in particular to a high-sintered activated alumina ceramic powder and a preparation method thereof.
- Ceramic materials are widely used in the national economy and national defense fields, including various functional ceramics and structural ceramics.
- the performance of ceramic products depends on the process of ceramic materials.
- the ceramic process includes three main steps: powder preparation/processing, molding and sintering, and each step also includes corresponding details. Although each step is important, the quality of the ceramic powder is the most decisive factor in ceramic products. Therefore, ceramic powder technology is the core technology of ceramic materials.
- the quality of ceramic powder mainly includes particle size, size distribution, particle morphology, etc. Generally, more attention is paid to particle size/distribution, but not enough attention is paid to the integrity of particle morphology.
- ⁇ -Aluminum oxide (Al 2 O 3 ) has been widely used due to its series of excellent physical properties such as high strength, hardness, high temperature resistance, and wear resistance.
- Al 2 O 3 powder is not only the raw material for high-end alumina ceramics such as integrated circuit substrates, synthetic gemstones, cutting tools, and artificial bones, but can also be used as phosphor carriers, advanced refractory materials, special abrasive materials, etc.
- the application fields of ⁇ -Al 2 O 3 will rapidly expand, the market demand will also increase sharply, and the application prospects are very broad.
- There are many traditional preparation methods for ⁇ -Al 2 O 3 powder The most common ones are introduced below. The purpose is to obtain high-end powder materials with high sintering activity.
- the precipitate is filtered, washed, dried (100-120°C) and other processes, it is calcined at an appropriate temperature (900-1300°C), and the aluminum hydroxide is dehydrated and decomposed to form alumina powder.
- This method has lower equipment requirements, a relatively simple process, and is easy to achieve mass production. Therefore, the production cost is low, and it is widely used.
- the powder obtained by the chemical precipitation method has serious hard agglomeration problems, resulting in poor dispersion of the powder.
- the powder particles are incomplete, so the sintering activity is low and a high sintering temperature (>1600°C is required). ).
- the hydrolysis precipitation method is divided into two methods: inorganic salt hydrolysis precipitation and alkoxide salt hydrolysis precipitation:
- the inorganic salt hydrolysis precipitation method is to continuously boil and heat a solution of aluminum-containing inorganic salts (aluminum chloride, aluminum nitrate, aluminum sulfate, aluminum acetate, etc.). During the process, the volatile acid generated by the hydrolysis of the aluminum salt is continuously evaporated and removed. , so that the hydrolysis reaction equilibrium continuously moves toward the product, and finally the hydrolysis product (mainly aluminum hydroxide) is obtained. Alumina powder is obtained through processes such as filtration, washing, drying, and calcining.
- aluminum-containing inorganic salts aluminum chloride, aluminum nitrate, aluminum sulfate, aluminum acetate, etc.
- the process flow is: hydrolysis of aluminum salt solution (boiling cooking) ⁇ filtration ⁇ washing ⁇ drying (100-120°C) ⁇ crushing ⁇ calcination (900-1300°C) ⁇ alumina powder.
- the advantage of this method is that the process is simple, but the disadvantage is that the reaction time is too long, the energy consumption is high, and the resulting powder also has serious agglomeration, the sintering activity is low, and it does not meet the requirements of high-end powders.
- the alkoxide hydrolysis precipitation method takes advantage of the easy hydrolysis of alkoxide (aluminum isopropoxide) and hydrolyzes it in an aqueous solution with an appropriate pH value to form aluminum hydroxide precipitate; it is then filtered, washed, dried, pulverized, and calcined Zirconia powder was obtained.
- the process flow is: alkoxide solution ⁇ hydrolysis precipitation (appropriate pH value) ⁇ filtration ⁇ drying (100-1200°C) ⁇ crushing ⁇ calcining (900-1300°C) ⁇ powder.
- the advantage of this method is that there is no serious agglomeration, the powder particle size is uniform, and the performance is good; the disadvantage is that the price of raw materials is too high, the hydrolysis process is difficult to effectively control, and it is difficult to achieve industrial production.
- the sol-gel method is a commonly used method for preparing ultrafine powders and can be used to prepare various oxide powders. Its principle is similar to the alkoxide hydrolysis-precipitation method. By strictly controlling the hydrolysis process, the precipitated particles exist in a colloidal form, that is, a stable sol is formed; and then the sol is converted into a gel. The gel is dried, dehydrated and calcined to obtain ultrafine alumina powder.
- the process flow is: alkoxide solution ⁇ hydrolysis ⁇ sol ⁇ polycondensation ⁇ wet gel ⁇ drying ⁇ dry gel ⁇ calcination ⁇ alumina powder.
- the advantages of this method are that the powder has fine particle size, narrow size distribution, high chemical purity, and slightly lower reaction temperature. However, there are also obvious shortcomings, such as high raw material cost, long reaction process time, and difficult process control. Therefore it is not suitable for mass production.
- the hydrothermal synthesis method is to uniformly mix (disperse) the precursor (inorganic salt, alkoxide or other forms of compounds) with the solvent (water) and additives (mineralizers, surfactants, etc.) and then place them in an appropriate airtight container.
- the solvent and the like evaporate to generate high pressure, thereby realizing a chemical reaction under high temperature and high pressure, that is, a hydrothermal reaction.
- the product can be aluminum oxide, aluminum hydroxide or other forms of aluminum-containing compounds, which can be collected, cleaned, dried and calcined to obtain alumina powder.
- the powder obtained by this method has good dispersion, narrow particle size distribution, and complete particle morphology. However, the preparation process is complicated, has too many changes, and has poor controllability, so the cost of the powder is high.
- the purpose of the present invention is to provide a highly sintering active alumina ceramic powder and a preparation method thereof, aiming to solve the problem that the existing technology cannot produce alumina ceramics with high sintering activity at low cost and in large quantities. Powder problem.
- a method for preparing high-sintered activated alumina ceramic powder which includes the steps:
- the precipitate is dried to obtain aluminum hydroxide dry powder
- the aluminum hydroxide dry powder is calcined to obtain initial alumina powder
- the preparation method of the high-sintered activated alumina ceramic powder wherein the aluminum salt in the aluminum salt solution is one or more of aluminum chloride, aluminum nitrate and aluminum acetate; the precipitant solution
- the precipitating agent is one or more of sodium hydroxide, potassium hydroxide and ammonia water.
