WO2024043746A1 - 리튬 이차전지용 양극 활물질 - Google Patents

리튬 이차전지용 양극 활물질 Download PDF

Info

Publication number
WO2024043746A1
WO2024043746A1 PCT/KR2023/012629 KR2023012629W WO2024043746A1 WO 2024043746 A1 WO2024043746 A1 WO 2024043746A1 KR 2023012629 W KR2023012629 W KR 2023012629W WO 2024043746 A1 WO2024043746 A1 WO 2024043746A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
electrode active
ppm
mol
Prior art date
Application number
PCT/KR2023/012629
Other languages
English (en)
French (fr)
Inventor
전진우
신준호
김석우
안현우
Original Assignee
주식회사 엘 앤 에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘 앤 에프 filed Critical 주식회사 엘 앤 에프
Publication of WO2024043746A1 publication Critical patent/WO2024043746A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for lithium secondary batteries, and more specifically, to a positive electrode active material that satisfies all of the various physical properties required for commercialization by doping a transition metal layer and a Li layer with a plurality of specific elements.
  • lithium secondary batteries Due to its characteristics such as high energy density and long lifespan, lithium secondary batteries are used as a major energy source in various fields, including small devices such as mobile phones and laptops, as well as medium and large devices such as electric vehicles and energy storage devices, and are the next generation lithium secondary batteries.
  • As a positive electrode active material for batteries Ni-based active materials with high energy density such as NCM and NCA are attracting attention.
  • the doping element is located in the lattice of the positive electrode active material, thereby providing the effect of improving the physical/electrochemical properties of the positive active material according to the unique characteristics of each doping element, such as binding energy and oxidation number.
  • a dopant located at the Li site can limit the movement of Ni 2+ to the Li + site to suppress structural changes and improve lifespan characteristics, and a dopant with a strong bonding energy with oxygen can detach oxygen. By suppressing, structural changes during charge/discharge can be suppressed and charge/discharge efficiency can be changed by changing the lattice constant.
  • certain doping materials can change the shape of the primary particles by lowering the energy in the direction of crystal growth, which can increase the strength of the secondary particles, and dopants with an oxidation number lower than that of the transition metal contained in the positive electrode active material. In the case of , the production of Ni 2+ can be suppressed in terms of charge balance.
  • doping elements can be selected from a variety of elements depending on the desired effect and adjusted to the optimal content for use. Doping elements have different doping effects depending on various internal and external environments such as size, diffusivity, and the manufacturing environment of the positive electrode active material. Since may vary, complex doping combining multiple elements may be more advantageous for improving the characteristics of the positive electrode active material rather than single doping of a single element, taking these variables into consideration.
  • Complex doping has the advantage of being able to selectively and complexly provide various effects that can be provided by each doping element, such as structural stability, thermal stability, cation mixing change, and capacity change of the positive electrode active material.
  • the characteristics of the positive electrode active material into which the doping element is introduced and the correlation between the doping elements must be taken into consideration.
  • doping efficiency may be reduced, or problems may occur that may actually deteriorate the characteristics of the positive electrode active material.
  • the purpose of the present invention is to solve the above problems of the prior art and technical problems that have been requested in the past.
  • the inventors of the present invention discovered that when a combination of specific elements as doping elements and these are doped into the transition metal layer and the Li layer under optimal conditions, the reduction of cation mixing, capacity and It was confirmed that not only can improvements in life characteristics be achieved at the same time, but also that thermal stability can be improved if necessary, and the present invention has been completed.
  • M is one or more of Ni, Co, and Mn,
  • 0.1 ⁇ x preferably 0.1 ⁇ x ⁇ 1.5, 0 ⁇ w ⁇ 0.05, 0 ⁇ y ⁇ 0.05, -6 ⁇ z ⁇ 2,
  • D1 is an element with a similar ionic radius to 6-coordinate Ni 3+ in the transition metal layer of the positive electrode active material
  • D2 is characterized as an element with a similar ionic radius to 6-coordinate Li + in the Li layer of the positive electrode active material.
  • the inventors of the present application attempted the following theoretical approach to come up with a method to suppress cation mixing, improve capacity and lifespan characteristics, and further improve thermal stability characteristics, and these predicted characteristics were revealed through experiments. It was confirmed that it was done.
  • cation mixing means that Ni 2+ , which has a similar ionic radius to Li + , changes position with the Li + site.
  • the oxidation number of Ni 3+ in lithium transition metal oxide may change from 2+ to 4+ during the firing step or during charging/discharging.
  • Ni is unstable in terms of electron configuration when it exists in the oxidation state of 3+, and may exist in the oxidation state of 2+. Because it has a stable structure, Ni 3+ can easily change to Ni 2+ .
  • the ionic radius of Ni 2+ (6 coordination) is 0.69 ⁇ , which is similar to the ionic radius of Li + (6 coordination) of 0.76 ⁇ , so they can replace each other's sites. In this way, the ionic radii of Ni 2+ and Li + are similar. So mixing of ions with each other is called cation mixing. Although the negative/positive effects of cation mixing and the mechanism by which cation mixing occurs have already been published in the literature, it is difficult to clearly interpret the specific content that shows such effects.
  • the presence of Ni in the Li layer can reduce changes in the Li slab layer during the charge/discharge process and structural collapse due to successive cycles. It is known that it can suppress.
  • Ni 2+ located in the Li layer is electrochemically irreversible, the problem of reduced capacity occurs, and an unstable structure is formed due to distortion of the Li slab layer due to the difference in bonding strength of Ni 2+ and Li + with oxygen. It is also known that it can have a negative effect on lifespan electrochemically.
  • This mixing of cations may have already occurred during the manufacturing step of the positive electrode active material, and may also occur in the external environment and during the charge/discharge process.
  • the structural stability of the positive electrode active material can be improved by some cation mixing, but if it continues to occur due to electrochemical reaction, it can significantly reduce the capacity and lifespan characteristics, ultimately resulting in cation mixing. It is important to suppress it.
  • the amount of Ni 2+ occupying the Li site in the layered structure of the positive electrode active material exceeds 3.5 at%, the lifespan and capacity characteristics may be greatly reduced, so it is necessary to keep it below 3.5 at%.
  • the cation mixing is less than 0.8%, structural collapse may occur due to changes in the Li slab layer due to charging and discharging, so it is recommended to satisfy 0.8% or more. In particular, when it is 1.6 atomic% or more, the properties are confirmed to be greatly improved. did.
  • the inventors of the present application improved the problem of deterioration of lifespan characteristics due to an increase in Ni content by doping the layered structure of the positive electrode active material with a first doping element (D1) under a specific ionic radius condition.
  • a first doping element (D1) when doping with the first doping element (D1), the lifespan characteristics can be improved, but it has been confirmed that the problem of capacity decrease due to increased mixing of cations occurs.
  • another ion radius condition is used.
  • D2 By doping with the second doping element (D2), mixing of cations was suppressed and the problem of reduced capacity was solved.
  • the optimal doping content range that can maximize these effects was derived.
  • Al 3+ (6 coordination) ion with an ionic radius of 0.535 ⁇ is an ion with Ni 3+ (6 coordination) with an ionic radius of 0.56 ⁇
  • the radii are similar, they can be easily doped, and because the bonding force with oxygen (Al-O; 512kJ/mol) is higher than the bonding force with Ni-O (391.6kJ/mol), Al 3+ can be doped into the Ni 3+ site.
  • the similar size range with respect to ionic radius may be ⁇ 15% of the ionic radius of Ni 3+ .
  • the first doping element (D1) may be one or more elements that improve lifetime characteristics
  • the second doping element (D2) may be one or more elements that reduce cation mixing.
  • the first doping element (D1) may be one or more elements that increase cation mixing
  • the second doping element (D2) may be a combination of one or more elements that inhibit or reduce the increase in cation mixing
  • the first doping element (D1) may be one or more elements that reduce capacity characteristics
  • the second doping element (D2) may be a combination of one or more elements that improve capacity characteristics.
  • the second doping element As the second doping element, as previously defined, elements having an ionic radius similar to that of Li + (6 coordination) (0.76 ⁇ ) may be used. Here, the similar size range with respect to ionic radius may be on the order of ⁇ 15% of the ionic radius of Li + .
  • the second doping element is partially substituted for the Li + site, Ni 2+ generated by doping of Al 3+ , which is the first doping element, can be suppressed from being pushed down to the Li + layer.
  • Zr 4+ (6 coordination) with an ionic radius of 0.72 ⁇ was applied to replace part of the Li + (6 coordination) element, and according to the XRD analysis results, the cation mixing phenomenon was greatly suppressed. Confirmed.
  • the inventors of the present application predicted that thermal stability could be improved when partially doping the first doping element at the Td (tetrahedral) site located between the transition metal layer and the Li layer, especially It was predicted that if part of the Ni 3+ (6-coordinate) site and the Td site could be doped together, the lifespan characteristics and thermal stability characteristics could be improved simultaneously.
  • the first doping element (D1) may be one or more elements that improve thermal stability.
  • Figure 1 shows the LiMO 2 layer including the 3b Octahedral site of the transition metal layer, the 3a Octahedral site of the Li layer, and the 6c Td (tetrahedral) site located between them.
  • the structure is schematically shown.
  • the first doping element (D1) and the second doping element (D2) may be elements that satisfy the conditions of a radius ratio of 0.414 to 0.732 ⁇ in at least 6 coordinations.
  • the first doping element (D1) may be an element that simultaneously satisfies the range conditions of a radius ratio of 0.224 to 0.414 ⁇ in 4-coordination.
  • Al may be selected as the first doping element.
  • the ionic radius is 0.39 ⁇ , so it can be easily doped into the tetrahedral site.
  • it is 6-coordinate it can be easily doped into the tetrahedral site, and because it is 0.535 ⁇ , when it is 6-coordinate, it can be easily doped into Ni 3+ (6-coordination) site, which has an ionic radius of 0.56 ⁇ . .
  • the first doping element (D1) may include Al and the second doping element (D2) may include Zr.
  • the first doping element (D1) is a 3b Octahedral site of the transition metal layer with a Radius Ratio of 0.414 to 0.732 and a 6c Td (tetrahedral site) of 0.224 to 0.414. ) site (tetrahedral site), and the second doping element (D2) can be doped into the 3a Octahedral site (octahedral site) of the Li layer with a radius ratio of 0.414 to 0.732.
  • the radius ratio of 3b Octahedral site and 3a Octahedral site corresponds to the radius ratio of 6 coordination (0.414 ⁇ 0.732), and the radius ratio of 6c Td (tetrahedral) site corresponds to the radius ratio of 4 coordination (0.224 ⁇ 0.414).
  • ions having a size within ⁇ 15% of the radius of the hexa-coordinated and tetra-coordinated ions can be doped.
  • the first doping element (D1) is an element with a valence of +3 or less
  • the second doping element is (D2) may be a combination of elements with a valence of +4 or higher.
  • the first doping element (D1) and the second doping element (D2) are each independently Be, Ge, Al, Mg, Cr, As, V, Ti, Ga, Fe, Cu, Zn, Sc , Nb, Hf, Zr, W, P, and Co may be one or more different ones selected from among. More specifically, Be 2+ (6 coordination 0.45 ⁇ ).
  • the first doping element (D1) that can be simultaneously doped into the 3b octahedral site and the Td (tetrahedral) site includes Be (2+ 4 coordination 0.27 ⁇ ), Ge (4+ 4 coordination 0.39 ⁇ ), and Al (3+ 4 coordination 0.39 ⁇ ), Cr (4+ 4 coordination 0.41 ⁇ ), As (3+ 4 coordination 0.335 ⁇ ), V (5+ 4 coordination 0.355 ⁇ ), Ti (4+ 4 coordination 0.42 ⁇ ), W (6+ It may be one or more selected from among 4 coordination 0.42 ⁇ ), P (5+ 5 coordination 0.29 ⁇ , 5+ 6 coordination 0.38 ⁇ ), and Co (4+ 4 coordination 0.53 ⁇ ).
  • the sum of the contents of the first doping element (D1) and the second doping element (D2) may range from 3000 to 14000 ppm. If the sum of the contents of the doping elements is less than the above range, the effect of the doping elements is minimal and the desired lifespan characteristics cannot be achieved. If it is greater than the above range, the doping element acts electrochemically inactive, so the desired capacity cannot be achieved, so it is not preferable.
  • the present invention also provides optimal content conditions under which specific doping elements can exert the desired technical effect.
  • the content of the first doping element (D1) is in the range of 2000 to 8000 ppm
  • the content of the second doping element (D2) is in the range of 1000 to 6000 ppm
  • cation mixing When it is in the range of 1.6 atomic% to 2.6 atomic%, the conditions for capacity and lifespan characteristics can all be satisfied.
  • the life retention rate is more than 90% in 50 cycles, and the capacity is more than 215 mAh/g based on 0.70 mol of Ni, 225 mAh/g or more based on 0.82 mol of Ni, and more than 238 mAh/g based on 0.92 mol of Ni.
  • the conditions can be satisfied.
  • Formation is carried out in a constant temperature chamber at 25°C, and rate and life evaluation are performed in a constant temperature chamber at 45°C;
  • rate evaluation is conducted once at a charging current density of 0.5C and a discharging current density of 1.0C, and then lifespan evaluation is conducted more than 50 times at the same current density of 0.5/1.0C.
