WO2024043338A1 - キャッピングヘッドのボディ、キャッピングヘッド、スピンドルアセンブリ、キャッピング装置及びキャッピングシステム - Google Patents

キャッピングヘッドのボディ、キャッピングヘッド、スピンドルアセンブリ、キャッピング装置及びキャッピングシステム Download PDF

Info

Publication number
WO2024043338A1
WO2024043338A1 PCT/JP2023/030780 JP2023030780W WO2024043338A1 WO 2024043338 A1 WO2024043338 A1 WO 2024043338A1 JP 2023030780 W JP2023030780 W JP 2023030780W WO 2024043338 A1 WO2024043338 A1 WO 2024043338A1
Authority
WO
WIPO (PCT)
Prior art keywords
capping
hole
capping head
shaft
spindle
Prior art date
Application number
PCT/JP2023/030780
Other languages
English (en)
French (fr)
Inventor
貴史 佐藤
栄治 山本
英泰 武藤
Original Assignee
株式会社Amts
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Amts filed Critical 株式会社Amts
Publication of WO2024043338A1 publication Critical patent/WO2024043338A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67BAPPLYING CLOSURE MEMBERS TO BOTTLES JARS, OR SIMILAR CONTAINERS; OPENING CLOSED CONTAINERS
    • B67B3/00Closing bottles, jars or similar containers by applying caps
    • B67B3/02Closing bottles, jars or similar containers by applying caps by applying flanged caps, e.g. crown caps, and securing by deformation of flanges
    • B67B3/10Capping heads for securing caps
    • B67B3/18Capping heads for securing caps characterised by being rotatable, e.g. for forming screw threads in situ