- the temperature of the drying process is 100-120°C.
- the preparation method of the high-sintered activated alumina ceramic powder wherein in the step of calcining the aluminum hydroxide dry powder, the calcining temperature is 900-1300°C.
- the preparation method of the high-sintered activated alumina ceramic powder wherein the mineralizing agent is a NaOH solution, and the concentration of the NaOH solution is 10 -5 -10 -2 M.
- the preparation method of the high-sintered activated alumina ceramic powder wherein the surfactant is cetyltrimethylammonium bromide, and the concentration of cetyltrimethylammonium bromide is 10 - 5-10-2M .
- the temperature of the hydrothermal reaction is 120-180°C.
- the hydrothermal reaction time is 8-24 hours.
- a high-sintered activated alumina ceramic powder is prepared by using the preparation method of the high-sintered activated alumina ceramic powder of the present invention.
- the present invention provides a method for preparing high-sintered activated alumina ceramic powder.
- the aluminum hydroxide prepared at this time The surface of the dry powder or initial alumina powder is rough and the morphology is irregular; then the hydrothermal method is used to modify the morphology of the formed alumina ceramic powder particles to obtain a regular surface morphology, thereby obtaining an oxidized ceramic powder with high sintering activity.
- the method provided by the invention is simple and easy to operate, has low production cost, and can prepare alumina ceramic powder with high sintering activity in large quantities.
- Figure 1 is a flow chart of a preferred embodiment of a method for preparing high-sintered activated alumina ceramic powder provided by the present invention.
- Figure 2 is a schematic diagram of the morphology evolution of alumina powder particles before and after hydrothermal reaction treatment.
- Figure 3 is a TEM photograph of an alumina powder sample before (left) and after (right) hydrothermal treatment in Example 1.
- Figure 4 shows the temperature variation curve of density of ceramics obtained by hydrothermal treatment of alumina powder and commercial coarse alumina powder in Example 1.
- Figure 5 is a cross-sectional SEM photo of the hydrothermal alumina powder in Example 1 sintered at 1400°C for 2 hours.
- the present invention provides a high-sintered activated alumina ceramic powder and a preparation method thereof.
- the present invention will be further described in detail below. It should be understood that the specific embodiments described here are only used to explain the present invention and are not intended to limit the present invention.
- the co-precipitation method to form water-insoluble aluminum hydroxide is a fast reaction process, there is not enough time to modify the product during the production process to form particles with regular morphology, and this irregular morphology will remain until after calcination.
- the surface morphology of alumina powders prepared by co-precipitation method is usually irregular, resulting in poor sintering activity.
- the present invention provides a method for preparing high-sintered activated alumina ceramic powder, as shown in Figure 1, which includes the steps:
- the particle size distribution of the initial alumina powder or aluminum hydroxide dry powder is first controlled by a chemical precipitation method, as shown in Figure 2.
- the surface of the aluminum hydroxide dry powder or initial alumina powder prepared at this time is rough and the shape is rough.
- the morphology of the formed alumina ceramic powder particles is then modified using a hydrothermal method to make the surface morphology regular, thereby obtaining alumina ceramic powder with high sintering activity.
- the method provided by the invention is simple and easy to operate, has low production cost, and can prepare alumina ceramic powder with high sintering activity in large quantities.
- the aluminum salt in the aluminum aqueous solution is one or more of aluminum chloride, aluminum nitrate, and aluminum acetate; the precipitant in the precipitant solution is sodium hydroxide, potassium hydroxide and one or more ammonia.
- the temperature of the drying process is 100-120°C.
- the temperature of the calcining treatment is 900-1300°C.
- the mineralizing agent is a NaOH solution
- the concentration of the NaOH solution is 10 -5 -10 -2 M.
- the NaOH solution will undergo a dissolution-precipitation reaction with the surface of the alumina particles under hydrothermal conditions.
- the hydrothermal conditions are appropriate, the atoms or ions on the surface of the alumina particles will be reorganized, thereby achieving the integrity of the particles. Effect.
- the surfactant is cetyltrimethylammonium bromide
- the concentration of cetyltrimethylammonium bromide is 10 -5 to 10 -2 M.
- the cetyltrimethylamine bromide serves as a surfactant, which enables selective adsorption on the surface of the alumina particles and enhances the mineralization effect of the NaOH solution.
- the temperature of the hydrothermal reaction is 120-180°C.
- the hydrothermal reaction time is 8-24 h.
- a high-sintered activated alumina ceramic powder is also provided, which is prepared by using the preparation method of the high-sintered activated alumina ceramic powder of the present invention.
- Hydrothermal treatment Take 5 grams of the alumina powder obtained after the above calcination, disperse it into 100 ml of deionized water, add surfactant/mineralizer (0.01-0.1 grams) during the stirring process, and stir thoroughly for 1 hour; take Transfer 50 ml of the dispersion into the hydrothermal reaction tank, and add an appropriate amount of mineralizer (NaOH, concentration range 10 -5 -10 -2 M) and surfactant (cetyltrimethylammonium bromide, concentration range 10 -5 -10 -2 M), mix thoroughly and transfer to a hydrothermal reactor, heat to a certain temperature (120-180°C), and keep warm for an appropriate time (8-24 hours).
- mineralizer NaOH, concentration range 10 -5 -10 -2 M
- surfactant cetyltrimethylammonium bromide, concentration range 10 -5 -10 -2 M
- the density measurement results show (as shown in Figure 4) that the alumina powder after hydrothermal treatment begins to shrink at 1350°C, reaches 90% of the theoretical density after sintering for 2 hours, and is completely dense after sintering at 1400°C for 2 hours; in comparison, Commercial alumina powder only reaches 75% of the theoretical density after sintering at 1600°C for 2 hours.
- Representative SEM images of ceramics obtained by hydrothermal treatment of alumina powder are shown in Figure 5.