  • the life maintenance rate does not reach 90% in 50 cycles or the capacity is 215 mAh based on 0.70 mol of Ni. /g or more, 225 mAh/g or more based on 0.82 mol of Ni, or 238 mAh/g or more based on 0.92 mol of Ni, which can also be confirmed through the experimental results described later.
  • a preferable content of the first doping element (D1) may be in the range of 4000 to 7000 ppm, and a particularly preferable content range may be in the range of 5000 to 6500 ppm.
  • a preferable content of the second doping element (D2) may be in the range of 2000 to 5000 ppm, and a particularly preferable content range may be in the range of 2500 to 4000 ppm.
  • the present invention also provides a lithium secondary battery containing the above positive electrode active material. Since other configurations and manufacturing methods of lithium secondary batteries are known in the art, detailed descriptions thereof are omitted in this specification.
  • the positive electrode active material for a lithium secondary battery according to the present invention has a first doping element (D1) located at the transition metal site and a second doping element (D2) located at the Li site through a plurality of specific doping elements, and these By optimal doping conditions of elements, cation mixing is suppressed or reduced, and at the same time, capacity and life characteristics are improved, and in some cases, thermal stability is improved.
  • Figure 1 is a partial schematic diagram of the LiMO 2 layered structure
  • Figure 2 is a graph showing the cation mixing and charging capacity of Comparative Examples 1 to 7;
  • Figure 3 is a graph showing the 50 cycle life characteristics of Comparative Examples 1 to 7;
  • Figure 4 is a graph showing the DSC results of Comparative Example 9 and Example 1;
  • Figure 5 is a graph showing the cation mixing and charging capacity of Comparative Examples 1, 8, 9, and 10;
  • Figure 6 is a graph showing the life characteristics of Comparative Examples 1, 8, 9, and 10 after 50 cycles;
  • Figure 7 is a graph showing the charging capacity of Examples 1 to 11;
  • Figure 8 is a graph showing cation mixing in Examples 1 to 11;
  • Figure 9 is a graph showing the 50 cycle life characteristics of Examples 1 to 11;
  • Figure 10 is a graph showing the charging capacity of Comparative Examples 11 to 21;
  • Figure 11 is a graph showing cation mixing in Comparative Examples 11 to 21;
  • Figure 12 is a graph showing the life characteristics of Comparative Examples 11 to 21 after 50 cycles.
  • the Ni LiOH as a raw material, 0.003 mol of ZrO 2 as a Zr raw material, and 0.021 mol of Al(OH) 3 as a raw material for Al were placed in a 10 L cylindrical reactor and mixed dry at 35 Hz for about 25 minutes.
  • the dry mixture was filled into a sagger made of mullite in an amount of about 4 to 5 kg, and in a sintering furnace in an oxygen (O 2 ) atmosphere, a total of 30 sintering sections were performed, including heating and cooling sections, at a sintering temperature of 700°C. It was fired for some time.
  • the resulting fired product was pulverized under grinding/classification conditions of 1300 rpm / 2000 rpm, then large particles were filtered out with a sieve to have a particle size of about 14 to 15 ⁇ m, and a positive electrode active material doped with Zr and Al in the core was manufactured. .
  • the positive electrode active material prepared above was stirred in distilled water at about 15°C at a solid content of 50 to 80% in a 5L reactor for about 1 minute, and the stirred slurry was filtered through a filtration device, and the filtered product thus obtained was was dried in a dryer at 150°C for more than 6 hours.
  • the cleaned and dried product was placed in a 10L cylindrical reactor together with boric acid, stirred at 35 Hz for about 20 minutes, filled into a saggar in an amount of 4 to 5 kg, and heated in a sintering furnace in an oxygen (O 2 ) atmosphere at the sintering temperature.
  • O 2 oxygen
  • a composition for forming a positive electrode was prepared by mixing the positive electrode active material prepared above, Super-C as a conductive material, and PVdF as a binder at a weight ratio of 95:2:3 in N-methylpyrrolidone (NMP) as a solvent.
  • NMP N-methylpyrrolidone
  • the composition for forming a positive electrode was evenly applied to an aluminum current collector, dried in a hot air dryer at 120°C for about 20 minutes to evaporate NMP, rolled in a roll press, and dried in a vacuum oven at 120°C for 12 hours to prepare a positive electrode. .
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.001 mol of ZrO 2 and 0.021 mol of Al(OH) 3 were mixed.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.001 mol of ZrO 2 and 0.028 mol of Al(OH) 3 were mixed.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.003 mol of ZrO 2 and 0.011 mol of Al(OH) 3 were mixed.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.001 mol of ZrO 2 and 0.011 mol of Al(OH) 3 were mixed.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.003 mol of ZrO 2 and 0.028 mol of Al(OH) 3 were mixed.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.001 mol of ZrO 2 and 0.007 mol of Al(OH) 3 were mixed.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.003 mol of ZrO 2 and 0.007 mol of Al(OH) 3 were mixed.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.006 mol of ZrO 2 and 0.011 mol of Al(OH) 3 were mixed.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.006 mol of ZrO 2 and 0.021 mol of Al(OH) 3 were mixed.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.006 mol of ZrO 2 and 0.028 mol of Al(OH) 3 were mixed.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 7, except that the composition of Ni:Co:Mn was 82:11:7.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that the composition of Ni:Co:Mn was 70:10:20.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 4, except that the composition of Ni:Co:Mn was 70:10:20.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that ZrO 2 and Al(OH) 3 were not mixed.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.003 mol of Al(OH) 3 was mixed without mixing ZrO 2 .
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.007 mol of Al(OH) 3 was mixed without mixing ZrO 2 .
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.011 mol of Al(OH) 3 was mixed without mixing ZrO 2 .
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.021 mol of Al(OH) 3 was mixed without mixing ZrO 2 .
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.028 mol of Al(OH) 3 was mixed without mixing ZrO 2 .
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.035 mol of Al(OH) 3 was mixed without mixing ZrO 2 .
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.001 mol of ZrO 2 was mixed without mixing Al(OH) 3 .
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.003 mol of ZrO 2 was mixed without mixing Al(OH) 3 .
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.006 mol of ZrO 2 was mixed without mixing Al(OH) 3 .
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.001 mol of ZrO 2 and 0.003 mol of Al(OH) 3 were mixed.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.001 mol of ZrO 2 and 0.035 mol of Al(OH) 3 were mixed.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.003 mol of ZrO 2 and 0.003 mol of Al(OH) 3 were mixed.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.003 mol of ZrO 2 and 0.035 mol of Al(OH) 3 were mixed.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.006 mol of ZrO 2 and 0.007 mol of Al(OH) 3 were mixed.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.006 mol of ZrO 2 and 0.035 mol of Al(OH) 3 were mixed.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.008 mol of ZrO 2 and 0.007 mol of Al(OH) 3 were mixed.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.008 mol of ZrO 2 and 0.011 mol of Al(OH) 3 were mixed.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.008 mol of ZrO 2 and 0.021 mol of Al(OH) 3 were mixed.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.008 mol of ZrO 2 and 0.028 mol of Al(OH) 3 were mixed.
  • An electrode and a lithium secondary battery were manufactured under the same conditions as in Example 1, except that 0.008 mol of ZrO 2 and 0.035 mol of Al(OH) 3 were mixed.
  • CR2032 coin-type half cells (coin cells) were assembled in a moisture-controlled dry room, and then impregnated with electrolyte and maintained in electrochemical equilibrium. To make it, it was aged at room temperature for 12 hours.
  • the coin cell was evaluated using a TOSCAT-3100 battery tester. First, formation was performed in a constant temperature chamber at 25°C, and rate and life evaluation were conducted in a constant temperature chamber at 45°C. In the chemical evaluation, a current density of 0.1C was applied in the 4.3-2.5V voltage range, and then charge/discharge was performed in a Constant-Voltage section up to 0.05C, a total of 2 times. After the formation section was over, rate evaluation was conducted once at a charging current density of 0.5C and a discharge current density of 1.0C, and then lifespan evaluation was conducted more than 50 times at the same current density of 0.5/1.0C.
  • DSC Differential scanning calorimetry
  • the coin cell manufactured in Evaluation Example 2 was charged to 4.3V by applying a current density of 0.1C, and the coin cell was dismantled in a moisture-controlled dry room.
  • the anode charged from the dismantled coin cell was washed in DMC, and then an electrode plate for DSC was prepared.
  • the electrode plate prepared above was punched out, placed into a DSC cell, and electrolyte was injected to assemble the DSC cell.
  • the analysis was carried out with nitrogen gas injected into the device, and was measured under the conditions of a temperature range from 30°C to 400°C and a scan rate of 10°C.
  • the DSC pattern obtained at this time was analyzed in Pyris Manage software, and through this, the temperature at which heat generation begins (on-set point), the temperature representing the highest heat generation amount (main peak), and heat generation amount were confirmed.
  • Comparative Example 1 is a lithium secondary battery based on an undoped positive electrode active material, and it can be confirmed that the cation mixing is 2.13%, the charging capacity is 250.70 mAh/g, and the lifespan at 50 cycles is 86.48%. It is possible to secure high capacity, but the lifespan characteristics are very low.
  • the lifespan characteristics are less than 90% or the capacity is less than 238 mAh/g, making it difficult to apply as a commercial battery.
  • the Al content is less than 2000 ppm (Comparative Examples 11, 13, 15, 17)
  • the effect of improving life characteristics may be minimal
  • problems may occur where cation mixing increases beyond the desired effect and capacity decreases.
  • it is preferable that cation mixing by Ni 2+ in the Li layer is less than 2.6 atomic%.
  • the second doping element when the second doping element is less than 1000 ppm, the cation mixing effect may be insufficient, and when it is more than 6000 ppm (Comparative Examples 17 to 21), the desired content cannot be doped into the core and secondary particles form on the surface layer. It can exist as
  • Figure 2 shows the cation mixing and charging capacity in Comparative Examples 1 to 7
  • Figure 3 shows the 50 cycle life characteristics in Comparative Examples 1 to 7.
  • Figure 4 shows the DSC results of the positive electrode active materials of Comparative Example 9 and Example 1.
  • the on-set temperature which is the starting point of heat generation, was 209°C and 215°C in Comparative Example 9 and Example 1, respectively, and the main peak, which is the highest point of heat generation, was 217°C and 218.7°C, respectively.
  • the calorific value was shown to be 1713 J/g and 970 J/g, respectively, so that when combined doping with Zr 3000 ppm and Al 6000 ppm compared to Zr 3000 ppm alone, the on-set point, It can be seen that the main peak temperature moves to a higher temperature and the heat generation amount becomes lower.
  • Figure 5 shows the cation mixing and charging capacity in Comparative Examples 1, 8, 9, and 10
  • Figure 6 shows the life characteristics at 50 cycles in Comparative Examples 1, 8, 9, and 10.
  • the capacity does not decrease significantly as the Zr content increases from 0 ppm to 6000 ppm, which means that Zr 4+ , which has an ionic radius similar to that of Li + , is not substituted at the transition metal site and is substituted at the Li + site. This is because the capacity and lifespan characteristics are not significantly reduced because it is mainly replaced. Additionally, as the Zr content increases from 0 ppm to 6000 ppm, cation mixing decreases from 2.13% to 1.60%, because Ni 2+ is suppressed from descending to the Li + site by Zr 4+ . Referring to Figure 6, as the Zr content increases from 0 ppm to 6000 ppm, the lifespan at 50 cycles increases from 86.48% to 88.34%, confirming that the effect on lifespan maintenance rate is relatively small compared to Al.
  • Figures 7 to 12 show the charge capacity, cation mixing, and 50 cycle life characteristics when complex doped with different amounts of Al and Zr.
  • Figures 7 and 8 show the charging capacity and cation mixing of Examples 1 to 11, and Figure 9 shows the life characteristics of Examples 1 to 11 at 50 cycles.
  • the lithium secondary batteries of Examples 1 to 11 satisfy a lifespan of about 90 to 100% at a charge capacity of 238 to 250 mAh/g and a positive ion content of 1.95 to 2.60%. Satisfies mixing simultaneously.
  • the charging capacity of 243.2 mAh/g, 50 cycle life (retention; RT) of 94.6%, and cation mixing of 2.34% are simultaneously satisfied.
  • the charging capacity of 243.17 mAh/g, 50 cycle lifespan of 94.08%, and cation mixing of 2.38% are simultaneously satisfied.
  • Example 4 when doped with 3000 ppm Zr and 3000 ppm Al, the charging capacity of 246.37 mAh/g, 50 cycle lifespan of 93.34%, and cation mixing of 2.20% are simultaneously satisfied.
  • the Zr and Al contents can be appropriately configured at a certain level or higher.
  • Figures 10 and 11 show the charging capacity and cation mixing of Comparative Examples 11 to 21, and Figure 12 shows the life characteristics of these Comparative Examples at 50 cycles.
  • the lithium secondary batteries of these comparative examples have a content that cannot simultaneously satisfy the conditions of charging capacity (238 to 250 mAh/g), lifespan characteristics (about 90 to 100% range), and cation mixing (1.95 to 2.60%). Consists of. For example, when doped with 6000 ppm Zr and 1000 ppm Al as in Comparative Example 15, the charging capacity is very high at about 248.9 mAh/g, but the 50 cycle life is lowered to 88.5%, and the cation mixing is 1.96%, as mentioned above. The three conditions cannot be satisfied at the same time.
  • the present invention is not limited to the above-mentioned embodiments, but can be manufactured in various different forms, and those skilled in the art will be able to form other specific forms without changing the technical idea or essential features of the present invention. You will be able to understand that this can be implemented. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 하기 화학식 1의 조성을 포함하며, D1은 양극 활물질의 전이금속 층에서 6배위의 Ni3+와 이온 반경이 유사한 원소이고, D2는 양극 활물질의 Li 층에서 6배위의 Li+와 이온 반경이 유사한 원소인 것을 특징으로 하는 양극 활물질을 제공한다. Lix[M1-w-yD1wD2y]O2-z (1) 상기 식에서, M은 Ni, Co, Mn 중의 하나 이상이고, 0.1≤x, 0<w≤0.05, 0<y≤0.05, -6≤z<2이다.