Definitions

  • the present invention relates to a capping head body, a capping head, a spindle assembly, a capping device, and a capping system.
  • This application claims priority to Japanese Patent Application No. 2022-134830 filed in Japan on August 26, 2022 and Japanese Patent Application No. 2022-135769 filed in Japan on August 29, 2022. The contents are incorporated herein.
  • a capping head that attaches a cap to the mouthpiece of a threaded can filled with contents such as a beverage (for example, Patent Document 1).
  • the capping head of Patent Document 1 includes a body, a cam follower arranged above the body, a forming roller arranged below the body, a swing shaft connecting the cam follower and the forming roller, and a swing shaft that connects the swing shaft. and a biasing member that biases the cam follower and the forming roller radially inward through the cam follower and the forming roller.
  • An intermediate portion of the swing shaft located between both ends in the vertical direction and a biasing member provided in this intermediate portion are arranged on the outer circumferential portion of the body and are exposed radially outward from the body.
  • the body has a complicated shape, making it difficult to increase the strength of the body.
  • a highly rigid material such as stainless steel, which increased the weight.
  • the present invention provides a capping head body, a capping head, a spindle assembly, a capping device, and a capping system that can simplify the shape of the body, increase the strength of the body, and reduce the weight. purpose.
  • a body of a capping head the body having a through hole through which a swing shaft for swinging a roller toward a peripheral wall of the cap is inserted, the through hole penetrating the body main body in a vertical direction.
  • the main body has a cylindrical shape, and the outer shape of the body is simply configured. Further, the body is provided with a through hole extending vertically through the body, and a swing shaft for swinging the forming roller is inserted through the through hole. Further, the swing shaft housing portion provided with the through hole is arranged around the spindle mounting portion.
  • the body of the capping head of the present invention has a simple structure including a cylindrical body main body, a spindle mounting part that is attached to the spindle, and a swing shaft housing part in which a through hole is arranged. Although the body structure has been simplified by reducing the complexity of its shape, its rigidity has been increased. In particular, if the main body, the spindle mounting part, and the swing shaft storage part are connected to each other, the above-mentioned effects will be further enhanced.
  • a cam follower and a forming roller are connected to both ends of the swing shaft in the vertical direction, and an intermediate portion of the swing shaft located between both ends of the swing shaft in the vertical direction is connected to the through hole of the body.
  • a biasing member that is inserted externally into this intermediate portion is housed.
  • the biasing member is provided so as to surround a portion (middle portion) of the swing shaft, and is housed in the through hole.
  • the biasing member since a part (intermediate portion) of the swing shaft and the biasing member (hereinafter referred to as the biasing member etc.) are housed inside the body, the biasing There is no need for a cutout-like recess or the like provided for arranging a member or the like in an exposed state on the outer periphery of the body. Therefore, in the present invention, the body can be configured with a simple shape, and manufacturing is easy. Furthermore, by simplifying the shape of the body, the strength of the body can be increased.
  • the biasing member and the like in the body, it is possible to suppress the contents of the beverage or the like (particularly sugar that easily solidifies) that scatters from the outside of the body from adhering to the biasing member and the like. Therefore, the performance (function) of the biasing member and the like can be maintained well over a long period of time, and maintainability is also good.
  • the body can be made from conventional bodies such as aluminum alloys such as duralumin, engineering plastics, and resin materials (including composite resin materials) such as FRP (fiber reinforced plastic).
  • conventional bodies such as aluminum alloys such as duralumin, engineering plastics, and resin materials (including composite resin materials) such as FRP (fiber reinforced plastic).
  • FRP fiber reinforced plastic
  • a preferable example of the engineering plastic is PEEK (polyetheretherketone).
  • the shape of the body can be simplified, the strength of the body can be increased, and the weight can be reduced. is possible.
  • a plurality of the through holes are provided at intervals in the circumferential direction, and each of the through holes has an opening that opens at the upper end surface of the body, and the circumferential dimension of the opening is equal to the diameter.
  • the circumferential dimension (i.e., wall thickness dimension) of the portion (hereinafter referred to as the frame) located between the circumferentially adjacent through holes in the swing shaft housing section is changed at each position in the radial direction. Variations are less likely to occur, and the strength of the frame is stably increased. Therefore, the strength of the body can be ensured while keeping the distance between the through holes arranged in the circumferential direction small. It is possible to further reduce the size and weight of the capping head.
  • the body has a body recess that is recessed downward from the upper surface of the body and accommodates at least a lower end of the cam, and a radially inner end of the opening opens into an inner circumferential surface of the body recess.
  • the capping head according to aspect 5 or 6.
  • the cam and the body can be placed closer to each other in the vertical direction.
  • the vertical dimensions of the body can be kept small, making it possible to make the body more compact and lightweight.
  • the opening of the through hole reaches the inner circumferential surface of the body recess, and is formed large. Therefore, this opening also makes it possible to further reduce the weight of the body.
  • the body includes the body main body and an annular body flange fixed to the upper end of the body main body, and the through hole includes a main body hole portion that vertically passes through the body main body, and a body hole portion that vertically penetrates the body main body.
  • the capping head according to any one of aspects 3 to 7, further comprising a flange hole that vertically penetrates the flange, and wherein the biasing member is disposed in the main body hole.
  • the biasing member in the body hole and fixing the body flange to the upper end of the body main body, the biasing member can be easily accommodated inside the body.
  • the capping head is easy to manufacture.
  • the main body hole has a housing hole in which the biasing member is disposed, and a bearing hole disposed at a lower end of the main body hole, and the swing shaft is connected to the flange hole.
  • the biasing member is a torsion coil spring that extends spirally around the axis of the swing shaft, and of both ends of the biasing member in the vertical direction, the upper end is locked to the body flange, and the lower end is locked to the body flange.
  • the biasing member can be easily inserted into the body while applying a desired biasing force. Can be assembled.
  • the forming rollers are arranged in a circumferential direction, and the plurality of forming rollers include a plurality of screw forming rollers that form a threaded portion that is threadedly engaged with the cap portion on the peripheral wall of the cap, and at least one hem-wrapping roller for hem-wrapping the lower end of the peripheral wall around the mouthpiece, and the number of the screw-forming rollers is greater than the number of hem-wrap rollers, according to any one of aspects 2 to 12.
  • the respective forming points of the circumferentially adjacent screw forming rollers relative to the circumferential wall of the cap are shifted in the vertical direction, so that the thread forming is performed at the same point on the circumferential wall of the cap (especially near the upper groove where the screw starts). Problems such as excessive amounts can be suppressed. Variation in the amount of thread forming at each position in the vertical direction is suppressed, and the amount of thread forming is equalized in the vertical direction.
  • the adjacent thread forming rollers are arranged vertically shifted, it is possible to arrange these thread forming rollers closer to each other without interfering with each other. This makes it possible to keep the outer diameter of the capping head small, making it possible to further reduce the size and weight of the capping head.
  • a plurality of the forming rollers are provided side by side in the circumferential direction, a plurality of the urging members are provided side by side in the circumferential direction in the same number as the forming rollers, and the through holes are provided in the same number as the urging members.
  • each biasing member can be accommodated in each through hole. That is, one biasing member can be arranged in one through hole. Therefore, the through hole can be configured simply, and the body can be manufactured more easily and its rigidity can be further improved.
  • the swing shaft has a support shaft extending in the vertical direction, an upper arm connecting the support shaft and the cam follower, and a lower arm connecting the support shaft and the forming roller
  • the upper arm has an upper clamp part that surrounds the support shaft around the axis and is deformable so as to press the outer circumferential surface of the support shaft
  • the lower arm surrounds the support shaft around the axis
  • It has a lower clamp part that can be deformed so as to press the outer peripheral surface of the shaft
  • at least one of the upper clamp part and the lower clamp part has a deformation assist groove that is arranged on the peripheral surface of the clamp part and extends in the vertical direction.
  • the clamp part is supported by providing a deformation assist groove extending in the vertical direction on the circumferential surface (clamp part circumferential surface) of the upper clamp part or the lower clamp part (hereinafter sometimes simply referred to as the clamp part). It becomes easier to deform in the direction of pressing the outer peripheral surface of the shaft. This makes it possible to keep the outer diameter (diameter) of the support shaft small (in other words, make the support shaft thinner), and correspondingly, the outer diameter of the capping head as a whole can also be kept small. , it becomes possible to achieve further weight reduction.
  • the lifting shaft extending in the vertical direction and having a pressure block attached thereto that presses the top wall of the cap, and having a cylindrical shape, into which the lifting shaft is inserted.
  • the elevating shaft includes an upper cam follower that moves the elevating shaft in the vertical direction.
  • the spindle has a spindle gear that rotates the spindle around a central axis, and the elevating tube includes a cylindrical cam and a lower cam follower that moves the elevating tube in the vertical direction. spindle assembly.
  • a capping device comprising: an upper cam that is engaged with the upper cam follower; and a lower cam that extends around the turret shaft and that is engaged with the lower cam follower.
  • a conveyance direction of the can discharged from the filler and directed toward the capping device comprising a filler for filling a can with contents, and a capping device according to aspect 18, to which the can discharged from the filler is supplied.
  • a capping system that extends along a tangent to the outer periphery of the turret when viewed from the turret axis direction.
  • the cans discharged from the filler are smoothly supplied to the capping device without the conveyance direction being abruptly changed, that is, while being made less susceptible to the influence of centrifugal force. Therefore, the capping processing speed can be stably increased, and production efficiency can be further improved.
  • Japanese Patent Laid-Open No. 2003-146392 (hereinafter referred to as well-known document 1) is known.
  • the capping head of this known document 1 five or six forming rollers are provided.
  • the present invention provides a capping head, a spindle assembly, a capping device, and a capping system that can reduce the external size of the capping head to reduce its weight, increase the capping processing speed, and improve production efficiency. is one of the purposes (another purpose).
  • a capping head for attaching a cylindrical cap with a top to the mouthpiece of a threaded can having a bottom and a cylindrical shape, the capping head having a body centered on a central axis extending in the vertical direction, and disposed above the body, a cam follower that rolls on an outer circumferential surface of a cone cam; a forming roller that is disposed below the body, is connected to the cam follower, and moves in the radial direction as the cam follower moves in the radial direction; and the cam follower and a biasing member that biases the forming roller inward in the radial direction, a plurality of the cam followers are provided side by side in the circumferential direction, and the forming rollers are arranged in the same number as the cam followers in the circumferential direction.
  • a plurality of screw forming rollers are provided, and the plurality of forming rollers form a threaded portion on the circumferential wall of the cap to be threadedly engaged with the cap portion, and a plurality of thread forming rollers form a lower end of the circumferential wall of the cap around the cap portion.
  • at least one hem winding roller; the body has a body recess that is recessed downward from an upper surface of the body and accommodates at least a lower end portion of the cone cam.
  • the body has a spindle attachment part that is attached to a spindle inserted into the cone cam, and the spindle attachment part is disposed at the bottom of the body recess that has a bottomed hole shape. Capping head as described.
  • Aspect 24 of the present invention Aspects 20 to 23, wherein the vertical depth dimension h of the body recess is 1.58H or less, where the vertical dimension from the upper end position to the lower end position in contact with the cam follower of the cone cam is defined as the molding dimension H.
  • the capping head according to any one of the above.
  • Aspect 25 of the present invention Aspect 20, wherein the cam follower includes a shaft portion extending in the vertical direction, and a rolling element rotatably supported by the lower end of the shaft portion and pressed against the outer circumferential surface of the cone cam by the urging force of the urging member.
  • the capping head according to any one of 24 to 24.
  • Aspect 30 of the present invention Aspects 20 to 29, wherein the body has a spindle attachment part that is attached to a spindle inserted into the cone cam, and the spindle attachment part is arranged to overlap with the body recess when viewed from the radial direction.
  • the capping head according to any one of the above.
  • a plurality of the biasing members are provided in parallel in the circumferential direction, the number being the same as the number of the cam followers, and the body has a biasing member housing hole extending in the vertical direction, and the biasing member housing hole is configured to accommodate the biasing member.
  • the capping head according to any one of aspects 20 to 30, wherein a plurality of urging members are provided in parallel in the circumferential direction, and each of the urging members is accommodated in each of the urging member accommodation holes. .
  • a plurality of the biasing members are provided in the same number as the cam followers and arranged in a circumferential direction, and the body has a concave pocket that is recessed radially inward from the outer circumferential surface of the body and extends in the vertical direction.
  • a plurality of pockets are provided in the same number as the biasing members and arranged in the circumferential direction, and each of the biasing members is a cylinder that is accommodated in each pocket and surrounds the body from the outside in the radial direction over the entire circumferential circumference.
  • a pressure block is provided on the lower side of the body and presses the top wall of the cap, and the body has a housing cylinder that protrudes downward from the lower surface of the body, and the housing cylinder is provided with a pressure block that presses the top wall of the cap. 34.
  • a capping head according to any one of aspects 20 to 33, wherein the capping head is partially housed.
  • the support member includes a support member that supports the cam follower and the forming roller, and the support member includes a support shaft extending in the vertical direction, an upper arm that connects the support shaft and the cam follower, and a support member that supports the support shaft and the forming roller.
  • a lower arm connecting the support shaft the upper arm having an upper clamp portion that surrounds the support shaft and is deformable so as to press the outer circumferential surface of the support shaft
  • the lower arm has a lower clamp part that surrounds the support shaft around the axis and is deformable so as to press the outer peripheral surface of the support shaft
  • at least one of the upper clamp part and the lower clamp part has a lower clamp part that surrounds the support shaft.
  • the capping head according to any one of aspects 20 to 34, having a deformation assisting groove disposed on the surface and extending in the vertical direction.
  • the capping head according to any one of aspects 20 to 36, the lifting shaft extending in the vertical direction and having a pressure block attached thereto that presses the top wall of the cap, and having a cylindrical shape, into which the lifting shaft is inserted.
  • the elevating shaft includes an upper cam follower that moves the elevating shaft in the vertical direction.
  • the spindle has a spindle gear that rotates the spindle around the central axis, and the elevating tube includes the cone cam having a cylindrical shape and a lower cam follower that moves the elevating tube in the vertical direction. , a spindle assembly.
  • a capping device comprising: an upper cam that is engaged with the upper cam follower; and a lower cam that extends around the turret shaft and that is engaged with the lower cam follower.
  • the shape of the body can be simplified, the strength of the body can be increased, and the weight can be reduced. It is. Furthermore, it is possible to reduce the external size of the capping head and reduce its weight, and the capping processing speed can be increased to improve production efficiency.
  • FIG. 1 is a perspective view showing the capping head and its body according to this embodiment.
  • FIG. 2 is a perspective view showing the capping head and its body of this embodiment.
  • FIG. 3 is a cross-sectional view (vertical cross-sectional view) showing the capping head and its body according to the present embodiment.
  • FIG. 4 is a bottom view of the capping head, showing a state in which an assembly jig is locked to a plurality of lower arms. Note that the forming roller is shown in a transparent view with a two-dot chain line.
  • FIG. 5 is an enlarged view of section V in FIG. 4.
  • FIG. 6 is an enlarged view of the VI section of FIG. 4.
  • FIG. 7 is a perspective view showing the main body of the capping head of this embodiment.
  • FIG. 8 is a perspective view showing the main body of the capping head of this embodiment.
  • FIG. 9 is a perspective view showing the body flange of the capping head of this embodiment.
  • FIG. 10 is a cross-sectional view (longitudinal cross-sectional view) showing the spindle assembly of this embodiment, and shows the capping head in a simplified manner.
  • FIG. 11 is a cross-sectional view (vertical cross-sectional view) showing a part of the capping device of this embodiment, and shows the capping head in a simplified manner.
  • FIG. 12 is a side view schematically showing the outer peripheral part of the capping device of this embodiment developed on a plane, and is a diagram for explaining each operation of the spindle assembly and the capping head.
  • FIG. 10 is a cross-sectional view (longitudinal cross-sectional view) showing the spindle assembly of this embodiment, and shows the capping head in a simplified manner.
  • FIG. 11 is a cross-sectional view (vert
  • FIG. 13 is a top view schematically showing the capping system of this embodiment.
  • FIG. 14 is a cross-sectional view (horizontal cross-sectional view) schematically showing the body of the capping head of the first modified example of the present embodiment.
  • FIG. 15 is a cross-sectional view (longitudinal cross-sectional view) schematically showing the body of the capping head of the first modification of the present embodiment.
  • FIG. 16 is a schematic diagram of a screw for explaining the method of measuring the screw depth, and shows the number of turns of the screw expanded on a plane.
  • FIG. 17 is a cross-sectional (longitudinal cross-sectional) image showing the vicinity of the lower end of the peripheral wall of the cap after capping, and is a diagram illustrating evaluation of hem roll.
  • FIG. 18 is a perspective view showing a portion of a capping head according to a second modification of the present embodiment.
  • FIG. 19 is a cross-sectional view (longitudinal cross-sectional view
  • the body 1 of the capping head 10, the capping head 10, the spindle assembly 80, the capping device 120, and the capping system 100 will be described with reference to FIGS. 1 to 13.
  • the capping head 10, the spindle assembly 80, etc. may be simply referred to as an apparatus.
  • the capping head 10, spindle assembly 80, and capping device 120 of this embodiment are devices that attach a cap to the mouthpiece of a threaded can (can) having a cylindrical shape with a bottom to seal the threaded can.
  • a threaded can having a cylindrical shape with a bottom to seal the threaded can.
  • the threaded can and cap for example, those described in JP 2019-011103 A can be used.
  • the threaded can may also be referred to as a bottle can.
  • the cap is, for example, in the shape of a capped tube.
  • the threaded can is made of, for example, an aluminum alloy.
  • a threaded can includes a can body, which is a peripheral wall of the can, and a can bottom, which is a bottom wall of the can.
  • the opening of the can body has a mouthpiece that has a smaller diameter than the parts other than the opening (the body and the shoulder).
  • the mouthpiece has a substantially cylindrical shape centered on the can axis.
  • the mouthpiece has a curled portion, a male threaded portion, and a bulged portion in this order from the open end toward the bottom of the can along the can axis direction.
  • the bulging portion is annular with the can axis as the center.
  • the bulging portion is formed to protrude outward from the male threaded portion in the can radial direction perpendicular to the can axis.
  • the bulging portion 201 has a convex shape that bulges outward in the can radial direction in a cross section (longitudinal cross section) of the mouthpiece 200 along the can axis.
  • the cap 300 has a cap body that has a cylindrical shape and is placed over the cap portion 200, and a disc-shaped liner (not shown) that is disposed on the inner surface of the top wall of the cap body.
  • the liner contacts the curled portion of the mouthpiece 200.
  • the cap body is made of aluminum alloy, for example, and the liner is made of resin, for example.
  • the term "peripheral wall 301 and top wall of the cap 300" refers to the peripheral wall 301 and top wall of the cap body unless otherwise specified.
  • FIG. 17C and the like the lower end of the peripheral wall 301 of the cap 300 is wrapped around the bulge 201. As shown in FIG.
  • the capping head 10 includes a body 1 centered on a central axis O, a pressure block 2, a swing shaft (support member) 3, a cam follower 4, a forming roller 5, A biasing member 6 is provided. Further, as shown in FIG. 12, the center axes (can axes, not shown) of the threaded can B and the cap 300 capped by the capping head 10 are arranged coaxially with the center axis O shown in FIGS. 1 to 3. be done.
  • the direction in which the central axis O of the body 1 extends is referred to as the up-down direction. That is, the central axis O extends in the vertical direction.
  • the vertical direction corresponds to the Z-axis direction in each figure.
  • the cam follower 4 and the forming roller 5 are arranged at different positions.
  • the direction from the forming roller 5 to the cam follower 4 is called the upper side (+Z side)
  • the direction from the cam follower 4 to the forming roller 5 is called the lower side (-Z side).
  • the vertical direction may also be referred to as the axial direction. In this case, the upper side corresponds to one side in the axial direction, and the lower side corresponds to the other side in the axial direction.
  • the direction perpendicular to the central axis O is called the radial direction.
  • the direction approaching the center axis O is called the radially inner side
  • the direction away from the center axis O is called the radially outer side.
  • the direction of rotation around the central axis O is called the circumferential direction.
  • a predetermined rotation direction is called one circumferential side C1
  • the opposite rotation direction is called the other circumferential side C2.
  • the clockwise direction around the central axis O is the circumferential one side C1
  • the counterclockwise direction is the circumferential one side C1. This is the other side C2 in the circumferential direction.
  • a shaft center axis A which is a center axis of a support shaft 31 of the swing shaft 3, which will be described later, is arranged radially outside of the center axis O, and extends parallel to the center axis O in the vertical direction (Z-axis direction).
  • the definition of the direction based on the shaft central axis A of the swing shaft 3 is distinguished from the definition of the direction based on the central axis O of the body 1 described above, and is as follows.
  • the direction perpendicular to the shaft center axis A is called the shaft radial direction.
  • the direction approaching the shaft center axis A is called the radially inner side of the shaft, and the direction away from the shaft center axis A is called the outer side in the shaft radial direction.
  • the direction of rotation around the shaft center axis A is called the shaft circumferential direction.
  • the capping head 10 is attached to a spindle assembly 80 that extends in the vertical direction, and constitutes a part of the spindle assembly 80.
  • the spindle assembly 80 is disposed above the capping head 10, and the lower end of the spindle assembly 80 is inserted into the capping head 10 from above.
  • a lower end portion of a spindle 85, which will be described later, of the spindle assembly 80 is attached to the body 1.
  • a lifting shaft 81 which will be described later, is attached to the pressure block 2.
  • the center axis (spindle axis) of the spindle assembly 80 is arranged coaxially with the center axis O of the body 1.
  • the capping head 10 is supported by the spindle assembly 80 and is moved in the vertical direction together with the spindle assembly 80. Further, the body 1 is rotated about the central axis O by the spindle 85.
  • the spindle 85 is fixed to the body 1 while being inserted into a cylindrical cone cam (cam) 7 of an elevating tube 90, which will be described later, of the spindle assembly 80.
  • the cone cam 7 is disposed above the body 1 and extends in the vertical direction about the spindle axis (center axis O).
  • the elevating shaft 81, spindle 85, capping head 10, and elevating tube 90 including the cone cam 7 are connected to separate cam mechanisms 126 and 127, which will be described later.
  • Each of the cam mechanisms 126 and 127 moves vertically.
  • the spindle 85 and the body 1 rotate around the central axis O with respect to the cone cam 7.
  • the cone cam 7 may be one of the constituent members of the capping head 10. That is, in this case, the capping head 10 further includes the cone cam 7.
  • the body 1 has a substantially cylindrical shape.
  • the body 1 is made of aluminum alloy, specifically, for example, duralumin.
  • a body main body 11 and a body flange 12, which will be described later, of the body 1 are made of aluminum alloy.
  • the material of the body 1 is not limited to the example of this embodiment.
  • at least a portion of the body 1 may be made of aluminum alloy, engineering plastic, or FRP.
  • PEEK polyetheretherketone
  • At least a portion of the body 1 is made of a material with a specific gravity smaller than stainless steel, for example.
  • the body 1 has a body main body 11 and a body flange 12. Note that the body main body 11 may be referred to as a body base, a body base, or the like.
  • the main body 11 has a cylindrical shape centered on the central axis O, and specifically, has a substantially cylindrical shape.
  • the main body 11 has a cylindrical outer peripheral wall. Therefore, the body 1 has a cylindrical outer peripheral surface 1c.
  • the body flange 12 is annular. Specifically, the body flange 12 has a substantially annular plate shape centered on the central axis O. The body flange 12 is fixed to the upper end of the body main body 11 with bolts or the like.
  • the body 1 includes a peripheral wall portion 11c, a bottom wall portion 11d, a body recess (cone cam housing recess) 13, a cylindrical portion 14, and a spindle mounting portion. part 15, a housing cylinder 16, a supporting protrusion 17, a skirt part 11h, a swing shaft housing part 18 provided with a through hole (biasing member housing hole) 23 and a frame 28, and an operating part 21. It has a water drain hole 22.
  • the peripheral wall portion 11c has a substantially cylindrical shape centered on the central axis O.
  • the peripheral wall portion 11c constitutes a cylindrical portion of the outer peripheral wall of the body 1 located above the bottom wall portion 11d.
  • the bottom wall portion 11d has a substantially annular plate shape centered on the central axis O.
  • the outer peripheral portion of the bottom wall portion 11d is connected to the lower end portion of the peripheral wall portion 11c.
  • the body recess 13 has a concave shape recessed downward from the upper surface 1a of the body 1.
  • the body recess 13 has a bottomed hole shape centered on the central axis O, and specifically, a substantially circular hole shape.
  • the body recess 13 opens on the upper surface 1a and extends in the vertical direction.
  • the body recess 13 is a recess defined by the inner circumferential surface of the body flange 12, the inner circumferential surface of the peripheral wall portion 11c, and the upper surface of the bottom wall portion 11d.
  • the body recess 13 is arranged from the body flange 12 to the upper part of the body main body 11 in the vertical direction.
  • the body recess 13 extends from the body flange 12 to the body main body 11 in a hole shape.
  • the upper part of the body recess 13 is located inside the body flange 12 (insertion hole), and the lower part of the body recess 13 is located in a recess 11b recessed downward from the upper end surface 11a of the body main body 11.
  • the body recess 13 vertically penetrates the body flange 12 and is disposed across the recess 11b of the body main body 11.
  • the vertical dimension between the upper surface 1a of the body 1 and the bottom wall 13a of the body recess 13 is larger than the vertical dimension between the lower surface 1b of the body 1 and the bottom wall 13a.
  • the vertical dimension between the upper surface 1a of the body 1 and the upper surface of the bottom wall 11d is the vertical dimension between the upper surface and the lower surface of the bottom wall 11d. (i.e., the thickness dimension of the bottom wall portion 11d).
  • the body recess 13 accommodates at least the lower end of the cone cam 7.
  • the body recess 13 accommodates at least a large-diameter rolling surface 72 and a tapered rolling surface 73, which will be described later, and which are arranged at the lower end of the cone cam 7.
  • a part of a small diameter rolling surface 71 of the cone cam 7, which will be described later, may be arranged in the body recess 13. Note that the small diameter rolling surface 71, the large diameter rolling surface 72, and the tapered rolling surface 73 are portions of the cone cam 7 that the cam follower 4 contacts.
  • the reference numeral 13b in FIG. 3 indicates the inner circumferential surface 13b of the body recess 13.
  • the inner diameter d1 of the body recess 13 is larger than the outer diameter d2 of the lower end of the cone cam 7 with which the cam follower 4 contacts.
  • the inner diameter dimension d1 of the body recess 13 is the diameter dimension of the inner peripheral surface 13b of the body recess 13.
  • the inner peripheral surface 13b of the body recess 13 is a cylindrical surface rising upward from the radially outer end of the bottom wall 13a of the body recess 13.
  • the cylindrical portion 14 projects upward from the bottom wall 13a of the body recess 13.
  • the cylinder portion 14 projects upward from the inner peripheral portion of the bottom wall portion 11d.
  • the cylindrical portion 14 has a cylindrical shape centered on the central axis O. As shown in FIG. 3, the upper end surface of the cylindrical portion 14 is located below the upper surface 1a of the body 1, and in this embodiment, is located below the upper end surface 11a of the body main body 11. In other words, the upper end surface of the cylindrical portion 14 is located below the lower surface of the body flange 12.
  • the cone cam 7 moves downward from the rising end position (standby position) shown in FIG. 3 and reaches the lowering end position (not shown) located at the lowest position in the range of its vertical stroke.
  • the lower end of the cone cam 7 faces the upper end surface of the cylindrical portion 14 with a gap therebetween.
  • the vertical dimension (insertion depth from the top surface 1a of the body 1) of the cone cam 7 inserted into the body recess 13 at the lower end position is the same as or larger than the vertical dimension L of the body flange 12. be.
  • the outer circumferential surface of the cylindrical portion 14 is arranged radially inwardly away from the inner circumferential surface 13b of the body recess 13 (that is, the inner circumferential surface of the peripheral wall portion 11c) (see FIG. 7). Therefore, a circular ring-shaped groove portion centered on the central axis O is provided between the outer circumferential surface of the cylindrical portion 14 and the inner circumferential surface 13b of the body recessed portion 13. This groove opens upward and extends in the circumferential direction. When the cone cam 7 moves downward relative to the spindle 85 and the body 1 fixed to the spindle 85, the lower end of the peripheral wall of the cone cam 7 may be placed in the groove.
  • the spindle mounting portion 15 is arranged at the bottom of the body recess 13.
  • the spindle attachment part 15 is arranged inside the main body 11.
  • the spindle attachment part 15 opens at the upper end surface of the cylindrical part 14 and extends in the vertical direction.
  • the spindle mounting portion 15 has a substantially circular hole shape centered on the central axis O.
  • the inner diameter dimension d1 of the body recessed portion 13 is larger than the diameter dimension of the spindle attachment portion 15.
  • a lower end portion of the spindle 85 is inserted into the spindle attachment portion 15 .
  • the spindle attachment portion 15 and the spindle 85 are fastened to each other by, for example, screwing. That is, the spindle attachment part 15 is attached to the spindle 85.
  • the upper part of the spindle attachment part 15 is disposed within the cylindrical part 14. Therefore, (at least the upper part of) the spindle mounting portion 15 is arranged to overlap the body recess 13 when viewed from the radial direction. In this embodiment, the lower portion of the spindle attachment portion 15 is located below the bottom wall 13a. In other words, the upper part of the spindle attachment part 15 is arranged at the inner circumference of the cylindrical part 14, and the lower part of the spindle attachment part 15 is arranged at the inner circumference of the bottom wall part 11d.
  • each of the dimensions below has an allowable dimension (numerical range) of ⁇ 10%.
  • the inner diameter dimension d1 of the body recess 13 is 56 mm.
  • the outer diameter dimension d2 of the lower end portion of the cone cam 7 is 52.7 mm.
  • the radial clearance (one-sided clearance) between the body recess 13 and the lower end of the cone cam 7, ie, [(d1-d2)/2], is 1.65 mm.
  • the vertical dimension h between the top surface 1a of the body 1 and the bottom wall 13a of the body recess 13 is 23 mm.
  • the vertical stroke amount between the ascending end position (standby position) and the descending end position (close position) of the cone cam 7 is 14.3 mm.
  • the dimension in the vertical direction between the upper surface 1a of the body 1 and the lower end surface of the cone cam 7 at the lower end position, that is, the amount of penetration of the cone cam is 10.39 mm. Therefore, the cone cam penetration amount/cone cam stroke amount is approximately 73%.
  • the molding dimension H is defined as the vertical dimension from the upper end position of the cone cam 7 where the cam follower 4 contacts to the lower end position (lower end of the cone cam 7), and the molding dimension H is 14.56 mm. That is, in this embodiment, the vertical depth h of the body recess 13 is greater than 0 mm and less than or equal to 1.58H (mm). Preferably, the depth dimension h is 0.714H (mm) or less. In this embodiment, the cone cam penetration amount/molding dimension H is approximately 71%.
  • the vertical dimension (stroke limit dimension/standby position) between the lower end surface of the cone cam 7 at the ascending end position and the bottom wall 13a of the body recess 13 is 26.91 mm.
  • the vertical dimension (stroke limit dimension/offset position) between the lower end surface of the cone cam 7 at the lower end position and the bottom wall 13a of the body recess 13 is 12.61 mm.
  • the housing cylinder 16 protrudes downward from the lower surface 1b of the body 1.
  • the housing tube 16 extends downward from the lower surface of the bottom wall portion 11d.
  • the housing cylinder 16 has a substantially cylindrical shape centered on the central axis O.
  • the support protrusion 17 protrudes downward from the lower surface 1b of the body 1.
  • the support protrusion 17 extends downward from the outer periphery of the lower surface of the bottom wall portion 11d.
  • the support protrusion 17 is arranged on the radially outer side of the housing cylinder 16 .
  • a plurality of supporting protrusions 17 are provided side by side in the circumferential direction so as to surround the housing tube 16 from the outside in the radial direction (see FIG. 8).
  • the number of supporting protrusions 17 is the same as the number of forming rollers 5, and in this embodiment, six are provided.
  • the plurality of supporting protrusions 17 are arranged at intervals from each other in the circumferential direction.
  • Each support protrusion 17 is arranged radially outward from the housing cylinder 16, and support protrusions 17 adjacent to each other in the circumferential direction are arranged apart from each other. For this reason, the body 1 has hollowed out portions between the supporting protrusions 17 and the housing tube 16 and between the supporting protrusions 17 adjacent to each other in the circumferential direction.
  • the hollowed-out portion is a concave space formed by hollowing out a part of the body 1.
  • roller shaft accommodation pockets 19 extends vertically inside the body 1 and opens at the bottom of the body 1.
  • a plurality of roller shaft accommodation pockets 19 are provided side by side in the circumferential direction.
  • the number of roller shaft accommodation pockets 19 is the same as the number of forming rollers 5.
  • the skirt portion 11h has a cylindrical shape centered on the central axis O.
  • the skirt portion 11h is arranged below the peripheral wall portion 11c.
  • the skirt portion 11h constitutes a cylindrical portion of the outer peripheral wall of the body 1 located below the bottom wall portion 11d.
  • the upper end of the skirt portion 11h is connected to the lower end of the peripheral wall 11c and the outer periphery of the bottom wall 11d.
  • the outer circumferential surface of the skirt portion 11h and the outer circumferential surface of the peripheral wall portion 11c are continuous in the vertical direction, and each outer circumferential surface is formed integrally with no step.
  • the outer peripheral surface of the skirt portion 11h and the outer peripheral surface of the peripheral wall portion 11c each constitute a part of the outer peripheral surface 1c of the body 1.
  • a support protrusion 17 is arranged on the radially inner side of the skirt portion 11h.
  • the outer periphery of the lower portion of the support protrusion 17 is connected to the inner periphery of the skirt portion 11h.
  • the skirt portion 11h and the plurality of supporting protrusions 17 are integrally formed.
  • the skirt portion 11h surrounds the plurality of support protrusions 17, the plurality of roller shaft accommodation pockets 19, the accommodation cylinder 16, and a part of the pressure block 2 from the outside in the radial direction.
  • the swing shaft storage portion 18 is arranged between the outer circumference and the inner circumference of the body 1. Specifically, the swing shaft storage portion 18 includes a portion disposed between the outer circumferential portion and the inner circumferential portion of the body main body 11 and a portion disposed between the outer circumferential portion and the inner circumferential portion of the body flange 12. and, including. As shown in FIGS. 3 and 7, the swing shaft storage portion 18 includes a through hole 23 vertically penetrating the body body 11 and the body flange 12, and a frame disposed adjacent to the through hole 23 in the circumferential direction. 28. The swing shaft storage section 18 has a plurality of through holes 23 and a plurality of frames 28.
  • the plurality of through holes 23 are arranged at intervals from each other in the circumferential direction.
  • the plurality of frames 28 are arranged at intervals from each other in the circumferential direction.
  • the through holes 23 and the frames 28 are arranged alternately in the circumferential direction.
  • the through hole 23 extends inside the body 1 in the vertical direction.
  • the through hole 23 passes through the body 1 in the vertical direction.
  • the number of through holes 23 is the same as that of the urging members 6, and a plurality of through holes 23 are provided side by side in the circumferential direction.
  • six through holes 23 are provided in the body 1 at equal pitches in the circumferential direction.
  • the distance (that is, the radial dimension) between the central axis (shaft central axis A) of each through hole 23 and the central axis O is the same. That is, the through holes 23 are arranged so that the distances from the central axis O are equal to each other.
  • Each biasing member 6 is accommodated in each through hole 23.
  • a support shaft 31 of each swing shaft 3, which will be described later, is inserted into each through hole 23 and protrudes upward and downward from each through hole 23. That is, the swing shaft 3 is inserted into the through hole 23 .
  • the through hole 23 is arranged around the spindle attachment part 15 (cylindrical part 14).
  • the swing shaft housing portion 18 in which the through hole 23 is provided is arranged between the spindle mounting portion 15 and the outer circumferential wall of the body main body 11 in the radial direction.
  • the body main body 11, the spindle attachment part 15, and the swing shaft storage part 18 are connected to each other, and specifically, in this embodiment, are integrally formed from a single member.
  • the body main body 11, the spindle attachment part 15, and the swing shaft storage part 18 may be collectively simply called the body main body 11.
  • the main body 11 is a single cylindrical body formed without any seams. That is, the main body 11 is integrally formed by cutting out a single member by cutting or the like. Further, the body main body 11 is made of aluminum alloy, but may be made of engineering plastic or FRP (fiber reinforced plastic). In addition, as a preferable example in the case of engineering plastic, it may be made of PEEK (polyetheretherketone).
  • the peripheral wall portion 11c of the body main body 11 includes a cylindrical outer peripheral wall of the body main body 11 (an annular wall portion in which the outer peripheral surface 1c is formed) and a cylindrical inner peripheral wall of the body main body 11 (a diameter of the body recess 13). (an annular wall adjacent to the outside in the direction), and a frame 28 that connects the outer circumferential wall and the inner circumferential wall in the radial direction.
  • the through hole 23 is defined by a cylindrical outer circumferential wall of the body main body 11, a cylindrical inner circumferential wall of the body main body 11, and a frame 28 that connects the outer circumferential wall and the inner circumferential wall in the radial direction. It is a hole (space) where Specifically, as shown in FIG. 7, the through hole 23 is formed between an inner wall surface 23g of the outer peripheral wall of the body main body 11, an outer wall surface 23h of the inner peripheral wall of the body main body 11, and a side wall surface facing the circumferential direction of the frame 28. 23i. Further, the spindle attachment portion 15 (cylindrical portion 14) is connected to the inner circumferential wall of the body main body 11 via the bottom wall portion 11d.
  • the through hole 23 has a main body hole 23a arranged in the body main body 11 and a flange hole 23b arranged in the body flange 12.