- Hydrothermal treatment Take 7.8 grams of the above dry and uncalcined aluminum hydroxide powder, disperse it into 100 ml of deionized water, add surfactant/mineralizer (0.01-0.1 grams) during the stirring process, and stir thoroughly for 1 hour ;At the same time, add an appropriate amount of mineralizer (NaOH, concentration range 10 -5 -10 -2 M) and surfactant (cetyltrimethylammonium bromide, concentration range 10 -5 -10 -2 M), After thorough mixing, transfer to a hydrothermal reaction kettle, heat to a certain temperature (120-180°C), and keep warm for an appropriate time (8-24 hours). After the reaction is completed, the product is filtered, washed, and dried to obtain hydrothermal alumina powder.
- surfactant/mineralizer 0.01-0.1 grams
- Material characterization Use Zeiss Sigma 300 field emission scanning electron microscope and FEI Tecnai G2 f20 s-twin 200kV field emission transmission electron microscope to analyze the morphology and microstructure of the powder and sintered ceramics; use X-ray diffractometer (XRD , Rigaku, D/max-2500/PC) for phase analysis; a NETZSCH thermal expansion meter (DIL 402 Expedis Select) was used to measure the sintering/densification curve of the powder; the Archimedes method was used to measure the density of the ceramic after sintering.
- Hydrothermal treatment Take 5 grams of the alumina powder obtained after the above calcination, disperse it into 100 ml of deionized water, add surfactant/mineralizer (0.01-0.1 grams) during the stirring process, and stir thoroughly for 1 hour; take Transfer 50 ml of the dispersion into the hydrothermal reaction tank, and add an appropriate amount of mineralizer (NaOH, concentration range 10 -5 -10 -2 M) and surfactant (cetyltrimethylammonium bromide, concentration range 10 -5 -10 -2 M), mix thoroughly and transfer to a hydrothermal reactor, heat to a certain temperature (120-180°C), and keep warm for an appropriate time (8-24 hours). After the reaction is completed, the product is filtered, washed, and dried to obtain hydrothermal alumina powder.
- mineralizer NaOH, concentration range 10 -5 -10 -2 M
- surfactant cetyltrimethylammonium bromide, concentration range 10 -5 -10 -2 M
- Material characterization Use Zeiss Sigma 300 field emission scanning electron microscope and FEI Tecnai G2 f20 s-twin 200kV field emission transmission electron microscope to analyze the morphology and microstructure of the powder and sintered ceramics; use X-ray diffractometer (XRD , Rigaku, D/max-2500/PC) for phase analysis; a NETZSCH thermal expansion meter (DIL 402 Expedis Select) was used to measure the sintering/densification curve of the powder; the Archimedes method was used to measure the density of the ceramic after sintering.
- Hydrothermal treatment Take 7.8 grams of the above dry and uncalcined aluminum hydroxide powder, disperse it into 100 ml of deionized water, add surfactant/mineralizer (0.01-0.1 grams) during the stirring process, and stir thoroughly for 1 hour ; Take 50 ml of the dispersion and transfer it to the hydrothermal reaction tank, and add an appropriate amount of mineralizer (NaOH, concentration range 10 -5 -10 -2 M) and surfactant (cetyltrimethylammonium bromide, Concentration range: 10 -5 -10 -2 M), mix thoroughly, transfer to hydrothermal reactor, heat to a certain temperature (120-180°C), and keep warm for appropriate time (8-24 hours). After the reaction is completed, the product is filtered, washed, and dried to obtain hydrothermal alumina powder.
- mineralizer NaOH, concentration range 10 -5 -10 -2 M
- surfactant cetyltrimethylammonium bromide
- Material characterization Use Zeiss Sigma 300 field emission scanning electron microscope and FEI Tecnai G2 f20 s-twin 200kV field emission transmission electron microscope to analyze the morphology and microstructure of the powder and sintered ceramics; use X-ray diffractometer (XRD , Rigaku, D/max-2500/PC) for phase analysis; a NETZSCH thermal expansion meter (DIL 402 Expedis Select) was used to measure the sintering/densification curve of the powder; the Archimedes method was used to measure the density of the ceramic after sintering.
- Hydrothermal treatment Take 5 grams of the alumina powder obtained after the above calcination, disperse it into 100 ml of deionized water, add surfactant/mineralizer (0.01-0.1 grams) during the stirring process, and stir thoroughly for 1 hour; take Transfer 50 ml of the dispersion into the hydrothermal reaction tank, and add an appropriate amount of mineralizer (NaOH, concentration range 10 -5 -10 -2 M) and surfactant (cetyltrimethylammonium bromide, concentration range 10 -5 -10 -2 M), mix thoroughly and transfer to a hydrothermal reactor, heat to a certain temperature (120-180°C), and keep warm for an appropriate time (8-24 hours). After the reaction is completed, the product is filtered, washed, and dried to obtain hydrothermal alumina powder.
- mineralizer NaOH, concentration range 10 -5 -10 -2 M
- surfactant cetyltrimethylammonium bromide, concentration range 10 -5 -10 -2 M
- Material characterization Use Zeiss Sigma 300 field emission scanning electron microscope and FEI Tecnai G2 f20 s-twin 200kV field emission transmission electron microscope to analyze the morphology and microstructure of the powder and sintered ceramics; use X-ray diffractometer (XRD , Rigaku, D/max-2500/PC) for phase analysis; a NETZSCH thermal expansion meter (DIL 402 Expedis Select) was used to measure the sintering/densification curve of the powder; the Archimedes method was used to measure the density of the ceramic after sintering.
- Hydrothermal treatment Take 5 grams of the alumina powder obtained after the above calcination, disperse it into 100 ml of deionized water, add surfactant/mineralizer (0.01-0.1 grams) during the stirring process, and stir thoroughly for 1 hour; take Transfer 50 ml of the dispersion into the hydrothermal reaction tank, and add an appropriate amount of mineralizer (NaOH, concentration range 10 -5 -10 -2 M) and surfactant (cetyltrimethylammonium bromide, concentration range 10 -5 -10 -2 M), mix thoroughly and transfer to a hydrothermal reactor, heat to a certain temperature (120-180°C), and keep warm for an appropriate time (8-24 hours). After the reaction is completed, the product is filtered, washed, and dried to obtain hydrothermal alumina powder.