Description

리튬 이차전지용 양극 활물질
본 발명은 리튬 이차전지용 양극 활물질에 관한 것으로, 더욱 상세하게는, 전이금속 층과 Li 층에 복수의 특정 원소들이 도핑되어 있어서, 상용화에 요구되는 다양한 물성들을 모두 충족시키는 양극 활물질에 관한 것이다.
리튬 이차전지는 높은 에너지 밀도, 장 수명 등의 특성으로 휴대전화, 노트북과 같은 소형 기기뿐만 아니라 전기차, 에너지 저장장치와 같은 중·대형 기기 등 다양한 분야의 주요 에너지원으로 이용되고 있고, 차세대 리튬 이차전지의 양극 활물질로서 NCM, NCA 등과 같은 에너지 밀도가 높은 Ni 기반 활물질이 각광받고 있다.
그러나, Ni 기반 활물질의 경우, 충/방전에 따른 구조 변화, Li+/Ni2+의 양이온 혼합, Ni4+ 및 산소 탈리, 전해액과의 부반응, 잔류 리튬 발생 등 다양한 문제점들을 수반하며, 상기 문제점들이 단독 혹은 복합적으로 발현되어 리튬 이차전지의 전기화학적 특성을 저하시킬 수 있다. 이를 해결하기 위하여, 도핑, 코팅 등을 통한 입자 내부 및 표면 구조의 개질에 대한 다양한 방법들이 연구/개발되고 있다.
리튬 이차전지의 특성 향상을 위한 양극 활물질 도핑의 다양한 방법들 중의 하나로서, mono-, multi-valence 양이온을 도핑 원소로 도입하는 방법이 제시되었다. 이 경우, 도핑 원소가 양극 활물질의 격자 내에 위치함으로써, 결합 에너지, 산화수 등 도핑 원소 별 고유의 특성에 따라 양극 활물질의 물리/전기화학적 특성을 향상시키는 효과를 제공할 수 있다.
예를 들어, Li 사이트에 위치하는 도펀트는 Ni2+의 Li+ 사이트로의 이동을 제한하여 구조 변화의 억제 및 수명 특성의 향상을 도모할 수 있고, 산소와의 결합 에너지가 강한 도펀트는 산소 탈리를 억제함으로써 충/방전 동안의 구조 변화를 억제하고 격자 상수를 변화시켜 충/방전 효율을 변화시킬 수 있다.
또한, 특정 도핑재는 결정 성장 방향의 에너지를 낮추어 1차 입자 형태를 변화시킬 수 있고, 이러한 형태로 2차 입자의 강도가 높아질 수 있으며, 양극 활물질에 포함된 전이금속의 산화수보다 낮은 산화수를 가진 도펀트의 경우, charge balance 측면에서 Ni2+의 생성을 억제할 수 있다.
이와 같은 도핑 원소들은 목적하는 효과에 따라 다양한 원소들 중에서 선택되어 최적의 함량으로 조절되어 사용될 수 있는데, 도핑 원소들은 크기, 확산도, 양극 활물질의 제조 환경 등 다양한 내/외부적 환경에 따라 도핑 효과가 달라질 수 있기 때문에, 이러한 변수를 고려하여 하나의 원소를 도핑한 단독 도핑보다는, 복수의 원소들을 조합한 복합 도핑이 양극 활물질의 특성 향상에 보다 유리할 수 있다.
복합 도핑은, 양극 활물질의 구조 안정성, 열 안정성, 양이온 혼합 변화, 용량 변화 등과 같이, 도핑 원소 별 제공 가능한 다양한 효과를 선택적 및 복합적으로 제공할 수 있다는 장점이 있다.
그러나, 이러한 복합 도핑의 경우에도, 도핑 원소가 제공 가능한 효과와 더불어, 도핑 원소가 도입되는 양극 활물질의 특성이나 도핑 원소 간 상관 관계 등이 반드시 고려되어야 하는데, 이러한 고려 없이 복합 도핑 원소가 구성될 경우, 도핑 효율이 저하되거나, 오히려 양극 활물질의 특성을 저하시키는 문제점이 발생될 수도 있다.
따라서, 양극 활물질의 보다 효율적인 특성 향상을 위해 도핑 원소의 구성과 함량 등을 최적화할 수 있는 기술에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
구체적으로, 본 발명의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 도핑 원소로서 특정한 원소들의 조합과 이들이 전이금속 층과 Li 층에 최적의 조건으로 도핑될 때, 양이온 혼합의 저감과 용량 및 수명 특성의 향상을 동시에 달성할 수 있을 뿐만 아니라, 필요에 따라서는 열 안정성을 향상시킬 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
따라서, 본 발명에 따른 양극 활물질은,
하기 화학식 1의 조성을 포함하며,
Lix[M1-w-yD1wD2y]O2-z (1)
상기 식에서,
M은 Ni, Co, Mn 중의 하나 이상이고,
0.1≤x, 바람직하게는 0.1≤x<1.5, 0<w≤0.05, 0<y≤0.05, -6≤z<2이며,
D1은 양극 활물질의 전이금속 층에서 6배위의 Ni3+와 이온 반경이 유사한 원소이고,
D2는 양극 활물질의 Li 층에서 6배위의 Li+와 이온 반경이 유사한 원소인 것을 특징으로 한다.
본 출원의 발명자들은 양이온 혼합을 억제하고 동시에 용량 및 수명 특성을 개선하며 더 나아가 열 안정성 특성을 향상시킬 수 있는 방안을 마련하기 위해 다음과 같은 이론적 접근을 시도하였고, 실험을 통해 이러한 예측 특성들이 발현됨을 확인하였다.
구체적으로, 양이온 혼합(cation mixing)은 Li+와 이온 반경이 비슷한 Ni2+가 Li+ 사이트와 위치가 바뀌는 것을 의미한다. 리튬 전이금속 산화물 중의 Ni3+는 소성 단계, 또는 충/방전 시 산화수가 2+ 내지 4+로 변할 수 있는데, Ni은 3+의 산화수로 존재할 때 전자 배치 상 불안정하며, 2+의 산화수로 존재할 때 안정한 구조를 가지기 때문에 Ni3+는 Ni2+로 쉽게 변할 수 있다.
Ni2+(6배위)의 이온 반경은 0.69Å으로, Li+(6배위)의 이온 반경 0.76Å과 비슷하여 서로의 사이트를 치환할 수 있는데, 이렇게 Ni2+과 Li+의 이온 반경이 비슷하여 이온들이 서로 혼합되는 것을 양이온 혼합이라고 한다. 양이온 혼합의 부정적/긍정적 효과 및 양이온 혼합이 일어나는 메커니즘에 대해서는 문헌상으로 이미 많이 공표된 바 있으나, 그러한 효과를 나타내는 구체적인 함량에 대해서는 명확한 해석이 어려운 실정이다.
양이온 혼합의 긍정적인 효과의 예를 보면, 그 양이 소량으로 발생할 때, Li 층에 Ni이 존재함으로써 충/방전 과정 동안의 Li slab 층의 변화를 감소시킬 수 있고, 연속적인 사이클에 따른 구조 붕괴를 억제시킬 수 있는 것으로 알려져 있다. 그러나, Li 층에 위치한 Ni2+는 전기화학적으로 비가역적이기 때문에 용량이 감소되는 문제가 발생하며, Ni2+ 및 Li+의 산소와의 결합력 차이에 의한 Li slab 층의 뒤틀림 현상으로 불안정한 구조가 형성되어 전기화학적으로 수명에 악영향을 줄 수 있다고도 알려져 있다. 이러한 양이온 혼합은 양극 활물질의 제조 단계에서 이미 발생된 것일 수 있으며, 외부 환경 및 충/방전 과정 동안에도 발생할 수 있다.
따라서, 양이온 혼합은 일부 발생함으로써 양극 활물질의 구조 안정성이 향상될 수 있으나, 전기화학적 반응에 따라 지속적으로 일어나게 될 경우에 용량 저하 및 이에 따른 수명 특성을 크게 저하시킬 수 있으므로, 궁극적으로는 양이온 혼합을 억제시키는 것이 중요하다.
또한, 최근 고용량 전지의 필요성이 높아져 Ni 함량이 70% 이상인 Ni 고함량(High-Ni) 활물질에 대한 요구가 증가하고 있는데, Ni 함량의 증가에 따라 수명 특성의 저하 정도가 함께 증가하는 문제가 발생되고 있어 수명 특성 개선에 대한 필요성이 높아지고 있다.
일반적으로, 양극 활물질의 층상구조 내에서 Li 사이트를 점유하고 있는 Ni2+의 양이 3.5 원자%를 초과할 경우에 수명 및 용량 특성이 크게 저하될 수 있어서 3.5 원자% 이하를 유지하는 것이 필요하고 그 값은 작을수록 좋지만, 특히 2.6 원자% 미만인 것이 바람직하다는 점을 실험을 통해 확인하였다. 반면에, 양이온 혼합이 0.8% 미만일 경우에 충방전에 따른 Li slab 층 변화에 따라 구조붕괴가 발생될 수 있으므로, 0.8% 이상을 만족하는 것이 좋으며, 특히 1.6 원자% 이상일 경우 특성이 크게 좋아지는 것을 확인하였다.
이상의 내용을 종합할 때, 양이온 혼합에 의한 수명 특성의 저하 및 용량 감소의 문제와 Ni 함량 증가에 따른 수명 특성 저하의 문제를 함께 해결하는 것이 필요하다.
이에, 본 출원의 발명자들은 앞서 정의한 바와 같이, 특정한 이온 반경 조건의 제 1 도핑 원소(D1)을 양극 활물질의 층상 구조에 도핑함으로써 Ni 함량 증가에 따른 수명 특성 저하 문제를 개선하였다. 그러나, 제 1 도핑 원소(D1)을 도핑할 경우에 수명 특성은 향상시킬 수 있지만, 양이온 혼합이 증가하여 용량이 감소하는 문제가 발생되는 것을 확인하였으며, 이러한 문제를 해결하기 위해 또 다른 이온 반경 조건의 제 2 도핑 원소(D2)를 함께 도핑함으로써 양이온 혼합을 억제하여 용량이 감소하는 문제를 해결하였다. 더 나아가, 이러한 효과를 극대화할 수 있는 최적의 도핑 함량 범위를 도출하였다.
본 출원의 발명자들은, 예를 들어 제 1 도핑 원소(D1)의 대표적인 예로서 이온 반경이 0.535Å인 Al3+(6배위) 이온은 이온 반경이 0.56Å인 Ni3+(6배위)와 이온 반경이 유사하기에 쉽게 도핑될 수 있고, 산소와의 결합력(Al-O; 512kJ/mol)이 Ni-O 결합력(391.6kJ/mol) 보다 높기 때문에, Al3+가 Ni3+ 사이트에 도핑될 경우에 수명 특성의 향상에 효과가 있을 것으로 예상하였으며, 이를 테스트해 본 결과 예측한 바와 같이 수명 특성이 향상되는 것을 확인하였다. 여기서, 이온 반경과 관련하여 상기 유사한 크기 범위는 Ni3+의 이온 반경의 ±15% 크기일 수 있다.
그러나, Al의 도핑 함량이 증가할수록 양이온 혼합이 증가하여 용량이 저하되는 문제가 발생되었다. 이에 대한 원인을 고찰한 결과, Al3+가 도핑을 통해 전이금속 층에 추가로 도입됨에 따라 전하 균형(charge balance)을 맞추어 주고자 Ni3+가 Ni2+로 변하게 되고 변화된 Ni2+가 Li+ 층으로 밀려 내려와 양이온 혼합이 증가하는 것으로 예측하였다. 따라서, Ni2+가 Li+ 층으로 밀려 내려오지 못하도록 억제하는 역할을 할 수 있는 제 2 도핑 원소를 선별 적용하면 양이온 혼합이 증가하는 것을 억제하여 용량이 저하되는 문제 역시 해결할 수 있을 것으로 예측하였다.
따라서, 하나의 구체적인 예에서, 제 1 도핑 원소(D1)은 수명 특성을 향상시키는 하나 이상의 원소이고, 제 2 도핑 원소(D2)는 양이온 혼합을 감소시키는 하나 이상의 원소일 수 있다.
또 다른 예에서, 제 1 도핑 원소(D1)은 양이온 혼합을 증가시키는 하나 이상의 원소이고, 제 2 도핑 원소(D2)는 양이온 혼합의 증가를 억제 또는 감소시키는 하나 이상의 원소의 조합일 수 있으며, 또는 제 1 도핑 원소(D1)은 용량 특성을 저하시키는 하나 이상의 원소이고, 제 2 도핑 원소(D2)는 용량 특성을 향상시키는 하나 이상의 원소의 조합일 수 있다.