  • the main body hole 23a and the flange hole 23b overlap each other when viewed from the top and bottom.
  • the main body hole 23a extends vertically inside the main body 11 and penetrates the main body 11 in the vertical direction. Specifically, the main body hole 23a vertically passes through the peripheral wall 11c, the bottom wall 11d, and the supporting protrusion 17.
  • the main body hole 23a includes a housing hole 23c and a bearing hole 23d.
  • the accommodation hole portion 23c is arranged in a portion of the main body hole portion 23a other than the lower end portion.
  • the accommodation hole portion 23c opens at the upper end surface 11a of the body main body 11, and is depressed downward from the upper end surface 11a.
  • the accommodation hole portion 23c has a multi-stage hole shape extending in the vertical direction, and the inner diameter size gradually decreases toward the bottom.
  • the accommodation hole 23c has an opening 23e that opens to the upper end surface 11a of the main body 11, and a lower hole 23f that is arranged below the opening 23e. That is, the through hole 23 has an opening 23e and a lower hole 23f.
  • the opening 23e has a triangular hole shape when viewed from above.
  • the dimension of the opening 23e along the circumferential direction becomes smaller toward the inside in the radial direction.
  • the maximum value of the circumferential dimension of the opening 23e is larger than the maximum value of the circumferential dimension of the support protrusion 17.
  • a radially inner end portion of the opening 23e opens into the inner circumferential surface 13b of the body recess 13.
  • the radially inner end of the opening 23e is open over the entire vertical length of the inner circumferential surface 13b.
  • the inner circumferential surface 13b of the body recess 13 is divided at a plurality of locations in the circumferential direction by each opening 23e opening to the inner circumferential surface 13b.
  • the lower hole 23f is arranged above the bearing hole 23d.
  • the inner diameter of the lower hole 23f is smaller than the inner diameter of the opening 23e and larger than the inner diameter of the bearing hole 23d.
  • the lower hole portion 23f is arranged inside the support protrusion 17.
  • the inner diameter of the lower hole 23f is smaller than the outer diameter of the support protrusion 17.
  • a portion of the lower hole portion 23f located radially outward from the shaft center axis A has a substantially rectangular hole shape extending in the circumferential direction.
  • a portion of the lower hole portion 23f located radially inward from the shaft center axis A has a semicircular hole shape that is convex radially inward.
  • the bearing hole 23d is arranged at the lower end of the main body hole 23a.
  • the bearing hole 23d is arranged below the accommodation hole 23c.
  • the bearing hole 23d and the lower hole 23f penetrate the support protrusion 17 in the vertical direction.
  • the bearing hole 23d has a circular hole shape extending in the vertical direction.
  • the inner diameter of the bearing hole 23d is smaller than the inner diameter of the accommodation hole 23c.
  • a bearing member 24, such as a sliding bearing (dry bearing), is fitted into the bearing hole 23d.
  • the frame 28 is arranged between the circumferentially adjacent through holes 23. Specifically, the frame 28 is arranged between the circumferentially adjacent openings 23e.
  • the frame 28 has a plate shape that extends in a direction perpendicular to the circumferential direction, and extends in the radial direction.
  • the frame 28 connects the outer circumference and the inner circumference of the main body 11.
  • the circumferential dimension (width dimension) of the frame 28 is substantially constant along the radial direction.
  • the flange hole 23b passes through the body flange 12 in the vertical direction.
  • the flange hole portion 23b has a circular hole shape extending in the vertical direction.
  • the inner diameter of the flange hole 23b is smaller than the inner diameter of the accommodation hole 23c.
  • the inner diameter of the flange hole 23b is the same as the inner diameter of the bearing hole 23d.
  • a bearing member 25, such as a sliding bearing, is fitted into the flange hole 23b.
  • the body flange 12 also has a locking groove 12a.
  • the locking groove 12a has a groove shape that is depressed radially outward from the inner circumferential surface of the body flange 12.
  • the locking groove 12a extends in the vertical direction and opens on the upper and lower surfaces of the body flange 12.
  • the operating portion 21 is a notch-shaped recess that is recessed radially inward from the outer peripheral surface of the body 1.
  • the operating portion 21 is arranged on the body flange 12 and opens on the outer peripheral surface of the body flange 12.
  • a plurality of operation parts 21 are provided at intervals in the circumferential direction.
  • a hook-shaped working tool such as a hook wrench (not shown) is locked to the operating portion 21.
  • the body 1 can be attached to and detached from the spindle 85 by operating the work tool and rotating the body 1 in the circumferential direction with respect to the spindle 85 while the work tool is locked to the operating portion 21. .
  • the drain hole 22 passes through the support protrusion 17 in the vertical direction.
  • the drain holes 22 are arranged on each of the plurality of supporting protrusions 17, that is, a plurality of them are provided.
  • the upper end of the drain hole 22 opens on the upper surface of the support protrusion 17 and is located radially inward than the skirt portion 11h.
  • the upper end portion of the drain hole 22 opens into a stepped portion located between the bearing hole portion 23d and the lower hole portion 23f and facing upward.
  • the lower end of the drain hole 22 opens on the lower surface of the support protrusion 17 . That is, the drain hole 22 communicates the inside of the through hole 23 with the outside of the body 1 . Liquid such as water accumulated in the through hole 23 is discharged to the outside of the capping head 10 through the drain hole 22.
  • the pressure block 2 is placed below the body 1.
  • the pressure block 2 has a substantially bottomed cylindrical shape centered on the central axis O, and extends in the vertical direction.
  • the pressure block 2 is fastened to the lower end of the lifting shaft 81 by, for example, screwing, and is fixed to the lifting shaft 81.
  • the bottom wall of the pressure block 2 contacts the top wall of the cap 300 from above and presses the top wall (see FIG. 12).
  • a part of the pressure block 2 is housed in the housing cylinder 16 of the body 1. Specifically, the upper part of the pressure block 2 is inserted into the housing cylinder 16.
  • the vertical position of the upper end surface of the pressure block 2 is substantially the same as the vertical position of the lower surface 1b of the body 1. That is, the pressure block 2 is housed in the housing cylinder 16 whose upper portion protrudes downward from the lower surface 1b, so that the portion of the body 1 located above the lower surface 1b (that is, the bottom of the body 1) (a portion above the wall portion 11d).
  • the pressure block 2 does not need to be one of the constituent members of the capping head 10.
  • the pressure block 2 is one of the components of the spindle assembly 80. That is, in this case, the spindle assembly 80 further includes the pressure block 2.
  • the swing shaft 3 is attached to the body 1 and supports the cam follower 4 and the forming roller 5.
  • the swing shaft 3 connects the cam follower 4 and the forming roller 5.
  • the swing shaft 3 supports a cam follower 4 and a forming roller 5 at both ends in the vertical direction.
  • the swing shaft 3 rotatably supports the cam follower 4 at its upper end, and rotatably supports the forming roller 5 at its lower end.
  • the swing shaft 3 is rotated around the shaft center axis A by the cam follower 4 and the biasing member 6, thereby swinging the forming roller 5 toward (approaching and separating from) the peripheral wall 301 of the cap 300.
  • An intermediate portion of the swing shaft 3 located between both ends in the vertical direction is arranged (housed) inside the through hole 23.
  • a plurality of swing shafts 3 are provided side by side in the circumferential direction.
  • the number of swing shafts 3 is the same as the number of cam followers 4 and the number of forming rollers 5.
  • the swing shaft 3 includes a support shaft 31, an upper arm 32, and a lower arm 33.
  • the support shaft 31 has a substantially cylindrical shape centered on the shaft center axis A, and extends in the vertical direction.
  • the upper end of the support shaft 31 protrudes above the upper surface 1a of the body 1.
  • the lower end of the support shaft 31 protrudes below the lower surface 1 b of the body 1 and below the support protrusion 17 .
  • the support shaft 31 is supported by the body 1 via bearing members 24 and 25 such as sliding bearings, for example.
  • a plurality of bearing members 24 and 25 that support each support shaft 31 are provided at intervals in the vertical direction (a pair in this embodiment).
  • the upper portion of the support shaft 31 is supported by the body flange 12 via the upper bearing member 25.
  • a lower portion of the support shaft 31 is supported by the support protrusion 17 via the lower bearing member 24 . That is, the support shaft 31 is rotatably supported by the body 1 via a pair of bearing members 24 and 25 provided in the flange hole 23b and the bearing hole 23d.
  • An intermediate portion of the support shaft 31 located between the upper end and the lower end is arranged in the through hole 23 .
  • the support shaft 31 is rotatable within a predetermined range around the shaft center axis A.
  • the support shaft 31 has a large diameter portion 31a.
  • the large diameter portion 31a has an outer diameter larger than that of the portion of the support shaft 31 other than the large diameter portion 31a.
  • the large diameter portion 31a has a notch-shaped locking recess (not shown) that is recessed inward in the shaft radial direction from the outer peripheral surface of the large diameter portion 31a.
  • the upper arm 32 is arranged above the body 1 and connects the support shaft 31 and the cam follower 4.
  • the upper arm 32 is fixed to the upper end of the support shaft 31 and extends outward from the support shaft 31 in the shaft radial direction. Specifically, the upper arm 32 extends from the support shaft 31 toward one side C1 in the circumferential direction.
  • the upper arm 32 has an upper clamp portion 32a that surrounds the support shaft 31 around the shaft (in the circumferential direction of the shaft) and is deformable so as to press the outer peripheral surface of the support shaft 31.
  • the upper clamp portion 32a is a curved wall portion extending in the circumferential direction of the shaft when viewed from the vertical direction.
  • the lower arm 33 is arranged below the body 1 and connects the support shaft 31 and the forming roller 5.
  • the lower arm 33 is fixed to the lower end of the support shaft 31 and extends outward from the support shaft 31 in the shaft radial direction. Specifically, the lower arm 33 extends from the support shaft 31 toward one side C1 in the circumferential direction.
  • the lower arm 33 surrounds the support shaft 31 around the support shaft 31 (in the circumferential direction of the shaft) and has a lower clamp portion 33a that is deformable so as to press the outer peripheral surface of the support shaft 31.
  • the lower clamp portion 33a is a curved wall portion extending in the circumferential direction of the shaft when viewed from the vertical direction.
  • At least one of the upper clamp part 32a and the lower clamp part 33a has a deformation assist groove 36 arranged on the peripheral surface of the clamp part and extending in the vertical direction.
  • at least the lower clamp portion 33a has the deformation assist groove 36.
  • the deformation assist groove 36 is in the shape of a groove that is depressed inward in the shaft radial direction from the outer circumferential surface (clamp section circumferential surface) of the lower clamp part 33a and extends in the vertical direction.
  • a plurality of deformation assist grooves 36 may be provided on the outer peripheral surface of the lower clamp part 33a (or the upper clamp part 32a) in line in the shaft circumferential direction, or only one deformation assist groove 36 may be provided.
  • one deformation assist groove 36 is provided in the lower clamp portion 33a of the lower arm 33 that supports a screw forming roller 5A, which will be described later, among the plurality of lower arms 33.
  • a plurality of deformation assist grooves 36 are provided at intervals in the shaft circumferential direction on a lower clamp portion 33a of the lower arm 33 that supports a hem winding roller 5B, which will be described later.
  • the number of deformation assist grooves 36 provided in each lower clamp portion 33a is not limited to the example of this embodiment.
  • the deformation assist groove 36 is, for example, an R groove (round groove), and the cross-sectional shape of the groove is a concave arc shape.
  • the width of the deformation assist groove 36 is, for example, 1.5 mm.
  • the number of deformation assist grooves 36 provided in the lower clamp part 33a (or the upper clamp part 32a) is, for example, three.
  • the lower arm 33 has a stepped portion 37 arranged on a surface of the lower arm 33 facing radially inward.
  • the stepped portion 37 is arranged at an end portion of the surface of the lower arm 33 facing inward in the radial direction on one side C1 in the circumferential direction.
  • the depth at which the stepped portion 37 is recessed radially outward from the radially inward surface of the lower arm 33 increases toward the other side C2 in the circumferential direction.
  • the step portion 37 has a wall surface 37a facing toward one side C1 in the circumferential direction, and an inclined surface 37b facing inward in the radial direction and extending radially outward toward the other side C2 in the circumferential direction.
  • the cam follower 4 is arranged above the body 1.
  • the cam follower 4 contacts the outer peripheral surface of the cone cam 7 and rolls on the outer peripheral surface of the cone cam 7. Specifically, the cam follower 4 rolls on a large-diameter rolling surface 72, a tapered rolling surface 73, and a small-diameter rolling surface 71, which will be described later, among the outer peripheral surfaces of the cone cam 7.
  • the cam follower 4 engages with a cone cam (cam) 7.
  • a plurality of cam followers 4 are provided side by side in the circumferential direction.
  • six cam followers 4 are provided at intervals in the circumferential direction.
  • the cam follower 4 includes a shaft portion 41 that extends in the vertical direction, and a rolling element 42 that is rotatably supported at the lower end of the shaft portion 41 and is pressed against the outer circumferential surface of the cone cam 7 by the biasing force of a biasing member 6, which will be described later.
  • the shaft portion 41 extends parallel to the shaft center axis A, and is supported by an end portion of the upper arm 32 on one side C1 in the circumferential direction. A lower end portion of the shaft portion 41 faces the upper surface 1a of the body 1 from above with a gap therebetween.
  • the rolling element 42 has an annular shape with an outer diameter larger than that of the shaft portion 41, and is arranged coaxially with the central axis of the shaft portion 41.
  • the rolling element 42 is attached to the lower end of the shaft portion 41 via a bearing member such as a rolling bearing, for example.
  • the rolling element 42 is rotatable around the central axis of the shaft portion 41.
  • the lower surface of the rolling element 42 faces the upper surface 1a of the body 1 with a gap therebetween.
  • the forming roller 5 is arranged below the body 1 and radially outward of the pressure block 2.
  • the forming roller 5 is connected to the cam follower 4 via the swing shaft 3, and moves in the radial direction as the cam follower 4 moves in the radial direction.
  • the capping head 10 includes a swinging means for rotating the swinging shaft 3 around its axis (shaft center axis A) to swing the forming roller 5 in the radial direction.
  • the moving means includes a cone cam 7, a cam follower 4 that engages with the cone cam 7, and a biasing member 6 that biases the swing shaft 3 around the axis.
  • the number of forming rollers 5 is the same as that of the cam followers 4, and a plurality of forming rollers 5 are provided side by side in the circumferential direction. In this embodiment, six forming rollers 5 are provided at intervals in the circumferential direction.
  • the six (plural) forming rollers 5 are arranged around the central axis O at equal pitches. In this embodiment, “arranged at equal pitches around the central axis O” means “arranged at equal pitches around the central axis O" when viewed from the axial direction (lower side) as shown in FIG.
  • the roll diameter of the forming roller 5 (specifically, the roller main body 52 described later) is, for example, ⁇ 26 mm.
  • the forming roller 5 includes a roller shaft 51 that extends in the vertical direction, a roller main body 52 that is connected to the roller shaft 51 and presses the peripheral wall 301 of the cap 300, and a roller urging section 53. .
  • the roller shaft 51 is attached to the end of the lower arm 33 on one side C1 in the circumferential direction via a bearing member such as a sliding bearing (not shown).
  • the roller shaft 51 is rotatable about the central axis of the roller shaft 51 (roller central axis) with respect to the lower arm 33, and is movable within a predetermined range in the vertical direction.
  • the roller main body 52 has a disk shape with an outer diameter larger than that of the roller shaft 51, and is arranged coaxially with the center axis of the roller shaft 51.
  • the roller body 52 is connected to the lower end of the roller shaft 51.
  • the roller main body 52 is integrally formed with the roller shaft 51 from a single member.
  • the roller body 52 is arranged below the bottom wall of the pressure block 2.
  • the roller biasing portion 53 is an elastic member such as a compression coil spring.
  • the roller biasing section 53 biases the roller shaft 51 and the roller main body 52 upwardly with respect to the lower arm 33.
  • the roller shaft 51 and the roller main body 52 are movable downward against the urging force of the roller urging section 53.
  • the upper part of the roller shaft 51 and the roller biasing portion 53 are accommodated in the roller shaft accommodation pocket 19 of the body 1 .
  • the plurality of forming rollers 5 include a plurality of threaded forming rollers (RO rollers) 5A that form a threaded portion on the peripheral wall 301 of the cap 300 to be threadedly engaged with the mouthpiece 200 of the threaded can B; It includes at least one hem-wrapping roller (PP roller) 5B that hem-wraps the lower end of the peripheral wall 301 of the cap 300 around the base portion 200.
  • the number of screw forming rollers 5A is four, and the number of hem winding rollers 5B is two. That is, the number of thread forming rollers 5A is greater than the number of hem winding rollers 5B.
  • the number of thread forming rollers 5A is twice the number of hem winding rollers 5B.
  • the screw forming roller 5A and the hem winding roller 5B are each supported by a plurality of support shafts 31.
  • Each roller 5 is supported by a support shaft 31 via a lower arm 33.
  • the thread forming roller 5A presses the circumferential wall 301 of the cap 300 inward in the radial direction to form a threaded portion (female threaded portion) having a shape that follows the male threaded portion of the cap portion 200.
  • the vertical positions of the roller bodies 52 of the circumferentially adjacent screw forming rollers 5A are shifted from each other. That is, the screw forming rollers 5A that are adjacent to each other in the circumferential direction are vertically shifted from each other.
  • the forming tip load with which the screw forming roller 5A presses the peripheral wall 301 of the cap 300 is, for example, 110 N or less, more preferably 100 N or less, and even more preferably 90 N or less.
  • the "forming tip load” in this embodiment means the load at the contact point (tip) of the outer peripheral edge of the roller main body 52 that contacts the cap peripheral wall 301.
  • the torque with which the screw forming roller 5A presses the peripheral wall 301 of the cap 300 around the axis (shaft central axis) A of the support shaft 31 is, for example, 3.0 N ⁇ m or less, more preferably 2.5 N ⁇ m or less. be.
  • the hem winding roller 5B presses the lower end of the peripheral wall 301 of the cap 300 inward in the radial direction to hem the lower end of the peripheral wall 301 into a shape that follows the lower part of the bulging portion 201 of the cap portion 200 (FIG. 17). c) etc.).
  • the vertical positions of the respective roller bodies 52 of the plurality of hem winding rollers 5B are the same. That is, the positions of the plurality of hem winding rollers 5B in the vertical direction are the same.
  • the forming tip load with which the hem winding roller 5B presses the lower end of the peripheral wall 301 of the cap 300 is, for example, 90N or less, more preferably 80N or less, and even more preferably 75N or less.
  • the torque with which the hem winding roller 5B presses the lower end of the peripheral wall 301 of the cap 300 around the axis A of the support shaft 31 is, for example, 2.5 N ⁇ m or less, and more preferably 2.0 N ⁇ m or less.
  • the plurality of hem winding rollers 5B are arranged at positions that are rotationally symmetrical to each other about the central axis O, that is, arranged at equal pitches in the circumferential direction.
  • the two hem winding rollers 5B are arranged at positions that are 180° rotationally symmetrical to each other about the central axis O. Therefore, the four screw forming rollers 5A other than the two hem winding rollers 5B are arranged at uneven pitches in the circumferential direction.
  • the biasing member 6 is an elastic member that can be elastically deformed.
  • the biasing member 6 is a torsion coil spring that extends helically around the support shaft 31 (swing shaft 3) (around the shaft center axis A).
  • a support shaft 31 is inserted into the biasing member 6 .
  • the biasing member 6 surrounds a portion of the support shaft 31 (swing shaft 3) in the vertical direction around the support shaft 31.
  • the biasing member 6 surrounds the vicinity of the central portion of the support shaft 31 in the vertical direction from the outside in the shaft radial direction around the shaft center axis A.
  • the biasing member 6 is arranged in the main body hole 23a of the main body 11, and specifically, arranged (accommodated) in the accommodation hole 23c.
  • the biasing member 6 is arranged across the opening 23e and the lower hole 23f.
  • the inner diameter of the biasing member 6 is smaller than the outer diameter of the large diameter portion 31a of the support shaft 31. Further, the outer diameter of the biasing member 6 is larger than the inner diameter of the flange hole 23b of the body flange 12. Therefore, the biasing member 6 is disposed so as to be sandwiched between the upper surface of the large diameter portion 31a and the lower surface of the body flange 12 in the vertical direction.
  • the upper end is locked in the locking groove 12a of the body flange 12. Further, the lower end portion of the biasing member 6 is locked in a locking recess provided in the large diameter portion 31a of the support shaft 31. That is, the upper end of the biasing member 6 is locked to the body flange 12, and the lower end is locked to the support shaft 31 (swing shaft 3).
  • the biasing member 6 biases the cam follower 4 and forming roller 5 supported by the swing shaft 3 radially inward by biasing the support shaft 31 in the circumferential direction of the shaft. That is, the biasing member 6 biases the cam follower 4 and the forming roller 5 radially inward via the swing shaft 3 .
  • a plurality of biasing members 6 are provided side by side in the circumferential direction.
  • the number of biasing members 6 is the same as the number of swing shafts 3, the number of cam followers 4, and the number of forming rollers 5.
  • six biasing members 6 are provided at intervals in the circumferential direction.
  • Each biasing member 6 is arranged in each through hole 23. Further, the entire biasing member 6 is accommodated in the through hole 23 without being exposed to the outer peripheral portion of the body main body 11.
  • the cone cam 7 has a small diameter rolling surface 71, a large diameter rolling surface 72, a tapered rolling surface 73, and a relief tapered surface 74.
  • the small diameter rolling surface 71 is a portion of the outer peripheral surface of the cone cam 7 that has the smallest diameter.
  • the outer diameter dimension (diameter dimension) of the small diameter rolling surface 71 is constant along the vertical direction.
  • the large diameter rolling surface 72 is arranged at the lower end of the outer peripheral surface of the cone cam 7. The outer diameter of the large diameter rolling surface 72 is larger than the outer diameter of the small diameter rolling surface 71.
  • the tapered rolling surface 73 is arranged on the outer peripheral surface of the cone cam 7 between the small diameter rolling surface 71 and the large diameter rolling surface 72 in the vertical direction.
  • the tapered rolling surface 73 has a tapered surface shape that extends radially outward as it goes downward. That is, the diameter of the tapered rolling surface 73 increases as it goes downward.
  • the upper end of the tapered rolling surface 73 is smoothly connected to the lower end of the small diameter rolling surface 71.
  • the lower end of the tapered rolling surface 73 is smoothly connected to the upper end of the large diameter rolling surface 72.
  • the relief tapered surface 74 is arranged above the small diameter rolling surface 71 on the outer peripheral surface of the cone cam 7 .
  • the relief tapered surface 74 is a tapered surface that extends radially outward as it goes upward.
  • the lower end of the tapered relief surface 74 is connected to the upper end of the small diameter rolling surface 71 .
  • the amount of radial displacement (that is, the inclination with respect to the central axis O) per unit length along the vertical direction of at least the lower portion of the relief tapered surface 74 is the same as that of the tapered rolling surface 73 in the vertical direction. It is smaller than the amount of radial displacement per unit length. That is, the inclination of the relief tapered surface 74 with respect to the central axis O is smaller (gentle) than the inclination of the tapered rolling surface 73 with respect to the central axis O.
  • an assembly jig (setting block) 60 is used when attaching the capping head 10 to the cone cam 7.
  • the assembly jig 60 is used by being inserted inside the plurality of lower arms 33 in the radial direction with the pressure block 2 on the lower side of the body 1 removed from the elevating shaft 81.
  • the assembly jig 60 has a columnar shape centered on the central axis O.
  • the assembly jig 60 has a substantially star shape when viewed from above and below.
  • the assembly jig 60 has a plurality of locking arms 61 arranged at intervals in the circumferential direction.
  • the number of locking arms 61 is the same as the number of forming rollers 5, and is six in this embodiment.
  • the assembly jig 60 When attaching the assembly jig 60 to the capping head 10, first place the assembly jig 60 under the capping head 10, and, although not particularly shown, connect each locking arm 61 to the adjacent one in the circumferential direction.
  • the roller bodies 52 are respectively arranged between matching roller bodies 52. From this state, by moving the assembly jig 60 upward toward the body 1, the assembly jig 60 is inserted up to the upper side of the roller main body 52.
  • the assembly jig 60 is rotated toward the other side C2 in the circumferential direction.
  • the radially outer end of the locking arm 61 slides on the radially inward surface of the lower arm 33 and is locked to the stepped portion 37, as shown in FIGS. 5 and 6.
  • the lower arm 33 is pushed radially outward by the locking arm 61, so that the swing shaft 3 rotates in the shaft circumferential direction against the urging force of the urging member 6, and the cam follower 4 and the forming The rollers 5 move radially outward.
  • the locking arm 61 contacts the wall surface 37a of the step portion 37 from the one circumferential side C1, thereby restricting further rotation of the assembly jig 60 toward the other circumferential side C2.
  • the assembly jig 60 is removed from the capping head 10 by the reverse procedure to that described above.
  • the rocking shaft 3 rotates in the circumferential direction of the shaft due to the biasing force of the biasing member 6, the cam follower 4 and the forming roller 5 move radially inward, and each rolling element 42 of the plurality of cam followers 4 It comes into contact with the outer peripheral surface of the cone cam 7.
  • the pressure block 2 is inserted into the housing tube 16 of the body 1, and the pressure block 2 is attached to the elevating shaft 81.
  • the spindle assembly 80 of this embodiment will be explained in detail. As shown in FIG. 10, the spindle assembly 80 extends in the vertical direction. A capping head 10 is disposed at the lower end of the spindle assembly 80 .
  • the spindle assembly 80 of this embodiment includes a capping head 10, an elevating shaft 81, a spindle 85, and an elevating tube 90.
  • the elevating shaft 81 extends in the vertical direction.
  • the pressure block 2 is attached and fixed to the lower end of the lifting shaft 81 by screwing or the like (see FIG. 11).
  • the elevating shaft 81 includes a shaft portion 82 that extends in the vertical direction around the central axis O, an upper cam follower 83 that moves the elevating shaft 81 in the vertical direction, and a connecting arm 84 that connects the shaft portion 82 and the upper cam follower 83. has.
  • the spindle 85 has a cylindrical shape that extends vertically around the central axis O.
  • a shaft portion 82 of the elevating shaft 81 is inserted into the spindle 85 .
  • the spindle 85 is rotatable about the central axis O with respect to the shaft portion 82 .
  • the body 1 is attached and fixed to the lower end of the spindle 85 by screwing or the like. Therefore, the body 1 is rotatable around the central axis O with respect to the pressure block 2.
  • the spindle 85 has a spindle gear 86 that rotates the spindle 85 around the central axis O.
  • the spindle gear 86 is an external gear centered on the central axis O.
  • a spindle gear 86 is arranged at the upper end of the spindle 85.
  • the elevating tube 90 has a cylindrical shape that extends in the vertical direction centering on the central axis O.
  • a shaft portion 82 of an elevator shaft 81 and a spindle 85 are inserted into the elevator tube 90 .
  • the elevating tube 90 is arranged below the spindle gear 86.
  • the elevating cylinder 90 is movable in the vertical direction with respect to the elevating shaft 81 and the spindle 85.
  • the elevating tube 90 includes a cylindrical cone cam 7 and a lower cam follower 91 that moves the elevating tube 90 in the vertical direction.
  • the cone cam 7 is arranged at the lower end of the elevating cylinder 90.
  • the lower cam follower 91 is arranged at the upper end of the elevating tube 90.
  • the capping device 120 includes a device base 125 centered around a turret axis T, a turret 121 rotating around the turret axis T, a spindle assembly 80 disposed on the outer periphery of the turret 121, and a spindle A fixed gear 122 that meshes with the gear 86 and extends around the turret axis T, an upper cam 123 that extends around the turret axis T and is engaged by the upper cam follower 83, and a lower cam that extends around the turret axis T and is engaged by the lower cam follower 91. 124.
  • the turret axis T is parallel to the central axis O and extends in the vertical direction.
  • the turret 121 has a substantially cylindrical shape centered on the turret axis T. Note that in FIG. 11, only the upper end portion of the turret 121 is illustrated, and illustration of portions other than the upper end portion is omitted.
  • the turret 121 is connected to the device base 125 via a bearing member 128 extending around the turret axis T and the like.
  • the turret 121 is rotationally driven around the turret axis T with respect to the device base 125 by a drive motor (not shown) or the like.
  • the direction in which the turret axis T extends is referred to as the turret axis direction.
  • the turret axis direction corresponds to the up-down direction (Z-axis direction).
  • the direction perpendicular to the turret axis T is called the turret radial direction.
  • the direction approaching the turret axis T is called the radially inner side of the turret
  • the direction away from the turret axis T is called the outer side in the turret radial direction.
  • the direction in which the turret rotates around the axis T is called the turret circumferential direction. As shown in FIGS.
  • the direction in which the turret 121 rotates in the turret circumferential direction is called the turret rotation direction R
  • the opposite rotation direction is called the turret rotation direction R. This is called the opposite side or counter-turret rotation direction.
  • FIG. 12 is a side view schematically showing the outer peripheral part of the capping device 120 developed on a plane, and shows the spindle assembly 80 when attaching (capping) the cap 300 to the mouthpiece 200 of the threaded can B.
  • FIG. 2 is a diagram illustrating each operation of the capping head 10.
  • the spindle assembly 80 is held on the outer periphery of the turret 121 so as to be movable in the vertical direction. Specifically, part of the elevating tube 90 and part of the connecting arm 84 of the spindle assembly 80 are engaged with a groove (not shown) arranged on the outer circumference of the turret 121.
  • the groove of the turret 121 extends in the vertical direction, and the spindle assembly 80 is slidable in the vertical direction with respect to the turret 121 while being held in the groove of the turret 121.
  • a plurality of spindle assemblies 80 are arranged around the turret axis T on the outer circumference of the turret 121.
  • the plurality of spindle assemblies 80 are arranged around the turret axis T at equal pitches around the outer periphery of the turret 121.
  • the number of spindle assemblies 80 is, for example, ten or more.
  • the fixed gear 122 is an annular plate-shaped external gear centered on the turret axis T.
  • the fixed gear 122 is fixed to the device base 125 and extends in the circumferential direction of the turret.
  • the vertical dimension of the spindle gear 86 is larger than the vertical dimension of the fixed gear 122. Therefore, even when the spindle assembly 80 moves in the vertical direction, the meshing state between the fixed gear 122 and the spindle gear 86 is maintained well.
  • the upper cam 123 is an annular groove that extends all around the turret axis T.
  • the upper cam 123 is provided on the outer peripheral surface of the device base 125.
  • the upper cam 123 is arranged above the fixed gear 122.
  • the upper cam 123 changes its vertical position as it moves around the turret axis T.
  • the upper cam 123 has a head lowering part 123a, a horizontal part 123b, and a head rising part 123c.
  • the head lowering part 123a, the horizontal part 123b, and the head rising part 123c are arranged in this order along the turret rotation direction R.
  • the upper cam 123 has only one set of a head lowering part 123a, a horizontal part 123b, and a head rising part 123c.
  • the head lowering portion 123a extends downward in the turret rotation direction R.
  • the horizontal portion 123b is connected to the end of the head lowering portion 123a in the turret rotation direction R, and extends in the turret rotation direction R.
  • the vertical position of the horizontal portion 123b is constant along the turret rotation direction R.
  • the head rising portion 123c is connected to the end of the horizontal portion 123b in the turret rotation direction R, and extends upward in the turret rotation direction R.
  • An upper cam mechanism 126 is configured by the upper cam 123 and the upper cam follower 83 that engages with the upper cam 123. That is, the capping device 120 includes an upper cam mechanism 126.
  • the lower cam 124 is an annular groove that extends all around the turret axis T.
  • the lower cam 124 is provided on the outer peripheral surface of the device base 125.
  • the lower cam 124 is arranged below the fixed gear 122. The vertical position of the lower cam 124 changes as it moves around the turret axis T.
  • the lower cam 124 includes a front descending section 124a, a first horizontal section 124b, a descending section 124c, a molded section 124d, a rising section 124e, a second horizontal section 124f, and a rear rising section 124g.
  • the front lowering part 124a, the first horizontal part 124b, the lowering part 124c, the molding part 124d, the rising part 124e, the second horizontal part 124f, and the rear rising part 124g are arranged in this order along the turret rotation direction R.
  • the lower cam 124 has only one set of a front descending part 124a, a first horizontal part 124b, a descending part 124c, a molded part 124d, a rising part 124e, a second horizontal part 124f, and a rear rising part 124g. That is, the lower cam 124 is provided with only one set of the descending portion 124c, the forming portion 124d, and the rising portion 124e.
  • the front descending portion 124a extends downward in the turret rotation direction R.
  • the position of the front lowering part 124a in the turret circumferential direction is the same as the position of the head lowering part 123a in the turret circumferential direction.
  • the first horizontal portion 124b is connected to the end of the front descending portion 124a in the turret rotation direction R, and extends in the turret rotation direction R.
  • the vertical position of the first horizontal portion 124b is constant along the turret rotation direction R.
  • the position of the first horizontal part 124b in the turret circumferential direction is the same as the position of the end of the horizontal part 123b in the opposite turret rotation direction in the turret circumferential direction.
  • the descending portion 124c is connected to the end of the first horizontal portion 124b in the turret rotation direction R, and extends downward in the turret rotation direction R.
  • the forming portion 124d is connected to the end of the descending portion 124c in the turret rotation direction R, and extends in the turret rotation direction R.
  • the vertical position of the forming portion 124d is constant along the turret rotation direction R.
  • the rising portion 124e is connected to the end of the forming portion 124d in the turret rotation direction R, and extends upward in the turret rotation direction R.
  • the positions of the descending part 124c, the molding part 124d, and the rising part 124e in the turret circumferential direction are the same as the positions in the turret circumferential direction of the intermediate portion of the horizontal part 123b located between both ends in the turret circumferential direction.
  • the second horizontal portion 124f is connected to the end of the rising portion 124e in the turret rotation direction R, and extends in the turret rotation direction R.
  • the vertical position of the second horizontal portion 124f is constant along the turret rotation direction R.
  • the position of the second horizontal portion 124f in the turret circumferential direction is the same as the position of the end portion of the horizontal portion 123b in the turret rotation direction R in the turret circumferential direction.
  • the rear rising portion 124g is connected to the end of the second horizontal portion 124f in the turret rotation direction R, and extends upward in the turret rotation direction R.
  • the position of the rear rising part 124g in the turret circumferential direction is the same as the position of the head rising part 123c in the turret circumferential direction.
  • a lower cam mechanism 127 is configured by the lower cam 124 and the lower cam follower 91 that engages with the lower cam 124. That is, the capping device 120 includes a lower cam mechanism 127.
  • the upper cam mechanism 126 rotates the elevating shaft 81 and the pressure block 2, as well as the spindle 85 and the body 1 in the vertical direction. move it to That is, the upper cam mechanism 126 moves the capping head 10 in the vertical direction. Further, the lower cam mechanism 127 moves the elevating cylinder 90 and its cone cam 7 in the vertical direction.
  • the process of attaching (capping) the cap 300 to the mouthpiece 200 of the threaded can B using the capping device 120 will be described in detail.
  • the cap 300 before molding is supplied to the mouthpiece 200 of the threaded can B introduced into the capping device 120, and is placed on the cap 300.
  • the threaded can B with the cap 300 placed on the mouthpiece 200 is conveyed along the outer periphery of the capping device 120 and is placed directly under the capping head 10 of the spindle assembly 80 as shown in FIG. 12(c). Placed. Specifically, the central axis O of the spindle assembly 80 and the can axis of the threaded can B are arranged coaxially, and while maintaining this arrangement relationship, the spindle assembly 80 and the screw The attached can B moves in the turret rotation direction R.
  • the upper cam follower 83 of the spindle assembly 80 is guided from the head lowering part 123a of the upper cam 123 to the horizontal part 123b, thereby moving the elevating shaft 81, the pressure block 2, and the spindle. 85 and the body 1 move downward (see FIGS. 10 and 11).
  • the lower cam follower 91 of the spindle assembly 80 is guided from the front descending part 124a of the lower cam 124 to the first horizontal part 124b, so that the cone cam 7 of the elevating tube 90 moves downward following the body 1. do. Therefore, the contact state between the rolling elements 42 of the cam follower 4 and the large diameter rolling surface 72 of the cone cam 7 is maintained from FIG. 12(c) to FIG. 12(d) (see FIG. 3).
  • the pressure block 2 presses the top wall of the cap 300 from above, and the screw forming roller 5A and hem winding roller 5B face the peripheral wall 301 of the cap 300 from the outside in the radial direction with a gap therebetween. .
  • the lower cam follower 91 is guided from the descending part 124c of the lower cam 124 to the forming part 124d, so that the cone cam 7 of the elevating tube 90 is moved relative to the body 1. Move to the bottom. Due to this movement and the biasing force of the biasing member 6, the position where the rolling elements 42 of the cam follower 4 contact the cone cam 7 changes from the large diameter rolling surface 72 to the tapered rolling surface 73, and then The rolling surface 71 changes from a small diameter rolling surface 71 to a small diameter rolling surface 71.
  • each cam follower 4 moves radially inward, and each forming roller 5 connected to each cam follower 4 via each swing shaft 3 is also moved radially inward.
  • the spindle assembly 80 is moved in the turret rotation direction R, thereby causing the spindle 85 and the body 1 to rotate around the central axis O.
  • each roller 5, the screw forming roller 5A and the hem winding roller 5B contacts the peripheral wall 301 of the cap 300 and rolls on the peripheral wall 301 around the central axis O (can axis).
  • the thread forming roller 5A forms a threaded portion (female threaded portion) on the peripheral wall 301 of the cap 300, which threadably engages with the male threaded portion of the cap portion 200.
  • the hem-wrapping roller 5B hem-wraps the lower end of the peripheral wall 301 of the cap 300 onto the lower part of the bulging portion 201 of the cap portion 200.
  • the lower cam follower 91 is guided from the molded part 124d of the lower cam 124 to the rising part 124e, so that the cone cam 7 of the elevating tube 90 moves upward with respect to the body 1. Due to this movement and the urging force of the urging member 6, the position where the rolling elements 42 of the cam follower 4 contact the cone cam 7 changes from the small diameter rolling surface 71 to the tapered rolling surface 73, and then from the tapered rolling surface 73 to the cone cam 7. It changes to a large-diameter rolling surface 72.
  • each cam follower 4 moves radially outward, and each forming roller 5 connected to each cam follower 4 via each swing shaft 3 is also moved radially outward. Therefore, each roller 5, the screw forming roller 5A and the hem winding roller 5B, is separated from the peripheral wall 301 of the cap 300 to the outside in the radial direction.
  • the upper cam follower 83 is guided from the horizontal part 123b of the upper cam 123 to the head rising part 123c, so that the elevating shaft 81, the pressure block 2, the spindle 85, and the body 1 moves upward (see FIGS. 10 and 11). This causes the pressure block 2 to separate upward from the top wall of the cap 300. Further, the lower cam follower 91 is guided from the second horizontal portion 124f of the lower cam 124 to the rear rising portion 124g, so that the cone cam 7 of the elevating tube 90 moves upward following the body 1.
  • each roller 5 of the screw forming roller 5A and hem winding roller 5B contacts the peripheral wall 301 of the cap 300, rolls on the peripheral wall 301, and separates from the peripheral wall 301. It is said to be times. That is, the capping device 120 performs single-action capping.
  • each roller 5 (screwed The forming roller 5A and the hem winding roller 5B) rotate twice around the cap center axis (can axis) on the cap peripheral wall 301.
  • the capping head 10 includes the pressure block 2, the screw forming roller 5A, and the hem winding roller 5B
  • the spindle assembly 80 includes the capping head 10. Therefore, in this embodiment, the spindle assembly 80 may be said to include the pressure block 2, the screw forming roller 5A, and the hem winding roller 5B.