- mineralizer NaOH, concentration range 10 -5 -10 -2 M
- surfactant cetyltrimethylammonium bromide, concentration range 10 -5 -10 -2 M
- Material characterization Use Zeiss Sigma 300 field emission scanning electron microscope and FEI Tecnai G2 f20 s-twin 200kV field emission transmission electron microscope to analyze the morphology and microstructure of the powder and sintered ceramics; use X-ray diffractometer (XRD , Rigaku, D/max-2500/PC) for phase analysis; a NETZSCH thermal expansion meter (DIL 402 Expedis Select) was used to measure the sintering/densification curve of the powder; the Archimedes method was used to measure the density of the ceramic after sintering.
- the present invention provides a method for preparing highly sintered activated alumina ceramic powder.
- the size distribution of the initial alumina powder or aluminum hydroxide dry powder is controlled through chemical precipitation, and then the hydrothermal method is used to perfect the oxidation.
- the particle morphology of aluminum ceramic powder is determined to obtain alumina ceramic powder with regular surface morphology and high sintering activity.
- the method provided by the invention is simple and easy to operate, has low production cost, and can prepare alumina ceramic powder with high sintering activity in large quantities.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
本发明公开一种高烧结活性氧化铝陶瓷粉体及其制备方法,其中,所述制备方法包括步骤:将铝盐水溶液与沉淀剂溶液混合,反应得到沉淀物;对所述沉淀物进行干燥处理,得到氢氧化铝干粉;对所述氢氧化铝干粉进行煅烧处理,得到初始氧化铝粉体;将所述初始氧化铝粉体或氢氧化铝干粉分散到去离子水中,并加入矿化剂和表面活性剂混合后转入水热反应釜中进行水热反应,制得所述高烧结活性氧化铝陶瓷粉体。本发明采用水热法对氧化铝陶瓷粉体颗粒形貌进行修饰,得到其表面形貌规整,从而得到具有高烧结活性的氧化铝陶瓷粉体。本发明提供的方法简单易操作,生产成本低,可大批量制备高烧结活性的氧化铝陶瓷粉体。
Description
本发明涉及陶瓷材料领域,特别涉及一种高烧结活性氧化铝陶瓷粉体及其制备方法。
陶瓷材料在国民经济及国防领域有着广泛的应用,包括各种功能陶瓷及结构陶瓷。陶瓷产品的性能取决于陶瓷材料的工艺过程。陶瓷工艺包括粉体制备/处理,成型及烧结三个主要步骤,每个步骤还包括相应的细节。虽然每个步骤都很重要,但是陶瓷粉体的质量是陶瓷产品最主要的决定性因素。因此,陶瓷粉体技术就是陶瓷材料的核心技术。陶瓷粉体的质量主要包括颗粒尺寸、尺寸分布、颗粒形貌等。一般普遍对颗粒尺寸/分布比较重视,而对颗粒形貌的完整性注意的不够。
α-氧化铝(Al
2O
3)以其强度高、硬度大、耐高温、耐磨损等一系列优异的物理性能,而得到了广泛的应用。Al
2O
3粉体不仅是集成电路基片、人工合成宝石、切削刀具、人造骨骼等高端氧化铝陶瓷的原料,而且还可以用作荧光粉载体、高级耐火材料、特种研磨材料等。目前,随着工业自动化技术的不断发展,α-Al
2O
3的应用领域将会快速拓宽,市场需求量也将急剧增大,应用前景十分广阔。α-Al
2O
3粉体的传统制备方法多种多样,以下介绍最为常见的几种,其目的是获得高烧结活性的高端粉体材料。
化学沉淀法
化学沉淀法的主要工艺路线是以适当浓度的碱溶液(如氢氧化钠、氢氧化钾、氨水、尿素等作为沉淀剂,控制pH=8-9),使得铝盐(氯化铝、硝酸铝、硫酸铝、醋酸铝等)与之发生化学反应形成溶解度较低的氢氧化铝沉淀(絮凝胶)。沉淀经过滤、洗涤、干燥(100-120℃)等工序后,在适当的温度下(900-1300℃)进行煅烧,氢氧化铝脱水分解形成氧化铝粉体。此法对设备要 求较低、工艺过程相对简单,容易实现量产,因而生产成本较低,而被广泛采用。然而,化学沉淀法所获得的粉体存在比较严重的硬团聚问题,造成粉体的分散性不好,另外,粉体颗粒不完整,因此烧结活性低,需要很高的烧结温度(>1600℃)。
水解沉淀法
水解沉淀法分为无机盐水解沉淀和醇盐水解沉淀两种方法:
(1)无机盐水解沉淀法是将含铝无机盐(氯化铝、硝酸铝、硫酸铝、醋酸铝等)溶液持续沸腾加热,过程中铝盐水解生成的挥发性的酸不断地蒸发而除去,从使水解反应平衡不断向产物方向移动,最终获得水解产物(氢氧化铝为主)。经过滤、洗涤、干燥、煅烧等过程制得氧化铝粉体。其工艺流程为:铝盐溶液水解(沸腾蒸煮)→过滤→洗涤→干燥(100-120℃)→粉碎→煅烧(900-1300℃)→氧化铝粉体。这种方法的优点是工艺简单,缺点是反应时间过长,消耗能量高,而且所得粉体也存在严重的团聚现象,烧结活性偏低,不符合高端粉体的要求。
(2)醇盐水解沉淀法是利用醇盐(异丙醇铝)容易水解的特性,在具有适当pH值的水溶液中进行水解形成氢氧化铝沉淀;再经过滤、洗涤、干燥、粉碎、煅烧得到氧化锆粉体。其工艺流程为:醇盐溶液→水解沉淀(适当pH值)→过滤→干燥(100-1200℃)→粉碎→煅烧(900-1300℃)→粉体。该方法的优点是无严重团聚,粉体颗粒尺寸均匀,性能较好;缺点是原料价格太高,水解过程较难有效控制,难以实现工业化生产。
溶胶-凝胶法
溶胶-凝胶法是一种常用的制备超细粉体的方法,可以用于制备各种氧化物粉体。其原理与醇盐水解沉淀法相似,是通过严格控制水解过程使得沉淀颗粒以胶体形态存在,即形成稳定的溶胶;再促使溶胶转化成凝胶。凝胶经干燥脱水、煅烧而得到氧化铝超细粉。其工艺流程为:醇盐溶液→水解→溶胶→缩聚→湿凝胶→干燥→干凝胶→煅烧→氧化铝粉体。该方法 的优点为是粉体粒度细、尺寸分布窄、化学纯度高、反应温度略低。但也存在明显的缺点,如原料成本高、反应过程时间长、过程控制难。因此也不适合大批量生产。
水热合成法
水热合成法是将前驱体(无机盐、醇盐或其它形式的化合物皆可)与溶剂(水)及添加剂(矿化剂、表面活性剂等)均匀混合(分散)后置于适当的密闭的反应器中,经加热后溶剂等蒸发产生高压,实现高温高压下化学反应,即水热反应。产物可以是氧化铝、氢氧化铝或其它形式的含铝化合物,经收集、清洗、干燥、煅烧得到氧化铝粉体。这种方法获得的粉体分散性好,粒度分布窄,颗粒形貌完整,但制备过程比较复杂,变化太多,可控性差,因此粉体成本较高。
目前还没有一种成本低、且适合大批量生产高烧结活性的高端氧化铝陶瓷粉体的方法。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种高烧结活性氧化铝陶瓷粉体及其制备方法,旨在解决现有技术无法低成本、大批量生产具有高烧结活性的氧化铝陶瓷粉体的问题。
本发明的技术方案如下:
一种高烧结活性氧化铝陶瓷粉体的制备方法,其中,包括步骤:
将铝盐水溶液与沉淀剂溶液混合,反应得到沉淀物;
对所述沉淀物进行干燥处理,得到氢氧化铝干粉;
对所述氢氧化铝干粉进行煅烧处理,得到初始氧化铝粉体;
将所述初始氧化铝粉体或氢氧化铝干粉分散到去离子水中,并加入矿化剂和表面活性剂混合后转入水热反应釜中进行水热反应,制得所述高烧结活性氧化铝陶瓷粉体。
所述高烧结活性氧化铝陶瓷粉体的制备方法,其中,所述铝盐水溶液中的铝盐为氯化铝、硝酸铝和醋酸铝中的一种或多种;所述沉淀剂溶液中的沉淀剂为氢氧化钠、氢氧化钾和氨水中的一种或多种。
所述高烧结活性氧化铝陶瓷粉体的制备方法,其中,对所述沉淀物进行干燥处理的步骤中,干燥处理的温度为100-120℃。
所述高烧结活性氧化铝陶瓷粉体的制备方法,其中,对所述氢氧化铝干粉进行煅烧处理的步骤中,煅烧处理的温度为900-1300℃。
所述高烧结活性氧化铝陶瓷粉体的制备方法,其中,所述矿化剂为NaOH溶液,所述NaOH溶液的浓度为10
-5-10
-2M。
所述高烧结活性氧化铝陶瓷粉体的制备方法,其中,所述表面活性剂为溴化十六烷基三甲基铵,所述溴化十六烷基三甲基铵的浓度为10
-5-10
-2M。
所述高烧结活性氧化铝陶瓷粉体的制备方法,其中,水热反应的温度为120-180℃。
所述高烧结活性氧化铝陶瓷粉体的制备方法,其中,水热反应的时间为8-24h。
一种高烧结活性氧化铝陶瓷粉体,其中,采用本发明所述高烧结活性氧化铝陶瓷粉体的制备方法制得。
有益效果:本发明提供了一种高烧结活性氧化铝陶瓷粉体的制备方法,首先通过化学沉淀法控制初始氧化铝粉体或氢氧化铝干粉的颗粒尺寸分布,此时制得的氢氧化铝干粉或初始氧化铝粉体的表面粗糙,形貌不规整;然后采用水热法对形成的氧化铝陶瓷粉体颗粒形貌进行修饰,得到其表面 形貌规整,从而得到具有高烧结活性的氧化铝陶瓷粉体。本发明提供的方法简单易操作,生产成本低,可大批量制备高烧结活性的氧化铝陶瓷粉体。
图1为本发明提供的一种高烧结活性氧化铝陶瓷粉体的制备方法较佳实施例的流程图。
图2为水热反应处理前后氧化铝粉体颗粒形貌演变示意图。
图3为实施例1中水热处理前(左)后(右)氧化铝粉体样品TEM照片。
图4为实施例1中水热处理氧化铝粉末和商业粗氧化铝粉末所得陶瓷密度随温度变化曲线。
图5为实施例1中水热氧化铝粉末1400℃烧结2小时断面SEM照片。
本发明提供一种高烧结活性氧化铝陶瓷粉体及其制备方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
由于共沉淀法形成不溶于水的氢氧化铝是一个快速反应过程,产物生成过程中没有足够的时间进行修饰来形成形貌规整的颗粒,而这种不规则的形貌会保持到煅烧后的氧化铝粉体中,因此通过共沉淀法制得的氧化铝粉体表面形貌通常不规整,从而导致其烧结活性较差。
基于此,本发明提供了一种高烧结活性氧化铝陶瓷粉体的制备方法,如图1所示,其包括步骤:
S10、将铝盐水溶液与沉淀剂溶液混合,反应得到沉淀物;
S20、对所述沉淀物进行干燥处理,得到氢氧化铝干粉;
S30、对所述氢氧化铝干粉进行煅烧处理,得到初始氧化铝粉体;
S40、将所述初始氧化铝粉体或氢氧化铝干粉分散到去离子水中,并加入矿化剂和表面活性剂混合后转入水热反应釜中进行水热反应,制得所述高烧结活性氧化铝陶瓷粉体。
本实施例首先通过化学沉淀法控制初始氧化铝粉体或氢氧化铝干粉的颗粒尺寸分布,如图2所示,此时制得的氢氧化铝干粉或初始氧化铝粉体的表面粗糙,形貌不规整;然后采用水热法对形成的氧化铝陶瓷粉体颗粒形貌进行修饰,使其表面形貌规整,从而得到具有高烧结活性的氧化铝陶瓷粉体。本发明提供的方法简单易操作,生产成本低,可大批量制备高烧结活性的氧化铝陶瓷粉体。