이러한 제 2 도핑 원소로는 앞서 정의한 바와 같이 Li+(6배위)의 이온 반경(0.76Å)과 유사한 이온 반경을 가진 원소들이 사용될 수 있다. 여기서, 이온 반경과 관련하여 상기 유사한 크기 범위는 Li+의 이온 반경의 ±15% 크기일 수 있다. 제 2 도핑 원소가 Li+ 사이트에 일부 치환됨에 따라, 제 1 도핑 원소인 Al3+의 도핑에 의해 발생된 Ni2+가 Li+ 층으로 밀려 내려오는 것이 억제될 수 있다. 그러한 제 2 도핑 원소의 예로서 이온 반경이 0.72Å인 Zr4+(6배위)을 적용하여 Li+(6배위) 원소 일부를 치환하였으며, 이에 대한 XRD 분석 결과에 따르면 양이온 혼합 현상이 크게 억제됨을 확인하였다.
이와 더불어, 본 출원의 발명자들은, 전이금속 층과 Li 층 사이에 위치한 Td(tetrahedral) site(사면체 자리)에 제 1 도핑 원소를 일부 도핑할 경우에 열 안정성을 향상시킬 수 있을 것으로 예측하였고, 특히 Ni3+(6배위) 사이트와 Td site 사이트 일부를 함께 도핑할 수 있다면 수명 특성 및 열 안정성 특성을 동시에 향상시킬 수 있을 것으로 예측하였다. 이 경우, 제 1 도핑 원소(D1)은 열 안정성을 향상시키는 하나 이상의 원소일 수 있다.
이와 관련하여, 도 1에는 전이금속 층의 3b Octahedral site(팔면체 사이트)와 Li 층의 3a Octahedral site(팔면체 사이트) 및 이들 사이에 위치한 6c Td(tetrahedral) site(사면체 사이트)를 포함하는 LiMO2 층상구조가 개략적으로 도시되어 있다.
도 1의 구조 등을 참조할 때, 제 1 도핑 원소(D1)와 제 2 도핑 원소(D2)는 적어도 6배위에서 반지름 비(Radius Ratio)가 0.414 ~ 0.732Å의 범위 조건을 만족하는 원소들일 수 있고, 제 1 도핑 원소(D1)는 상기 범위 조건 이외에 4배위에서 반지름 비가 0.224 ~ 0.414Å의 범위 조건을 동시에 만족하는 원소일 수 있다.
반지름 비(Radius Ratio)가 0.224 ~ 0.414인 6c Td(tetrahedral) site(사면체 사이트)와 이온 반경이 0.56Å인 Ni3+(6배위)가 위치하는 3b Octahedral site(팔면체 사이트)에 동시에 도핑될 수 있는 원소의 대표적인 예로서 Al이 제 1 도핑 원소로 선별될 수 있다. Al3+는 4배위일 때 이온 반경이 0.39Å이므로 사면체 사이트에 쉽게 도핑될 수 있고, 6배위일 때 0.535Å이므로 이온 반경이 0.56Å인 Ni3+(6배위) 사이트에 쉽게 도핑될 수 있다. 즉, 열 안전성과 수명 특성을 동시에 향상시킬 수 있을 것으로 예측하였으며, 실험 결과에 따르면 두 가지 특성 모두 향상되는 것을 확인할 수 있었다.
따라서, 하나의 구체적인 예에서, 제 1 도핑 원소(D1)은 Al을 포함하고 제 2 도핑 원소(D2)는 Zr을 포함할 수 있다.
앞서 설명한 바와 같이, 하나의 구체적인 예에서, 제 1 도핑 원소(D1)는 반지름 비(Radius Ratio)가 0.414 ~ 0.732인 전이금속 층의 3b Octahedral site(팔면체 사이트)와 0.224 ~ 0.414인 6c Td(tetrahedral) site(사면체 사이트)에 도핑될 수 있고, 제 2 도핑 원소(D2)는 반지름 비가 0.414 ~ 0.732인 Li 층의 3a Octahedral site(팔면체 사이트)에 도핑될 수 있다.
3b Octahedral site와 3a Octahedral site의 반지름 비는 6배위의 반지름 비(0.414 ~ 0.732)에 해당하며, 6c Td(tetrahedral) site의 반지름 비는 4배위의 반지름 비(0.224 ~ 0.414)에 해당한다.
앞서 설명한 바와 같이, 6배위와 4배위 이온 반경의 ±15% 범위 내 크기를 가지는 이온은 도핑될 수 있으며, 일 예로, 제 1 도핑 원소(D1)는 +3가 이하의 원소이고 제 2 도핑 원소(D2)는 +4가 이상의 원소의 조합일 수도 있다.
하나의 구체적인 예에서, 제 1 도핑 원소(D1)과 제 2 도핑 원소(D2)는 각각 독립적으로 Be, Ge, Al, Mg, Cr, As, V, Ti, Ga, Fe, Cu, Zn, Sc, Nb, Hf, Zr, W, P, Co 중에서 선택되는 서로 다른 하나 이상일 수 있다. 더욱 구체적으로, Be2+(6배위 0.45Å). Ge4+(6배위 0.53Å), Al3+(6배위 0.535Å), Mg2+(6배위 0.72Å), Cr4+(6배위 0.55Å), As3+(6배위 0.46Å), V5+(6배위 0.54Å), Ti4+(6배위 0.605Å), Ga3+(6배위 0.62Å), Fe3+(6배위 0.55~0.645Å), Cu2+(6배위 0.73Å), Zn2+(6배위 0.74Å), Sc3+(6배위 0.745Å), Nb4+(6배위 0.64Å), Hf4+(6배위 0.71Å), Zr4+(6배위 0.72Å), W4+(6배위 0.66Å), W5+(6배위 0.62Å), W6+(6배위 0.6Å), P3+(6배위 0.44Å), P5+(4배위 0.17~0.38Å), Co2+(6배위 0.65Å), Co3+(6배위 0.545~0.61Å), Co4+(6배위 0.53Å) 중에서 선택되는 서로 다른 하나 이상일 수 있다.
또한, 3b Octahedral site와 Td(tetrahedral) site에 동시에 도핑될 수 있는 제 1 도핑 원소(D1)으로는 Be(2+ 4배위 0.27Å), Ge(4+ 4배위 0.39Å), Al(3+ 4배위 0.39Å), Cr(4+ 4배위 0.41Å), As(3+ 4배위 0.335Å), V(5+ 4배위 0.355Å), Ti(4+ 4배위 0.42Å), W(6+ 4배위 0.42Å), P(5+ 5배위 0.29Å, 5+ 6배위 0.38Å), Co(4+ 4배위 0.53Å) 중에서 선택되는 하나 이상일 수 있다.
제 1 도핑 원소(D1)와 제 2 도핑 원소(D2)의 함량 합은 3000 ~ 14000 ppm의 범위일 수 있다. 도핑 원소들의 함량 합이 상기 범위보다 적으면 도핑 원소의 효과가 미미하여 목적하는 바의 수명 특성을 달성하지 못하는 문제점이 있고. 상기 범위보다 크면 도핑원소가 전기화학적으로 비활성으로 작용하기 때문에 목적하는 바의 용량을 달성시키지 못하는 문제점이 있으므로, 바람직하지 않다.
앞서 설명한 바와 같이, 본 발명은 특정한 도핑 원소들이 목적하는 기술적 효과를 발휘할 수 있는 최적 함량 조건을 또한 제시한다. 이후 설명하는 실험 내용에서도 확인할 수 있는 바와 같이, 제 1 도핑 원소(D1)의 함량은 2000 내지 8000 ppm의 범위이고 제 2 도핑 원소(D2)의 함량은 1000 내지 6000 ppm의 범위에 속하며, 양이온 혼합은 1.6 원자% 내지 2.6 원자% 범위에 속할 때 용량 및 수명 특성의 조건들을 모두 만족시킬 수 있다. 일 예로, 하기 조건에서 측정하였을 때, 50 cycle에서 수명 유지율이 90% 이상이고, 용량은 Ni 0.70mol 기준 215mAh/g 이상, Ni 0.82mol 기준 225mAh/g 이상, Ni 0.92mol 기준 238 mAh/g 이상의 조건을 만족할 수 있다.
<용량 및 수명 유지율 측정 조건>
코인 셀은 TOSCAT-3100 충방전기(Battery tester)를 이용하여 평가함;
25℃의 항온 챔버에서 화성(Formation)을 진행하고, Rate 및 수명 평가는 45℃의 항온 챔버에서 진행함;
화성 평가에서는 4.3-2.5V 전압범위에서 0.1C의 전류 밀도를 인가한 후 0.05C까지의 Constant-Voltage 구간을 주어 충/방전을 진행하였고, 총 2회 진행함;
화성 구간이 끝난 후 충전 전류 밀도 0.5C, 방전 전류 밀도 1.0C에서 Rate 평가를 1회 진행한 후, 동일 전류 밀도인 0.5/1.0C 에서 수명 평가를 50회 이상 진행함.
따라서, 제 1 도핑 원소(D1)의 함량과 제 2 도핑 원소(D2)의 함량 중의 적어도 하나가 상기 범위를 벗어나면 50 cycle에서 수명 유지율이 90%에 도달하지 못하거나 용량이 Ni 0.70mol 기준 215mAh/g 이상, Ni 0.82mol 기준 225mAh/g 이상, Ni 0.92mol 기준 238 mAh/g 이상에 이르지 못하는 바, 이는 이후 설명하는 실험 결과를 통해서도 확인할 수 있다.
제 1 도핑 원소(D1)의 바람직한 함량은 4000 내지 7000 ppm의 범위일 수 있고, 특히 바람직한 함량 범위는 5000 내지 6500 ppm의 범위일 수 있다.
또한, 제 2 도핑 원소(D2)의 바람직한 함량은 2000 내지 5000 ppm의 범위일 수 있고, 특히 바람직한 함량 범위는 2500 내지 4000 ppm의 범위일 수 있다.
본 발명은 또한 상기 양극 활물질을 포함하는 리튬 이차전지를 제공한다. 리튬 이차전지의 기타 구성들과 제조 방법은 당업계에 공지되어 있으므로, 그에 대한 자세한 설명은 본 명세서에서 생략한다.
이상 설명한 바와 같이, 본 발명에 따른 리튬 이차전지용 양극 활물질은 복수의 특정 도핑 원소들을 통해 제 1 도핑 원소(D1)이 전이금속 사이트에 위치하고 제 2 도핑 원소(D2)가 Li 사이트에 위치하면서, 이들 원소들의 최적 도핑 조건에 의해, 양이온 혼합이 억제 내지 저감되고, 그와 동시에 용량 및 수명 특성이 함께 향상되며, 경우에 따라서는 열 안정성이 향상되는 효과를 발휘한다.
도 1은 LiMO2 층상 구조의 일부 개략도이다;
도 2는 비교예 1 내지 비교예 7의 양이온 혼합 및 충전 용량을 나타낸 그래프이다;
도 3은 비교예 1 내지 비교예 7의 50 사이클 수명 특성을 나타낸 그래프이다;
도 4는 비교예 9 및 실시예 1의 DSC 결과를 나타낸 그래프이다;
도 5는 비교예 1, 8, 9 및 10의 양이온 혼합 및 충전 용량을 나타낸 그래프이다;
도 6은 비교예 1, 8, 9 및 10의 50 사이클의 수명 특성을 나타낸 그래프이다;
도 7은 실시예 1 내지 11의 충전 용량을 나타낸 그래프이다;
도 8은 실시예 1 내지 11의 양이온 혼합을 나타낸 그래프이다;
도 9는 실시예 1 내지 11의 50 사이클의 수명 특성을 나타낸 그래프이다;
도 10은 비교예 11 내지 21의 충전 용량을 나타낸 그래프이다;
도 11은 비교예 11 내지 21의 양이온 혼합을 나타낸 그래프이다;
도 12는 비교예 11 내지 21의 50 사이클의 수명 특성을 나타낸 그래프이다.
이하, 본 발명의 실시예들을 참조하여 본 발명을 더욱 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