  • the spindle assembly 80 is disposed on the capping head 10 and presses the top wall of the cap 300 as the upper cam follower 83 moves downward.
  • a plurality of screw forming rollers 5A contact the circumferential wall 301 of the cap 300 as it moves downward and form a threaded portion on the circumferential wall 301 to be screwed into the base portion 200, and a plurality of screw forming rollers 5A are provided on the capping head 10 and are attached to the lower cam follower 91.
  • At least one hem-wrapping roller 5B is provided, which comes into contact with the peripheral wall 301 of the cap 300 as it moves downward, and hems the lower end of the peripheral wall 301 around the mouthpiece 200.
  • the capping system 100 includes a filler (filling machine) 110 that fills a threaded can B with contents such as a beverage, and a capping device 120 to which the threaded can B discharged from the filler 110 is supplied. and.
  • Reference numeral 130 shown in FIG. 13 represents the layout of a conventional capping device 130.
  • the conveyance direction E of the threaded can B discharged from the filler 110 and directed toward the capping device 130 is curved when viewed from above.
  • the conveyance direction D of the threaded can B discharged from the filler 110 and directed toward the capping device 120 is the tangent to the outer circumference of the turret 121 when viewed from the turret axis direction (that is, when viewed from above). It extends along the
  • the body main body 11 has a cylindrical outer peripheral wall (outer peripheral surface 1c), that is, the body main body 11 has a cylindrical shape, and the outer shape of the body 1 is simply configured. ing. Further, the body 1 is provided with a through hole 23 passing through the body 1 in the vertical direction, and a swing shaft 3 for swinging the forming roller 5 is inserted through the through hole 23 . Further, the swing shaft housing section 18 in which the through hole 23 is provided is arranged around the spindle mounting section 15 .
  • the body 1 of the capping head 10 of the present embodiment is simple and includes a cylindrical body main body 11, a spindle attachment part 15 attached to the spindle 85, and a swing shaft housing part 18 in which a through hole 23 is arranged.
  • the structure of the body 1 is simplified by preventing the shape of the body 1 from becoming complicated, and its rigidity is increased.
  • the body main body 11, spindle mounting portion 15, and swing shaft storage portion 18 are connected to each other as in this embodiment, the above-mentioned effects will be further enhanced. It is more preferable that the main body 11, the spindle attachment part 15, and the swing shaft storage part 18 are integrally formed from a single member.
  • a cam follower 4 and a forming roller 5 are connected to both ends of the swing shaft 3 in the vertical direction, and a through hole 23 of the body 1 is provided between both ends of the swing shaft 3 in the vertical direction.
  • the intermediate portion to be positioned and the biasing member 6 to be inserted into the intermediate portion are housed.
  • the biasing member 6 is provided so as to surround a part (middle portion) of the swing shaft 3 and is housed in the through hole 23 .
  • the body 1 a part (intermediate portion) of the swing shaft 3 and the biasing member 6 (hereinafter referred to as the biasing member 6 etc.) are housed inside the body 1, so that the conventional Thus, there is no need for a cutout-like recess or the like provided for arranging the biasing member or the like in an exposed state on the outer periphery of the body. Therefore, in this embodiment, the body 1 can be configured with a simple shape, and manufacturing is easy. Furthermore, by simplifying the shape of the body 1, the strength of the body 1 can be increased.
  • the biasing member 6 and the like by housing the biasing member 6 and the like in the body 1, the contents of drinks and the like (particularly sugar that easily solidifies) that scatter from the outside of the body 1 are prevented from adhering to the biasing member 6 and the like. It can be suppressed. Therefore, the performance (function) of the biasing member 6 and the like can be maintained well over a long period of time, and maintainability is also good.
  • the body 1 can be made of conventional bodies such as aluminum alloys such as duralumin, engineering plastics, and resin materials (including composite resin materials) such as FRP (fiber reinforced plastic). Compared to stainless steel, etc., which were used to make the structure, it is possible to construct it from a material with a lower specific gravity. Therefore, it is easy to reduce the weight of the capping head 10. Note that, if the body body 11 is an integrated body body 11 in which the spindle mounting portion 15 and the swing shaft storage portion 18 are integrally provided in the body body 11 as in this embodiment, the rigidity of the body body 11 can be ensured; It is easy to further reduce the weight of the main body 11 by cutting out the weight or the like.
  • the shape of the body 1 can be simplified and the strength of the body 1 can be increased. It is possible to reduce the weight.
  • the entire biasing member 6 is housed in the through hole 23 without being exposed to the outer circumference of the main body 11. In this case, the above-mentioned effects obtained by accommodating the biasing member 6 in the through hole 23 become more remarkable.
  • each through hole 23 has an opening 23e that opens to the upper end surface 11a of the body main body 11.
  • the dimension along the circumferential direction becomes smaller toward the inside in the radial direction.
  • the opening 23e has a triangular hole shape when viewed from above.
  • the circumferential dimension (i.e., wall thickness dimension) of the portion (frame 28) located between circumferentially adjacent through holes 23 in the swing shaft storage portion 18 varies at each position in the radial direction. Therefore, the strength of the frame 28 can be stably increased. Therefore, the strength of the body 1 can be ensured while keeping the distance between the through holes 23 arranged in the circumferential direction small. It is possible to further reduce the size and weight of the capping head 10.
  • the body 1 has a body recess 13 that is depressed downward from the upper surface 1a of the body 1 and accommodates at least the lower end portion of the cone cam 7. Further, a radially inner end of the opening 23e opens into the inner peripheral surface 13b of the body recess 13.
  • the cone cam 7 and the body 1 can be arranged closer to each other in the vertical direction. Thereby, the vertical dimensions of the body 1 can be kept small, making it possible to make the body 1 more compact and lightweight.
  • the opening 23e of the through hole 23 reaches the inner circumferential surface 13b of the body recess 13, and the opening 23e is formed large. Therefore, the weight of the body 1 can be further reduced by the opening 23e.
  • the through hole 23 has a main body hole 23a that vertically penetrates the body main body 11 and a flange hole 23b that vertically penetrates the body flange 12, and the biasing member 6 , are arranged in the main body hole 23a.
  • the biasing member 6 by arranging the biasing member 6 in the main body hole 23a and fixing the body flange 12 to the upper end of the main body 11, the biasing member 6 can be easily accommodated inside the body 1.
  • the capping head 10 is easy to manufacture.
  • the support shaft 31 (swing shaft 3) is rotatably supported by the body 1 via a pair of bearing members 24 and 25 provided in the flange hole 23b and the bearing hole 23d.
  • a pair of bearing members 24 are provided in the flange hole 23b disposed at the upper end of the body 1 and the bearing hole 23d disposed at the lower end of the body 1, and are disposed apart from each other in the vertical direction.
  • the support shaft 31 (swing shaft 3) is stably supported.
  • the biasing member 6 is a torsion coil spring that extends spirally around the axis of the support shaft 31 (swing shaft 3), and the upper end of the biasing member 6 is locked to the body flange 12. , the lower end portion is locked to the support shaft 31. According to the above configuration, by locking the upper end of the biasing member 6 to the body flange 12 and locking the lower end to the support shaft 31 (swing shaft 3), a desired biasing force can be applied and the biasing member can be biased.
  • the force member 6 can be easily assembled inside the body 1.
  • the number of through holes 23 is the same as that of the urging members 6, and a plurality of through holes 23 are provided in parallel in the circumferential direction.
  • each biasing member 6 can be accommodated in each through hole 23 . That is, one biasing member 6 can be arranged in one through hole 23.
  • the through hole 23 can be configured simply, making it easier to manufacture the body 1, and further increasing the rigidity.
  • the body 1 is made of aluminum alloy, engineering plastic, or FRP.
  • PEEK polyetheretherketone
  • the weight of the body 1 can be reduced compared to a conventional body made of stainless steel or the like.
  • the capping head 10 it has been found that the following processing performance can be obtained as a result of making the capping head 10 more compact and lightweight.
  • a spindle assembly equipped with a conventional four-roll type (four forming rollers) capping head, a capping device equipped with ten of the spindle assemblies, and a capping system equipped with the capping device The capping speed for threaded cans was up to 300 cpm. Note that "cpm" is a unit representing the number of cans processed per minute (number of cans capped).
  • a spindle assembly 80 including a six-roll type (six forming rollers 5) capping head 10 of the present embodiment, a capping device 120 including ten spindle assemblies 80, and a capping device 120 are provided.
  • the capping processing speed of the threaded can B was increased to a maximum of 600 cpm.
  • the rolling element 42 of the cam follower 4 is rotatably supported by the lower end of the shaft portion 41. Therefore, the rolling elements 42 can be arranged closer to the upper surface 1a of the body 1 than in conventional capping heads. If this configuration is applied to a conventional capping head, there is a risk that the lower end of the cone cam will come into contact with the upper surface of the body, but in this embodiment, the body 1 is provided with a body recess 13. That is, since at least the lower end of the cone cam 7 can be accommodated in the body recess 13, even though the cone cam 7 and the body 1 are arranged close to each other in the vertical direction, contact (interference) between these members is prevented.
  • the pressure block 2 and forming roller 5 for forming the cap 300, and the cone cam 7 can be arranged closer to each other in the vertical direction, and the vertical dimension of the body 1 can be kept small. Therefore, according to the capping head 10, the spindle assembly 80, and the capping device 120 of this embodiment, the outer shape of the capping head 10 can be kept compact and the weight can be reduced, and the capping processing speed can be increased to improve production efficiency. It is possible to do so.
  • the inner diameter d1 of the body recess 13 is larger than the outer diameter d2 of the lower end of the cone cam 7 with which the cam follower 4 contacts.
  • the spindle mounting portion 15 is arranged at the bottom of the body recess 13 having a bottomed hole shape.
  • the body 1 can be made compact and lightweight, and the spindle 85 can be stably attached to the spindle attachment part 15 provided at the bottom of the body recess 13.
  • the inner diameter dimension d1 of the body recess 13 is larger than the diameter dimension of the spindle attachment part 15.
  • a gap can be provided between the inner circumferential surface 13b of the body recess 13 and the spindle mounting portion 15 in the radial direction.
  • the vertical dimension from the upper end position to the lower end position of the cone cam 7 that the cam follower 4 contacts is defined as the molding dimension H, and the vertical depth dimension h of the body recess 13 is 1.58H or less. be. If the vertical depth dimension h of the body recess 13 is h ⁇ 1.58H, the above-mentioned effects can be obtained by forming the body recess 13, and the rigidity of the body 1 can be sufficiently ensured. be done.
  • the body recess 13 has a hole shape extending in the vertical direction from the body flange 12 to the body main body 11, and the cone cam 7 in the lower end position is inserted into the body recess 13 in the vertical direction.
  • the dimension is equal to or larger than the vertical dimension L of the body flange 12.
  • the vertical dimension of the cone cam 7 entering the body recess 13 at the lower end position is equal to or larger than the vertical dimension L of the body flange 12. Since the insertion dimension of the cone cam 7 into the body recess 13 is sufficiently secured, the body 1 can be made more compact and lightweight.
  • the number of screw forming rollers 5A is greater than the number of hem winding rollers 5B.
  • the forming load (pressing force) per screw forming roller 5A can be kept small. Therefore, even when the threaded can B is made thinner, deformation of the cap portion 200 due to the thread forming process can be suppressed more stably.
  • the capping head 10 is provided with four screw forming rollers 5A and two hem winding rollers 5B. This makes it possible to stably improve the precision of the capping molding process.
  • the vertical positions of the circumferentially adjacent screw forming rollers 5A are shifted from each other.
  • the respective forming positions of the circumferentially adjacent screw forming rollers 5A on the peripheral wall 301 of the cap 300 are shifted in the vertical direction, so that the same position on the cap peripheral wall 301 (particularly near the upper groove where the screw starts) Problems such as an excessive amount of thread forming can be suppressed. Variation in the amount of thread forming at each position in the vertical direction is suppressed, and the amount of thread forming is equalized in the vertical direction.
  • the spindle mounting portion 15 of the body 1 overlaps the body recess 13 when viewed from the radial direction.
  • the spindle mounting portion 15 and the body recess 13 are arranged so as to overlap when viewed from the radial direction, so that the vertical dimension of the body 1 can be further suppressed.
  • the body 1 has a biasing member housing hole (through hole) 23 that extends in the vertical direction, and the biasing member 6 is arranged in the biasing member housing hole 23 .
  • the biasing member 6 is accommodated in the biasing member accommodating hole 23 provided so as to be cut out of the body 1 in the vertical direction. Therefore, the biasing member 6 can be covered from around the body 1 while maintaining high rigidity.
  • the biasing member accommodation hole 23 is cut in the body 1. Since the processing is not complicated, the body 1 can be manufactured easily.
  • the body main body 11 is integrated like this embodiment, it is easy to ensure the rigidity of the body main body 11 and to further reduce the weight of the body main body 11 by thinning out or the like.
  • the skirt portion 11h prevents the plurality of support protrusions 17, the plurality of roller shaft storage pockets 19, the storage tube 16, a part of the pressure block 2, etc. from being exposed to the outside of the device. Therefore, the aesthetic appearance of the device is improved.
  • each support protrusion 17 is connected to each other. Therefore, the rigidity of each support protrusion 17 is increased, and each support shaft 31 supported by each support protrusion 17 via the bearing member 24 rotates with high precision around the shaft center axis A. Therefore, the cap peripheral wall 301 can be formed with higher precision by each forming roller 5 connected to each support shaft 31.
  • a part of the pressure block 2 is housed in the housing cylinder 16 that protrudes downward from the lower surface 1b of the body 1.
  • the housing cylinder 16 by housing a part of the pressure block 2 in the housing cylinder 16, there is no need to provide a housing space (insertion space) for the pressure block 2 inside the body 1, and the lower surface 1b of the body 1 and the body recess 13 It becomes possible to further reduce the vertical dimension between the two. Therefore, it is possible to further reduce the size and weight of the body 1.
  • the body 1 has hollowed out portions between the supporting protrusions 17 and the housing cylinder 16 and between the supporting protrusions 17 adjacent to each other in the circumferential direction. Therefore, the weight of the body 1 can be further reduced.
  • a deformation assist groove 36 is provided in at least one of the upper clamp part 32a and the lower clamp part 33a of the swing shaft 3.
  • a deformation assisting groove 36 extending in the vertical direction is provided on the circumferential surface (clamping section circumferential surface) of the upper clamping section 32a or the lower clamping section 33a (hereinafter sometimes simply referred to as the clamping section). The portion easily deforms in a direction that presses the outer circumferential surface of the support shaft 31 (inward in the shaft radial direction).
  • a stepped portion 37 is formed on the surface of the lower arm 33 facing radially inward.
  • the lower arm 33 is moved while the cam follower 4 and the forming roller 5 are moved radially outward (opened state) against the urging force of the urging member 6.
  • the cone cam 7 can be stably inserted radially inside the plurality of cam followers 4 arranged in the circumferential direction, and the work of assembling the capping head 10 and the cone cam 7 is facilitated.
  • the capping system 100 of the present embodiment is configured such that the transport direction D of the threaded can B discharged from the filler 110 and directed toward the capping device 120 is along the tangent to the outer circumference of the turret 121 when viewed from the turret axis T direction. Extends to. According to the capping system 100 of the present embodiment, the threaded can B discharged from the filler 110 is transferred to the capping device 120 without the conveyance direction being suddenly changed, that is, while being made less susceptible to centrifugal force. Supplied smoothly. Therefore, the capping processing speed can be stably increased, and production efficiency can be further improved.
  • the cone cam is guided by the first descending part of the guide bar for the lower cam and lowered, thereby allowing the RO roller (thread forming roller) and A PP roller (hem roller) is pressed against the peripheral wall of the cap. Thereafter, the cone cam is guided by the upper part of the guide bar and once ascends, whereby the contact between the RO roller and the PP roller with respect to the cap is temporarily released. Further thereafter, the cone cam is guided by the two-step descending portion of the guide bar and descends again, and the RO roller and PP roller are again pressed against the peripheral wall of the cap.
  • the RO roller and the PP roller tighten the cap once to form a threaded portion and a temper evidence portion (hem wrapping portion), a first tightening step, and a subsequent step. Then, a second seaming process is performed again in the same way as the first seaming process. That is, in the well-known document 1, capping is performed by double action, in which the RO roller and the PP roller contact the peripheral wall of the cap, roll on the peripheral wall, and perform a series of operations twice until they separate from the peripheral wall. ing. In this way, conventionally, the double action ensures the moldability of the threaded portion and the temper evidence portion.
  • This type of threaded can is required to be thinner (lighter) in order to reduce costs and the like.
  • FIG. 10 of well-known document 1 when four RO rollers are arranged at equal pitches in the circumferential direction and two PP rollers are arranged at equal pitches in the circumferential direction, the thinner mouth part
  • due to the lateral load during capping it is easy to deform into an elliptical shape when viewed in cross section perpendicular to the can axis.
  • This embodiment can suppress the deformation of the cap part during capping and reduce the thickness of the cap, ensure good molding accuracy of the cap, make the device more compact, and increase the capping processing speed.
  • Another object of the present invention is to provide a capping device and a capping system that can improve production efficiency.
  • a total of six rollers 5 including four screw forming rollers 5A and two hem winding rollers 5B are mounted on the capping head 10 of the spindle assembly 80 at equal pitches around the central axis O. It is located.
  • the cap part 200 of the threaded can B is pressed evenly by the six rollers 5 in the circumferential direction around the central axis O (can axis), so the cap part 200 deforms into an elliptical shape or the like in a cross-sectional view.
  • the capping By making the capping a single action, it is possible to keep the circumference (total length) of the lower cam 124 that extends around the turret axis T short, and the diameter of the turret 121 (turret diameter) can be kept small, making the device more compact. can be achieved.
  • the single-action type capping device 120 of this embodiment can significantly increase the rotational speed of the turret 121 around the turret axis T when the turret diameter is the same. .
  • the present embodiment it is possible to reduce the thickness of the cap part 200 by suppressing deformation during capping, to ensure good molding accuracy of the cap 300, and to make the device more compact. It is possible to increase the capping processing speed and improve production efficiency.
  • the forming tip load with which the screw forming roller 5A presses the peripheral wall 301 of the cap 300 is 110N or less
  • the forming tip load with which the hem winding roller 5B presses the lower end of the peripheral wall 301 of the cap 300 is 90N or less. It is.
  • the lateral load acting on the mouthpiece 200 during capping can be kept sufficiently small. Even with the thinner mouthpiece 200, deformation during capping can be stably suppressed.
  • this embodiment uses a single action to achieve capping performance equivalent to that of a conventional double action type capping device (thread depth dimension, hem winding dimension, etc.). ) can be obtained.
  • the forming tip load with which the screw forming roller 5A presses the peripheral wall 301 of the cap 300 is more preferably 100 N or less, and more preferably 90 N or less. Further, the forming tip load with which the hem winding roller 5B presses the lower end of the peripheral wall 301 of the cap 300 is more preferably 80N or less, and more preferably 75N or less.
  • the torque with which the screw forming roller 5A presses the peripheral wall 301 of the cap 300 around the axis A of the support shaft 31 is 3.0 N ⁇ m or less
  • the torque for pressing the lower end of the peripheral wall 301 of the cap 300 is 2.5 N ⁇ m or less.
  • the torque around the support shaft 31 of the screw forming roller 5A is set to 3.0 N ⁇ m or less
  • the torque around the support shaft 31 of the hem winding roller 5B is set to 2.5 N ⁇ m or less.
  • the lateral load acting on the cap portion 200 during capping can be suppressed to a sufficiently small level.
  • the single action of this embodiment provides the same capping performance (thread depth dimension, hem winding dimension, etc.) as the conventional double action type capping device. Obtainable.
  • the torque with which the screw forming roller 5A presses the peripheral wall 301 of the cap 300 around the axis A of the support shaft 31 is more preferably 2.5 N ⁇ m or less. Further, the torque with which the hem winding roller 5B presses the lower end of the peripheral wall 301 of the cap 300 around the axis A of the support shaft 31 is more preferably 2.0 N ⁇ m or less.
  • the lower cam 124 is provided with only one set of the descending portion 124c, the molding portion 124d, and the ascending portion 124e.
  • the lower cam follower 91 moves downward by being guided by the descending portion 124c of the lower cam 124, and as a result, the screw forming roller 5A and hem winding roller 5B come into contact with the peripheral wall 301 of the cap 300.
  • the screw forming roller 5A forms a threaded part on the peripheral wall 301 of the cap 300
  • the hem winding roller 5B hems the lower end of the peripheral wall 301 of the cap 300. Shape.
  • the lower cam follower 91 moves upward by being guided by the rising portion 124e of the lower cam 124, and as a result, the screw forming roller 5A and hem winding roller 5B separate from the peripheral wall 301 of the cap 300. Due to the action of each roller 5, the peripheral wall 301 of the cap 300 is well formed.
  • the capping head 10 is provided with four screw forming rollers 5A.
  • the capping head 10 is provided with four screw forming rollers 5A.
  • the accuracy of thread forming can be improved. Can be maintained in good condition.
  • FIGS. 14 and 15 are cross-sectional views schematically showing a first modification of the body 1 of the capping head 10 described in the above embodiment. Specifically, FIG. 14 shows a cross-sectional view of the body 1 perpendicular to the central axis O, and FIG. 15 shows a longitudinal cross-sectional view of the body 1 along the central axis O.
  • the body 1 has a double cylinder structure. That is, the body 1 includes an outer cylinder part 26 and an inner cylinder part 27 that fits inside the outer cylinder part 26 in the radial direction.
  • the outer cylindrical portion 26 has a cylindrical shape that extends vertically around the central axis O.
  • the inner cylindrical portion 27 has a cylindrical shape that extends vertically around the central axis O.
  • the swing shaft housing section 18 is arranged between the outer circumference and the inner circumference of the main body (body 1).
  • the through hole 23 is arranged at least in the inner cylinder part 27 of the outer cylinder part 26 and the inner cylinder part 27. Specifically, in the illustrated example, the through hole 23 is arranged across the inner cylinder part 27 and the outer cylinder part 26. More specifically, the cylindrical outer circumferential wall of the main body 11 is arranged in the outer cylinder part 26, the spindle mounting part 15 is arranged in the inner cylinder part 27, and the swing shaft housing part 18 in which the through hole 23 is provided is arranged in the outer cylinder part 26. , are arranged across the outer cylinder part 26 and the inner cylinder part 27. The body main body 11, the spindle mounting portion 15, and the swing shaft storage portion 18 are connected to each other and fixed as one body. Even with such a first modification, the same effects as those of the above-described embodiment can be obtained.
  • the capping head 10 includes a cylindrical cover 8.
  • the body 1 also has a pocket 11e, a pin insertion hole 11f, and a locking pin 11g.
  • the body 1 does not have the skirt portion 11h.
  • the pocket 11e has a concave shape that is depressed radially inward from the outer peripheral surface 1c of the body 1 and extends in the vertical direction.
  • the pocket 11e includes a portion that is recessed radially inward from the outer peripheral surface of the peripheral wall portion 11c, and a portion that is continuous to the lower side of this portion and is recessed radially inward from the upper portion of the outer peripheral surface of the support protrusion 17.
  • a plurality of pockets 11e are provided side by side in the circumferential direction.
  • the number of pockets 11e is the same as the number of support members (swing shafts) 3 and the same number of urging members 6.
  • the pin insertion hole 11f opens on the outer peripheral surface of the lower portion of the support protrusion 17 and extends in the radial direction.
  • the pin insertion hole 11f is, for example, circular.
  • a plurality of pin insertion holes 11f are provided at intervals in the circumferential direction.
  • the locking pin 11g is inserted into the pin insertion hole 11f.
  • the locking pin 11g has a columnar or cylindrical shape extending in the radial direction, and in this embodiment, for example, has a cylindrical shape.
  • the locking pin 11g may be fixed by fitting into the pin insertion hole 11f, may be fixed by screwing, or may be fixed by adhesive or the like.
  • the locking pin 11g has a portion that projects radially outward from the pin insertion hole 11f. That is, the locking pin 11g has a portion that protrudes radially outward from the outer circumferential surface of the support protrusion 17.
  • a plurality of locking pins 11g are provided at intervals in the circumferential direction. For example, three or more locking pins 11g are provided at equal pitches in the circumferential direction.
  • the cover 8 has a cylindrical shape centered on the central axis O, and extends in the vertical direction. As shown in FIGS. 18 and 19, the cover 8 surrounds the entire circumference of the body 1 from the outside in the radial direction. Specifically, the cover 8 surrounds the body main body 11 and the body flange 12 from the outside in the radial direction over the entire circumference in the circumferential direction.
  • the cover 8 also includes a peripheral wall portion 11c, a bottom wall portion 11d, a plurality of pockets 11e, a plurality of biasing members 6, a plurality of support protrusions 17, a plurality of roller shaft storage pockets 19, and a storage tube. 16 and a part of the pressure block 2 from the outside in the radial direction. Further, the cover 8 covers the portion of each support member 3 disposed in the pocket 11e (the intermediate portion of the support shaft 31) from the outside in the radial direction.
  • the cover 8 has a locking recess 8a.
  • the locking recess 8a penetrates the peripheral wall of the cover 8 in the radial direction and extends in the vertical direction.
  • the locking recess 8a is a notch-like or slit-like recess.
  • the locking recess 8a opens on the outer circumferential surface, inner circumferential surface, and lower end surface of the cover 8.
  • a plurality of locking recesses 8a are provided at intervals in the circumferential direction. For example, three or more locking recesses 8a are provided at equal pitches in the circumferential direction.
  • the number of locking recesses 8a is the same as the number of locking pins 11g.
  • a portion of the locking pin 11g that protrudes from the pin insertion hole 11f is inserted into the locking recess 8a.
  • the locking pin 11g faces in the circumferential direction a pair of inner surfaces facing in the circumferential direction among the inner surfaces of the locking recess 8a that define the locking recess 8a.
  • the locking pin 11g contacts from below an inner surface portion of the inner surface of the locking recess 8a that is located at the upper end and faces downward.
  • the cover 8 is fixed to the body 1 by being inserted over the body main body 11 and the body flange 12, and the locking pin 11g is locked in the locking recess 8a. Furthermore, by moving the cover 8 upward with respect to the body 1, the cover 8 can be removed from the body 1. That is, the cover 8 is removably attached to the body 1.
  • the body 1 and cover 8 are made of metal, for example, aluminum alloy. Specifically, the body 1 and the cover 8 are made of duralumin, for example.
  • the cover 8 includes the peripheral wall portion 11c, the bottom wall portion 11d, the plurality of pockets 11e, the plurality of biasing members 6, the intermediate portions of the plurality of support shafts 31, the plurality of support protrusions 17, Exposure of the plurality of roller shaft accommodation pockets 19, the accommodation cylinder 16, a part of the pressure block 2, etc. (hereinafter sometimes abbreviated as the biasing member 6 etc.) to the outside of the apparatus is suppressed. Therefore, the aesthetic appearance of the device is improved.
  • the cover 8 prevents the contents of beverages (particularly easily solidified sugar, etc.) and liquids such as oil that are scattered toward the body 1 from the outside of the capping head 10 from entering the body 1. . Therefore, maintainability is good, and the performance (function) of each component such as the biasing member 6 provided in the body 1 is maintained well.
  • the body 1 and cover 8 are made of lightweight aluminum alloy. Therefore, it is possible to reduce the weight while ensuring the rigidity of the entire device.
  • the number of forming rollers 5 included in the capping head 10 was six, but the number is not limited to this.
  • the number of forming rollers 5 included in the capping head 10 may be eight, for example, or six or more.
  • the lower cam 124 of the capping device 120 includes a set of the front lowering part 124a, the first horizontal part 124b, the lowering part 124c, the forming part 124d, the rising part 124e, the second horizontal part 124f, and the rear rising part 124g.
  • the present invention is not limited to this, and two sets of the sets may be provided side by side in the circumferential direction of the turret. That is, in this case, the lower cam 124 is provided with two sets of a descending portion 124c, a forming portion 124d, and an ascending portion 124e.
  • each roller 5 of the screw forming roller 5A and hem winding roller 5B contacts the circumferential wall 301 of the cap 300, rolls on the circumferential wall 301, and separates from the circumferential wall 301, a series of operations performed twice. . That is, in this case, the capping device 120 performs double-action capping.
  • the cone cam 7 is used as an example of the cam that the cam follower 4 of the capping head 10 engages with, but the cam is not limited to this. Although not particularly illustrated, for example, a plurality of cams with which each cam follower 4 engages may be provided on the upper side of the body 1.
  • the cone cam 7, the cam follower 4, and the biasing member 6 are used as the swinging means for rotating the swinging shaft 3 around its axis (shaft central axis A) and swinging the forming roller 5 in the radial direction.
  • the rocking means for example, a servo motor or the like that rotates the rocking shaft 3 around the shaft may be used.
  • the threaded can B was taken as an example of the can having a mouthpiece, but the invention is not limited to this.
  • a screwless bottle can that does not have a screw on the mouthpiece may be used.
  • the present invention may combine the configurations described in the above-described embodiments and modifications without departing from the spirit of the present invention, and addition, omission, replacement, and other changes of configurations are possible. . Furthermore, the present invention is not limited by the embodiments described above, but is limited only by the scope of the claims.
  • a capping head equipped with a total of four forming rollers, two screw forming rollers and two hem winding rollers, is used, and each of the screw forming rollers and the hem winding roller is attached to the peripheral wall of the cap 300.
  • a capping device was used in which the series of operations from contacting the capping device 301 to rolling on the circumferential wall 301 to separating from the circumferential wall 301 was set twice (double action). Then, using this capping device, caps 300 were capped on a large number of screwed cans B, which is an arbitrary number or more.
  • the capping head of Comparative Example 1 is a conventional capping head whose body does not include a body recess or the like.
  • the set diameter of the screw forming roller was ⁇ 43.5 mm
  • the set diameter of the hem winding roller was ⁇ 45.3 mm.
  • the "set diameter” corresponds to the inner diameter dimension of the rotation trajectory obtained by rotating the forming roller around the central axis of the capping head (the diameter dimension of the rotation trajectory of the inner end of the roller).
  • the roller tip load at which the forming roller presses the cap circumferential wall inward in the radial direction the contact length (peripheral length around the cap) each time the forming roller contacts the cap circumferential wall, etc. are adjusted. .
  • caps 300 were capped on a large number of threaded cans B, an arbitrary number or more, using the capping head 10 and the capping device 120 described in the above-described embodiments.
  • a capping head 10 equipped with a total of six forming rollers 5, four screw forming rollers 5A and two hem winding rollers 5B each roller 5 of the screw forming roller 5A and hem winding roller 5B is used to form a cap.
  • Capping was carried out using the capping device 120, which was set to perform a series of operations such as contacting the peripheral wall 301 of 300, rolling on the peripheral wall 301, and separating from the peripheral wall 301 once (single action).
  • the set diameter of the screw forming roller 5A was ⁇ 43.5 mm
  • the set diameter of the hem winding roller 5B was ⁇ 43.5 mm.
  • a capping head 10 equipped with a total of six forming rollers 5, three thread forming rollers 5A and three hem winding rollers 5B, is used.
  • the capping device 120 uses the capping device 120, the series of operations in which each roller 5 contacts the peripheral wall 301 of the cap 300, rolls on the peripheral wall 301, and separates from the peripheral wall 301 is performed once (single action). , performed capping.
  • the set diameter of the screw forming roller 5A was ⁇ 43.0 mm
  • the set diameter of the hem winding roller 5B was ⁇ 43.0 mm.
  • Example 2 the same conditions as Example 1 were used.
  • a predetermined number (plurality) of threaded cans B were arbitrarily selected from a large number of threaded cans B capped with caps 300. Then, for each threaded can B, the following items were measured: "thread depth,” “opening angle,” “hemming,” and “thread length,” and the average value (Ave), maximum value (Max), The minimum value (Min) and standard deviation ( ⁇ ) were determined.
  • FIG. 16 is a schematic diagram of a screw for explaining the method of measuring the screw depth, and shows the number of turns of the screw expanded on a plane.
  • the screw start of the threaded part formed on the cap peripheral wall 301 is set to No. 1 and No. 1 in 60° increments around the center axis of the cap (can axis) from the beginning of the screw to the end of the screw.
  • the thread depth was measured at seven points up to 11, and the maximum value among them was defined as the above-mentioned "thread depth".
  • the "opening angle” (°) refers to the operation of rotating the cap 300 attached to the mouthpiece 200 in the opening direction around the can axis. is the rotation angle until all of the parts are broken.
  • FIGS. 17A to 17D are cross-sectional (vertical cross-sectional) images showing the vicinity of the lower end of the peripheral wall 301 of the cap 300 after capping, and are diagrams illustrating evaluation of skirt curling.
  • FIG. 17(c) shows the state after the hem winding forming when the hem winding roller 5B contacts the lower end of the peripheral wall 301 of the cap 300 at an appropriate position (height) in the vertical direction. .
  • FIG. 17(c) there is no gap over the entire circumference between the lower end of the peripheral wall 301 and the lower part of the bulging portion 201.
  • Such a state shown in FIG. 17(c) is called "appropriate (3.0)".
  • FIG. 17(a) shows the state after hem winding forming when the hem winding roller 5B contacts the lower end of the peripheral wall 301 of the cap 300 above the above-mentioned appropriate position.
  • FIG. 17A a gap is created between the lower end of the peripheral wall 301 and the lower part of the bulging portion 201 over a half to a full circumference around the center axis of the cap.
  • Such a state shown in FIG. 17(a) is called "Hakama (1.0)".
  • FIG. 17(b) shows the state after the hem winding is performed when the hem winding roller 5B contacts the lower end of the peripheral wall 301 of the cap 300 at a position between the above-mentioned "appropriate” and the above-mentioned “hakama” in the vertical direction. represents the state.
  • FIG. 17(b) there is no gap between the lower end of the peripheral wall 301 and the lower part of the bulging portion 201, but there is a gap between the lower end of the peripheral wall 301 and the lower end of the peripheral wall 301, which extends downwards within a range of less than 1/4 of the circumference around the central axis of the cap.
  • the tongue piece 301a protrudes.
  • Such a state shown in FIG. 17(b) is called "tongue sticking out (2.5)".
  • FIG. 17(d) shows the state after hem winding forming when the hem winding roller 5B contacts the lower end of the peripheral wall 301 of the cap 300 below the above-mentioned appropriate position.
  • a gap is created between the lower end of the peripheral wall 301 and the lower part of the bulging portion 201 over a half to a full circumference around the center axis of the cap.
  • Such a state shown in FIG. 17(d) is called "sweet (5.0)”.
  • a range of 1.0 to 5.0 a range of 2.5 to 3.5 is judged as good hem roll, and a range of less than 2.5 and over 3.5 is judged as poor hem roll. judge.
  • the "thread length" (mm) is determined by setting the thread length (average value) of the two turns of the threaded part formed on the cap peripheral wall 301 of Comparative Example 1 as a reference value (zero), and determining the thread length relative to the reference value. The circumference was determined by measuring the length with a tape measure. The results of this capping confirmation test are shown in Table 1.
  • Comparative Example 2 in which the number of molding operations using each roller was one time (single action), received a poor evaluation. Specifically, the thread depth was too shallow, the opening angle was too large, it was determined that there was poor hem winding, and the thread length was shorter than in Comparative Example 1.
  • "hinging" in the remarks column in the table refers to a state in which there is a bridge that does not break when the cap is opened, and this bridge acts like a hinge to connect the cap 300 to the mouthpiece 200 (hinge phenomenon). It means that something that has become is included.
  • Example 1 good evaluations were obtained in both cases, even though each roller 5 performed molding once (single action).
  • Example 2 in which there were four thread forming rollers 5A and two hem winding rollers 5B, the thread depth was ensured deeper than in Comparative Example 1 of double action, and particularly good results were obtained. .
  • Example 1 although it is a single action capping, the "thread depth” is ensured larger (deeper) than in Comparative Example 1 of double action, and the evaluation of "hemming” is better. The result was that all the screws were “appropriate (3.0)", and the screw length was also long.
  • Example 1 has, for example, the outer diameter dimension of the body 1, the radial dimension of each shaft of the upper arm 32 and the lower arm 33, the diameter dimension of the roller main body 52, and the support. The diameter and other dimensions of the shaft 31 are small. Further, in Example 1, the spring constant of the biasing member 6 is smaller than that in Comparative Examples 1 and 3.
  • Setup (N m) refers to the screw forming roller 5A and hem winding before the cap peripheral wall 301 is formed (in other words, each roller 5 is spaced apart from the cap peripheral wall 301). It represents the torque setting values around each support shaft 31 of the roller 5B. Specifically, it represents the torque of each roller 5A, 5B when the rolling element 42 of the cam follower 4 is in contact with the large diameter rolling surface 72 of the cone cam 7.
  • cap processing start (N m) in Table 2 refers to each roller 5A, 5B in the above setup state when the diameter (outer diameter) of the cap peripheral wall 301 before molding is ⁇ 38 mm. represents each torque when the support shaft 31 rotates around the axis A and contacts the cap peripheral wall 301 (that is, at the start of machining).
  • Cap machining completion (N m) indicates the torque when the thread depth reaches 0.6 mm (that is, at the end of machining) for the screw forming roller 5A.
  • the torque is shown when the diameter of the lower end of the cap peripheral wall 301 reaches ⁇ 35.9 mm (that is, at the end of machining).
  • the "RO roller contact distance (mm)" in Table 3 refers to the distance between the roller body 52 of the screw forming roller 5A and the cap peripheral wall 301 when viewed from the axial direction (lower side) of the central axis O as shown in FIG. represents the distance (at the start of machining and at the end of machining) between the contact point of and the shaft center axis A of the support shaft 31 that supports the thread forming roller 5A.
  • PP roller contact distance (mm) in Table 3 refers to the contact point between the roller body 52 of the hem winding roller 5B and the cap peripheral wall 301, and the hem winding roller body 52 when viewed from the axial direction as shown in FIG. It represents the distance between the shaft center axis A of the support shaft 31 that supports the roller 5B (at the start of machining and at the end of machining).
  • RO forming tip load (N) in Table 3 refers to the load at the contact point (tip) of the outer peripheral edge of the roller body 52 of the screw forming roller 5A that contacts the cap peripheral wall 301 (at the start of processing and at the end of processing). time).
  • PP molding tip load (N) in Table 3 refers to the load at the contact point (tip) of the outer peripheral edge of the roller body 52 of the hem winding roller 5B that contacts the cap peripheral wall 301 (at the start of processing and at the end of processing). time).
  • each RO torque at “start of cap machining” and “end of cap machining” exceeds 3.0 N ⁇ m, whereas in Example 1, each RO torque exceeds 3.0 N ⁇ m.
  • the RO torque is 3.0 N ⁇ m or less, specifically, 2.5 N ⁇ m or less.
  • each PP torque at "start of cap machining” and “end of cap machining” exceeds 2.5 N m, whereas in Example 1, each PP torque exceeds 2.5 N m. ⁇ It is less than 2.0 N ⁇ m, specifically, less than 2.0 N ⁇ m.
  • Example 1 As explained in the ⁇ Capping Confirmation Test> and Table 1 above, the capping performance of Example 1 is superior to that of Comparative Example.
  • the shape of the body can be simplified, the strength of the body can be increased, and the weight can be reduced. Therefore, it has industrial applicability.