在一些实施方式中,所述铝盐水溶液中的铝盐为氯化铝、硝酸铝和醋酸铝中的一种或多种;所述沉淀剂溶液中的沉淀剂为氢氧化钠、氢氧化钾和氨水中的一种或多种。
在一些实施方式中,对所述沉淀物进行干燥处理的步骤中,干燥处理的温度为100-120℃。
在一些实施方式中,对所述氢氧化铝干粉进行煅烧处理的步骤中,煅烧处理的温度为900-1300℃。
在一些实施方式中,所述矿化剂为NaOH溶液,所述NaOH溶液的浓度为10
-5-10
-2M。在本实施例中,所述NaOH溶液在水热条件下会与氧化铝颗粒表面发生溶解-沉淀反应,当水热条件适当时,氧化铝颗粒表面原子或离子实现重组,进而达到颗粒完整化的效果。
在一些实施方式中,所述表面活性剂为溴化十六烷基三甲基铵,所述溴化十六烷基三甲基铵的浓度为10
-5-10
-2M。在本实施例中,所述溴化十六烷基三甲基胺作为一种表面活性剂,使得氧化铝颗粒表面有选择性的吸附作用,可加强NaOH溶液的矿化效果。
在一些实施方式中,水热反应的温度为120-180℃。
在一些实施方式中,水热反应的时间为8-24h。
在一些实施方式中,还提供一种高烧结活性氧化铝陶瓷粉体,其采用本发明所述高烧结活性氧化铝陶瓷粉体的制备方法制得。
下面通过具体实施例对本发明一种高烧结活性氧化铝陶瓷粉体的制备方法做进一步的解释说明:
实施例1
1、化学沉淀:取24.14克氯化铝(AlCI
3·6H
2O)粉末,溶于1L去离子水,充分搅拌至完全溶解;另取40克氨水(25-28%);逐滴缓慢加入到氯化铝溶液中,持续1小时后过滤,水洗涤,干燥;干燥后的粉末置于马弗炉空气气氛下煅烧(900-1300℃,2-8小时)形成氧化铝粉末。
2、水热处理:取上述煅烧后获得的氧化铝粉末5克,分散到100毫升去离子水中,搅拌过程中加入表面活性剂/矿化剂(0.01-0.1克),再充分搅拌1小时;取50毫升分散体转入水热反应罐,同时添加适量的矿化剂(NaOH,浓度范围10
-5-10
-2M)和表面活性剂(溴化十六烷基三甲基铵,浓度范围10
-5-10
-2M),充分混合后转入水热反应釜中,加热到一定温度(120-180℃),保温适当时间(8-24小时)。反应完成产物经过过滤、水洗、干燥获得水热氧化铝粉。氧化铝粉末经水热处理前后代表性透射电镜(TEM)照片如图3所示,很明显,水热处理后颗粒形貌更加完整,边缘更加规则整齐。
材料表征:采用蔡司公司Sigma 300场发射扫描电子显微镜和FEI Tecnai G2 f20 s-twin 200kV场发射透射电镜分析粉体及烧结后陶瓷的形貌和微观结构;采用X-射线衍射仪(XRD,Rigaku,D/max-2500/PC)进行物相分析;采用耐驰热膨胀仪(DIL 402 Expedis Select)测量粉料的烧结/致密化曲线;采用阿基米德法测量烧结后陶瓷的密度。密度测量结果表明(如图4所示),经水热处理后的氧化铝粉末1350℃开始收缩,烧结2小时后达到理论密度的90%,1400℃烧结2小时后完全致密;相比之下,商业氧化铝 粉1600℃烧结2小时后只达到理论密度的75%。水热处理氧化铝粉所得陶瓷的代表性SEM照片如图5所示。
实施例2
1、化学沉淀:取24.14克氯化铝(AlCI
3·6H
2O)粉末,溶于1L去离子水,充分搅拌至完全溶解;另取40克氨水(25-28%);逐滴缓慢加入到氯化铝溶液中,持续1小时后过滤,水洗涤,干燥;干燥后的粉末置于马弗炉空气气氛下煅烧(900-1300℃,2-8小时)形成氧化铝粉末。
2、水热处理:取上述干燥而未煅烧的氢氧化铝粉末7.8克,分散到100毫升去离子水中,搅拌过程中加入表面活性剂/矿化剂(0.01-0.1克),再充分搅拌1小时;同时添加适量的矿化剂(NaOH,浓度范围10
-5-10
-2M)和表面活性剂(溴化十六烷基三甲基铵,浓度范围10
-5-10
-2M),充分混合后转入水热反应釜中,加热到一定温度(120-180℃),保温适当时间(8-24小时)。反应完成产物经过过滤、水洗、干燥获得水热氧化铝粉。
3、材料表征:采用蔡司公司Sigma 300场发射扫描电子显微镜和FEI Tecnai G2 f20 s-twin 200kV场发射透射电镜分析粉体及烧结后陶瓷的形貌和微观结构;采用X-射线衍射仪(XRD,Rigaku,D/max-2500/PC)进行物相分析;采用耐驰热膨胀仪(DIL 402 Expedis Select)测量粉料的烧结/致密化曲线;采用阿基米德法测量烧结后陶瓷的密度。
实施例3
1、化学沉淀:取37.5克硝酸铝(Al(NO)
3·9H
2O)粉末,溶于1L去离子水,充分搅拌至完全溶解;另取40克氨水(25-28%);逐滴缓慢加入到氯化铝溶液中,持续1小时后过滤,水洗涤,干燥;干燥后的粉末置于马弗炉空气气氛下煅烧(900-1300℃,2-8小时)形成氧化铝粉末。
2、水热处理:取上述煅烧后获得的氧化铝粉末5克,分散到100毫升去离子水中,搅拌过程中加入表面活性剂/矿化剂(0.01-0.1克),再充分搅拌1小时;取50毫升分散体转入水热反应罐,同时添加适量的矿化剂 (NaOH,浓度范围10
-5-10
-2M)和表面活性剂(溴化十六烷基三甲基铵,浓度范围10
-5-10
-2M),充分混合后转入水热反应釜中,加热到一定温度(120-180℃),保温适当时间(8-24小时)。反应完成产物经过过滤、水洗、干燥获得水热氧化铝粉。
3、材料表征:采用蔡司公司Sigma 300场发射扫描电子显微镜和FEI Tecnai G2 f20 s-twin 200kV场发射透射电镜分析粉体及烧结后陶瓷的形貌和微观结构;采用X-射线衍射仪(XRD,Rigaku,D/max-2500/PC)进行物相分析;采用耐驰热膨胀仪(DIL 402 Expedis Select)测量粉料的烧结/致密化曲线;采用阿基米德法测量烧结后陶瓷的密度。
实施例4
1、化学沉淀:取37.5克硝酸铝(Al(NO)
3·9H
2O)粉末,溶于1L去离子水,充分搅拌至完全溶解;另取40克氨水(25-28%);逐滴缓慢加入到氯化铝溶液中,持续1小时后过滤,水洗涤,干燥;干燥后的粉末置于马弗炉空气气氛下煅烧(900-1300℃,2-8小时)形成氧化铝粉末。