[실시예 1]
(양극 활물질의 제조)
하기 표 1에서 같은 조성(Ni:Co:Mn=92:04:04)의 Ni, Co 및 Mn을 포함하며 D50이 약 15 μm인 입자의 NixCoyMnz(OH)2 전구체와, 리튬의 원료 물질인 LiOH, 및 Zr 원료 물질인 ZrO2 0.003 mol과 Al의 원료 물질인 Al(OH)3 0.021 mol을, 10L 원통형 반응기에 넣고, 35 Hz로 약 25분 건식으로 혼합하였다. 건식 혼합물을 몰라이트(mullite) 재질의 내화갑(sagger)에 4 ~ 5 kg 정도로 충진시키고, 산소(O2) 분위기의 소결로에서, 소성온도 700℃ 조건으로 승온 및 냉각 구간을 포함하여 총 30시간 동안 소성하였다. 이에 따라 얻어진 소성품을 1300 rpm / 2000 rpm의 분쇄/분급 조건에서 분쇄한 후, Sieve로 대입자를 걸러내어 입도 약 14 ~ 15 μm가 되도록 하여, 코어 내에 Zr과 Al이 도핑된 양극 활물질을 제조하였다.
제조된 활물질의 표면에는 2 wt% 이내의 리튬이 LiOH 및 Li2CO3의 부산물 형태로 존재하게 되는데, 이렇게 잔류하는 리튬은 전극 제조 및 전기화학적 특성에 악영향을 주므로. 활물질의 세정을 통해 잔류 리튬을 씻어 주었다. 이를 위해, 상기에서 제조된 양극 활물질을 5L 내의 반응기에서 고형분 50 ~ 80% 범위에서 약 15℃의 증류수에 약 1분 정도 교반하고, 교반이 끝난 슬러리를 여과 장치를 통해 여과하였으며, 이렇게 얻어진 여과 품을 150℃의 건조기에서 6시간 이상 건조시켰다.
얻어진 세정 건조품은 Boric acid와 혼합 및 소성하여 표면에 Boron을 코팅하였다. 이를 위해, 상기 세정 건조품을 Boric acid와 함께 10L 원통형 반응기에 넣고, 35 Hz로 약 20분 정도 교반하여 내화갑에 4 ~ 5 kg 정도 충진시키고, 산소(O2) 분위기의 소결로에서, 소성온도 300℃ 조건으로, 승온 및 냉각 구간을 포함하여 총 15시간 동안 소성하여, 상기에서 제조된 Zr과 Al이 도핑된 코어의 표면에 Boron이 코팅된 양극 활물질을 제조하였다.
(양극의 제조)
상기에서 제조한 양극 활물질, 도전재인 Super-C, 및 바인더인 PVdF를 용매인 N-메틸피롤리돈(NMP) 중에서 95:2:3의 중량비로 혼합하여 양극 형성용 조성물을 제조하였다. 상기 양극 형성용 조성물을 알루미늄 집전체에 고르게 도포한 후, 120℃의 열풍 건조기 내에서 약 20분 건조하여 NMP를 증발시키고, 롤 프레스에서 압연하여 120℃ 진공 오븐에서 12시간 건조하여 양극을 제조하였다.
(리튬 이차전지의 제조)
상기에서 제조된 양극과 상대 전극인 음극으로 Li metal을 사용하고, 그 사이에 분리막인 다공성 폴리에틸렌을 개재하여 전극조립체를 제조하고, 상기 전극조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차전지를 제조하였다. 이때, 전해액은 에틸렌카보네이트/디메틸카보네이트(EC/DMC의 혼합 부피비=1/1)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오르포스페이트(LiPF6)를 용해시켜 제조하였다.
Figure PCTKR2023012629-appb-img-000001
[실시예 2]
ZrO2 0.001 mol과 Al(OH)3 0.021 mol을 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[실시예 3]
ZrO2 0.001 mol과 Al(OH)3 0.028 mol을 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[실시예 4]
ZrO2 0.003 mol과 Al(OH)3 0.011 mol을 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[실시예 5]
ZrO2 0.001 mol과 Al(OH)3 0.011 mol을 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[실시예 6]
ZrO2 0.003 mol과 Al(OH)3 0.028 mol을 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[실시예 7]
ZrO2 0.001 mol과 Al(OH)3 0.007 mol을 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[실시예 8]
ZrO2 0.003 mol과 Al(OH)3 0.007 mol을 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[실시예 9]
ZrO2 0.006 mol과 Al(OH)3 0.011 mol을 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[실시예 10]
ZrO2 0.006 mol과 Al(OH)3 0.021 mol을 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[실시예 11]
ZrO2 0.006 mol과 Al(OH)3 0.028 mol을 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[실시예 12]
Ni:Co:Mn의 조성을 82:11:7으로 한 것을 제외하고는 실시예 7에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[실시예 13]
Ni:Co:Mn의 조성을 70:10:20로 한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[실시예 14]
Ni:Co:Mn의 조성을 70:10:20로 한 것을 제외하고는 실시예 4에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[비교예 1]
ZrO2과 Al(OH)3을 혼합하지 않은 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[비교예 2]
ZrO2를 혼합하지 않고 Al(OH)3를 0.003 mol로 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[비교예 3]
ZrO2를 혼합하지 않고 Al(OH)3를 0.007 mol로 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[비교예 4]
ZrO2를 혼합하지 않고 Al(OH)3를 0.011 mol로 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[비교예 5]
ZrO2를 혼합하지 않고 Al(OH)3를 0.021 mol로 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[비교예 6]
ZrO2를 혼합하지 않고 Al(OH)3를 0.028 mol로 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[비교예 7]
ZrO2를 혼합하지 않고 Al(OH)3를 0.035 mol로 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[비교예 8]
Al(OH)3를 혼합하지 않고 ZrO2를 0.001 mol로 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[비교예 9]
Al(OH)3를 혼합하지 않고 ZrO2를 0.003 mol로 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[비교예 10]
Al(OH)3를 혼합하지 않고 ZrO2를 0.006 mol로 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[비교예 11]
ZrO2 0.001 mol과 Al(OH)3 0.003 mol을 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[비교예 12]
ZrO2 0.001 mol과 Al(OH)3 0.035 mol을 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[비교예 13]
ZrO2 0.003 mol과 Al(OH)3 0.003 mol을 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[비교예 14]
ZrO2 0.003 mol과 Al(OH)3 0.035 mol을 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[비교예 15]
ZrO2 0.006 mol과 Al(OH)3 0.007 mol을 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[비교예 16]
ZrO2 0.006 mol과 Al(OH)3 0.035 mol을 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[비교예 17]
ZrO2 0.008 mol과 Al(OH)3 0.007 mol을 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[비교예 18]
ZrO2 0.008 mol과 Al(OH)3 0.011 mol을 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[비교예 19]
ZrO2 0.008 mol과 Al(OH)3 0.021 mol을 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[비교예 20]
ZrO2 0.008 mol과 Al(OH)3 0.028 mol을 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[비교예 21]
ZrO2 0.008 mol과 Al(OH)3 0.035 mol을 혼합한 것을 제외하고는 실시예 1에서와 동일한 조건으로 전극 및 리튬 이차전지를 제조하였다.
[실험예 1] (양극 활물질의 물성 분석, XRD)
실시예 1 내지 14 및 비교예 1 내지 21에서 각각 제조된 양극 활물질들의 결정 구조 XRD 패턴을 얻기 위해 Bruker 장비(XRD 측정 기기)가 사용되었으며, 10° 내지 120°의 범위에서 2°/min의 scan rate 조건으로 측정되었다. 이때, 얻어진 XRD 패턴은 TOPAS 소프트웨어에서의 리트벨트(Rietvelt refinement) 분석을 통해 분석되었으며, 이를 통해 양이온 혼합(cation mixing)량을 산출하였다. 이렇게 산출된 양이온 혼합량을 도 2, 도 5, 도 8, 도 11의 그래프들에 나타내었다.