Abstract

有底筒状をなす缶の口金部に、有頂筒状のキャップを装着するキャッピングヘッド(10)に用いられるキャッピングヘッド(10)のボディ(1)であって、円筒状のボディ本体(11)と、ボディ本体(11)の内部に配置され、スピンドルに取り付けられるスピンドル取付部(15)と、ボディ本体(11)の外周部と内周部との間に配置される揺動軸収納部(18)と、を備え、揺動軸収納部(18)は、スピンドル取付部(15)の周囲に配置され、成形ローラ(5)をキャップの周壁に向けて揺動させる揺動軸(3)が挿通される貫通孔(23)を有し、貫通孔(23)は、ボディ本体(11)を上下方向に貫通する。

Description

キャッピングヘッドのボディ、キャッピングヘッド、スピンドルアセンブリ、キャッピング装置及びキャッピングシステム
 本発明は、キャッピングヘッドのボディ、キャッピングヘッド、スピンドルアセンブリ、キャッピング装置及びキャッピングシステムに関する。
 本願は、2022年8月26日に日本に出願された特願2022-134830号、及び、2022年8月29日に日本に出願された特願2022-135769号について優先権を主張し、その内容をここに援用する。
 従来、飲料等の内容物が充填されたネジ付き缶の口金部にキャップを装着するキャッピングヘッドが知られている(例えば、特許文献1)。
 特許文献1のキャッピングヘッドは、ボディと、ボディの上側に配置されるカムフォロアと、ボディの下側に配置される成形ローラと、カムフォロアと成形ローラとを連結する揺動軸と、揺動軸を介してカムフォロア及び成形ローラを径方向内側へ付勢する付勢部材と、を備える。揺動軸のうち上下方向の両端部間に位置する中間部分、及び、この中間部分に設けられる付勢部材は、ボディの外周部に配置され、ボディから径方向外側に露出されている。
特開平6-156585号公報
 従来のキャッピングヘッドでは、ボディが複雑な形状を有しており、ボディの強度を高めることが難しい。またボディの強度を確保するには、ステンレス製等の高剛性の材料を用いる必要があり、重量が嵩んでいた。
 本発明は、ボディの形状を簡素化でき、ボディの強度を高めることができ、軽量化を図ることが可能なキャッピングヘッドのボディ、キャッピングヘッド、スピンドルアセンブリ、キャッピング装置及びキャッピングシステムを提供することを目的とする。
〔本発明の態様1〕
 有底筒状をなす缶の口金部に、キャップを装着するキャッピングヘッドに用いられるキャッピングヘッドのボディであって、円筒状のボディ本体と、前記ボディ本体の内部に配置され、スピンドルに取り付けられるスピンドル取付部と、前記ボディ本体の外周部と内周部との間に配置される揺動軸収納部と、を備え、前記揺動軸収納部は、前記スピンドル取付部の周囲に配置され、成形ローラを前記キャップの周壁に向けて揺動させる揺動軸が挿通される貫通孔を有し、前記貫通孔は、前記ボディ本体を上下方向に貫通する、キャッピングヘッドのボディ。
〔本発明の態様2〕
 有底筒状をなす缶の口金部に、有頂筒状のキャップを装着するキャッピングヘッドであって、態様1に記載のキャッピングヘッドのボディと、前記ボディの下側に配置される成形ローラと、前記成形ローラを前記キャップの周壁に向けて揺動させる揺動軸と、を備え、前記ボディ本体、前記スピンドル取付部及び前記揺動軸収納部が、互いに連結されている、キャッピングヘッド。
〔本発明の態様3〕
 前記ボディの上側に配置され、カムと係合するカムフォロアと、前記揺動軸を介して、前記カムフォロア及び前記成形ローラを径方向内側へ付勢する付勢部材と、をさらに備え、前記付勢部材は、前記揺動軸の上下方向の一部を前記揺動軸の軸回りに囲い、前記貫通孔に収容される、態様2に記載のキャッピングヘッド。
 本発明では、ボディ本体が円筒状の形状を有しており、ボディの外形形状がシンプルに構成されている。またボディには、ボディを上下方向に貫通して貫通孔が設けられており、この貫通孔には、成形ローラを揺動させる揺動軸が挿通されている。また、貫通孔が設けられる揺動軸収納部は、スピンドル取付部の周囲に配置されている。本発明のキャッピングヘッドのボディは、円筒状のボディ本体と、スピンドルに装着されるスピンドル取付部と、貫通孔が配置される揺動軸収納部とを備えたシンプルな構成であるため、ボディの形状が複雑になることを抑えてボディの構造を簡素化しつつも、その剛性が高められている。特に、ボディ本体、スピンドル取付部及び揺動軸収納部が互いに連結されていると、上述の作用効果がより高められることになる。
 また、揺動軸の上下方向の両端部には、カムフォロアと成形ローラとが連結されており、ボディの貫通孔には、揺動軸のうち上下方向の両端部間に位置する中間部分と、この中間部分に外挿される付勢部材と、が収納されている。付勢部材は、揺動軸の一部(中間部分)をその軸回りに囲うように設けられて、貫通孔に収容されている。
 本発明によれば、揺動軸の一部(中間部分)及び付勢部材(以下、付勢部材等と呼ぶ)がボディの内部に収容される構成であるため、従来のように、付勢部材等をボディの外周部に露出した状態で配置するために設けられる切り欠き状の凹部等は不要となる。このため本発明では、ボディをシンプルな形状で構成することが可能になり、製造が容易である。また、ボディの形状を簡素化することで、ボディの強度を高めることができる。
 さらに、付勢部材等がボディ内に収容されることで、ボディの外部から飛散する飲料等の内容物(特に固化しやすい糖分等)が、付勢部材等に付着することを抑制できる。このため、付勢部材等の性能(機能)を長期にわたり良好に維持することができ、かつ、メンテナンス性もよい。
 また、ボディの剛性が高められることにより、ボディを例えば、ジュラルミン等のアルミニウム合金や、エンジニアリングプラスチック、及びFRP(繊維強化プラスチック)等の樹脂材料(複合樹脂材料を含む)など、従来のボディを構成していたステンレス等と比べて、比重の小さい素材で構成することが可能になる。したがって、キャッピングヘッドの軽量化を図りやすい。なお、エンジニアリングプラスチックの好ましい例としては、PEEK(ポリエーテルエーテルケトン)などが挙げられる。
 以上より、本発明のキャッピングヘッドのボディ、キャッピングヘッド、並びに、これを備えるスピンドルアセンブリ及びキャッピング装置によれば、ボディの形状を簡素化でき、ボディの強度を高めることができ、軽量化を図ることが可能である。
〔本発明の態様4〕
 前記付勢部材はその全体が、前記ボディ本体の外周部に露出することなく、前記貫通孔に収容される、態様3に記載のキャッピングヘッド。
 この場合、付勢部材を貫通孔に収容したことによって得られる上述の作用効果が、より顕著なものとなる。
〔本発明の態様5〕
 前記貫通孔は、周方向に互いに間隔をあけて複数設けられ、各前記貫通孔は、前記ボディ本体の上端面に開口する開口部を有し、前記開口部の周方向に沿う寸法が、径方向内側へ向かうに従い小さくなる、態様3または4に記載のキャッピングヘッド。
〔本発明の態様6〕
 前記開口部は、上面視で三角形孔状をなしている、態様5に記載のキャッピングヘッド。
 この場合、揺動軸収納部のうち、周方向に隣り合う貫通孔同士の間に位置する部分(以下、フレームと呼ぶ)の周方向寸法(すなわち肉厚寸法)が、径方向の各位置でばらつきにくくなり、フレームの強度が安定して高められる。このため、周方向に並ぶ貫通孔同士の間隔を小さく抑えつつ、ボディの強度を確保することができる。キャッピングヘッドのさらなるコンパクト化や軽量化を図ることができる。
〔本発明の態様7〕
 前記ボディは、前記ボディの上面から下側に窪み、前記カムの少なくとも下端部を収容するボディ凹部を有し、前記開口部の径方向内端部が、前記ボディ凹部の内周面に開口する、態様5または6に記載のキャッピングヘッド。
 この場合、ボディの上面に開口するボディ凹部に、カムの少なくとも下端部が挿入されることで、カムとボディとを上下方向により近づけて配置することができる。これにより、ボディの上下方向の寸法を小さく抑えて、コンパクト化及び軽量化を図ることができる。さらに、貫通孔の開口部が、ボディ凹部の内周面にまで達しており、開口部が大きく形成されている。したがって、この開口部によってもボディのさらなる軽量化を図ることができる。
〔本発明の態様8〕
 前記ボディは、前記ボディ本体と、前記ボディ本体の上端部に固定される環状のボディフランジと、を有し、前記貫通孔は、前記ボディ本体を上下方向に貫通する本体孔部と、前記ボディフランジを上下方向に貫通するフランジ孔部と、を有し、前記付勢部材は、前記本体孔部に配置される、態様3から7のいずれか1つに記載のキャッピングヘッド。
 この場合、本体孔部に付勢部材を配置し、ボディ本体の上端部にボディフランジを固定することで、付勢部材を簡単にボディの内部に収容することができる。キャッピングヘッドの製造が容易である。
〔本発明の態様9〕
 前記本体孔部は、前記付勢部材が配置される収容孔部と、前記本体孔部の下端部に配置される軸受孔部と、を有し、前記揺動軸は、前記フランジ孔部と前記軸受孔部とに設けられる一対の軸受部材を介して、前記ボディに回転自在に支持される、態様8に記載のキャッピングヘッド。
 この場合、ボディの上端部に配置されるフランジ孔部と、ボディの下端部に配置される軸受孔部とに設けられ、上下方向に離れて配置される一対の軸受部材によって、揺動軸が安定して軸支される。
〔本発明の態様10〕
 前記付勢部材は、前記揺動軸の軸回りに螺旋状に延びるねじりコイルばねであり、前記付勢部材の上下方向の両端部のうち、上端部は前記ボディフランジに係止され、下端部は前記揺動軸に係止される、態様8または9に記載のキャッピングヘッド。
 上記構成によれば、付勢部材の上端部をボディフランジに係止し、下端部を揺動軸に係止することで、所望の付勢力を付与しつつ付勢部材を簡単にボディ内部に組み付けることができる。
〔本発明の態様11〕
 前記ボディの少なくとも一部が、アルミニウム合金製、エンジニアリングプラスチック製、及びFRP製のいずれかである、態様2から10のいずれか1つに記載のキャッピングヘッド。
 この場合、ボディの剛性を確保しつつ、従来のステンレス製等のボディと比べて、ボディの軽量化を図ることができる。
〔本発明の態様12〕
 前記ボディの下側に配置され、前記キャップの頂壁を押さえるプレッシャーブロックを備える、態様2から11のいずれか1つに記載のキャッピングヘッド。
〔本発明の態様13〕
 前記成形ローラは、周方向に並んで6つ以上設けられ、複数の前記成形ローラは、前記キャップの周壁に、前記口金部と螺合するネジ部を成形する複数のネジ成形ローラと、前記キャップの周壁下端を前記口金部に裾巻き成形する少なくとも1つの裾巻きローラと、を含み、前記ネジ成形ローラの数は、前記裾巻きローラの数よりも多い、態様2から12のいずれか1つに記載のキャッピングヘッド。
 上記構成のように、ネジ成形ローラの数が多いと、ネジ成形ローラ1つあたりの成形荷重(押圧力)を小さく抑えることができる。このため、ネジ付き缶(缶)を薄肉化した場合でも、ネジ成形加工にともなう口金部の変形をより安定して抑制できる。
〔本発明の態様14〕
 周方向に隣り合う前記ネジ成形ローラ同士は、上下方向の位置が互いにずらされている、態様13に記載のキャッピングヘッド。
 この場合、周方向に隣り合うネジ成形ローラ同士のキャップの周壁に対する各成形箇所が、上下方向にずらされることにより、キャップ周壁の同一箇所(特にネジ開始位置であるアッパーグルーブ付近)でのネジ成形量が過大となるような不具合を抑制できる。ネジ成形量が上下方向の各位置でばらつくことが抑えられて、ネジ成形量が上下方向において均等化される。
 また、隣り合うネジ成形ローラが上下方向にずらされて配置されるため、これらのネジ成形ローラ同士を干渉させずにより近づけて配置することが可能となる。これにより、キャッピングヘッドの外径寸法を小さく抑えることが可能になり、さらなるコンパクト化及び軽量化を図ることができる。
〔本発明の態様15〕
 前記成形ローラは、周方向に並んで複数設けられ、前記付勢部材は、前記成形ローラと同数とされて、周方向に並んで複数設けられ、前記貫通孔は、前記付勢部材と同数とされて、周方向に並んで複数設けられる、態様3から14のいずれか1つに記載のキャッピングヘッド。
 この場合、各貫通孔に、各付勢部材を収容することができる。すなわち、1つの貫通孔に、1つの付勢部材を配置できる。このため、貫通孔をシンプルに構成することができ、ボディの製造がより容易になるとともに、剛性がより高められる。
〔本発明の態様16〕
 前記揺動軸は、上下方向に延びる支持軸と、前記支持軸と前記カムフォロアとを接続する上アームと、前記支持軸と前記成形ローラとを接続する下アームと、を有し、前記上アームは、前記支持軸をその軸回りに囲い、前記支持軸の外周面を押圧するように変形可能な上クランプ部を有し、前記下アームは、前記支持軸をその軸回りに囲い、前記支持軸の外周面を押圧するように変形可能な下クランプ部を有し、前記上クランプ部及び前記下クランプ部の少なくとも一方は、クランプ部周面に配置されて上下方向に延びる変形アシスト溝を有する、態様3から15のいずれか1つに記載のキャッピングヘッド。
 この場合、上クランプ部または下クランプ部(以下、単にクランプ部と呼ぶ場合がある)の周面(クランプ部周面)に、上下方向に延びる変形アシスト溝が設けられることで、クランプ部が支持軸の外周面を押圧する向きに変形しやすくなる。これにより、支持軸の外径寸法(直径寸法)を小さく抑える(つまり支持軸を細くする)ことが可能になり、これに応じて、キャッピングヘッド全体としての外径寸法も小さく抑えることができるため、さらなる軽量化を図ることが可能となる。
〔本発明の態様17〕
 態様2から16のいずれか1つに記載のキャッピングヘッドと、上下方向に延び、前記キャップの頂壁を押さえるプレッシャーブロックが取り付けられる昇降シャフトと、筒状をなし、内部に前記昇降シャフトが挿入され、前記ボディが取り付けられるスピンドルと、筒状をなし、内部に前記昇降シャフト及び前記スピンドルが挿入される昇降筒と、を備え、前記昇降シャフトは、前記昇降シャフトを上下方向に移動させるアッパーカムフォロアを有し、前記スピンドルは、前記スピンドルを中心軸回りに回転させるスピンドルギアを有し、前記昇降筒は、筒状をなすカムと、前記昇降筒を上下方向に移動させるロワカムフォロアと、を有する、スピンドルアセンブリ。
〔本発明の態様18〕
 ターレット軸回りに回転するターレットと、前記ターレットの外周部に配置される態様17に記載のスピンドルアセンブリと、前記スピンドルギアと噛み合い、前記ターレット軸回りに延びる固定ギアと、前記ターレット軸回りに延び、前記アッパーカムフォロアが係合するアッパーカムと、前記ターレット軸回りに延び、前記ロワカムフォロアが係合するロワカムと、を備える、キャッピング装置。
〔本発明の態様19〕
 缶に内容物を充填するフィラーと、前記フィラーから排出された前記缶が供給される態様18に記載のキャッピング装置と、を備え、前記フィラーから排出されて前記キャッピング装置へ向かう前記缶の搬送方向が、ターレット軸方向から見て、前記ターレットの外周部の接線に沿うように延びる、キャッピングシステム。
 本発明のキャッピングシステムによれば、フィラーから排出された缶が、搬送される向きを急激に変えられることなく、つまり遠心力の影響を受けにくくされつつ、キャッピング装置にスムーズに供給される。このため、キャッピングの処理速度を安定して高めることができ、生産効率をより向上できる。
 また、従来のキャッピングヘッドとして、特開2003-146392号公報(以下、周知文献1と呼ぶ)が知られている。この周知文献1のキャッピングヘッドでは、成形ローラが5つまたは6つ設けられている。このように多くの成形ローラが設けられることで、成形ローラ1つあたりの成形荷重(押圧力)を小さく抑えることができるため、ネジ付き缶を薄肉化した場合でも、口金部の変形を抑制しやすい。
 しかしながら、成形ローラを多く設けると、キャッピングヘッドの外形(外形の寸法を意味しており、以下同様)や重量も増大する。このため、キャッピングの処理速度を高めて生産効率を向上することは難しい。
 本発明は、キャッピングヘッドの外形をコンパクトに抑えて軽量化を図ることが可能であり、キャッピングの処理速度を高めて生産効率を向上できるキャッピングヘッド、スピンドルアセンブリ、キャッピング装置及びキャッピングシステムを提供することを目的の1つ(別の目的)とする。
〔本発明の態様20〕
 有底筒状をなすネジ付き缶の口金部に、有頂筒状のキャップを装着するキャッピングヘッドであって、上下方向に延びる中心軸を中心とするボディと、前記ボディの上側に配置され、コーンカムの外周面上を転動するカムフォロアと、前記ボディの下側に配置され、前記カムフォロアと連結され、前記カムフォロアの径方向への移動にともなって径方向に移動する成形ローラと、前記カムフォロア及び前記成形ローラを径方向内側へ付勢する付勢部材と、を備え、前記カムフォロアは、周方向に並んで複数設けられ、前記成形ローラは、前記カムフォロアと同数とされて、周方向に並んで複数設けられ、複数の前記成形ローラは、前記キャップの周壁に、前記口金部と螺合するネジ部を成形する複数のネジ成形ローラと、前記キャップの周壁下端を前記口金部に裾巻き成形する少なくとも1つの裾巻きローラと、を含み、前記ボディは、前記ボディの上面から下側に窪み、前記コーンカムの少なくとも下端部を収容するボディ凹部を有する、キャッピングヘッド。
〔本発明の態様21〕
 前記ボディ凹部の内径寸法は、前記コーンカムのうち前記カムフォロアが接触する下端部の外径寸法よりも大きい、態様20に記載のキャッピングヘッド。
〔本発明の態様22〕
 前記ボディは、前記コーンカムの内部に挿通されたスピンドルに取り付けられるスピンドル取付部を有し、前記スピンドル取付部は、有底穴状をなす前記ボディ凹部の底部に配置される、態様20または21に記載のキャッピングヘッド。
〔本発明の態様23〕
 前記ボディ凹部の内径寸法は、前記スピンドル取付部の直径寸法よりも大きい、態様22に記載のキャッピングヘッド。
〔本発明の態様24〕
 前記コーンカムのうち前記カムフォロアが接触する上端位置から下端位置までの上下方向の寸法を成形寸法Hとして、前記ボディ凹部の上下方向の深さ寸法hが、1.58H以下である、態様20から23のいずれか1つに記載のキャッピングヘッド。
〔本発明の態様25〕
 前記カムフォロアは、上下方向に延びる軸部と、前記軸部の下端部に回転自在に支持され、前記付勢部材の付勢力により前記コーンカムの外周面に押し付けられる転動体と、を有する、態様20から24のいずれか1つに記載のキャッピングヘッド。
〔本発明の態様26〕
 前記ボディの下側に配置され、前記キャップの頂壁を押さえるプレッシャーブロックを備える、態様20から25のいずれか1つに記載のキャッピングヘッド。
〔本発明の態様27〕
 前記成形ローラは6つ以上設けられ、前記ネジ成形ローラの数は、前記裾巻きローラの数よりも多い、態様20から26のいずれか1つに記載のキャッピングヘッド。
〔本発明の態様28〕
 前記ネジ成形ローラは4つ設けられ、前記裾巻きローラは2つ設けられる、態様27に記載のキャッピングヘッド。
〔本発明の態様29〕
 周方向に隣り合う前記ネジ成形ローラ同士は、上下方向の位置が互いにずらされている、態様20から28のいずれか1つに記載のキャッピングヘッド。
〔本発明の態様30〕
 前記ボディは、前記コーンカムの内部に挿通されたスピンドルに取り付けられるスピンドル取付部を有し、前記スピンドル取付部は、径方向から見て、前記ボディ凹部と重なって配置される、態様20から29のいずれか1つに記載のキャッピングヘッド。
〔本発明の態様31〕
 前記付勢部材は、前記カムフォロアと同数とされて、周方向に並んで複数設けられ、前記ボディは、上下方向に延びる付勢部材収容孔を有し、前記付勢部材収容孔は、前記付勢部材と同数とされて、周方向に並んで複数設けられ、各前記付勢部材は、各前記付勢部材収容孔に収容される、態様20から30のいずれか1つに記載のキャッピングヘッド。
〔本発明の態様32〕
 前記付勢部材は、前記カムフォロアと同数とされて、周方向に並んで複数設けられ、前記ボディは、前記ボディの外周面から径方向内側に窪み上下方向に延びる凹状のポケットを有し、前記ポケットは、前記付勢部材と同数とされて、周方向に並んで複数設けられ、各前記付勢部材は、各前記ポケットに収容され、前記ボディを径方向外側から周方向全周にわたって囲う筒状のカバーを備える、態様20から30のいずれか1つに記載のキャッピングヘッド。
〔本発明の態様33〕
 前記ボディは、アルミニウム合金製である、態様20から32のいずれか1つに記載のキャッピングヘッド。
〔本発明の態様34〕
 前記ボディの下側に配置され、前記キャップの頂壁を押さえるプレッシャーブロックを備え、前記ボディは、前記ボディの下面から下側に突出する収容筒を有し、前記収容筒に、前記プレッシャーブロックの一部が収容される、態様20から33のいずれか1つに記載のキャッピングヘッド。
〔本発明の態様35〕
 前記カムフォロアと前記成形ローラとを支持する支持部材を備え、前記支持部材は、上下方向に延びる支持軸と、前記支持軸と前記カムフォロアとを接続する上アームと、前記支持軸と前記成形ローラとを接続する下アームと、を有し、前記上アームは、前記支持軸をその軸回りに囲い、前記支持軸の外周面を押圧するように変形可能な上クランプ部を有し、前記下アームは、前記支持軸をその軸回りに囲い、前記支持軸の外周面を押圧するように変形可能な下クランプ部を有し、前記上クランプ部及び前記下クランプ部の少なくとも一方は、クランプ部周面に配置されて上下方向に延びる変形アシスト溝を有する、態様20から34のいずれか1つに記載のキャッピングヘッド。
〔本発明の態様36〕
 前記下アームは、径方向内側を向く面に配置される段部を有する、態様35に記載のキャッピングヘッド。
〔本発明の態様37〕
 態様20から36のいずれか1つに記載のキャッピングヘッドと、上下方向に延び、前記キャップの頂壁を押さえるプレッシャーブロックが取り付けられる昇降シャフトと、筒状をなし、内部に前記昇降シャフトが挿入され、前記ボディが取り付けられるスピンドルと、筒状をなし、内部に前記昇降シャフト及び前記スピンドルが挿入される昇降筒と、を備え、前記昇降シャフトは、前記昇降シャフトを上下方向に移動させるアッパーカムフォロアを有し、前記スピンドルは、前記スピンドルを前記中心軸回りに回転させるスピンドルギアを有し、前記昇降筒は、筒状をなす前記コーンカムと、前記昇降筒を上下方向に移動させるロワカムフォロアと、を有する、スピンドルアセンブリ。
〔本発明の態様38〕
 ターレット軸回りに回転するターレットと、前記ターレットの外周部に配置される態様37に記載のスピンドルアセンブリと、前記スピンドルギアと噛み合い、前記ターレット軸回りに延びる固定ギアと、前記ターレット軸回りに延び、前記アッパーカムフォロアが係合するアッパーカムと、前記ターレット軸回りに延び、前記ロワカムフォロアが係合するロワカムと、を備える、キャッピング装置。
〔本発明の態様39〕
 ネジ付き缶に内容物を充填するフィラーと、前記フィラーから排出された前記ネジ付き缶が供給される態様38に記載のキャッピング装置と、を備え、前記フィラーから排出されて前記キャッピング装置へ向かう前記ネジ付き缶の搬送方向が、ターレット軸方向から見て、前記ターレットの外周部の接線に沿うように延びる、キャッピングシステム。
 本発明の前記態様のキャッピングヘッドのボディ、キャッピングヘッド、スピンドルアセンブリ、キャッピング装置及びキャッピングシステムによれば、ボディの形状を簡素化でき、ボディの強度を高めることができ、軽量化を図ることが可能である。また、キャッピングヘッドの外形をコンパクトに抑えて軽量化を図ることが可能であり、キャッピングの処理速度を高めて生産効率を向上できる。
図1は、本実施形態のキャッピングヘッド及びそのボディを示す斜視図である。 図2は、本実施形態のキャッピングヘッド及びそのボディを示す斜視図である。 図3は、本実施形態のキャッピングヘッド及びそのボディを示す断面図(縦断面図)である。 図4は、キャッピングヘッドを示す下面図であり、複数の下アームに組付け用治具を係止した状態を表す。なお成形ローラを透過図として、2点鎖線で表している。 図5は、図4のV部を拡大して示す図である。 図6は、図4のVI部を拡大して示す図である。 図7は、本実施形態のキャッピングヘッドのボディ本体を示す斜視図である。 図8は、本実施形態のキャッピングヘッドのボディ本体を示す斜視図である。 図9は、本実施形態のキャッピングヘッドのボディフランジを示す斜視図である。 図10は、本実施形態のスピンドルアセンブリを示す断面図(縦断面図)であり、キャッピングヘッドを簡略化して表している。 図11は、本実施形態のキャッピング装置の一部を示す断面図(縦断面図)であり、キャッピングヘッドを簡略化して表している。 図12は、本実施形態のキャッピング装置の外周部を平面上に展開して模式的に示す側面図であり、スピンドルアセンブリ及びキャッピングヘッドの各動作を説明する図である。 図13は、本実施形態のキャッピングシステムを模式的に示す上面図である。 図14は、本実施形態の第1変形例のキャッピングヘッドのボディを模式的に示す断面図(横断面図)である。 図15は、本実施形態の第1変形例のキャッピングヘッドのボディを模式的に示す断面図(縦断面図)である。 図16は、ねじ深さの測定方法を説明するネジの模式図であり、ネジの巻き数を平面上に展開して表している。 図17は、キャッピング後のキャップの周壁下端近傍を示す断面(縦断面)画像であり、裾巻き評価を説明する図である。 図18は、本実施形態の第2変形例のキャッピングヘッドの一部を示す斜視図である。 図19は、図18のキャッピングヘッドの一部を示す断面図(縦断面図)である。
 本発明の一実施形態のキャッピングヘッド10のボディ1、キャッピングヘッド10、スピンドルアセンブリ80、キャッピング装置120及びキャッピングシステム100について、図1~図13を参照して説明する。なお本明細書では、キャッピングヘッド10やスピンドルアセンブリ80等を単に装置と呼ぶ場合がある。
 本実施形態のキャッピングヘッド10、スピンドルアセンブリ80及びキャッピング装置120は、有底筒状をなすネジ付き缶(缶)の口金部に、キャップを装着し、ネジ付き缶を密封する装置である。ネジ付き缶及びキャップとしては、例えば、特開2019-011103号公報に記載のもの等を用いることができる。なおネジ付き缶は、ボトル缶と言い換えてもよい。キャップは、例えば有頂筒状である。
 詳細な図示は省略するが、ネジ付き缶及びキャップの概略構成は、下記の通りである。
 ネジ付き缶は、例えばアルミニウム合金製である。ネジ付き缶は、缶の周壁である缶胴と、缶の底壁である缶底と、を備える。缶胴の開口部は、開口部以外の部位(胴部及び肩部)よりも小径の口金部とされている。口金部は、缶軸を中心とする略円筒状である。口金部は、缶軸方向に沿ってその開口端から缶底側へ向けて、カール部と、雄ネジ部と、膨出部と、をこの順に有する。
 膨出部は、缶軸を中心とする環状である。膨出部は、缶軸と直交する缶径方向において、雄ネジ部よりも外側に張り出して形成される。図17(a)に示すように、膨出部201は、缶軸に沿う口金部200の断面(縦断面)において、缶径方向の外側に膨出する凸状をなす。
 キャップ300は、有頂筒状をなし口金部200に被せられるキャップ本体と、キャップ本体の頂壁の内面に配置される円板状のライナー(図示省略)と、を有する。ライナーは、口金部200のカール部に接触する。キャップ本体は、例えばアルミニウム合金製であり、ライナーは、例えば樹脂製である。なお本明細書において、単にキャップ300の周壁301及び頂壁という場合、特に説明がない限り、キャップ本体の周壁301及び頂壁を指す。図17(c)等に示すように、キャップ300の周壁301の下端は、膨出部201に裾巻きされる。
 図1~図3に示すように、キャッピングヘッド10は、中心軸Oを中心とするボディ1と、プレッシャーブロック2と、揺動軸(支持部材)3と、カムフォロア4と、成形ローラ5と、付勢部材6と、を備える。また図12に示すように、キャッピングヘッド10によってキャッピングされるネジ付き缶B及びキャップ300の各中心軸(缶軸。図示は省略)は、図1~図3に示す中心軸Oと同軸に配置される。
 ここで、本実施形態における「方向の定義」について説明する。
 本実施形態では、ボディ1の中心軸Oが延びる方向を上下方向と呼ぶ。つまり中心軸Oは、上下方向に延びる。上下方向は、各図においてZ軸方向に相当する。上下方向において、カムフォロア4と成形ローラ5とは、互いに異なる位置に配置される。上下方向のうち、成形ローラ5からカムフォロア4へ向かう方向を上側(+Z側)と呼び、カムフォロア4から成形ローラ5へ向かう方向を下側(-Z側)と呼ぶ。なお上下方向は、軸方向と言い換えてもよい。この場合、上側は軸方向一方側に相当し、下側は軸方向他方側に相当する。
 中心軸Oと直交する方向を径方向と呼ぶ。径方向のうち、中心軸Oに近づく方向を径方向内側と呼び、中心軸Oから離れる方向を径方向外側と呼ぶ。
 中心軸O回りに周回する方向を周方向と呼ぶ。周方向のうち、所定の回転方向を周方向一方側C1と呼び、これとは反対の回転方向を周方向他方側C2と呼ぶ。本実施形態では、図4に示すようにキャッピングヘッド10を下側から見た下面視において、中心軸Oを中心とする時計回りの方向が周方向一方側C1であり、反時計回りの方向が周方向他方側C2である。
 また、揺動軸3の後述する支持軸31の中心軸であるシャフト中心軸Aは、中心軸Oの径方向外側に配置され、中心軸Oと平行に上下方向(Z軸方向)に延びる。本実施形態では、揺動軸3のシャフト中心軸Aを基準とする方向の定義を、上述のボディ1の中心軸Oを基準とする方向の定義と区別して、下記の通りとする。
 シャフト中心軸Aと直交する方向をシャフト径方向と呼ぶ。シャフト径方向のうち、シャフト中心軸Aに近づく方向をシャフト径方向の内側と呼び、シャフト中心軸Aから離れる方向をシャフト径方向の外側と呼ぶ。
 シャフト中心軸A回りに周回する方向をシャフト周方向と呼ぶ。
 図10に示すように、キャッピングヘッド10は、上下方向に延びるスピンドルアセンブリ80に装着され、スピンドルアセンブリ80の一部を構成する。具体的に、スピンドルアセンブリ80は、キャッピングヘッド10の上側に配置されており、スピンドルアセンブリ80の下端部は、キャッピングヘッド10の内部に上側から挿入される。詳しくは、スピンドルアセンブリ80のうち、後述するスピンドル85の下端部がボディ1に取り付けられる。また、スピンドルアセンブリ80のうち、後述する昇降シャフト81がプレッシャーブロック2に取り付けられる。スピンドルアセンブリ80の中心軸(スピンドル軸)は、ボディ1の中心軸Oと同軸に配置される。キャッピングヘッド10は、スピンドルアセンブリ80に支持されて、スピンドルアセンブリ80とともに上下方向に移動させられる。またボディ1は、スピンドル85により中心軸Oを中心として回転させられる。
 またスピンドル85は、スピンドルアセンブリ80のうち、後述する昇降筒90の筒状のコーンカム(カム)7の内部に挿通された状態で、ボディ1に固定されている。図1~図3に示すように、コーンカム7は、ボディ1の上側に配置され、スピンドル軸(中心軸O)を中心として上下方向に延びる。
 詳しくは後述するが、図10及び図11において、昇降シャフト81、スピンドル85及びキャッピングヘッド10と、コーンカム7を含む昇降筒90とは、後述する別々のカム機構126,127に連結されており、各カム機構126,127によってそれぞれ、上下方向に移動する。また、スピンドル85及びボディ1は、コーンカム7に対して、中心軸O回りに回転する。
 なおコーンカム7は、キャッピングヘッド10の構成部材の一つとされていてもよい。すなわちこの場合、キャッピングヘッド10は、さらにコーンカム7を備える。
 図1~図3に示すように、ボディ1は、略円筒状をなす。本実施形態において、ボディ1の少なくとも一部は、アルミニウム合金製であり、具体的には、例えばジュラルミン製である。本実施形態では、ボディ1のうち後述するボディ本体11及びボディフランジ12が、アルミニウム合金製である。ただし、ボディ1の材質は、本実施形態の例に限定されるものではない。具体的に、ボディ1の少なくとも一部は、アルミニウム合金製、エンジニアリングプラスチック製、及びFRP製のいずれかでもよい。なお、エンジニアリングプラスチック製の場合の好ましい例としては、PEEK(ポリエーテルエーテルケトン)製などが挙げられる。ボディ1の少なくとも一部は、例えばステンレスよりも比重の小さい素材により構成される。
 ボディ1は、ボディ本体11と、ボディフランジ12と、を有する。なおボディ本体11は、ボディ基体またはボディ基部などと言い換えてもよい。
 図7及び図8に示すように、ボディ本体11は、中心軸Oを中心とする筒状であり、具体的には、略円筒状である。ボディ本体11は、円筒状の外周壁を有する。このため、ボディ1は、円筒状の外周面1cを有する。
 図9に示すように、ボディフランジ12は、環状である。具体的に、ボディフランジ12は、中心軸Oを中心とする略円環板状である。ボディフランジ12は、ボディ本体11の上端部にボルト等により固定される。
 また、図1~図3及び図7~図9に示すように、ボディ1は、周壁部11cと、底壁部11dと、ボディ凹部(コーンカム収容凹部)13と、筒部14と、スピンドル取付部15と、収容筒16と、支持突片17と、スカート部11hと、貫通孔(付勢部材収容孔)23及びフレーム28が設けられた揺動軸収納部18と、操作部21と、水抜き孔22と、を有する。
 周壁部11cは、中心軸Oを中心とする略円筒状である。周壁部11cは、ボディ1の外周壁のうち、底壁部11dの上側に位置する筒状部分を構成する。
 底壁部11dは、中心軸Oを中心とする略円環板状である。底壁部11dの外周部は、周壁部11cの下端部と接続される。
 図3に示すように、ボディ凹部13は、ボディ1の上面1aから下側に窪む凹状である。ボディ凹部13は、中心軸Oを中心とする有底穴状であり、具体的には、略円穴状である。ボディ凹部13は、上面1aに開口し、上下方向に延びる。ボディ凹部13は、ボディフランジ12の内周面と、周壁部11cの内周面と、底壁部11dの上面とによって画成される凹部である。
 本実施形態ではボディ凹部13が、上下方向において、ボディフランジ12からボディ本体11の上側部分にわたって配置される。ボディ凹部13は、ボディフランジ12からボディ本体11にわたって穴状に延びている。具体的に、ボディ凹部13のうち上部は、ボディフランジ12の内部(挿通孔)に位置し、ボディ凹部13のうち下部は、ボディ本体11の上端面11aから下側に窪む凹所11bに位置する。すなわち、ボディ凹部13は、ボディフランジ12を上下方向に貫通し、かつボディ本体11の凹所11bにわたって配置される。
 ボディ1の上面1aとボディ凹部13の底壁13aとの間の上下方向の寸法は、ボディ1の下面1bと底壁13aとの間の上下方向の寸法よりも大きい。言い換えると、ボディ1の上面1aと底壁部11dの上面との間の上下方向の寸法(すなわちボディ凹部13の深さ寸法)は、底壁部11dの上面と下面との間の上下方向の寸法(すなわち底壁部11dの厚さ寸法)よりも大きい。
 特に図示しないが、スピンドル85及びスピンドル85に固定されたボディ1に対して、コーンカム7が相対的に下側へ移動したときに、ボディ凹部13は、コーンカム7の少なくとも下端部を収容する。具体的に、ボディ凹部13には、少なくとも、コーンカム7の下端部に配置される後述の大径転動面72及びテーパ転動面73が収容される。さらにボディ凹部13には、コーンカム7の後述する小径転動面71の一部が配置されてもよい。なお、小径転動面71、大径転動面72及びテーパ転動面73は、コーンカム7のうちカムフォロア4が接触する部分である。
 図3の符号13bは、ボディ凹部13の内周面13bを示している。図3に示すように、ボディ凹部13の内径寸法d1は、コーンカム7のうちカムフォロア4が接触する下端部の外径寸法d2よりも大きい。具体的に、ボディ凹部13の内径寸法d1とは、ボディ凹部13の内周面13bの直径寸法である。図7に示すように、ボディ凹部13の内周面13bとは、ボディ凹部13の底壁13aの径方向外端部から上側に立ち上がる円筒面である。
 筒部14は、ボディ凹部13の底壁13aから上側に突出する。筒部14は、底壁部11dの内周部から上側に突出する。筒部14は、中心軸Oを中心とする円筒状である。図3に示すように、筒部14の上端面は、ボディ1の上面1aよりも下側に位置しており、本実施形態では、ボディ本体11の上端面11aよりも下側に位置する。言い換えると、筒部14の上端面は、ボディフランジ12の下面よりも下側に位置する。
 コーンカム7が、図3に示す上昇端位置(待機位置)から下側へ移動し、その上下方向のストロークの範囲で最も下側に配置された図示しない下降端位置(寄り位置)とされたときに、コーンカム7の下端部は、筒部14の上端面と隙間をあけて対向する。下降端位置とされたコーンカム7がボディ凹部13内に挿入される上下方向の寸法(ボディ1の上面1aからの挿入深さ)は、ボディフランジ12の上下方向の寸法Lと同じかそれ以上である。
 筒部14の外周面は、ボディ凹部13の内周面13b(すなわち周壁部11cの内周面)から径方向内側に離れて配置される(図7を参照)。このため、筒部14の外周面とボディ凹部13の内周面13bとの間には、中心軸Oを中心とした円形リング状の溝部が設けられる。この溝部は、上側に開口し周方向に延びる。スピンドル85及びスピンドル85に固定されたボディ1に対して、コーンカム7が相対的に下側へ移動したときに、前記溝部には、コーンカム7の周壁の下端部が配置されてもよい。
 図3に示すように、スピンドル取付部15は、ボディ凹部13の底部に配置される。スピンドル取付部15は、ボディ本体11の内部に配置される。スピンドル取付部15は、筒部14の上端面に開口し、上下方向に延びる。スピンドル取付部15は、中心軸Oを中心とする略円孔状である。ボディ凹部13の内径寸法d1は、スピンドル取付部15の直径寸法よりも大きい。スピンドル取付部15には、スピンドル85の下端部が挿入される。スピンドル取付部15とスピンドル85とは、例えば螺着等により互いに締結される。すなわち、スピンドル取付部15は、スピンドル85に取り付けられる。
 スピンドル取付部15のうち上部は、筒部14内に配置される。このため、スピンドル取付部15(の少なくとも上部)は、径方向から見て、ボディ凹部13と重なって配置される。本実施形態では、スピンドル取付部15のうち下部が、底壁13aよりも下側に位置する。言い換えると、スピンドル取付部15の上部は、筒部14の内周部に配置され、スピンドル取付部15の下部は、底壁部11dの内周部に配置される。
 ここで、ボディ凹部13に関連する各寸法の一例について、下記に具体的に述べる。なお下記の各寸法は、それぞれ、±10%の許容寸法(数値範囲)を有するものとする。
 本実施形態において、ボディ凹部13の内径寸法d1は、56mmである。コーンカム7の下端部の外径寸法d2は、52.7mmである。ボディ凹部13とコーンカム7の下端部との間の径方向のクリアランス(片側のクリアランス)、すなわち[(d1-d2)/2]は、1.65mmである。
 また、ボディ1の上面1aと、ボディ凹部13の底壁13aとの間の上下方向の寸法(ボディ凹部13の上下方向の深さ寸法)hは、23mmである。コーンカム7の上昇端位置(待機位置)と下降端位置(寄り位置)との間の上下方向のストローク量は、14.3mmである。ボディ1の上面1aと、下降端位置とされたコーンカム7の下端面との間の上下方向の寸法、すなわちコーンカム入り込み量は、10.39mmである。したがって、コーンカム入り込み量/コーンカムストローク量は、約73%である。
 また、コーンカム7のうちカムフォロア4が接触する上端位置から下端位置(コーンカム7の下端)までの上下方向の寸法を成形寸法Hとして、成形寸法Hは、14.56mmである。すなわち本実施形態において、ボディ凹部13の上下方向の深さ寸法hは、0mmよりも大きく、1.58H(mm)以下である。好ましくは、深さ寸法hは、0.714H(mm)以下である。なお本実施形態では、コーンカム入り込み量/成形寸法Hが、約71%である。
 また、上昇端位置とされたコーンカム7の下端面と、ボディ凹部13の底壁13aとの間の上下方向の寸法(ストローク限界寸法・待機位置)は、26.91mmである。下降端位置とされたコーンカム7の下端面と、ボディ凹部13の底壁13aとの間の上下方向の寸法(ストローク限界寸法・寄り位置)は、12.61mmである。
 収容筒16は、ボディ1の下面1bから下側に突出する。収容筒16は、底壁部11dの下面から下側に延びる。収容筒16は、中心軸Oを中心とする略円筒状である。
 支持突片17は、ボディ1の下面1bから下側に突出する。支持突片17は、底壁部11dの下面の外周部から下側に延びる。支持突片17は、収容筒16の径方向外側に配置される。支持突片17は、収容筒16を径方向外側から囲うように、周方向に並んで複数設けられる(図8を参照)。支持突片17の数は成形ローラ5の数と同数であり、本実施形態では6つ設けられる。複数の支持突片17は、周方向に互いに間隔をあけて配置される。
 各支持突片17は、収容筒16から径方向外側に離れて配置されており、かつ、周方向に隣り合う支持突片17同士は、互いに離れて配置されている。このため、ボディ1は、支持突片17と収容筒16との間、及び、周方向に隣り合う支持突片17同士の間に、それぞれ肉抜き部を有している。肉抜き部は、ボディ1の一部を繰り抜くように形成された凹状の空間(スペース)である。
 周方向に隣り合う支持突片17同士の間の肉抜き部は、ローラ軸収容ポケット19と言い換えてもよい。ローラ軸収容ポケット19は、ボディ1の内部を上下方向に延び、ボディ1の下側に開口する。ローラ軸収容ポケット19は、周方向に並んで複数設けられる。ローラ軸収容ポケット19の数は、成形ローラ5の数と同数である。
 スカート部11hは、中心軸Oを中心とする円筒状である。スカート部11hは、周壁部11cの下側に配置される。スカート部11hは、ボディ1の外周壁のうち、底壁部11dの下側に位置する筒状部分を構成する。スカート部11hの上端部は、周壁部11cの下端部及び底壁部11dの外周部と接続される。スカート部11hの外周面と、周壁部11cの外周面とは、上下方向に連続しており、各外周面は段差なく一体に形成されている。スカート部11hの外周面及び周壁部11cの外周面は、それぞれ、ボディ1の外周面1cの一部を構成する。
 スカート部11hの径方向内側には、支持突片17が配置される。支持突片17の下側部分の外周部は、スカート部11hの内周部と接続される。スカート部11hと複数の支持突片17とは、一体に形成されている。スカート部11hは、複数の支持突片17と、複数のローラ軸収容ポケット19と、収容筒16と、プレッシャーブロック2の一部と、を径方向外側から囲う。
 揺動軸収納部18は、ボディ1の外周部と内周部との間に配置される。具体的に、揺動軸収納部18は、ボディ本体11の外周部と内周部との間に配置される部分と、ボディフランジ12の外周部と内周部との間に配置される部分と、を含む。図3及び図7に示すように、揺動軸収納部18は、ボディ本体11及びボディフランジ12を上下方向に貫通する貫通孔23と、貫通孔23と周方向に隣り合って配置されるフレーム28と、を有する。揺動軸収納部18は、複数の貫通孔23と、複数のフレーム28と、を有する。複数の貫通孔23は、周方向に互いに間隔をあけて配置される。複数のフレーム28は、周方向に互いに間隔をあけて配置される。貫通孔23とフレーム28とは、周方向に交互に並んで配置される。
 貫通孔23は、ボディ1の内部を上下方向に延びる。貫通孔23は、ボディ1を上下方向に貫通する。貫通孔23は、付勢部材6と同数とされて、周方向に並んで複数設けられる。本実施形態では貫通孔23が、ボディ1に周方向に等ピッチで6つ設けられる。また、各貫通孔23の中心軸(シャフト中心軸A)と、中心軸Oとの間の距離(つまり径方向寸法)は、互いに同一である。すなわち、各貫通孔23は、中心軸Oからの距離が互いに等しくなるように配置されている。各付勢部材6は、各貫通孔23に収容される。また、後述する各揺動軸3の支持軸31は、各貫通孔23に挿通され、各貫通孔23から上側及び下側に突出する。すなわち、貫通孔23には、揺動軸3が挿通される。
 図7に示すように、貫通孔23は、スピンドル取付部15(筒部14)の周囲に配置される。貫通孔23が設けられる揺動軸収納部18は、径方向において、スピンドル取付部15とボディ本体11の外周壁との間に配置されている。ボディ本体11、スピンドル取付部15及び揺動軸収納部18は、互いに連結されており、具体的に本実施形態では、単一の部材により一体に形成されている。なお本実施形態では、ボディ本体11、スピンドル取付部15及び揺動軸収納部18を総じて、単にボディ本体11と呼ぶ場合がある。
 ボディ本体11は、つなぎ目無しに形成された単一の円筒体である。すなわち、ボディ本体11は、単一の部材を切削加工等により繰り抜いて、一体的に形成されている。また、ボディ本体11はアルミニウム合金製であるが、エンジニアリングプラスチック製、またはFRP製(繊維強化プラスチック製)であってもよい。なお、エンジニアリングプラスチック製の場合の好ましい例としては、PEEK(ポリエーテルエーテルケトン)製であってもよい。