2、水热处理:取上述干燥而未煅烧的氢氧化铝粉末7.8克,分散到100毫升去离子水中,搅拌过程中加入表面活性剂/矿化剂(0.01-0.1克),再充分搅拌1小时;取50毫升分散体转入水热反应罐,同时添加适量的矿化剂(NaOH,浓度范围10
-5-10
-2M)和表面活性剂(溴化十六烷基三甲基铵,浓度范围10
-5-10
-2M),充分混合后转入水热反应釜中,加热到一定温度(120-180℃),保温适当时间(8-24小时)。反应完成产物经过过滤、水洗、干燥获得水热氧化铝粉。
3、材料表征:采用蔡司公司Sigma 300场发射扫描电子显微镜和FEI Tecnai G2 f20 s-twin 200kV场发射透射电镜分析粉体及烧结后陶瓷的形貌和微观结构;采用X-射线衍射仪(XRD,Rigaku,D/max-2500/PC)进行物相分析;采用耐驰热膨胀仪(DIL 402 Expedis Select)测量粉料的烧结/致密化曲线;采用阿基米德法测量烧结后陶瓷的密度。
实施例5
1、化学沉淀:取24.1克醋酸铝(Al(Ac)
3·2H
2O)粉末,溶于1L去离子水,充分搅拌至完全溶解;另取40克氨水(25-28%);逐滴缓慢加入到氯化铝溶液中,持续1小时后过滤,水洗涤,干燥;干燥后的粉末置于马弗炉空气气氛下煅烧(900-1300℃,2-8小时)形成氧化铝粉末。
2、水热处理:取上述煅烧后获得的氧化铝粉末5克,分散到100毫升去离子水中,搅拌过程中加入表面活性剂/矿化剂(0.01-0.1克),再充分搅拌1小时;取50毫升分散体转入水热反应罐,同时添加适量的矿化剂(NaOH,浓度范围10
-5-10
-2M)和表面活性剂(溴化十六烷基三甲基铵,浓度范围10
-5-10
-2M),充分混合后转入水热反应釜中,加热到一定温度(120-180℃),保温适当时间(8-24小时)。反应完成产物经过过滤、水洗、干燥获得水热氧化铝粉。
3、材料表征:采用蔡司公司Sigma 300场发射扫描电子显微镜和FEI Tecnai G2 f20 s-twin 200kV场发射透射电镜分析粉体及烧结后陶瓷的形貌和微观结构;采用X-射线衍射仪(XRD,Rigaku,D/max-2500/PC)进行物相分析;采用耐驰热膨胀仪(DIL 402 Expedis Select)测量粉料的烧结/致密化曲线;采用阿基米德法测量烧结后陶瓷的密度。
实施例6
1、化学沉淀:取24.1克醋酸铝(Al(Ac)
3·2H
2O)粉末,溶于1L去离子水,充分搅拌至完全溶解;另取40克氨水(25-28%);逐滴缓慢加入到氯化铝溶液中,持续1小时后过滤,水洗涤,干燥;干燥后的粉末置于马弗炉空气气氛下煅烧(900-1300℃,2-8小时)形成氧化铝粉末。
2、水热处理:取上述煅烧后获得的氧化铝粉末5克,分散到100毫升去离子水中,搅拌过程中加入表面活性剂/矿化剂(0.01-0.1克),再充分搅拌1小时;取50毫升分散体转入水热反应罐,同时添加适量的矿化剂(NaOH,浓度范围10
-5-10
-2M)和表面活性剂(溴化十六烷基三甲基铵,浓度 范围10
-5-10
-2M),充分混合后转入水热反应釜中,加热到一定温度(120-180℃),保温适当时间(8-24小时)。反应完成产物经过过滤、水洗、干燥获得水热氧化铝粉。
3、材料表征:采用蔡司公司Sigma 300场发射扫描电子显微镜和FEI Tecnai G2 f20 s-twin 200kV场发射透射电镜分析粉体及烧结后陶瓷的形貌和微观结构;采用X-射线衍射仪(XRD,Rigaku,D/max-2500/PC)进行物相分析;采用耐驰热膨胀仪(DIL 402 Expedis Select)测量粉料的烧结/致密化曲线;采用阿基米德法测量烧结后陶瓷的密度。
综上所述,本发明提供了一种高烧结活性氧化铝陶瓷粉体的制备方法,首先通过化学沉淀法控制初始氧化铝粉体或氢氧化铝干粉的尺寸分布,然后采用水热法完善氧化铝陶瓷粉体的颗粒形貌,得到表面形貌规整且具有高烧结活性的氧化铝陶瓷粉体。本发明提供的方法简单易操作,生产成本低,可大批量制备高烧结活性的氧化铝陶瓷粉体。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。
Claims (9)
- 一种高烧结活性氧化铝陶瓷粉体的制备方法,其特征在于,包括步骤:将铝盐水溶液与沉淀剂溶液混合,反应得到沉淀物;对所述沉淀物进行干燥处理,得到氢氧化铝干粉;对所述氢氧化铝干粉进行煅烧处理,得到初始氧化铝粉体;将所述初始氧化铝粉体或氢氧化铝干粉分散到去离子水中,并加入矿化剂和表面活性剂混合后转入水热反应釜中进行水热反应,制得所述高烧结活性氧化铝陶瓷粉体。
- 根据权利要求1所述高烧结活性氧化铝陶瓷粉体的制备方法,其特征在于,所述铝盐水溶液中的铝盐为氯化铝、硝酸铝和醋酸铝中的一种或多种;所述沉淀剂溶液中的沉淀剂为氢氧化钠、氢氧化钾和氨水中的一种或多种。
- 根据权利要求1所述高烧结活性氧化铝陶瓷粉体的制备方法,其特征在于,对所述沉淀物进行干燥处理的步骤中,干燥处理的温度为100-120℃。
- 根据权利要求1所述高烧结活性氧化铝陶瓷粉体的制备方法,其特征在于,对所述氢氧化铝干粉进行煅烧处理的步骤中,煅烧处理的温度为900-1300℃。
- 根据权利要求1所述高烧结活性氧化铝陶瓷粉体的制备方法,其特征在于,所述矿化剂为NaOH溶液,所述NaOH溶液的浓度为10 -5-10 -2M。
- 根据权利要求1所述高烧结活性氧化铝陶瓷粉体的制备方法,其特征在于,所述表面活性剂为溴化十六烷基三甲基铵,所述溴化十六烷基三甲基铵的浓度为10 -5-10 -2M。
- 根据权利要求1所述高烧结活性氧化铝陶瓷粉体的制备方法,其特征在于,水热反应的温度为120-180℃。
- 根据权利要求7所述高烧结活性氧化铝陶瓷粉体的制备方法,其特征在于,水热反应的时间为8-24h。