[실험예 2] (코인 셀의 평가)
실시예 1 내지 14 및 비교예 1 내지 21에서 각각 제조된 양극 활물질들을 기반으로, 수분이 제어된 드라이룸에서 CR2032 코인 타입 반쪽 전지(코인 셀)를 조립한 후, 전해액 함침 및 전기화학적 평형상태를 만들기 위해 12시간 동안 상온에서 에이징(Aging)하였다.
코인 셀은 TOSCAT-3100 충방전기(Battery tester)를 이용하여 평가되었다. 먼저 25℃의 항온 챔버에서 화성(Formation)을 진행하고, Rate, 및 수명 평가는 45℃의 항온 챔버에서 진행되었다. 화성 평가에서는 4.3-2.5V 전압범위에서 0.1C의 전류 밀도를 인가한 후 0.05C까지의 Constant-Voltage 구간을 주어 충/방전을 진행하였고, 총 2회 진행하였다. 화성 구간이 끝난 후 충전 전류 밀도 0.5C, 방전 전류 밀도 1.0C에서 Rate 평가를 1회 진행한 후, 동일 전류 밀도인 0.5/1.0C에서 수명 평가를 50회 이상 진행하였다.
이렇게 측정한 충전 용량을 도 2, 도 5, 도 7, 도 10의 그래프들에 나타내었고, 50회 충방전의 용량 유지율을 도 3, 도 6, 도 9, 도 12의 그래프들에 나타내었다.
[실험예 3] (양극 활물질의 물성 분석, DSC)
실시예 1과 비교예 9에서 각각 제조된 양극 활물질들의 열적 특성 분석을 위해 시차주사열량분석법(Differential scanning calorimetry, DSC)을 이용하였고, DSC 4000(Perkinelmer, DSC 측정 기기)가 사용되었다.
상기 평가예 2에서 제조된 코인 셀에 0.1C의 전류 밀도를 인가하여 4.3V까지 충전시킨 상태에서, 수분이 제어된 드라이룸에서 코인 셀을 해체하였다. 해체된 코인 셀에서 충전된 양극을 DMC에서 세척한 후 DSC용 극판을 준비하였다. DSC 조립을 위해 상기 준비한 극판을 타발하여 DSC 셀에 넣고 전해액을 주입하여 DSC 셀을 조립하였다.
분석은 기기 내부에 질소 가스가 주입된 상태에서 진행되며, 30℃에서 400℃까지의 온도 범위 및 10℃의 scan rate 조건에서 측정되었다. 이때 얻어진 DSC 패턴은 Pyris Manage 소프트웨어에서 분석되었으며, 이를 통해 발열이 시작되는 온도(on-set point), 최고의 발열량을 나타내는 온도(main peak), 및 발열량을 확인하였다.
측정 결과를 도 4의 그래프에 나타내었다.
[평가]
우선, 비교예 1은 도핑하지 않은 양극 활물질을 기반으로 한 리튬 이차전지이며, 양이온 혼합은 2.13%, 충전 용량은 250.70 mAh/g, 50 cycle에서의 수명은 86.48%인 것을 확인할 수 있다. 고용량 확보는 가능하지만 수명 특성이 매우 낮다.
Zr 없이 Al을 단독으로 적용할 경우(비교예 2 ~ 7), Al 함량에 따라 수명이 크게 개선되지만, 양이온 혼합(Cation Mixing: C/M) 정도가 급격히 증가하여 용량이 크게 감소하는 것을 확인할 수 있다.
Al 없이 Zr을 단독으로 적용(비교예 8 ~ 10)하면, 용량은 큰 변화가 없으며, 수명은 소폭 증가하고 양이온 혼합은 감소하는 경향을 보인다.
그러나, Al과 Zr을 각각 단독으로 적용할 경우(비교예 2 ~ 10), 수명 특성이 90% 미만이거나 또는 238 mAh/g 미만의 용량을 제공하여, 상용화 전지로서 적용이 어렵다. 상용화를 위해서는 적어도 90% 이상의 수명과 238 mAh/g 이상의 용량을 동시에 확보할 수 있어야 하며, 93% 이상의 수명과 242 mAh/g 이상의 용량을 동시에 확보할 수 있으면 더욱 바람직하다.
Al과 Zr을 단독이 아닌 함께 적용할 경우(실시예 1 ~ 14, 비교예 11 ~ 21), 수명과 용량 모두 확보 가능하다. Al과 Zr의 비율에 따라 용량과 수명이 변하게 되며, 특히 Al의 함량이 2000 ~ 8000 ppm의 범위를 만족하고, Zr의 함량이 1000 ~ 6000 ppm을 만족할 때 최적의 특성을 확보할 수 있다.
일 예로, Al의 함량이 2000 ppm 이하일 경우(비교예 11, 13, 15, 17), 수명 특성 향상 효과가 미비할 수 있으며, 8000 ppm 초과일 경우(비교예 12, 14, 16, 20, 21), 목적하는 효과 이상으로 cation mixing이 증가되고, 용량이 저하되는 문제점이 발생할 수 있다. 참고로, Li 층에서 Ni2+에 의한 양이온 혼합은 2.6 원자% 미만인 것이 바람직하다.
또한, 제 2 도핑 원소가 1000 ppm 이하일 경우에 cation mixing 효과가 미비할 수 있으며, 6000 ppm 초과일 경우(비교예 17 ~ 21), 목적하는 만큼의 함량이 코어 내에 도핑되지 못하고 표면층에 2차 입자상으로 존재할 수 있다.
실험 결과를 도면을 참조하여, 이하에서 더욱 상세히 설명한다.
도 2에는 비교예 1 내지 비교예 7에서의 양이온 혼합 및 충전 용량을 나타내었고, 도 3에는 비교예 1 내지 비교예 7에서의 50 사이클 수명 특성을 나타내었다.
도 2를 참고하면, Al 함량이 0 ppm에서 10000 ppm으로 증가함에 따라 양이온 혼합이 2.13%에서 2.82%로 증가하며, 용량이 250.7 mAh/g에서 236.2 mAh/g으로 감소한다. 이는 전기화학적으로 비활성 상태인 Al3+가 이온 반경이 비슷한 Ni3+의 사이트로 도핑됨에 따라 전하 불균형이 발생하고, 전이금속 사이트에서 밀려나게 된 Ni3+가 Ni2+로 환원되어, Li+ 층으로 이동하면서 양이온 혼합이 증가하는 것으로 보여진다. 반면에, 도 3을 참조하면, Al 함량이 0 ppm에서 10000 ppm으로 증가함에 따라 50 사이클에서의 수명은 86.48%에서 92.30%로 증가한다.
도 4에는 비교예 9 및 실시예 1의 양극 활물질들의 DSC 결과를 나타내었다. 발열 시작 지점인 on-set 온도는 비교예 9와 실시예 1에서 각각 209℃, 215℃로 나타났고, 발열의 최고 지점인 main peak가 각각 217℃, 218.7℃로 나타났다. 또한, 비교예 9와 실시예 1에서 발열량은 각각 1713 J/g 및 970 J/g으로 나타남으로써, Zr 3000 ppm 단독 도핑 대비, Zr 3000 ppm 및 Al 6000 ppm을 복합 도핑 하였을 때 on-set point, main peak 온도가 더 높은 온도로 이동하며, 발열량이 더 낮아진 것을 확인할 수 있다. 이는, 상술한 바와 같이 Al 도핑 효과를 보여주는 결과이며, Al3+는 Ni3+ 사이트에 도핑될 뿐만 아니라, 전이금속 층과 Li 층 사이에 위치한 Td 사이트(사면체 사이트)에 이온 반경이 작은 Al가 도핑되어 열 안정성이 향상되는 것을 보여준다.
도 5 및 도 6에는 Zr을 0, 1000, 3000, 6000 ppm 단독 도핑하였을 경우(비교예 1, 비교예 8, 비교예 9, 비교예 10), 양이온 혼합, 충전 용량 및 50 사이클의 수명 특성을 나타내었다.
구체적으로, 도 5는 비교예 1, 8, 9, 10에서의 양이온 혼합 및 충전 용량을 보여주고 있고, 도 6은 비교예 1, 8, 9, 10에서의 50 사이클의 수명 특성을 보여준다.
도 5를 참고하면, Zr 함량이 0 ppm에서 6000 ppm으로 증가함에 따라 용량이 크게 저하되지는 않는데, 이는 이온 반경이 Li+과 비슷한 Zr4+가 전이금속 사이트에 치환되지 않고, Li+ 사이트에 주로 치환되기 때문에, 용량 및 수명 특성이 크게 저하되지는 않기 때문이다. 또한, Zr 함량이 0 ppm에서 6000 ppm으로 증가함에 따라 양이온 혼합이 2.13%에서 1.60%로 감소하는데, 이는 Zr4+에 의해 Ni2+가 Li+ 사이트에 내려오는 것이 억제되기 때문이다. 도 6을 참고하면, Zr 함량이 0 ppm에서 6000 ppm으로 증가함에 따라 50 사이클에서의 수명은 86.48%에서 88.34%까지 증가되어, Al에 비해 수명 유지율에 대한 영향이 상대적으로 작은 것을 확인할 수 있다.
도 7 내지 도 12에는 Al과 Zr을 서로 다른 함량으로 복합 도핑 하였을 때의 충전 용량, 양이온 혼합, 및 50 사이클의 수명 특성을 나타내었다.
구체적으로, 도 7 및 도 8은 실시예 1 내지 11의 충전 용량 및 양이온 혼합을 보여주고 있고, 도 9는 실시예 1 내지 11의 50 사이클의 수명 특성을 보여주고 있다.
도 7 내지 도 9를 함께 참조하면, 실시예 1 내지 11의 리튬 이차전지는 충전 용량 238 내지 250 mAh/g의 범위에서 약 90 내지 100% 범위의 수명을 만족하고, 1.95 내지 2.60% 범위의 양이온 혼합을 동시에 만족한다. 예를 들어, 실시예 1과 같이 Zr 3000 ppm, Al 6000 ppm 도핑 시 충전 용량 243.2 mAh/g, 50cycle 수명(retention; RT) 94.6%, 양이온 혼합 2.34%를 동시에 만족한다. 또한, 실시예 2와 같이, Zr 1000 ppm, Al 6000 ppm 도핑 시 충전 용량 243.17 mAh/g, 50cycle 수명 94.08%, 양이온 혼합 2.38%를 동시에 만족한다. 또한, 실시예 4와 같이 Zr 3000 ppm, Al 3000 ppm 도핑 시 충전 용량 246.37 mAh/g, 50cycle 수명 93.34%, 양이온 혼합 2.20%를 동시에 만족한다. 앞서 언급한 바에 따라, 본 발명에서는 목적하는 효과가 용량 증가인지 또는 수명인지에 따라, Zr, Al 함량은 어느 수준 이상에서 적절히 구성될 수 있다.
한편, 도 10 및 도 11에는 비교예 11 내지 21의 충전 용량 및 양이온 혼합을 나타내었고, 도 12에는 이들 비교예의 50 사이클의 수명 특성을 나타내었다.
구체적으로, 이들 비교예의 리튬 이차전지들은 충전 용량(238 내지 250 mAh/g), 수명 특성(약 90 내지 100% 범위), 및 양이온 혼합(1.95 내지 2.60%)의 조건들을 동시에 만족할 수 없는 함량으로 구성되어 있다. 예를 들어, 비교예 15와 같이 Zr 6000 ppm, Al 1000 ppm 도핑 시, 충전 용량이 약 248.9 mAh/g으로 매우 높으나, 50 cycle 수명이 88.5% 수준으로 낮아지며, 양이온 혼합이 1.96%로 상기 언급한 세가지 조건들을 동시에 만족할 수 없다. 또한, 비교예 16과 같이, Zr 6000 ppm, Al 10000 ppm 도핑 시, 50 cycle 수명이 97.9% 수준으로 높아지나, 충전 용량이 약 235.43 mAh/g으로 상대적으로 낮아지며, 양이온 혼합은 2.95%로 높아진다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (20)