 ボディ本体11の周壁部11cは、ボディ本体11の円筒状をなす外周壁(外周面1cが形成される環状の壁部)と、ボディ本体11の円筒状をなす内周壁(ボディ凹部13の径方向外側に隣接する環状の壁部)と、前記外周壁と前記内周壁とを径方向に連結するフレーム28と、を有している。
 貫通孔23は、ボディ本体11の円筒状をなす外周壁と、ボディ本体11の円筒状をなす内周壁と、前記外周壁と前記内周壁とを径方向に連結するフレーム28と、によって画成される孔(空間)である。具体的には、図7に示すように、貫通孔23は、ボディ本体11の外周壁の内壁面23gと、ボディ本体11の内周壁の外壁面23hと、フレーム28の周方向を向く側壁面23iと、に囲まれて形成されている。また、スピンドル取付部15(筒部14)は、底壁部11dを介して、ボディ本体11の内周壁と接続されている。
 図3及び図7~図9に示すように、貫通孔23は、ボディ本体11に配置される本体孔部23aと、ボディフランジ12に配置されるフランジ孔部23bと、を有する。本体孔部23aとフランジ孔部23bとは、上下方向から見て、互いに重なる。
 本体孔部23aは、ボディ本体11の内部を上下方向に延び、ボディ本体11を上下方向に貫通する。具体的に、本体孔部23aは、周壁部11c、底壁部11d及び支持突片17を上下方向に貫通する。
 図3、図7及び図8に示すように、本体孔部23aは、収容孔部23cと、軸受孔部23dと、を有する。
 収容孔部23cは、本体孔部23aのうち下端部以外の部分に配置される。収容孔部23cは、ボディ本体11の上端面11aに開口し、この上端面11aから下側に向けて窪む。収容孔部23cは、上下方向に延びる多段孔状であり、下側へ向かうに従い段階的に内径寸法が小さくなる。
 収容孔部23cは、ボディ本体11の上端面11aに開口する開口部23eと、開口部23eの下側に配置される下側孔部23fと、を有する。すなわち、貫通孔23は、開口部23e及び下側孔部23fを有する。
 開口部23eは、上面視で三角形孔状をなしている。開口部23eの周方向に沿う寸法(開口幅寸法)は、径方向内側へ向かうに従い小さくなる。本実施形態では、開口部23eの周方向に沿う寸法の最大値が、支持突片17の周方向に沿う寸法の最大値よりも大きい。また、開口部23eの径方向内端部は、ボディ凹部13の内周面13bに開口する。具体的に、開口部23eの径方向内端部は、内周面13bの上下方向の全長にわたって開口している。言い換えると、ボディ凹部13の内周面13bは、内周面13bに開口する各開口部23eによって、周方向の複数箇所において分断されている。
 下側孔部23fは、軸受孔部23dの上側に配置されている。下側孔部23fの内径寸法は、開口部23eの内径寸法よりも小さく、軸受孔部23dの内径寸法よりも大きい。下側孔部23fは、支持突片17の内部に配置されている。下側孔部23fの内径寸法は、支持突片17の外径寸法よりも小さい。下側孔部23fのうち、シャフト中心軸Aよりも径方向外側に位置する部分は、周方向に延びる略長方形孔状をなしている。下側孔部23fのうち、シャフト中心軸Aよりも径方向内側に位置する部分は、径方向内側に向けて凸となる半円形孔状をなしている。
 軸受孔部23dは、本体孔部23aのうち下端部に配置される。軸受孔部23dは、収容孔部23cの下側に配置される。軸受孔部23d及び下側孔部23fは、支持突片17を上下方向に貫通する。軸受孔部23dは、上下方向に延びる円孔状である。軸受孔部23dの内径寸法は、収容孔部23cの内径寸法よりも小さい。軸受孔部23dには、例えば滑り軸受(ドライベアリング)等の軸受部材24が嵌め入れられる。
 図7に示すように、フレーム28は、周方向に隣り合う貫通孔23同士の間に配置されている。具体的に、フレーム28は、周方向に隣り合う開口部23e間に配置されている。フレーム28は、周方向と垂直な方向に広がる板状をなしており、径方向に延びている。フレーム28は、ボディ本体11の外周部と内周部とを繋ぐ。フレーム28の周方向寸法(幅寸法)は、径方向に沿って略一定とされている。
 図3及び図9に示すように、フランジ孔部23bは、ボディフランジ12を上下方向に貫通する。フランジ孔部23bは、上下方向に延びる円孔状である。フランジ孔部23bの内径寸法は、収容孔部23cの内径寸法よりも小さい。本実施形態ではフランジ孔部23bの内径寸法が、軸受孔部23dの内径寸法と同じである。フランジ孔部23bには、例えば滑り軸受等の軸受部材25が嵌め入れられる。
 またボディフランジ12は、係止溝12aを有する。係止溝12aは、ボディフランジ12の内周面から径方向外側に窪む溝状である。係止溝12aは、上下方向に延び、ボディフランジ12の上面及び下面に開口する。
 図1、図2及び図9に示すように、操作部21は、ボディ1の外周面から径方向内側に窪む切り欠き状の凹部である。本実施形態では操作部21が、ボディフランジ12に配置されており、ボディフランジ12の外周面に開口する。操作部21は、周方向に互いに間隔をあけて複数設けられる。
 ボディ1をスピンドル85に着脱する際に、操作部21には、図示しない引掛けレンチ等の鉤状の作業用工具が係止される。操作部21に作業用工具を係止した状態で、作業用工具を操作し、ボディ1をスピンドル85に対して周方向に回転させることにより、ボディ1をスピンドル85に着脱することが可能である。
 図3に示すように、水抜き孔22は、支持突片17を上下方向に貫通する。水抜き孔22は、複数の支持突片17にそれぞれ配置されており、つまり複数設けられる。水抜き孔22の上端部は、支持突片17の上面に開口し、スカート部11hよりも径方向内側に位置する。具体的に、水抜き孔22の上端部は、軸受孔部23dと下側孔部23fとの間に位置して上側を向く段部に開口している。水抜き孔22の下端部は、支持突片17の下面に開口する。すなわち、水抜き孔22は、貫通孔23の内部と、ボディ1の外部とを連通する。貫通孔23内に溜まった水等の液体は、水抜き孔22を通して、キャッピングヘッド10の外部に排出される。
 プレッシャーブロック2は、ボディ1の下側に配置される。プレッシャーブロック2は、中心軸Oを中心とする略有底円筒状であり、上下方向に延びる。プレッシャーブロック2は、昇降シャフト81の下端部に例えば螺着等により締結され、昇降シャフト81と固定される。キャッピング時に、プレッシャーブロック2の底壁は、キャップ300の頂壁に上側から接触し、頂壁を押さえる(図12を参照)。
 図3に示すように、プレッシャーブロック2の一部は、ボディ1の収容筒16に収容される。具体的には、プレッシャーブロック2の上側部分が、収容筒16内に挿入される。プレッシャーブロック2の上端面の上下方向の位置は、ボディ1の下面1bの上下方向の位置と、略同じである。すなわち、プレッシャーブロック2は、その上側部分が下面1bから下側に突出する収容筒16内に収容されることで、ボディ1のうち下面1bよりも上側に位置する部分(つまりボディ1のうち底壁部11dよりも上側の部分)には入り込んでいない。
 なおプレッシャーブロック2は、キャッピングヘッド10の構成部材の一つとされていなくてもよい。この場合、プレッシャーブロック2は、スピンドルアセンブリ80の構成部材の一つとされる。すなわちこの場合、スピンドルアセンブリ80は、さらにプレッシャーブロック2を備える。
 図1~図4に示すように、揺動軸3は、ボディ1に取り付けられ、カムフォロア4と成形ローラ5とを支持する。揺動軸3は、カムフォロア4と成形ローラ5とを連結する。揺動軸3は、上下方向の両端部でカムフォロア4と成形ローラ5とを支持する。具体的に、揺動軸3は、その上端部でカムフォロア4を回転自在に支持し、その下端部で成形ローラ5を回転自在に支持する。揺動軸3は、カムフォロア4及び付勢部材6によってシャフト中心軸A回りに回動させられることで、成形ローラ5をキャップ300の周壁301に向けて揺動(接近離間)させる。
 揺動軸3のうち上下方向の両端部間に位置する中間部分は、貫通孔23の内部に配置(収納)される。揺動軸3は、周方向に並んで複数設けられる。揺動軸3の数は、カムフォロア4の数と同数であり、かつ成形ローラ5の数と同数である。
 揺動軸3は、支持軸31と、上アーム32と、下アーム33と、を有する。
 図3に示すように、支持軸31は、シャフト中心軸Aを中心とする略円柱状であり、上下方向に延びる。支持軸31の上端部は、ボディ1の上面1aよりも上側に突出する。支持軸31の下端部は、ボディ1の下面1bよりも下側に突出し、かつ支持突片17よりも下側に突出する。
 支持軸31は、例えば滑り軸受等の軸受部材24,25を介して、ボディ1に支持される。各支持軸31を支持する軸受部材24,25は、上下方向に互いに間隔をあけて複数(本実施形態では一対)設けられる。具体的に、支持軸31のうち上側部分は、上側の軸受部材25を介してボディフランジ12に支持される。支持軸31のうち下側部分は、下側の軸受部材24を介して支持突片17に支持される。すなわち、支持軸31は、フランジ孔部23bと軸受孔部23dとに設けられる一対の軸受部材24,25を介して、ボディ1に回転自在に支持される。支持軸31のうち上端部と下端部との間に位置する中間部分は、貫通孔23に配置される。支持軸31は、シャフト中心軸A回りの所定範囲において、回動可能とされている。
 支持軸31は、大径部31aを有する。大径部31aは、支持軸31のうち大径部31a以外の部分よりも、外径寸法が大きくされている。大径部31aは、大径部31aの外周面からシャフト径方向の内側に窪む切り欠き状の係止凹部(図示省略)を有する。
 図2に示すように、上アーム32は、ボディ1の上側に配置され、支持軸31とカムフォロア4とを接続する。上アーム32は、支持軸31の上端部に固定され、支持軸31からシャフト径方向の外側に向けて延びる。具体的に、上アーム32は、支持軸31から周方向一方側C1に向けて延びる。
 上アーム32は、支持軸31をその軸回り(シャフト周方向)に囲い、支持軸31の外周面を押圧するように変形可能な上クランプ部32aを有する。上クランプ部32aは、上下方向から見て、シャフト周方向に延びる湾曲した壁部である。上アーム32に締結ネジ34をねじ込むことで、上クランプ部32aはそのシャフト径方向の直径を狭めるように変形させられる。これにより、上クランプ部32aの内周面と支持軸31の外周面とが密着して、上アーム32は支持軸31に固定される。
 図1に示すように、下アーム33は、ボディ1の下側に配置され、支持軸31と成形ローラ5とを接続する。下アーム33は、支持軸31の下端部に固定され、支持軸31からシャフト径方向の外側に向けて延びる。具体的に、下アーム33は、支持軸31から周方向一方側C1に向けて延びる。
 下アーム33は、支持軸31をその軸回り(シャフト周方向)に囲い、支持軸31の外周面を押圧するように変形可能な下クランプ部33aを有する。下クランプ部33aは、上下方向から見て、シャフト周方向に延びる湾曲した壁部である。下アーム33に締結ネジ35をねじ込むことで、下クランプ部33aはそのシャフト径方向の直径を狭めるように変形させられる。これにより、下クランプ部33aの内周面と支持軸31の外周面とが密着して、下アーム33は支持軸31に固定される。
 上クランプ部32a及び下クランプ部33aの少なくとも一方は、クランプ部周面に配置されて上下方向に延びる変形アシスト溝36を有する。図5及び図6に示すように、本実施形態では少なくとも下クランプ部33aが、変形アシスト溝36を有する。変形アシスト溝36は、下クランプ部33aの外周面(クランプ部周面)からシャフト径方向の内側に窪み、上下方向に延びる溝状である。
 変形アシスト溝36は、下クランプ部33a(または上クランプ部32a)の外周面に、シャフト周方向に並んで複数設けられてもよいし、あるいは1つのみ設けられてもよい。
 本実施形態では、複数の下アーム33のうち、後述するネジ成形ローラ5Aを支持する下アーム33の下クランプ部33aに、変形アシスト溝36が1つ設けられる。また、複数の下アーム33のうち、後述する裾巻きローラ5Bを支持する下アーム33の下クランプ部33aに、変形アシスト溝36がシャフト周方向に互いに間隔をあけて複数設けられる。ただし、各下クランプ部33aに設けられる変形アシスト溝36の数は、本実施形態の一例に限定されない。
 変形アシスト溝36は、例えばR溝(丸溝)であり、溝の断面形状が凹円弧状をなす。変形アシスト溝36の溝幅は、例えば、1.5mmである。下クランプ部33a(または上クランプ部32a)に設けられる変形アシスト溝36の数は、例えば、3本である。
 また、下アーム33は、下アーム33の径方向内側を向く面に配置される段部37を有する。具体的に、段部37は、下アーム33の径方向内側を向く面のうち、周方向一方側C1の端部に配置される。段部37が下アーム33の径方向内側を向く面から径方向外側に窪む深さは、周方向他方側C2へ向かうに従い深くなる。
 段部37は、周方向一方側C1を向く壁面37aと、径方向内側を向き、周方向他方側C2へ向かうに従い径方向外側に向けて延びる傾斜面37bと、を有する。
 図2及び図3に示すように、カムフォロア4は、ボディ1の上側に配置される。カムフォロア4は、コーンカム7の外周面と接触し、コーンカム7の外周面上を転動する。具体的に、カムフォロア4は、コーンカム7の外周面のうち、後述する大径転動面72、テーパ転動面73及び小径転動面71上を転動する。カムフォロア4は、コーンカム(カム)7と係合する。
 カムフォロア4は、周方向に並んで複数設けられる。本実施形態ではカムフォロア4が、周方向に互いに間隔をあけて6つ設けられる。
 カムフォロア4は、上下方向に延びる軸部41と、軸部41の下端部に回転自在に支持され、後述する付勢部材6の付勢力によりコーンカム7の外周面に押し付けられる転動体42と、を有する。
 軸部41は、シャフト中心軸Aと平行に延び、上アーム32の周方向一方側C1の端部に支持される。軸部41の下端部は、ボディ1の上面1aに、上側から隙間をあけて対向する。
 転動体42は、軸部41よりも外径寸法が大きい円環状であり、軸部41の中心軸と同軸に配置される。転動体42は、例えば転がり軸受等の軸受部材を介して、軸部41の下端部に取り付けられる。転動体42は、軸部41の中心軸回りに回転自在である。転動体42の下面は、ボディ1の上面1aと隙間をあけて対向する。
 図1、図3及び図4に示すように、成形ローラ5は、ボディ1の下側かつプレッシャーブロック2の径方向外側に配置される。成形ローラ5は、揺動軸3を介してカムフォロア4と連結されており、カムフォロア4の径方向への移動にともなって径方向に移動する。すなわち、キャッピングヘッド10は、揺動軸3をその軸(シャフト中心軸A)回りに回動させて成形ローラ5を径方向に揺動させる揺動手段を備えており、本実施形態ではこの揺動手段が、コーンカム7と、コーンカム7に係合するカムフォロア4と、揺動軸3をその軸回りに付勢する付勢部材6と、を有している。
 成形ローラ5は、カムフォロア4と同数とされて、周方向に並んで複数設けられる。本実施形態では成形ローラ5が、周方向に互いに間隔をあけて6つ設けられる。6つ(複数)の成形ローラ5は、中心軸O回りに等ピッチで配置される。なお、本実施形態でいう「中心軸O回りに等ピッチで配置される」とは、図4に示すように軸方向(下側)から見て、中心軸Oを中心として、周方向に隣り合う2つの成形ローラ5の各ローラ中心軸間に形成される中心角を定義した場合に、6つの中心角同士の差が、例えば5°以内であり、実質的に同等であることを意味する。成形ローラ5(具体的には、後述するローラ本体52)のロール直径は、例えば、φ26mmである。
 図1に示すように、成形ローラ5は、上下方向に延びるローラ軸51と、ローラ軸51に接続され、キャップ300の周壁301を押圧するローラ本体52と、ローラ付勢部53と、を有する。
 ローラ軸51は、下アーム33の周方向一方側C1の端部に、図示しない滑り軸受等の軸受部材を介して取り付けられる。ローラ軸51は、下アーム33に対して、ローラ軸51の中心軸(ローラ中心軸)回りに回転自在であり、かつ上下方向の所定範囲において移動可能とされる。
 ローラ本体52は、ローラ軸51よりも外径寸法が大きい円板状であり、ローラ軸51の中心軸と同軸に配置される。ローラ本体52は、ローラ軸51の下端部に接続される。ローラ本体52は、ローラ軸51と単一の部材により一体に形成される。ローラ本体52は、プレッシャーブロック2の底壁よりも下側に配置される。
 ローラ付勢部53は、圧縮コイルばね等の弾性部材である。ローラ付勢部53は、下アーム33に対して、ローラ軸51及びローラ本体52を上方付勢する。ローラ軸51及びローラ本体52は、ローラ付勢部53の付勢力に抗して、下側へ移動可能である。
 ローラ軸51の上部及びローラ付勢部53は、ボディ1のローラ軸収容ポケット19に収容される。
 図12に示すように、複数の成形ローラ5は、キャップ300の周壁301に、ネジ付き缶Bの口金部200と螺合するネジ部を成形する複数のネジ成形ローラ(ROローラ)5Aと、キャップ300の周壁301下端を口金部200に裾巻き成形する少なくとも1つの裾巻きローラ(PPローラ)5Bと、を含む。図1~図4に示すように、本実施形態では、ネジ成形ローラ5Aの数が4つであり、裾巻きローラ5Bの数が2つである。すなわち、ネジ成形ローラ5Aの数は、裾巻きローラ5Bの数よりも多い。ネジ成形ローラ5Aの数は、裾巻きローラ5Bの数の2倍である。ネジ成形ローラ5A及び裾巻きローラ5Bは、複数の支持軸31によりそれぞれ支持される。各ローラ5は、下アーム33を介して支持軸31に支持される。
 ネジ成形ローラ5Aは、特に図示しないが、キャップ300の周壁301を径方向内側へ押圧することにより、口金部200の雄ネジ部に倣う形状のネジ部(雌ネジ部)を成形する。周方向に隣り合うネジ成形ローラ5Aの各ローラ本体52の上下方向の位置は、互いにずらされている。すなわち、周方向に隣り合うネジ成形ローラ5A同士は、上下方向の位置が互いにずらされている。
 ネジ成形ローラ5Aがキャップ300の周壁301を押圧する成形先端荷重は、例えば、110N以下であり、より好ましくは100N以下であり、より望ましくは90N以下である。なお、本実施形態でいう「成形先端荷重」とは、ローラ本体52の外周縁のうち、キャップ周壁301と接触する接触点(先端)での荷重を意味する。
 ネジ成形ローラ5Aが支持軸31の軸(シャフト中心軸)A回りにキャップ300の周壁301を押圧するトルクは、例えば、3.0N・m以下であり、より好ましくは2.5N・m以下である。
 裾巻きローラ5Bは、キャップ300の周壁301下端を径方向内側へ押圧することにより、この周壁301下端を、口金部200の膨出部201の下部に倣う形状に裾巻き成形する(図17(c)等を参照)。複数の裾巻きローラ5Bの各ローラ本体52の上下方向の位置は、互いに同じである。すなわち、複数の裾巻きローラ5B同士は、上下方向の位置が互いに同一である。
 裾巻きローラ5Bがキャップ300の周壁301下端を押圧する成形先端荷重は、例えば、90N以下であり、より好ましくは80N以下であり、より望ましくは75N以下である。
 裾巻きローラ5Bが支持軸31の軸A回りにキャップ300の周壁301下端を押圧するトルクは、例えば、2.5N・m以下であり、より好ましくは2.0N・m以下である。
 図4に示すように、複数の裾巻きローラ5Bは、中心軸Oを中心として互いに回転対称となる位置に配置され、つまり周方向において等ピッチに配置される。本実施形態では2つの裾巻きローラ5Bが、中心軸Oを中心として互いに180°回転対称となる位置に配置される。このため、2つの裾巻きローラ5B以外の4つのネジ成形ローラ5A同士は、周方向において不等ピッチで配置される。
 図3に示すように、付勢部材6は、弾性変形可能な弾性部材である。本実施形態では付勢部材6が、支持軸31(揺動軸3)の軸回り(シャフト中心軸A回り)に螺旋状に延びるねじりコイルばねである。付勢部材6の内部には、支持軸31が挿通される。付勢部材6は、支持軸31(揺動軸3)の上下方向の一部を支持軸31の軸回りに囲う。具体的に、付勢部材6は、支持軸31のうち上下方向の中央部付近を、シャフト径方向の外側からシャフト中心軸A回りに囲う。
 付勢部材6は、ボディ本体11の本体孔部23aに配置されており、具体的には、収容孔部23cに配置(収容)される。付勢部材6は、開口部23e及び下側孔部23fにわたって配置されている。付勢部材6の内径寸法は、支持軸31の大径部31aの外径寸法よりも小さい。また付勢部材6の外径寸法は、ボディフランジ12のフランジ孔部23bの内径寸法よりも大きい。このため、付勢部材6は、上下方向において、大径部31aの上面とボディフランジ12の下面との間に挟まれるように配置される。
 付勢部材6の上下方向の両端部のうち、上端部は、ボディフランジ12の係止溝12aに係止される。また付勢部材6の下端部は、支持軸31の大径部31aに設けられた係止凹部に係止される。すなわち、付勢部材6の上端部はボディフランジ12に係止され、下端部は支持軸31(揺動軸3)に係止される。
 付勢部材6は、支持軸31をシャフト周方向に付勢することにより、揺動軸3が支持するカムフォロア4及び成形ローラ5を、径方向内側へ向けて付勢する。すなわち、付勢部材6は、揺動軸3を介して、カムフォロア4及び成形ローラ5を径方向内側へ向けて付勢する。
 付勢部材6は、周方向に並んで複数設けられる。付勢部材6の数は、揺動軸3の数と同数であり、カムフォロア4の数と同数であり、かつ成形ローラ5の数と同数である。本実施形態では付勢部材6が、周方向に互いに間隔をあけて6つ設けられる。各付勢部材6は、各貫通孔23に配置される。また、付勢部材6はその全体が、ボディ本体11の外周部に露出することなく、貫通孔23に収容される。
 コーンカム7は、小径転動面71と、大径転動面72と、テーパ転動面73と、逃げテーパ面74と、を有する。
 小径転動面71は、コーンカム7の外周面のうち最も小径とされる部分である。小径転動面71の外径寸法(直径寸法)は、上下方向に沿って一定である。
 大径転動面72は、コーンカム7の外周面の下端部に配置される。大径転動面72の外径寸法は、小径転動面71の外径寸法よりも大きい。
 テーパ転動面73は、コーンカム7の外周面のうち、上下方向において小径転動面71と大径転動面72との間に配置される。テーパ転動面73は、下側へ向かうに従い径方向外側に向けて延びるテーパ面状である。すなわち、テーパ転動面73は、下側へ向かうに従い拡径する。テーパ転動面73の上端部は、小径転動面71の下端部と滑らかに接続される。テーパ転動面73の下端部は、大径転動面72の上端部と滑らかに接続される。
 逃げテーパ面74は、コーンカム7の外周面のうち、小径転動面71の上側に配置される。逃げテーパ面74は、上側へ向かうに従い径方向外側に向けて延びるテーパ面状である。逃げテーパ面74の下端部は、小径転動面71の上端部と接続される。
 本実施形態では、逃げテーパ面74のうち少なくとも下側部分における上下方向に沿う単位長さあたりの径方向への変位量(つまり中心軸Oに対する傾き)が、テーパ転動面73の上下方向に沿う単位長さあたりの径方向への変位量よりも小さい。すなわち、逃げテーパ面74の中心軸Oに対する傾きは、テーパ転動面73の中心軸Oに対する傾きよりも小さい(緩やかである)。
 これにより、逃げテーパ面74の上下方向の長さが大きく確保されるため、特に図示しないが、コーンカム7がボディ1に対して下降端位置に配置された状態においても、カムフォロア4の軸部41及び上アーム32と、逃げテーパ面74と、の干渉は抑制される。
 次に、キャッピングヘッド10をコーンカム7に取り付ける方法(組立方法)について説明する。
 図4に示すように、本実施形態では、キャッピングヘッド10をコーンカム7に取り付けるときに、組付け用治具(セッティングブロック)60を用いる。組付け用治具60は、ボディ1の下側のプレッシャーブロック2を昇降シャフト81から取り外した状態で、複数の下アーム33の径方向内側に挿入して使用する。
 組付け用治具60は、中心軸Oを中心とする柱状である。組付け用治具60は、上下方向から見て、略星形をなす。組付け用治具60は、周方向に互いに間隔をあけて配置される複数の係止アーム61を有する。係止アーム61の数は、成形ローラ5の数と同数であり、本実施形態では6つである。
 組付け用治具60をキャッピングヘッド10に取り付ける際は、まず、組付け用治具60をキャッピングヘッド10の下側に配置し、特に図示しないが各係止アーム61を、周方向において、隣り合うローラ本体52同士の間にそれぞれ配置する。この状態から、組付け用治具60をボディ1へ向けて上方移動させることで、組付け用治具60がローラ本体52の上側にまで挿入される。
 次に、図示しない六角レンチ等の作業用工具を用いて、組付け用治具60を周方向他方側C2へ回転させる。これにより、係止アーム61の径方向外端部が下アーム33の径方向内側を向く面上を摺動しつつ、図5及び図6に示すように、段部37に係止される。またこのとき、係止アーム61によって下アーム33が径方向外側へ押されることで、付勢部材6の付勢力に抗して揺動軸3がシャフト周方向に回動し、カムフォロア4及び成形ローラ5が、径方向外側へ移動する。
 また、係止アーム61が、周方向一方側C1から段部37の壁面37aに接触することにより、組付け用治具60のそれ以上の周方向他方側C2へ向けた回転は規制される。
 このように複数のカムフォロア4が径方向外側へ移動させられた状態(開状態)において、これらカムフォロア4の径方向内側に、コーンカム7の下端部を挿入することが可能となる。
 図3に示すように、複数のカムフォロア4の径方向内側にコーンカム7を挿入したら、上述とは逆の手順により、キャッピングヘッド10から組み付け用治具60を取り外す。これにより、付勢部材6の付勢力によって揺動軸3がシャフト周方向に回動し、カムフォロア4及び成形ローラ5が径方向内側へ移動して、複数のカムフォロア4の各転動体42が、コーンカム7の外周面に接触する。
 キャッピングヘッド10をコーンカム7に取り付けた後は、ボディ1の収容筒16内にプレッシャーブロック2を挿入しつつ、プレッシャーブロック2を昇降シャフト81に取り付ける。
 次に、本実施形態のスピンドルアセンブリ80について詳しく説明する。
 図10に示すように、スピンドルアセンブリ80は、上下方向に延びる。スピンドルアセンブリ80の下端部には、キャッピングヘッド10が配置される。本実施形態のスピンドルアセンブリ80は、キャッピングヘッド10と、昇降シャフト81と、スピンドル85と、昇降筒90と、を備える。
 昇降シャフト81は、上下方向に延びる。昇降シャフト81の下端部には、プレッシャーブロック2が螺着等により取り付けられ、固定される(図11を参照)。
 昇降シャフト81は、中心軸Oを中心として上下方向に延びるシャフト部82と、昇降シャフト81を上下方向に移動させるアッパーカムフォロア83と、シャフト部82とアッパーカムフォロア83とを接続する接続アーム84と、を有する。
 スピンドル85は、中心軸Oを中心として上下方向に延びる筒状をなす。スピンドル85の内部には、昇降シャフト81のシャフト部82が挿入される。スピンドル85は、シャフト部82に対して中心軸O回りに回転可能である。スピンドル85の下端部には、ボディ1が螺着等により取り付けられ、固定される。
 このため、ボディ1は、プレッシャーブロック2に対して中心軸O回りに回転可能とされる。
 スピンドル85は、スピンドル85を中心軸O回りに回転させるスピンドルギア86を有する。スピンドルギア86は、中心軸Oを中心とする外歯歯車である。本実施形態ではスピンドルギア86が、スピンドル85の上端部に配置される。
 昇降筒90は、中心軸Oを中心として上下方向に延びる筒状をなす。昇降筒90の内部には、昇降シャフト81のシャフト部82及びスピンドル85が挿入される。本実施形態では昇降筒90が、スピンドルギア86よりも下側に配置される。昇降筒90は、昇降シャフト81及びスピンドル85に対して、上下方向に移動可能である。
 昇降筒90は、筒状をなすコーンカム7と、昇降筒90を上下方向に移動させるロワカムフォロア91と、を有する。
 コーンカム7は、昇降筒90の下端部に配置される。ロワカムフォロア91は、昇降筒90の上端部に配置される。
 次に、本実施形態のキャッピング装置120、及びこれを用いたキャッピング方法について説明する。
 図11に示すように、キャッピング装置120は、ターレット軸Tを中心とする装置基部125と、ターレット軸T回りに回転するターレット121と、ターレット121の外周部に配置されるスピンドルアセンブリ80と、スピンドルギア86と噛み合い、ターレット軸T回りに延びる固定ギア122と、ターレット軸T回りに延び、アッパーカムフォロア83が係合するアッパーカム123と、ターレット軸T回りに延び、ロワカムフォロア91が係合するロワカム124と、を備える。
 ターレット軸Tは、中心軸Oと平行であり、上下方向に延びる。ターレット121は、ターレット軸Tを中心とする略筒状である。なお図11においては、ターレット121のうち上端部のみを図示しており、上端部以外の部分の図示は省略している。ターレット121は、ターレット軸T回りに延びる軸受部材128などを介して、装置基部125に連結されている。ターレット121は、図示しない駆動モータ等により、装置基部125に対してターレット軸T回りに回転駆動される。
 本実施形態では、ターレット軸Tが延びる方向をターレット軸方向と呼ぶ。ターレット軸方向は、上下方向(Z軸方向)に相当する。
 ターレット軸Tと直交する方向をターレット径方向と呼ぶ。ターレット径方向のうち、ターレット軸Tに近づく方向をターレット径方向の内側と呼び、ターレット軸Tから離れる方向をターレット径方向の外側と呼ぶ。
 ターレット軸T回りに周回する方向をターレット周方向と呼ぶ。図12及び図13に示すように、本実施形態では、ターレット周方向のうち、ターレット121が回転する方向をターレット回転方向Rと呼び、これとは反対の回転方向を、ターレット回転方向Rとは反対側または反ターレット回転方向と呼ぶ。
 なお図12は、キャッピング装置120の外周部を平面上に展開して模式的に示す側面図であり、ネジ付き缶Bの口金部200にキャップ300を装着(キャッピング)する際の、スピンドルアセンブリ80及びキャッピングヘッド10の各動作を説明する図である。
 図11に示すように、スピンドルアセンブリ80は、ターレット121の外周部に、上下方向に移動可能に保持される。詳しくは、スピンドルアセンブリ80のうち昇降筒90の一部及び接続アーム84の一部が、ターレット121の外周部に配置される溝部(図示省略)に係合される。ターレット121の溝部は上下方向に延びており、スピンドルアセンブリ80は、ターレット121の溝部に保持された状態で、ターレット121に対して上下方向に摺動自在とされる。
 スピンドルアセンブリ80は、ターレット121の外周部に、ターレット軸T回りに並んで複数設けられる。複数のスピンドルアセンブリ80は、ターレット121の外周部に、ターレット軸T回りに等ピッチで配列する。スピンドルアセンブリ80の数は、例えば10個以上である。
 固定ギア122は、ターレット軸Tを中心とする円環板状の外歯歯車である。固定ギア122は、装置基部125に固定され、ターレット周方向に延びる。スピンドルギア86の上下方向の寸法は、固定ギア122の上下方向の寸法よりも大きい。このため、スピンドルアセンブリ80が上下方向に移動した場合でも、固定ギア122とスピンドルギア86との噛合状態は良好に維持される。
 アッパーカム123は、ターレット軸T回りの全周にわたって延びる環状の溝である。アッパーカム123は、装置基部125の外周面に設けられる。本実施形態ではアッパーカム123が、固定ギア122よりも上側に配置される。アッパーカム123は、ターレット軸T回りへ向かうに従い、上下方向の位置が変化する。
 図12に示すように、アッパーカム123は、ヘッド下降部123aと、水平部123bと、ヘッド上昇部123cと、を有する。ヘッド下降部123a、水平部123b及びヘッド上昇部123cは、ターレット回転方向Rに沿ってこの順に並ぶ。アッパーカム123は、ヘッド下降部123a、水平部123b及びヘッド上昇部123cの組を、1組のみ有する。
 ヘッド下降部123aは、ターレット回転方向Rへ向かうに従い下側に向けて延びる。
 水平部123bは、ヘッド下降部123aのターレット回転方向Rの端部に繋がり、ターレット回転方向Rに延びる。水平部123bの上下方向の位置は、ターレット回転方向Rに沿って一定である。
 ヘッド上昇部123cは、水平部123bのターレット回転方向Rの端部に繋がり、ターレット回転方向Rへ向かうに従い上側に向けて延びる。
 アッパーカム123と、アッパーカム123に係合するアッパーカムフォロア83と、によって、アッパーカム機構126が構成される。すなわち、キャッピング装置120は、アッパーカム機構126を備える。
 ロワカム124は、ターレット軸T回りの全周にわたって延びる環状の溝である。ロワカム124は、装置基部125の外周面に設けられる。本実施形態ではロワカム124が、固定ギア122よりも下側に配置される。ロワカム124は、ターレット軸T回りへ向かうに従い、上下方向の位置が変化する。
 ロワカム124は、前下降部124aと、第1水平部124bと、下降部124cと、成形部124dと、上昇部124eと、第2水平部124fと、後上昇部124gと、を有する。前下降部124a、第1水平部124b、下降部124c、成形部124d、上昇部124e、第2水平部124f及び後上昇部124gは、ターレット回転方向Rに沿ってこの順に並ぶ。ロワカム124は、前下降部124a、第1水平部124b、下降部124c、成形部124d、上昇部124e、第2水平部124f及び後上昇部124gの組を、1組のみ有する。すなわち、ロワカム124には、下降部124c、成形部124d及び上昇部124eの組が、1組のみ設けられる。
 前下降部124aは、ターレット回転方向Rへ向かうに従い下側に向けて延びる。前下降部124aのターレット周方向の位置は、ヘッド下降部123aのターレット周方向の位置と同じである。
 第1水平部124bは、前下降部124aのターレット回転方向Rの端部に繋がり、ターレット回転方向Rに延びる。第1水平部124bの上下方向の位置は、ターレット回転方向Rに沿って一定である。第1水平部124bのターレット周方向の位置は、水平部123bのうち反ターレット回転方向の端部におけるターレット周方向の位置と同じである。
 下降部124cは、第1水平部124bのターレット回転方向Rの端部に繋がり、ターレット回転方向Rへ向かうに従い下側に向けて延びる。
 成形部124dは、下降部124cのターレット回転方向Rの端部に繋がり、ターレット回転方向Rに延びる。成形部124dの上下方向の位置は、ターレット回転方向Rに沿って一定である。
 上昇部124eは、成形部124dのターレット回転方向Rの端部に繋がり、ターレット回転方向Rへ向かうに従い上側に向けて延びる。
 下降部124c、成形部124d及び上昇部124eのターレット周方向の位置は、水平部123bのうちターレット周方向の両端部間に位置する中間部分におけるターレット周方向の位置と同じである。
 第2水平部124fは、上昇部124eのターレット回転方向Rの端部に繋がり、ターレット回転方向Rに延びる。第2水平部124fの上下方向の位置は、ターレット回転方向Rに沿って一定である。第2水平部124fのターレット周方向の位置は、水平部123bのうちターレット回転方向Rの端部におけるターレット周方向の位置と同じである。
 後上昇部124gは、第2水平部124fのターレット回転方向Rの端部に繋がり、ターレット回転方向Rへ向かうに従い上側に向けて延びる。後上昇部124gのターレット周方向の位置は、ヘッド上昇部123cのターレット周方向の位置と同じである。
 ロワカム124と、ロワカム124に係合するロワカムフォロア91と、によって、ロワカム機構127が構成される。すなわち、キャッピング装置120は、ロワカム機構127を備える。
 スピンドルアセンブリ80がターレット121によってターレット軸T回りのターレット回転方向Rに回転させられていく過程において、アッパーカム機構126は、昇降シャフト81及びプレッシャーブロック2、並びに、スピンドル85及びボディ1を、上下方向に移動させる。すなわち、アッパーカム機構126は、キャッピングヘッド10を上下方向に移動させる。また、ロワカム機構127は、昇降筒90及びそのコーンカム7を、上下方向に移動させる。
 ここで、キャッピング装置120によってネジ付き缶Bの口金部200にキャップ300を装着(キャッピング)するプロセスについて、詳しく説明する。
 まず図12(a)、(b)に示すように、キャッピング装置120に導入されるネジ付き缶Bの口金部200に、成形前のキャップ300が供給され、被せられる。
 口金部200にキャップ300が被せられたネジ付き缶Bは、キャッピング装置120の外周部に沿うように搬送されつつ、図12(c)に示すように、スピンドルアセンブリ80のキャッピングヘッド10の直下に配置される。詳しくは、スピンドルアセンブリ80の中心軸Oと、ネジ付き缶Bの缶軸とが同軸に配置され、この配置関係のまま、図12(c)~図12(g)にわたって、スピンドルアセンブリ80及びネジ付き缶Bは、ターレット回転方向Rに移動する。
 図12(d)に示すように、スピンドルアセンブリ80のアッパーカムフォロア83が、アッパーカム123のヘッド下降部123aから水平部123bへと案内されることで、昇降シャフト81及びプレッシャーブロック2、並びに、スピンドル85及びボディ1が、下側に移動する(図10及び図11を参照)。また、スピンドルアセンブリ80のロワカムフォロア91が、ロワカム124の前下降部124aから第1水平部124bへと案内されることで、昇降筒90のコーンカム7が、ボディ1に追従して下側に移動する。
 このため、図12(c)から図12(d)にわたって、カムフォロア4の転動体42と、コーンカム7の大径転動面72との接触状態は維持される(図3を参照)。
 図12(d)において、プレッシャーブロック2は、キャップ300の頂壁を上側から押圧し、ネジ成形ローラ5A及び裾巻きローラ5Bは、キャップ300の周壁301に径方向外側から隙間をあけて対向する。
 図12(e)、(f)に示すように、ロワカムフォロア91が、ロワカム124の下降部124cから成形部124dへと案内されることで、昇降筒90のコーンカム7が、ボディ1に対して下側に移動する。この移動と付勢部材6の付勢力によって、カムフォロア4の転動体42がコーンカム7に接触する位置が、大径転動面72からテーパ転動面73へと変化し、さらにテーパ転動面73から小径転動面71へと変化する。
 これにより、各カムフォロア4が径方向内側に移動し、各カムフォロア4に各揺動軸3を介して連結される各成形ローラ5も、径方向内側に移動させられる。また、固定ギア122とスピンドルギア86が噛合した状態で、スピンドルアセンブリ80がターレット回転方向Rに移動させられることで、スピンドル85及びボディ1は、中心軸O回りに回転する。
 このため、ネジ成形ローラ5A及び裾巻きローラ5Bの各ローラ5は、キャップ300の周壁301に接触し、周壁301上を中心軸O(缶軸)回りに転動する。これにより、ネジ成形ローラ5Aは、キャップ300の周壁301に、口金部200の雄ネジ部と螺合するネジ部(雌ネジ部)を成形する。また、裾巻きローラ5Bは、キャップ300の周壁301下端を、口金部200の膨出部201の下部に裾巻き成形する。
 次いで、ロワカムフォロア91が、ロワカム124の成形部124dから上昇部124eへと案内されることで、昇降筒90のコーンカム7が、ボディ1に対して上側に移動する。この移動と付勢部材6の付勢力によって、カムフォロア4の転動体42がコーンカム7に接触する位置が、小径転動面71からテーパ転動面73へと変化し、さらにテーパ転動面73から大径転動面72へと変化する。
 これにより、各カムフォロア4が径方向外側に移動し、各カムフォロア4に各揺動軸3を介して連結される各成形ローラ5も、径方向外側に移動させられる。このため、ネジ成形ローラ5A及び裾巻きローラ5Bの各ローラ5は、キャップ300の周壁301から径方向外側に離れる。
 図12(g)に示すように、アッパーカムフォロア83が、アッパーカム123の水平部123bからヘッド上昇部123cへと案内されることで、昇降シャフト81及びプレッシャーブロック2、並びに、スピンドル85及びボディ1が、上側に移動する(図10及び図11を参照)。これにより、プレッシャーブロック2が、キャップ300の頂壁から上側に離れる。また、ロワカムフォロア91が、ロワカム124の第2水平部124fから後上昇部124gへと案内されることで、昇降筒90のコーンカム7が、ボディ1に追従して上側に移動する。
 このようにして、ネジ付き缶Bの口金部200にキャップ300がキャッピングされ、ネジ付き缶Bが密封される。そして本実施形態では、ネジ成形ローラ5A及び裾巻きローラ5Bの各ローラ5が、キャップ300の周壁301に接触し、周壁301上を転動し、周壁301から離れるまでの一連の動作が、1回とされる。すなわち、キャッピング装置120は、シングルアクションによるキャッピングを行う。
 また本実施形態では、各ローラ5が、キャップ300の周壁301に接触し、周壁301上を転動し、周壁301から離れるまでの一連の動作(シングルアクション)の間に、各ローラ5(ネジ成形ローラ5A及び裾巻きローラ5B)がキャップ周壁301上を、キャップ中心軸(缶軸)回りに2周する。
 なお上述したように、キャッピングヘッド10は、プレッシャーブロック2と、ネジ成形ローラ5Aと、裾巻きローラ5Bと、を備えており、スピンドルアセンブリ80は、このキャッピングヘッド10を備えている。このため本実施形態においては、スピンドルアセンブリ80が、プレッシャーブロック2と、ネジ成形ローラ5Aと、裾巻きローラ5Bと、を備えている、と言い換えてもよい。
 詳しくは、スピンドルアセンブリ80は、キャッピングヘッド10に配置され、アッパーカムフォロア83の下側への移動にともない、キャップ300の頂壁を押さえるプレッシャーブロック2と、キャッピングヘッド10に設けられ、ロワカムフォロア91の下側への移動にともないキャップ300の周壁301に接触し、周壁301に口金部200と螺合するネジ部を成形する複数のネジ成形ローラ5Aと、キャッピングヘッド10に設けられ、ロワカムフォロア91の下側への移動にともないキャップ300の周壁301に接触し、周壁301の下端を口金部200に裾巻き成形する少なくとも1つの裾巻きローラ5Bと、を備える。
 次に、本実施形態のキャッピングシステム100について説明する。
 図13に示すように、キャッピングシステム100は、ネジ付き缶Bに飲料等の内容物を充填するフィラー(充填機)110と、フィラー110から排出されたネジ付き缶Bが供給されるキャッピング装置120と、を備える。
 図13に示す符号130は、従来のキャッピング装置130のレイアウトを表す。従来では、フィラー110から排出されてキャッピング装置130へ向かうネジ付き缶Bの搬送方向Eが、上面視で湾曲している。
 これに対し、本実施形態では、フィラー110から排出されてキャッピング装置120へ向かうネジ付き缶Bの搬送方向Dが、ターレット軸方向から見て(つまり上面視で)、ターレット121の外周部の接線に沿うように延びる。
 以上説明した本実施形態では、ボディ本体11が円筒状の外周壁(外周面1c)を有しており、つまりボディ本体11が円筒状をなしており、ボディ1の外形形状がシンプルに構成されている。またボディ1には、ボディ1を上下方向に貫通して貫通孔23が設けられており、この貫通孔23には、成形ローラ5を揺動させる揺動軸3が挿通されている。また、貫通孔23が設けられる揺動軸収納部18は、スピンドル取付部15の周囲に配置されている。本実施形態のキャッピングヘッド10のボディ1は、円筒状のボディ本体11と、スピンドル85に装着されるスピンドル取付部15と、貫通孔23が配置される揺動軸収納部18とを備えたシンプルな構成であるため、ボディ1の形状が複雑になることを抑えてボディ1の構造を簡素化しつつも、その剛性が高められている。特に、本実施形態のようにボディ本体11、スピンドル取付部15及び揺動軸収納部18が互いに連結されていると、上述の作用効果がより高められることになる。ボディ本体11、スピンドル取付部15及び揺動軸収納部18が、単一の部材により一体に形成されていると、より好ましい。
 また、揺動軸3の上下方向の両端部には、カムフォロア4と成形ローラ5とが連結されており、ボディ1の貫通孔23には、揺動軸3のうち上下方向の両端部間に位置する中間部分と、この中間部分に外挿される付勢部材6と、が収納されている。付勢部材6は、揺動軸3の一部(中間部分)をその軸回りに囲うように設けられて、貫通孔23に収容されている。