- 一种高烧结活性氧化铝陶瓷粉体,其特征在于,采用权利要求1-8任一所述高烧结活性氧化铝陶瓷粉体的制备方法制得。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/116925 WO2024045201A1 (zh) | 2022-09-03 | 2022-09-03 | 一种高烧结活性氧化铝陶瓷粉体及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/116925 WO2024045201A1 (zh) | 2022-09-03 | 2022-09-03 | 一种高烧结活性氧化铝陶瓷粉体及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024045201A1 true WO2024045201A1 (zh) | 2024-03-07 |
Family
ID=90100241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/116925 WO2024045201A1 (zh) | 2022-09-03 | 2022-09-03 | 一种高烧结活性氧化铝陶瓷粉体及其制备方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024045201A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2257346C1 (ru) * | 2004-03-10 | 2005-07-27 | Открытое акционерное общество "Пьезо" | Способ получения мелкокристаллического альфа-оксида алюминия |
CN104556176A (zh) * | 2013-10-22 | 2015-04-29 | 中国石油化工股份有限公司 | 一种氧化铝纳米颗粒的制备方法 |
CN112745105A (zh) * | 2020-12-24 | 2021-05-04 | 深圳技术大学 | 一种高烧结活性氧化铝陶瓷粉体及其制备方法 |
-
2022
- 2022-09-03 WO PCT/CN2022/116925 patent/WO2024045201A1/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2257346C1 (ru) * | 2004-03-10 | 2005-07-27 | Открытое акционерное общество "Пьезо" | Способ получения мелкокристаллического альфа-оксида алюминия |
CN104556176A (zh) * | 2013-10-22 | 2015-04-29 | 中国石油化工股份有限公司 | 一种氧化铝纳米颗粒的制备方法 |
CN112745105A (zh) * | 2020-12-24 | 2021-05-04 | 深圳技术大学 | 一种高烧结活性氧化铝陶瓷粉体及其制备方法 |
Non-Patent Citations (3)
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112745105B (zh) | 一种高烧结活性氧化铝陶瓷粉体及其制备方法 | |
CN110203969A (zh) | 一种高分散四方相纳米氧化锆及其制备方法 | |
CN102295304B (zh) | 一种拟薄水铝石及微晶刚玉磨料的制备方法 | |
CN102659149B (zh) | 单分散高纯α-Al2O3粉的制备方法 | |
CN104710169B (zh) | 一种镁铝尖晶石超细粉体及其制备方法 | |
CN102807243B (zh) | 一种氢氧化铝凝胶 | |
JP3284413B2 (ja) | 水和ジルコニアゾルおよびジルコニア粉末の製造方法 | |
CN106747475A (zh) | 一种低钠镁铝尖晶石微粉的制备方法 | |
CN104891542A (zh) | 一种超细α-Al2O3粉体的制备方法 | |
CN104528799A (zh) | 一种镁基稀土六铝酸盐超细粉体的制备方法 | |
CN105883910B (zh) | 一种钙钛矿SrTiO3多孔纳米颗粒的制备方法及产物 | |
CN101597078B (zh) | 一种片状α-Al2O3颗粒粉体的制备方法 | |
CN103570049A (zh) | 完全分散的α氧化铝纳米颗粒的制备方法 | |
CN114715925A (zh) | 一种片状α氧化铝及其制备方法 | |
CN103496727A (zh) | 一种微晶α-Al2O3 聚集体的制备方法 | |
CN105727922B (zh) | 一种Li掺杂SrTiO3十八面体纳米颗粒的制备方法及产物 | |
CN108609652A (zh) | 一种利用熔盐制备二氧化锆纳米粉体的方法 | |
CN108706618A (zh) | 利用微乳液法制备纳米氧化铝的方法 | |
WO2024045201A1 (zh) | 一种高烧结活性氧化铝陶瓷粉体及其制备方法 | |
CN106629829B (zh) | 一种钛酸锂的制备方法 | |
CN112573570A (zh) | 一种掺杂钪铈氧化锆超细粉体及其制备方法 | |
CN107445202B (zh) | 一种小尺寸、超分散纳米氧化锆基涂层粉体的制备方法 | |
CN104495939A (zh) | 纳米级钨酸锆空心球的水热合成方法 | |
CN111574215B (zh) | 一种制备钇铝石榴石粉的方法 | |
JPH03141115A (ja) | 酸化イットリウム微粉末の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22957020 Country of ref document: EP Kind code of ref document: A1 |