  1. 하기 화학식 1의 조성을 포함하며,
    Lix[M1-w-yD1wD2y]O2-z (1)
    상기 식에서,
    M은 Ni, Co, Mn 중의 하나 이상이고,
    0.1≤x, 0<w≤0.05, 0<y≤0.05, -6≤z<2이며,
    D1은 양극 활물질의 전이금속 층에서 6배위의 Ni3+와 이온 반경이 유사한 원소이고,
    D2는 양극 활물질의 Li 층에서 6배위의 Li+와 이온 반경이 유사한 원소인 것을 특징으로 하는 양극 활물질.
  2. 제 1 항에 있어서,
    상기 D1은 수명 특성을 향상시키는 하나 이상의 원소이고,
    상기 D2는 양이온 혼합을 감소시키는 하나 이상의 원소인 것을 특징으로 하는 양극 활물질.
  3. 제 1 항에 있어서,
    상기 D1은 양이온 혼합을 증가시키는 하나 이상의 원소이고,
    상기 D2는 양이온 혼합의 증가를 억제 또는 감소시키는 하나 이상의 원소인 것을 특징으로 하는 양극 활물질.
  4. 제 1 항에 있어서,
    상기 D1은 용량 특성을 저하시키는 하나 이상의 원소이고,
    상기 D2는 용량 특성을 향상시키는 하나 이상의 원소인 것을 특징으로 하는 양극 활물질.
  5. 제 1 항에 있어서, 상기 D1은 열 안정성을 향상시키는 하나 이상의 원소인 것을 특징으로 하는 양극 활물질.
  6. 제 1 항에 있어서, 상기 D1은 6배위에서 반지름 비(Radius Ratio)가 0.414 ~ 0.732Å의 범위 조건을 만족하거나, 또는 6배위에서 반지름 비가 0.414 ~ 0.732Å의 범위 조건과 4배위에서 반지름 비가 0.224 ~ 0.414Å의 범위 조건을 동시에 만족하는 원소인 것을 특징으로 하는 양극 활물질.
  7. 제 1 항에 있어서, 상기 D2는 6배위에서 반지름 비가 0.414 ~ 0.732Å의 범위 조건을 만족하는 원소인 것을 특징으로 하는 양극 활물질.
  8. 제 1 항에 있어서, 상기 D1은 Al을 포함하고, D2는 Zr을 포함하는 것을 특징으로 하는 양극 활물질.
  9. 제 1 항에 있어서, 상기 D1은 반지름 비가 0.414 ~ 0.732인 전이금속 층의 3b Octahedral site(팔면체 사이트)와 0.224 ~ 0.414인 6c Td(tetrahedral) site(사면체 사이트)에 도핑되고, 상기 D2는 반지름 비가 0.414 ~ 0.732인 Li의 3a Octahedral site(팔면체 사이트)에 도핑되는 것을 특징으로 하는 양극 활물질.
  10. 제 1 항에 있어서, 상기 D1은 +3가 이하의 원소인 것을 특징으로 하는 양극 활물질.
  11. 제 1 항에 있어서, 상기 D2는 +4가 이상의 원소인 것을 특징으로 하는 양극 활물질.
  12. 제 1 항에 있어서, 상기 D1 및 D2는 각각 독립적으로 Be, Ge, Al, Mg, Cr, As, V, Ti, Ga, Fe, Cu, Zn, Sc, Nb, Hf, Zr, W, P, Co 중에서 선택되는 서로 다른 하나 이상인 것을 특징으로 하는 양극 활물질.
  13. 제 1 항에 있어서, 상기 D1과 D2의 함량 합은 3000 ~ 14000 ppm인 것을 특징으로 하는 양극 활물질.
  14. 제 1 항에 있어서,
    상기 D1의 함량은 2000 내지 8000 ppm의 범위이고,
    상기 D2의 함량은 1000 내지 6000 ppm의 범위인 것을 특징으로 하는 양극 활물질.
  15. 제 14 항에 있어서,
    상기 D1의 함량은 4000 내지 7000 ppm의 범위이고,
    상기 D2의 함량은 2000 내지 5000 ppm의 범위인 것을 특징으로 하는 양극 활물질.
  16. 제 15 항에 있어서,
    상기 D1의 함량은 5000 내지 6500 ppm의 범위이고,
    상기 D2의 함량은 2500 내지 4000 ppm의 범위인 것을 특징으로 하는 양극 활물질.
  17. 제 1 항에 있어서, 하기 조건에서 측정하였을 때, 50 cycle에서 수명 유지율이 90% 이상이고, 용량은 Ni 0.70mol 기준 215mAh/g 이상, Ni 0.82mol 기준 225mAh/g 이상, Ni 0.92mol 기준 238 mAh/g 이상의 조건을 만족하는 것을 특징으로 하는 양극 활물질:
    <용량 및 수명 유지율 측정 조건>
    코인 셀은 TOSCAT-3100 충방전기(Battery tester)를 이용하여 평가함;
    25℃의 항온 챔버에서 화성(Formation)을 진행하고, Rate 및 수명 평가는 45℃의 항온 챔버에서 진행함;
    화성 평가에서는 4.3-2.5V 전압범위에서 0.1C의 전류 밀도를 인가한 후 0.05C까지의 Constant-Voltage 구간을 주어 충/방전을 진행하였고, 총 2회 진행함;
    화성 구간이 끝난 후 충전 전류 밀도 0.5C, 방전 전류 밀도 1.0C에서 Rate 평가를 1회 진행한 후, 동일 전류 밀도인 0.5/1.0C 에서 수명 평가를 50회 이상 진행함.
  18. 제 1 항에 있어서, Li 층에서 Ni2+에 의한 양이온 혼합이 2.6 원자% 미만인 것을 특징으로 하는 양극 활물질.
  19. 제 1 항 및 제 18 항 중 어느 하나에 있어서, Li 층에서 Ni2+에 의한 양이온 혼합이 1.6 원자% 이상인 것을 특징으로 하는 양극 활물질.
  20. 제 1 항 내지 제 19 항 중 어느 하나에 따른 양극 활물질을 포함하는 것을 특징으로 하는 리튬 이차전지.
PCT/KR2023/012629 2022-08-26 2023-08-25 리튬 이차전지용 양극 활물질 WO2024043746A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0107206 2022-08-26
KR1020220107206A KR20240029122A (ko) 2022-08-26 2022-08-26 리튬 이차전지용 양극 활물질