 本実施形態によれば、揺動軸3の一部(中間部分)及び付勢部材6(以下、付勢部材6等と呼ぶ)がボディ1の内部に収容される構成であるため、従来のように、付勢部材等をボディの外周部に露出した状態で配置するために設けられる切り欠き状の凹部等は不要となる。このため本実施形態では、ボディ1をシンプルな形状で構成することが可能になり、製造が容易である。また、ボディ1の形状を簡素化することで、ボディ1の強度を高めることができる。
 さらに、付勢部材6等がボディ1内に収容されることで、ボディ1の外部から飛散する飲料等の内容物(特に固化しやすい糖分等)が、付勢部材6等に付着することを抑制できる。このため、付勢部材6等の性能(機能)を長期にわたり良好に維持することができ、かつ、メンテナンス性もよい。
 また、ボディ1の剛性が高められることにより、ボディ1を例えば、ジュラルミン等のアルミニウム合金や、エンジニアリングプラスチック、及びFRP(繊維強化プラスチック)等の樹脂材料(複合樹脂材料を含む)など、従来のボディを構成していたステンレス等と比べて、比重の小さい素材で構成することが可能になる。したがって、キャッピングヘッド10の軽量化を図りやすい。なお、本実施形態のように、ボディ本体11にスピンドル取付部15及び揺動軸収納部18が一体に設けられた一体型のボディ本体11であれば、ボディ本体11の剛性を確保しつつ、肉抜き等によってボディ本体11をより軽量化することが容易である。
 以上より、本実施形態のキャッピングヘッド10のボディ1、キャッピングヘッド10、並びに、これを備えるスピンドルアセンブリ80及びキャッピング装置120によれば、ボディ1の形状を簡素化でき、ボディ1の強度を高めることができ、軽量化を図ることが可能である。
 また本実施形態では、付勢部材6の全体が、ボディ本体11の外周部に露出することなく、貫通孔23に収容されている。
 この場合、付勢部材6を貫通孔23に収容したことによって得られる上述の作用効果が、より顕著なものとなる。
 また本実施形態では、貫通孔23が、周方向に互いに間隔をあけて複数設けられ、各貫通孔23は、ボディ本体11の上端面11aに開口する開口部23eを有し、開口部23eの周方向に沿う寸法が、径方向内側へ向かうに従い小さくなる。また開口部23eは、上面視で三角形孔状をなしている。
 この場合、揺動軸収納部18のうち、周方向に隣り合う貫通孔23同士の間に位置する部分(フレーム28)の周方向寸法(すなわち肉厚寸法)が、径方向の各位置でばらつきにくくなり、フレーム28の強度が安定して高められる。このため、周方向に並ぶ貫通孔23同士の間隔を小さく抑えつつ、ボディ1の強度を確保することができる。キャッピングヘッド10のさらなるコンパクト化や軽量化を図ることができる。
 また本実施形態では、ボディ1が、ボディ1の上面1aから下側に窪み、コーンカム7の少なくとも下端部を収容するボディ凹部13を有している。また、開口部23eの径方向内端部が、ボディ凹部13の内周面13bに開口する。
 この場合、ボディ1の上面1aに開口するボディ凹部13に、コーンカム7の少なくとも下端部が挿入されることで、コーンカム7とボディ1とを上下方向により近づけて配置することができる。これにより、ボディ1の上下方向の寸法を小さく抑えて、コンパクト化及び軽量化を図ることができる。さらに、貫通孔23の開口部23eが、ボディ凹部13の内周面13bにまで達しており、開口部23eが大きく形成されている。したがって、この開口部23eによってもボディ1のさらなる軽量化を図ることができる。
 また本実施形態では、貫通孔23が、ボディ本体11を上下方向に貫通する本体孔部23aと、ボディフランジ12を上下方向に貫通するフランジ孔部23bと、を有し、付勢部材6は、本体孔部23aに配置される。
 この場合、本体孔部23aに付勢部材6を配置し、ボディ本体11の上端部にボディフランジ12を固定することで、付勢部材6を簡単にボディ1の内部に収容することができる。キャッピングヘッド10の製造が容易である。
 また本実施形態では、支持軸31(揺動軸3)が、フランジ孔部23bと軸受孔部23dとに設けられる一対の軸受部材24,25を介して、ボディ1に回転自在に支持される。
 この場合、ボディ1の上端部に配置されるフランジ孔部23bと、ボディ1の下端部に配置される軸受孔部23dとに設けられ、上下方向に離れて配置される一対の軸受部材24,25によって、支持軸31(揺動軸3)が安定して軸支される。
 また本実施形態では、付勢部材6が、支持軸31(揺動軸3)の軸回りに螺旋状に延びるねじりコイルばねであり、付勢部材6の上端部はボディフランジ12に係止され、下端部は支持軸31に係止される。
 上記構成によれば、付勢部材6の上端部をボディフランジ12に係止し、下端部を支持軸31(揺動軸3)に係止することで、所望の付勢力を付与しつつ付勢部材6を簡単にボディ1内部に組み付けることができる。
 また本実施形態では、貫通孔23が、付勢部材6と同数とされて、周方向に並んで複数設けられる。
 この場合、各貫通孔23に、各付勢部材6を収容することができる。すなわち、1つの貫通孔23に、1つの付勢部材6を配置できる。このため、貫通孔23をシンプルに構成することができ、ボディ1の製造がより容易になるとともに、剛性がより高められる。
 また、ボディ1の少なくとも一部が、アルミニウム合金製、エンジニアリングプラスチック製、及びFRP製のいずれかである。なお、エンジニアリングプラスチック製の場合の好ましい例としては、PEEK(ポリエーテルエーテルケトン)製などが挙げられる。
 この場合、ボディ1の剛性を確保しつつ、従来のステンレス製等のボディと比べて、ボディ1の軽量化を図ることができる。
 具体的に、本実施形態では、キャッピングヘッド10のコンパクト化及び軽量化が図られた結果、下記の処理性能が得られることがわかった。
 特に図示しないが、例えば、従来の4ロールタイプ(成形ローラが4つ)のキャッピングヘッドを備えたスピンドルアセンブリ、該スピンドルアセンブリを10個備えたキャッピング装置、及び該キャッピング装置を備えたキャッピングシステムにおいては、ネジ付き缶のキャッピング処理速度が、最大300cpmであった。なお「cpm」とは、1分間あたりの処理缶数(キャッピング缶数)を表す単位である。
 これに対し、本実施形態の6ロールタイプ(成形ローラ5が6つ)のキャッピングヘッド10を備えたスピンドルアセンブリ80、該スピンドルアセンブリ80を10個備えたキャッピング装置120、及び該キャッピング装置120を備えたキャッピングシステム100では、ネジ付き缶Bのキャッピング処理速度が、最大600cpmにまで高められた。
 また、本実施形態のキャッピングヘッド10では、カムフォロア4の転動体42が、軸部41の下端部に回転自在に支持されている。このため、従来のキャッピングヘッドと比べて、転動体42をボディ1の上面1aに近づけて配置することができる。この構成を従来のキャッピングヘッドに適用した場合、コーンカムの下端部がボディの上面と接触するおそれがあるが、本実施形態では、ボディ1にボディ凹部13が設けられている。すなわち、ボディ凹部13にコーンカム7の少なくとも下端部を収容できるため、コーンカム7とボディ1とを上下方向に近づけて配置しつつも、これら部材同士の接触(干渉)は防止される。
 このため、キャップ300を成形するプレッシャーブロック2及び成形ローラ5と、コーンカム7とを、上下方向により近づけて配置することが可能になり、ボディ1の上下方向の寸法を小さく抑えることができる。
 したがって本実施形態のキャッピングヘッド10、スピンドルアセンブリ80及びキャッピング装置120によれば、キャッピングヘッド10の外形をコンパクトに抑えて軽量化を図ることができ、キャッピングの処理速度を高めて、生産効率を向上することが可能である。
 また本実施形態では、ボディ凹部13の内径寸法d1が、コーンカム7のうちカムフォロア4が接触する下端部の外径寸法d2よりも大きい。
 上記構成により、ボディ凹部13の内部にコーンカム7の下端部を確実に挿入できる。
 また本実施形態では、スピンドル取付部15が、有底穴状をなすボディ凹部13の底部に配置される。
 この場合、ボディ凹部13を設けることでボディ1のコンパクト化及び軽量化を図りつつ、ボディ凹部13の底部に設けたスピンドル取付部15に対して、スピンドル85を安定して取り付けることができる。
 また本実施形態では、ボディ凹部13の内径寸法d1が、スピンドル取付部15の直径寸法よりも大きい。
 この場合、ボディ凹部13の内周面13bと、スピンドル取付部15との間に、径方向において間隔をあけることができる。例えば、この間隔に、下降端位置とされたコーンカム7の下端部の一部を収容することとすれば、ボディ1のさらなるコンパクト化を図ることが可能になる。
 また本実施形態では、コーンカム7のうちカムフォロア4が接触する上端位置から下端位置までの上下方向の寸法を成形寸法Hとして、ボディ凹部13の上下方向の深さ寸法hが、1.58H以下である。
 ボディ凹部13の上下方向の深さ寸法hが、h≦1.58Hとされていれば、ボディ凹部13を形成することで上述の作用効果が得られつつも、ボディ1の剛性が十分に確保される。
 また本実施形態では、ボディ凹部13が、ボディフランジ12からボディ本体11にわたって上下方向に延びる穴状をなしており、下降端位置とされたコーンカム7がボディ凹部13内に挿入される上下方向の寸法は、ボディフランジ12の上下方向の寸法Lと同じかそれ以上とされている。
 この場合、下降端位置とされたコーンカム7がボディ凹部13内に入り込む上下方向の寸法(コーンカム入り込み量)が、ボディフランジ12の上下方向の寸法Lと同等以上である。コーンカム7のボディ凹部13内への挿入寸法が十分に確保されるため、その分、ボディ1をよりコンパクト化及び軽量化することができる。
 また本実施形態では、成形ローラ5が6つ設けられており、ネジ成形ローラ5Aの数が裾巻きローラ5Bの数よりも多い。
 上記構成のように、ネジ成形ローラ5Aの数が多いと、ネジ成形ローラ5A1つあたりの成形荷重(押圧力)を小さく抑えることができる。このため、ネジ付き缶Bを薄肉化した場合でも、ネジ成形加工にともなう口金部200の変形をより安定して抑制できる。
 また本実施形態では、キャッピングヘッド10にネジ成形ローラ5Aが4つ設けられ、裾巻きローラ5Bが2つ設けられる。これにより、キャッピングの成形加工精度を安定して高めることができる。
 また本実施形態では、周方向に隣り合うネジ成形ローラ5A(のローラ本体52)同士の各上下方向の位置が、互いにずらされている。
 この場合、周方向に隣り合うネジ成形ローラ5A同士のキャップ300の周壁301に対する各成形箇所が、上下方向にずらされることにより、キャップ周壁301の同一箇所(特にネジ開始位置であるアッパーグルーブ付近)でのネジ成形量が過大となるような不具合を抑制できる。ネジ成形量が上下方向の各位置でばらつくことが抑えられて、ネジ成形量が上下方向において均等化される。
 また、隣り合うネジ成形ローラ5Aが上下方向にずらされて配置されるため、これらのネジ成形ローラ5A同士を干渉させずにより近づけて配置することが可能となる。これにより、キャッピングヘッド10の外径寸法を小さく抑えることが可能になり、さらなるコンパクト化及び軽量化を図ることができる。
 また本実施形態では、ボディ1のスピンドル取付部15が、径方向から見てボディ凹部13と重なる。
 上記構成のように、スピンドル取付部15とボディ凹部13とが径方向から見て重なって配置されることで、ボディ1の上下方向の寸法をより小さく抑えることができる。
 また本実施形態では、ボディ1が、上下方向に延びる付勢部材収容孔(貫通孔)23を有しており、付勢部材6は、付勢部材収容孔23に配置される。
 この場合、ボディ1を上下方向に繰り抜くように設けられる付勢部材収容孔23に、付勢部材6が収容される。このため、ボディ1の剛性を高く維持しつつ、付勢部材6をその周囲から覆うことができる。また、後述する本実施形態の第2変形例のように、ボディ1にポケット11e及びポケット11eを覆う別体のカバー8を設ける場合と比べて、ボディ1に付勢部材収容孔23を切削する加工は複雑ではないため、ボディ1の製造が容易となる。なお、本実施形態のように一体型のボディ本体11であれば、ボディ本体11の剛性を確保しつつ、肉抜き等によってボディ本体11をより軽量化することが容易である。
 また本実施形態では、スカート部11hによって、複数の支持突片17、複数のローラ軸収容ポケット19、収容筒16及びプレッシャーブロック2の一部等が、装置外部に露出することが抑えられる。このため、装置の美観性が高められる。
 また、スカート部11hと複数の支持突片17とが、互いに接続される。このため各支持突片17の剛性が増し、各支持突片17に軸受部材24を介して支持される各支持軸31が、シャフト中心軸Aを中心に精度よく回動する。このため、各支持軸31に連結された各成形ローラ5によって、キャップ周壁301をより高精度に成形加工できる。
 また本実施形態では、ボディ1の下面1bから下側に突出する収容筒16に、プレッシャーブロック2の一部が収容される。
 この場合、収容筒16にプレッシャーブロック2の一部を収容することで、ボディ1の内部にプレッシャーブロック2の収容スペース(挿入スペース)を設ける必要がなくなり、ボディ1の下面1bとボディ凹部13との間の上下方向の寸法をさらに小さく抑えることが可能となる。このため、ボディ1のさらなるコンパクト化及び軽量化を図ることができる。
 また本実施形態では、ボディ1が、支持突片17と収容筒16との間、及び、周方向に隣り合う支持突片17同士の間に、それぞれ肉抜き部を有している。
 このため、ボディ1のさらなる軽量化を図ることができる。
 また本実施形態では、揺動軸3の上クランプ部32a及び下クランプ部33aの少なくとも一方に、変形アシスト溝36が設けられている。
 この場合、上クランプ部32aまたは下クランプ部33a(以下、単にクランプ部と呼ぶ場合がある)の周面(クランプ部周面)に、上下方向に延びる変形アシスト溝36が設けられることで、クランプ部が支持軸31の外周面を押圧する向き(シャフト径方向の内側)に変形しやすくなる。これにより、支持軸31の外径寸法(直径寸法)を小さく抑える(つまり支持軸31を細くする)ことが可能になり、これに応じて、キャッピングヘッド10全体としての外径寸法も小さく抑えることができるため、さらなる軽量化を図ることが可能となる。
 また本実施形態では、下アーム33の径方向内側を向く面に、段部37が形成されている。
 この場合、組付け用治具60を用いて、付勢部材6の付勢力に抗して、カムフォロア4及び成形ローラ5を径方向外側に移動させた状態(開状態)で、下アーム33の段部37に係止アーム61を係止させることにより、開状態を安定して維持できる。周方向に並ぶ複数のカムフォロア4の径方向内側に、コーンカム7を安定して挿入することができ、キャッピングヘッド10とコーンカム7との組み付け作業が容易となる。
 また、本実施形態のキャッピングシステム100は、フィラー110から排出されてキャッピング装置120へ向かうネジ付き缶Bの搬送方向Dが、ターレット軸T方向から見て、ターレット121の外周部の接線に沿うように延びる。
 本実施形態のキャッピングシステム100によれば、フィラー110から排出されたネジ付き缶Bが、搬送される向きを急激に変えられることなく、つまり遠心力の影響を受けにくくされつつ、キャッピング装置120にスムーズに供給される。このため、キャッピングの処理速度を安定して高めることができ、生産効率をより向上できる。
 ここで、本実施形態の他の課題及びその解決手段等について説明する。
 特開2003-146392号公報(以下、周知文献1と呼ぶ)のキャッピング装置は、コーンカムがロワカム用のガイドバーの1段下降部にガイドされて下降することで、ROローラ(ネジ成形ローラ)及びPPローラ(裾巻きローラ)がキャップの周壁に押し付けられる。その後、コーンカムは前記ガイドバーの上段部にガイドされて一旦上昇し、これによりROローラとPPローラのキャップに対する接触状態は一旦解除される。さらにその後、コーンカムが前記ガイドバーの2段下降部にガイドされて再び下降し、ROローラ及びPPローラがキャップの周壁に再び押し付けられる。
 詳しくは、周知文献1のキャッピング装置における巻締め方法では、ROローラとPPローラがキャップを一度巻締めることによってねじ部及びテンパーエビデンス部(裾巻き部)を形成する第1巻締工程と、その後、再び第1巻締工程と同様に巻締めする第2巻締工程とが実行される。すなわち、周知文献1では、ROローラ及びPPローラが、キャップの周壁に接触し、周壁上を転動し、周壁から離れるまでの一連の動作が2回とされた、ダブルアクションによるキャッピングが行われている。
 このように従来では、ダブルアクションによって、ねじ部及びテンパーエビデンス部の成形性を確保している。
 この種のネジ付き缶においては、コスト削減等のために薄肉化(軽量化)が求められている。しかしながら、周知文献1の図10に示されるように、4つのROローラ同士を周方向に等ピッチで配置し、2つのPPローラ同士を周方向に等ピッチで配置する場合、薄肉化した口金部が、キャッピング時の横荷重によって缶軸と垂直な断面視で楕円形状等に変形しやすい。
 また、この種のキャッピング装置では、ネジ成形の精度やテンパーエビデンス部の成形(裾巻き成形)の精度を良好に確保しつつ、装置のコンパクト化を図ることや、キャッピングの処理速度を高めて生産効率を向上することが求められている。
 本実施形態は、キャッピング時の口金部の変形を抑制して薄肉化を図ることができ、キャップの成形精度を良好に確保でき、かつ、装置のコンパクト化を図ったり、キャッピングの処理速度を高めて生産効率を向上することが可能なキャッピング装置及びキャッピングシステムを提供することを他の目的とする。
 本実施形態のキャッピング装置120によれば、スピンドルアセンブリ80のキャッピングヘッド10に、4つのネジ成形ローラ5A及び2つの裾巻きローラ5Bを含む計6つのローラ5が、中心軸O回りに等ピッチで配置されている。キャッピング時に、ネジ付き缶Bの口金部200が、中心軸O(缶軸)回りの周方向において均等に6つのローラ5によって押圧されるため、口金部200が横断面視で楕円形状等に変形することが抑制される。
 これにより、ネジ付き缶Bの薄肉化(特に口金部200の薄肉化)を図ることが可能になるとともに、口金部200の肉厚に応じたキャップ周壁301の薄肉化も可能となる。このため、ネジ付き缶Bの軽量化及びコスト削減を図ることができる。そして、各ローラ5がキャップ300を成形加工する動作が1回(シングルアクション)に抑えられても、ネジ成形及び裾巻き成形の各成形量(加工精度)を良好に確保することができる。
 キャッピングをシングルアクションにすることで、ターレット軸T回りに延びるロワカム124の周長(全長)を短く抑えることが可能になり、ターレット121の直径(ターレット径)を小さく抑えて、装置のコンパクト化を図ることができる。
 あるいは、従来のダブルアクションタイプのキャッピング装置と比べて、本実施形態のシングルアクションタイプのキャッピング装置120では、ターレット径が同じ場合、ターレット121のターレット軸T回りの回転速度を大幅に高めることができる。
 以上より本実施形態によれば、キャッピング時の口金部200の変形を抑制して薄肉化を図ることができ、キャップ300の成形精度を良好に確保でき、かつ、装置のコンパクト化を図ったり、キャッピングの処理速度を高めて生産効率を向上することが可能である。
 また本実施形態では、ネジ成形ローラ5Aがキャップ300の周壁301を押圧する成形先端荷重が、110N以下であり、裾巻きローラ5Bがキャップ300の周壁301下端を押圧する成形先端荷重が、90N以下である。
 上記構成のように、ネジ成形ローラ5Aの成形先端荷重が110N以下とされ、裾巻きローラ5Bの成形先端荷重が90N以下とされることで、キャッピング時に口金部200に作用する横荷重(缶軸と直交する径方向からの荷重)が十分に小さく抑えられる。薄肉化した口金部200であっても、キャッピング時の変形が安定して抑制される。また、このように各ローラ5の成形先端荷重が小さいにも関わらず、本実施形態ではシングルアクションによって、従来のダブルアクションタイプのキャッピング装置と同等のキャッピング性能(ねじ深さ寸法や裾巻き寸法等)を得ることができる。
 なお、上述の作用効果を安定して得るために、ネジ成形ローラ5Aがキャップ300の周壁301を押圧する成形先端荷重は、より好ましくは100N以下であり、より望ましくは90N以下である。また、裾巻きローラ5Bがキャップ300の周壁301下端を押圧する成形先端荷重は、より好ましくは80N以下であり、より望ましくは75N以下である。
 また本実施形態では、ネジ成形ローラ5Aが支持軸31の軸A回りにキャップ300の周壁301を押圧するトルクが、3.0N・m以下であり、裾巻きローラ5Bが支持軸31の軸A回りにキャップ300の周壁301下端を押圧するトルクが、2.5N・m以下である。
 上記構成のように、ネジ成形ローラ5Aの支持軸31回りのトルクが3.0N・m以下とされ、裾巻きローラ5Bの支持軸31回りのトルクが2.5N・m以下とされることで、キャッピング時に口金部200に作用する横荷重が十分に小さく抑えられる。薄肉化した口金部200であっても、キャッピング時の変形が安定して抑制される。また、このように各ローラ5のトルクが小さいにも関わらず、本実施形態ではシングルアクションによって、従来のダブルアクションタイプのキャッピング装置と同等のキャッピング性能(ねじ深さ寸法や裾巻き寸法等)を得ることができる。
 なお、上述の作用効果を安定して得るために、ネジ成形ローラ5Aが支持軸31の軸A回りにキャップ300の周壁301を押圧するトルクは、より好ましくは2.5N・m以下である。また、裾巻きローラ5Bが支持軸31の軸A回りにキャップ300の周壁301下端を押圧するトルクは、より好ましくは2.0N・m以下である。
 また本実施形態では、ロワカム124に、下降部124c、成形部124d及び上昇部124eの組が、1組のみ設けられる。
 この場合、ロワカムフォロア91がロワカム124の下降部124cに案内されることで下側に移動し、これにともない、ネジ成形ローラ5A及び裾巻きローラ5Bが、キャップ300の周壁301に接触する。また、ロワカムフォロア91がロワカム124の成形部124dに案内される間に、ネジ成形ローラ5Aがキャップ300の周壁301にネジ部を成形し、裾巻きローラ5Bがキャップ300の周壁301下端を裾巻き成形する。また、ロワカムフォロア91がロワカム124の上昇部124eに案内されることで上側に移動し、これにともない、ネジ成形ローラ5A及び裾巻きローラ5Bが、キャップ300の周壁301から離れる。各ローラ5の作用によって、キャップ300の周壁301が良好に成形される。
 また本実施形態では、ネジ成形ローラ5Aが、キャッピングヘッド10に4つ設けられる。
 この場合、ネジ成形ローラ5Aの数が多く確保されているため、各ネジ成形ローラ5Aがキャップ300にネジ部を成形する動作が1回(シングルアクション)に抑えられても、ネジ成形の精度を良好に維持することができる。
 なお、本発明は前述の実施形態に限定されず、例えば下記に説明するように、本発明の趣旨を逸脱しない範囲において構成の変更等が可能である。なお、変形例の図示においては、前述の実施形態と同じ構成要素には同一の符号を付し、下記では主に異なる点について説明する。
 図14及び図15は、前述の実施形態で説明したキャッピングヘッド10のボディ1の第1変形例を模式的に表す断面図である。具体的に、図14は、中心軸Oと垂直なボディ1の横断面図を示しており、図15は、中心軸Oに沿うボディ1の縦断面図を示している。
 図14及び図15に示す第1変形例では、ボディ1が、2重筒構造を有する。すなわち、ボディ1は、外筒部26と、外筒部26の径方向内側に嵌合する内筒部27と、を有する。外筒部26は、中心軸Oを中心として上下方向に延びる円筒状である。内筒部27は、中心軸Oを中心として上下方向に延びる円筒状である。この変形例においても、揺動軸収納部18は、ボディ本体(ボディ1)の外周部と内周部との間に配置されている。
 貫通孔23は、外筒部26及び内筒部27のうち、少なくとも内筒部27に配置される。具体的に、図示の例では、貫通孔23が、内筒部27及び外筒部26にわたって配置されている。より詳しくは、ボディ本体11の円筒状の外周壁は、外筒部26に配置され、スピンドル取付部15は、内筒部27に配置され、貫通孔23が設けられる揺動軸収納部18は、外筒部26及び内筒部27にわたって配置される。そして、ボディ本体11、スピンドル取付部15及び揺動軸収納部18は、互いに連結されて、一体に固定されている。
 このような第1変形例によっても、前述の実施形態と同様の作用効果を得ることができる。
 図18及び図19は、前述の実施形態で説明したキャッピングヘッド10の第2変形例を示している。図18及び図19に示すように、この第2変形例では、キャッピングヘッド10が、筒状のカバー8を備える。また、ボディ1は、ポケット11eと、ピン挿入穴11fと、係止ピン11gと、を有する。この第2変形例では、ボディ1がスカート部11hを有していない。
 図19に示すように、ポケット11eは、ボディ1の外周面1cから径方向内側に窪み、上下方向に延びる凹状である。ポケット11eは、周壁部11cの外周面から径方向内側に窪む部分と、この部分の下側に連なり、支持突片17の外周面のうち上側部分から径方向内側に窪む部分と、を有する。ポケット11eは、特に図示しないが、周方向に並んで複数設けられる。ポケット11eの数は、支持部材(揺動軸)3の数と同数であり、かつ付勢部材6の数と同数である。
 支持軸31のうち、上下方向においてボディフランジ12と支持突片17(の下側部分)との間に位置する中間部分は、ポケット11eに配置される。また、各付勢部材6は、各ポケット11eに収容される。
 ピン挿入穴11fは、支持突片17の下側部分の外周面に開口し、径方向に延びる。ピン挿入穴11fは、例えば円穴状である。ピン挿入穴11fは、周方向に互いに間隔をあけて複数設けられる。
 係止ピン11gは、ピン挿入穴11fに挿入される。係止ピン11gは、径方向に延びる柱状または筒状であり、本実施形態では、例えば円筒状である。係止ピン11gは、ピン挿入穴11fに嵌合により固定されてもよいし、螺合により固定されてもよいし、接着等により固定されてもよい。係止ピン11gは、ピン挿入穴11fから径方向外側に突出する部分を有する。すなわち、係止ピン11gは、支持突片17の外周面よりも径方向外側に出っ張る部分を有する。係止ピン11gは、周方向に互いに間隔をあけて複数設けられる。係止ピン11gは、例えば、周方向に等ピッチで3つ以上設けられる。
 カバー8は、中心軸Oを中心とする円筒状であり、上下方向に延びる。図18及び図19に示すように、カバー8は、ボディ1を径方向外側から周方向全周にわたって囲う。具体的に、カバー8は、ボディ本体11とボディフランジ12とを、径方向外側から周方向全周にわたって囲う。また、カバー8は、周壁部11cと、底壁部11dと、複数のポケット11eと、複数の付勢部材6と、複数の支持突片17と、複数のローラ軸収容ポケット19と、収容筒16と、プレッシャーブロック2の一部と、を径方向外側から囲う。またカバー8は、各支持部材3のうちポケット11eに配置される部分(支持軸31の中間部分)を、径方向外側から覆う。
 カバー8は、係止凹部8aを有する。係止凹部8aは、カバー8の周壁を径方向に貫通し、上下方向に延びる。係止凹部8aは、切り欠き状またはスリット状の凹部である。係止凹部8aは、カバー8の外周面、内周面及び下端面に開口する。係止凹部8aは、周方向に互いに間隔をあけて複数設けられる。係止凹部8aは、例えば、周方向に等ピッチで3つ以上設けられる。係止凹部8aの数は、係止ピン11gの数と同数である。
 係止ピン11gのうちピン挿入穴11fから突出する部分は、係止凹部8a内に挿入される。具体的に、係止ピン11gは、係止凹部8aを画成する係止凹部8aの内面のうち、周方向を向く一対の内面部分に対して、周方向から対向する。また係止ピン11gは、係止凹部8aの内面のうち、上端部に位置して下側を向く内面部分に対して、下側から接触する。
 カバー8がボディ本体11及びボディフランジ12に外挿され、係止凹部8aに係止ピン11gが係止されることで、カバー8はボディ1に固定される。また、ボディ1に対してカバー8を上側に移動させることで、カバー8をボディ1から取り外すことができる。すなわち、カバー8は、ボディ1に着脱可能に装着される。
 ボディ1及びカバー8は、金属製であり、例えばアルミニウム合金製である。具体的に、ボディ1及びカバー8は、例えばジュラルミン製である。
 この第2変形例によれば、カバー8により、周壁部11c、底壁部11d、複数のポケット11e、複数の付勢部材6、複数の支持軸31の中間部分、複数の支持突片17、複数のローラ軸収容ポケット19、収容筒16及びプレッシャーブロック2の一部等(以下、付勢部材6等と省略する場合がある)が、装置外部に露出することが抑えられる。このため、装置の美観性が高められる。また、キャッピングヘッド10の外部からボディ1に向けて飛散する飲料等の内容物(特に固化しやすい糖分等)や油等の液体などが、ボディ1に浸入することが、カバー8によって抑制される。このためメンテナンス性がよく、ボディ1に設けられる付勢部材6等の各構成部材の性能(機能)が良好に維持される。
 またこの第2変形例では、ボディ1及びカバー8が、軽量のアルミニウム合金製である。このため、装置全体としての剛性を確保しつつ、軽量化を図ることができる。
 また、前述の実施形態では、キャッピングヘッド10が有する成形ローラ5の数が6つである例を挙げたが、これに限定されない。キャッピングヘッド10が有する成形ローラ5の数は、例えば8つなどでもよく、すなわち6つ以上設けられていてもよい。
 前述の実施形態では、キャッピング装置120のロワカム124が、前下降部124a、第1水平部124b、下降部124c、成形部124d、上昇部124e、第2水平部124f及び後上昇部124gの組を、1組のみ有する例を挙げたが、これに限定されず、前記組は、ターレット周方向に並んで2組設けられてもよい。すなわちこの場合、ロワカム124には、下降部124c、成形部124d及び上昇部124eの組が、2組設けられる。そして、ネジ成形ローラ5A及び裾巻きローラ5Bの各ローラ5が、キャップ300の周壁301に接触し、周壁301上を転動し、周壁301から離れるまでの一連の動作が、2回とされる。すなわちこの場合、キャッピング装置120は、ダブルアクションによるキャッピングを行う。
 前述の実施形態では、キャッピングヘッド10のカムフォロア4が係合するカムとして、コーンカム7を例に挙げたが、これに限らない。特に図示しないが、例えば、各カムフォロア4が係合する複数のカムが、ボディ1の上側に設けられている構成であってもよい。
 前述の実施形態では、揺動軸3をその軸(シャフト中心軸A)回りに回動させて成形ローラ5を径方向に揺動させる揺動手段として、コーンカム7、カムフォロア4及び付勢部材6を用いる例を挙げたが、これに限らない。前記揺動手段として、例えば、揺動軸3をその軸回りに回動させるサーボモータ等を用いてもよい。
 前述の実施形態では、口金部を有する缶としてネジ付き缶Bを例に挙げたが、これに限らない。キャッピング対象の缶として、例えば、口金部にネジを有さないネジ無しのボトル缶等を用いてもよい。
 本発明は、本発明の趣旨から逸脱しない範囲において、前述の実施形態及び変形例等で説明した各構成を組み合わせてもよく、また、構成の付加、省略、置換、その他の変更が可能である。また本発明は、前述した実施形態等によって限定されず、請求の範囲によってのみ限定される。
 以下、本発明を実施例により具体的に説明する。ただし本発明はこの実施例に限定されない。
<キャッピング確認試験>
 従来の比較例1として、ネジ成形ローラが2つ、裾巻きローラが2つの、計4つの成形ローラを備えたキャッピングヘッドを用い、ネジ成形ローラ及び裾巻きローラの各ローラが、キャップ300の周壁301に接触し、周壁301上を転動し、周壁301から離れるまでの一連の動作が、2回(ダブルアクション)に設定されたキャッピング装置を用いた。そして、このキャッピング装置により、任意の数以上の多数のネジ付き缶Bに対して、キャップ300をキャッピングした。なお、比較例1のキャッピングヘッドは、本発明品と異なり、ボディがボディ凹部等を備えていない従来のキャッピングヘッドである。
 比較例1では、ネジ成形ローラのセット径はφ43.5mmとし、裾巻きローラのセット径はφ45.3mmとした。なお「セット径」とは、成形ローラをキャッピングヘッドの中心軸回りに回転させて得られる回転軌跡の、内径寸法(ローラ内端の回転軌跡の直径寸法)に相当する。セット径に応じて、成形ローラがキャップ周壁を径方向内側に押圧するローラ先端荷重や、成形ローラがキャップ周壁に接触する1回当たりの接触長さ(キャップ回りの周長)等が調整される。
 また、従来の比較例2として、ネジ成形ローラ及び裾巻きローラの各ローラが、キャップ300の周壁301に接触し、周壁301上を転動し、周壁301から離れるまでの一連の動作が、1回(シングルアクション)に設定されたキャッピング装置を用いた。それ以外は比較例1と同じ条件として、このキャッピング装置によりキャッピングを行った。
 また、本発明の実施例1として、前述の実施形態で説明したキャッピングヘッド10及びキャッピング装置120を用いて、任意の数以上の多数のネジ付き缶Bに対して、キャップ300をキャッピングした。詳しくは、ネジ成形ローラ5Aが4つ、裾巻きローラ5Bが2つの、計6つの成形ローラ5を備えたキャッピングヘッド10を用い、ネジ成形ローラ5A及び裾巻きローラ5Bの各ローラ5が、キャップ300の周壁301に接触し、周壁301上を転動し、周壁301から離れるまでの一連の動作が、1回(シングルアクション)に設定されたキャッピング装置120を用いて、キャッピングを行った。
 実施例1では、ネジ成形ローラ5Aのセット径はφ43.5mmとし、裾巻きローラ5Bのセット径はφ43.5mmとした。
 また、本発明の実施例2として、ネジ成形ローラ5Aが3つ、裾巻きローラ5Bが3つの、計6つの成形ローラ5を備えたキャッピングヘッド10を用い、ネジ成形ローラ5A及び裾巻きローラ5Bの各ローラ5が、キャップ300の周壁301に接触し、周壁301上を転動し、周壁301から離れるまでの一連の動作が、1回(シングルアクション)に設定されたキャッピング装置120を用いて、キャッピングを行った。
 実施例2では、ネジ成形ローラ5Aのセット径はφ43.0mmとし、裾巻きローラ5Bのセット径はφ43.0mmとした。実施例2の上記以外の構成については、実施例1と同じ条件とした。
 比較例1、2及び実施例1、2のそれぞれについて、キャップ300がキャッピングされた多数のネジ付き缶Bの中から、任意に所定数(複数)のネジ付き缶Bを選出した。そして、各ネジ付き缶Bについて、「ねじ深さ」、「開栓角度」、「裾巻き」及び「ねじ長さ」の各項目を測定し、平均値(Ave)、最大値(Max)、最小値(Min)及び標準偏差(σ)を求めた。
 詳しくは、「ねじ深さ」(mm)については、次のように測定した。
 図16は、ねじ深さの測定方法を説明するネジの模式図であり、ネジの巻き数を平面上に展開して表している。図16に示すように、キャップ周壁301に成形したネジ部のネジ始まりをNo.1とし、ネジ始まりからネジ終わりに向かってキャップ中心軸(缶軸)回りに60°ずつNo.1、2、3…とナンバーを振る。そして、No.5~No.11までの7点についてねじ深さを測定し、その中での最大値を、上記「ねじ深さ」とした。
 また、「開栓角度」(°)は、口金部200に装着されたキャップ300を缶軸回りの開栓方向に回転させる操作を行い、この回転操作の開始から、キャップ周壁301の複数のブリッジがすべて破断されるまでの回転角度である。
 また、「裾巻き」は、検査員の官能検査(数値範囲1.0~5.0)により測定した。図17(a)~(d)は、キャッピング後のキャップ300の周壁301下端近傍を示す断面(縦断面)画像であり、裾巻き評価を説明する図である。
 詳しくは、図17(c)は、裾巻きローラ5Bがキャップ300の周壁301下端に対して、上下方向において適正な位置(高さ)で接触した場合の裾巻き成形後の状態を表している。図17(c)では、周壁301下端と膨出部201下部との間に、全周にわたって隙間がない。このような図17(c)の状態を、「適正(3.0)」と呼ぶ。
 また、図17(a)は、裾巻きローラ5Bがキャップ300の周壁301下端に対して、上記適正な位置よりも上側で接触した場合の裾巻き成形後の状態を表している。図17(a)では、周壁301下端と膨出部201下部との間に、キャップ中心軸回りの半周から全周にわたって隙間が生じている。このような図17(a)の状態を、「ハカマ(1.0)」と呼ぶ。
 また、図17(b)は、裾巻きローラ5Bがキャップ300の周壁301下端に対して、上下方向において上記「適正」と上記「ハカマ」の間の位置で接触した場合の裾巻き成形後の状態を表している。図17(b)では、周壁301下端と膨出部201下部との間に隙間は生じていないが、周壁301下端に、キャップ中心軸回りの1/4周未満の範囲で、下側に向けて舌片301aが突出している。このような図17(b)の状態を、「舌出し(2.5)」と呼ぶ。
 また、図17(d)は、裾巻きローラ5Bがキャップ300の周壁301下端に対して、上記適正な位置よりも下側で接触した場合の裾巻き成形後の状態を表している。図17(d)では、周壁301下端と膨出部201下部との間に、キャップ中心軸回りの半周から全周にわたって隙間が生じている。このような図17(d)の状態を、「甘め(5.0)」と呼ぶ。
 裾巻き評価では、数値範囲1.0~5.0のうち、2.5~3.5の範囲を裾巻き良好と判定し、2.5未満と3.5を超える範囲を裾巻き不良と判定する。
 また、「ねじ長さ」(mm)は、比較例1のキャップ周壁301に成形された2巻のネジ部のねじ長さ(平均値)を基準値(ゼロ)とし、基準値に対するネジ部の周長の長短をメジャー(物差し、巻き尺)で測ることにより求めた。
 このキャッピング確認試験の結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、各ローラによる成形回数が2回(ダブルアクション)である比較例1では、良好な評価が得られた。なお、表中備考欄の「ネジ部抵抗小」とは、キャップ300の開栓後、キャップ300を再び口金部200に装着する際のトルク(リシールトルク)が小さいものが含まれていたことを表す。
 また、各ローラによる成形回数が1回(シングルアクション)である比較例2では、評価が不良となった。具体的には、ねじ深さが浅くなり過ぎ、開栓角度が過大となり、裾巻き不良の判定となり、ねじ長さが比較例1に比べて短くなった。なお、表中備考欄の「ヒンジング」とは、開栓時に破断しないブリッジが存在し、このブリッジがヒンジのように作用して、キャップ300が口金部200に連結された状態(ヒンジング現象)となってしまったものが含まれていたことを表す。
 一方、実施例1、2では、各ローラ5による成形回数が1回(シングルアクション)であるにも関わらず、ともに良好な評価が得られた。その中でも、ネジ成形ローラ5Aが4つ、裾巻きローラ5Bが2つである実施例1では、ねじ深さがダブルアクションの比較例1以上に深く確保されて、特に良好な結果が得られた。
 具体的に、実施例1では、シングルアクションのキャッピングでありながら、ダブルアクションの比較例1に比べて、「ねじ深さ」が大きく(深く)確保され、「裾巻き」の評価がより良好な結果(全数が「適正(3.0)」)となり、かつ、ねじ長さも長く確保された。
<ローラ成形先端荷重等の確認>
 ここで、下記の表2及び表3を参照し、実施例1及び比較例1、3のローラ成形先端荷重等について、より詳しく説明する。なお比較例3は、ネジ成形ローラ5Aのセット径をφ43.5mmとし、裾巻きローラ5Bのセット径をφ43.5mmとした以外は、上記比較例1と同じ条件としたものである。また、表2及び表3に示す「RO」は、ネジ成形ローラ5Aを表しており、「PP」は、裾巻きローラ5Bを表している。
 また、前述の実施形態で説明した通り、実施例1のキャッピングヘッド10は、比較例1、3のキャッピングヘッドに比べて、各種寸法のコンパクト化が図られている。具体的に、実施例1は、比較例1、3に比べて、例えば、ボディ1の外径寸法、上アーム32及び下アーム33の各シャフト径方向の寸法、ローラ本体52の直径寸法、支持軸31の直径寸法等が、小さい。また実施例1は、比較例1、3に比べて、付勢部材6のばね定数が小さい。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2の各項目のうち、「セットアップ(N・m)」とは、キャップ周壁301に成形加工をする前(つまりキャップ周壁301から各ローラ5が離間した状態)におけるネジ成形ローラ5A及び裾巻きローラ5Bの各支持軸31回りのトルク設定値を表している。具体的には、カムフォロア4の転動体42がコーンカム7の大径転動面72に接触した状態における各ローラ5A,5Bのトルクを表す。
 また、表2の「キャップ加工開始(N・m)」とは、成形前のキャップ周壁301の直径(外径)寸法をφ38mmとした場合に、上記セットアップの状態とされた各ローラ5A,5Bが、それぞれ支持軸31の軸A回りに回動してキャップ周壁301に接触したとき(つまり加工開始時)の各トルクを表す。
 また、表2の「キャップ加工終了(N・m)」とは、ネジ成形ローラ5Aについては、ねじ深さが0.6mmに達したとき(つまり加工終了時)のトルクを表しており、裾巻きローラ5Bについては、キャップ周壁301下端の直径寸法がφ35.9mmに達したとき(つまり加工終了時)のトルクを表している。
 また、表3の「ROローラ接触距離(mm)」とは、図4に示すように中心軸Oの軸方向(下側)から見て、ネジ成形ローラ5Aのローラ本体52とキャップ周壁301との接触点と、該ネジ成形ローラ5Aを支持する支持軸31のシャフト中心軸Aと、の間の距離(加工開始時及び加工終了時)を表す。
 また、表3の「PPローラ接触距離(mm)」とは、図4に示すように軸方向から見て、裾巻きローラ5Bのローラ本体52とキャップ周壁301との接触点と、該裾巻きローラ5Bを支持する支持軸31のシャフト中心軸Aと、の間の距離(加工開始時及び加工終了時)を表す。
 また、表3の「RO成形先端荷重(N)」とは、ネジ成形ローラ5Aのローラ本体52の外周縁のうちキャップ周壁301に接触する接触点(先端)における荷重(加工開始時及び加工終了時)を表す。
 また、表3の「PP成形先端荷重(N)」とは、裾巻きローラ5Bのローラ本体52の外周縁のうちキャップ周壁301に接触する接触点(先端)における荷重(加工開始時及び加工終了時)を表す。
 表2に示すように、比較例1、3では、「キャップ加工開始」及び「キャップ加工終了」の各ROトルクが、3.0N・mを超えているのに対し、実施例1では、各ROトルクが3.0N・m以下となっており、具体的には、2.5N・m以下となっている。
 また、比較例1、3では、「キャップ加工開始」及び「キャップ加工終了」の各PPトルクが2.5N・mを超えているのに対し、実施例1では、各PPトルクが2.5N・m以下となっており、具体的には、2.0N・m以下となっている。
 また表3に示すように、比較例1、3では、「RO成形先端荷重」が110Nを超えているのに対し、実施例1では、「RO成形先端荷重」が110N以下となっており、具体的には、90N以下となっている。
 また、比較例1、3では、「PP成形先端荷重」が90Nを超えているのに対し、実施例1では、「PP成形先端荷重」が90N以下となっており、具体的には、75N以下となっている。
 そして、上記<キャッピング確認試験>及び表1で説明した通り、実施例1のキャッピング性能は、比較例に比べて優れているのである。
 本発明のキャッピングヘッドのボディ、キャッピングヘッド、スピンドルアセンブリ、キャッピング装置及びキャッピングシステムによれば、ボディの形状を簡素化でき、ボディの強度を高めることができ、軽量化を図ることが可能である。したがって、産業上の利用可能性を有する。
 1…ボディ、1c…外周面(外周壁)、2…プレッシャーブロック、3…揺動軸、4…カムフォロア、5…成形ローラ、5A…ネジ成形ローラ、5B…裾巻きローラ、6…付勢部材、7…コーンカム(カム)、10…キャッピングヘッド、11…ボディ本体、12…ボディフランジ、15…スピンドル取付部、18…揺動軸収納部、23…貫通孔、23a…本体孔部、23b…フランジ孔部、23c…収容孔部、23d…軸受孔部、24,25…軸受部材、31…支持軸、32…上アーム、32a…上クランプ部、33…下アーム、33a…下クランプ部、36…変形アシスト溝、80…スピンドルアセンブリ、81…昇降シャフト、83…アッパーカムフォロア、85…スピンドル、86…スピンドルギア、90…昇降筒、91…ロワカムフォロア、100…キャッピングシステム、110…フィラー、120…キャッピング装置、121…ターレット、122…固定ギア、123…アッパーカム、124…ロワカム、200…口金部、300…キャップ、301…周壁、A…シャフト中心軸(揺動軸の軸)、B…ネジ付き缶(缶)、D…搬送方向、O…中心軸、T…ターレット軸