Publications (1)

Publication Number Publication Date
WO2024043746A1 true WO2024043746A1 (ko) 2024-02-29

Family

ID=90013815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/012629 WO2024043746A1 (ko) 2022-08-26 2023-08-25 리튬 이차전지용 양극 활물질

Country Status (2)

Country Link
KR (2) KR20240029122A (ko)
WO (1) WO2024043746A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170076164A (ko) * 2015-12-24 2017-07-04 주식회사 포스코 리튬 이차 전지용 양극 활물질 전구체 및 이의 제조 방법, 양극 활물질 및 이의 제조 방법, 상기 양극 활물질을 포함하는 리튬 이차 전지
KR20190078498A (ko) * 2017-12-26 2019-07-04 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20200046749A (ko) * 2018-10-25 2020-05-07 삼성전자주식회사 복합양극활물질, 이를 포함한 양극, 리튬전지 및 그 제조 방법
KR20200066246A (ko) * 2018-11-30 2020-06-09 주식회사 포스코 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170076164A (ko) * 2015-12-24 2017-07-04 주식회사 포스코 리튬 이차 전지용 양극 활물질 전구체 및 이의 제조 방법, 양극 활물질 및 이의 제조 방법, 상기 양극 활물질을 포함하는 리튬 이차 전지
KR20190078498A (ko) * 2017-12-26 2019-07-04 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20200046749A (ko) * 2018-10-25 2020-05-07 삼성전자주식회사 복합양극활물질, 이를 포함한 양극, 리튬전지 및 그 제조 방법
KR20200066246A (ko) * 2018-11-30 2020-06-09 주식회사 포스코 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEBIAM R. V., F. PRADO, A. MANTHIRAM: "Structural Instability of Delithiated Li1−x Ni1−y Coy O2 Cathodes", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 148, no. 1, 1 January 2001 (2001-01-01), pages A49 - A53, XP093142111 *

Also Published As

Publication number Publication date
KR20240029537A (ko) 2024-03-05
KR20240029122A (ko) 2024-03-05

Similar Documents

Publication Publication Date Title
WO2021132761A1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2014119973A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조 방법 및 이를 이용한 리튬 이차전지
WO2018101809A1 (ko) 리튬이차전지용 니켈계 활물질 전구체, 그 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
WO2019088340A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2015065098A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2020256395A2 (ko) 리튬이차전지 음극재용 탄소-규소복합산화물 복합체 및 이의 제조방법
WO2013183974A1 (ko) 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
WO2020040586A1 (ko) 실리콘계 복합체, 이를 포함하는 음극, 및 리튬 이차전지
WO2020222628A1 (ko) 리튬 이차전지 음극재용 실리콘 복합산화물 및 이의 제조방법
WO2022139290A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2021034020A1 (ko) 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2021221480A1 (ko) 리튬 이차전지용 양극활물질, 그의 제조방법 및 이를 포함하는 리튬이차전지
WO2021132762A1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2023043209A1 (ko) 양극 활물질용 신규 단일체 입자 및 신규 단일체 분말 제조방법
WO2021132763A1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2021157896A1 (ko) 고체이온전도체 화합물, 이를 포함하는 고체전해질, 이를 포함하는 전기화학 셀, 및 이의 제조방법
WO2018034553A1 (ko) 실리콘 플레이크를 포함하는 음극재 및 실리콘 플레이크의 제조방법
WO2024117676A1 (ko) 양극 활물질 제조용 전구체
WO2018164477A1 (ko) 칼륨 이차 전지용 양극 활물질, 이를 포함하는 칼륨 이차 전지
WO2020180160A1 (ko) 리튬 이차전지
WO2024043746A1 (ko) 리튬 이차전지용 양극 활물질
WO2023027499A1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2022119344A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2021125898A2 (ko) 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2022060104A1 (ko) 음극 활물질, 이를 포함하는 음극 및 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857778

Country of ref document: EP

Kind code of ref document: A1