Claims (19)

  1.  有底筒状をなす缶の口金部に、キャップを装着するキャッピングヘッドに用いられるキャッピングヘッドのボディであって、
     円筒状のボディ本体と、
     前記ボディ本体の内部に配置され、スピンドルに取り付けられるスピンドル取付部と、
     前記ボディ本体の外周部と内周部との間に配置される揺動軸収納部と、を備え、
     前記揺動軸収納部は、前記スピンドル取付部の周囲に配置され、成形ローラを前記キャップの周壁に向けて揺動させる揺動軸が挿通される貫通孔を有し、
     前記貫通孔は、前記ボディ本体を上下方向に貫通する、
     キャッピングヘッドのボディ。
  2.  有底筒状をなす缶の口金部に、有頂筒状のキャップを装着するキャッピングヘッドであって、
     請求項1に記載のキャッピングヘッドのボディと、
     前記ボディの下側に配置される成形ローラと、
     前記成形ローラを前記キャップの周壁に向けて揺動させる揺動軸と、を備え、
     前記ボディ本体、前記スピンドル取付部及び前記揺動軸収納部が、互いに連結されている、
     キャッピングヘッド。
  3.  前記ボディの上側に配置され、カムと係合するカムフォロアと、
     前記揺動軸を介して、前記カムフォロア及び前記成形ローラを径方向内側へ付勢する付勢部材と、をさらに備え、
     前記付勢部材は、前記揺動軸の上下方向の一部を前記揺動軸の軸回りに囲い、前記貫通孔に収容される、
     請求項2に記載のキャッピングヘッド。
  4.  前記付勢部材はその全体が、前記ボディ本体の外周部に露出することなく、前記貫通孔に収容される、
     請求項3に記載のキャッピングヘッド。
  5.  前記貫通孔は、周方向に互いに間隔をあけて複数設けられ、
     各前記貫通孔は、前記ボディ本体の上端面に開口する開口部を有し、
     前記開口部の周方向に沿う寸法が、径方向内側へ向かうに従い小さくなる、
     請求項3に記載のキャッピングヘッド。
  6.  前記開口部は、上面視で三角形孔状をなしている、
     請求項5に記載のキャッピングヘッド。
  7.  前記ボディは、前記ボディの上面から下側に窪み、前記カムの少なくとも下端部を収容するボディ凹部を有し、
     前記開口部の径方向内端部が、前記ボディ凹部の内周面に開口する、
     請求項5に記載のキャッピングヘッド。
  8.  前記ボディは、
     前記ボディ本体と、
     前記ボディ本体の上端部に固定される環状のボディフランジと、を有し、
     前記貫通孔は、
     前記ボディ本体を上下方向に貫通する本体孔部と、
     前記ボディフランジを上下方向に貫通するフランジ孔部と、を有し、
     前記付勢部材は、前記本体孔部に配置される、
     請求項3に記載のキャッピングヘッド。
  9.  前記本体孔部は、
     前記付勢部材が配置される収容孔部と、
     前記本体孔部の下端部に配置される軸受孔部と、を有し、
     前記揺動軸は、前記フランジ孔部と前記軸受孔部とに設けられる一対の軸受部材を介して、前記ボディに回転自在に支持される、
     請求項8に記載のキャッピングヘッド。
  10.  前記付勢部材は、前記揺動軸の軸回りに螺旋状に延びるねじりコイルばねであり、
     前記付勢部材の上下方向の両端部のうち、上端部は前記ボディフランジに係止され、下端部は前記揺動軸に係止される、
     請求項8に記載のキャッピングヘッド。
  11.  前記ボディの少なくとも一部が、アルミニウム合金製、エンジニアリングプラスチック製、及びFRP製のいずれかである、
     請求項2から10のいずれか1項に記載のキャッピングヘッド。
  12.  前記ボディの下側に配置され、前記キャップの頂壁を押さえるプレッシャーブロックを備える、
     請求項2から10のいずれか1項に記載のキャッピングヘッド。
  13.  前記成形ローラは、周方向に並んで6つ以上設けられ、
     複数の前記成形ローラは、
     前記キャップの周壁に、前記口金部と螺合するネジ部を成形する複数のネジ成形ローラと、
     前記キャップの周壁下端を前記口金部に裾巻き成形する少なくとも1つの裾巻きローラと、を含み、
     前記ネジ成形ローラの数は、前記裾巻きローラの数よりも多い、
     請求項2から10のいずれか1項に記載のキャッピングヘッド。
  14.  周方向に隣り合う前記ネジ成形ローラ同士は、上下方向の位置が互いにずらされている、
     請求項13に記載のキャッピングヘッド。
  15.  前記成形ローラは、周方向に並んで複数設けられ、
     前記付勢部材は、前記成形ローラと同数とされて、周方向に並んで複数設けられ、
     前記貫通孔は、前記付勢部材と同数とされて、周方向に並んで複数設けられる、
     請求項3から10のいずれか1項に記載のキャッピングヘッド。
  16.  前記揺動軸は、
     上下方向に延びる支持軸と、
     前記支持軸と前記カムフォロアとを接続する上アームと、
     前記支持軸と前記成形ローラとを接続する下アームと、を有し、
     前記上アームは、前記支持軸をその軸回りに囲い、前記支持軸の外周面を押圧するように変形可能な上クランプ部を有し、
     前記下アームは、前記支持軸をその軸回りに囲い、前記支持軸の外周面を押圧するように変形可能な下クランプ部を有し、
     前記上クランプ部及び前記下クランプ部の少なくとも一方は、クランプ部周面に配置されて上下方向に延びる変形アシスト溝を有する、
     請求項3から10のいずれか1項に記載のキャッピングヘッド。
  17.  請求項2から10のいずれか1項に記載のキャッピングヘッドと、
     上下方向に延び、前記キャップの頂壁を押さえるプレッシャーブロックが取り付けられる昇降シャフトと、
     筒状をなし、内部に前記昇降シャフトが挿入され、前記ボディが取り付けられるスピンドルと、
     筒状をなし、内部に前記昇降シャフト及び前記スピンドルが挿入される昇降筒と、を備え、
     前記昇降シャフトは、前記昇降シャフトを上下方向に移動させるアッパーカムフォロアを有し、
     前記スピンドルは、前記スピンドルを中心軸回りに回転させるスピンドルギアを有し、
     前記昇降筒は、
     筒状をなすカムと、
     前記昇降筒を上下方向に移動させるロワカムフォロアと、を有する、
     スピンドルアセンブリ。
  18.  ターレット軸回りに回転するターレットと、
     前記ターレットの外周部に配置される請求項17に記載のスピンドルアセンブリと、
     前記スピンドルギアと噛み合い、前記ターレット軸回りに延びる固定ギアと、
     前記ターレット軸回りに延び、前記アッパーカムフォロアが係合するアッパーカムと、
     前記ターレット軸回りに延び、前記ロワカムフォロアが係合するロワカムと、を備える、
     キャッピング装置。
  19.  缶に内容物を充填するフィラーと、
     前記フィラーから排出された前記缶が供給される請求項18に記載のキャッピング装置と、を備え、
     前記フィラーから排出されて前記キャッピング装置へ向かう前記缶の搬送方向が、ターレット軸方向から見て、前記ターレットの外周部の接線に沿うように延びる、
     キャッピングシステム。
PCT/JP2023/030780 2022-08-26 2023-08-25 キャッピングヘッドのボディ、キャッピングヘッド、スピンドルアセンブリ、キャッピング装置及びキャッピングシステム WO2024043338A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022134830 2022-08-26
JP2022-134830 2022-08-26
JP2022-135769 2022-08-29
JP2022135769 2022-08-29

Publications (1)

Publication Number Publication Date
WO2024043338A1 true WO2024043338A1 (ja) 2024-02-29

Family

ID=90013541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030780 WO2024043338A1 (ja) 2022-08-26 2023-08-25 キャッピングヘッドのボディ、キャッピングヘッド、スピンドルアセンブリ、キャッピング装置及びキャッピングシステム

Country Status (1)

Country Link
WO (1) WO2024043338A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137791A (en) * 1977-05-05 1978-12-01 Aluminum Co Of America Head unit for attaching plug in plug attaching machine
JPH06156585A (ja) * 1991-11-22 1994-06-03 Shibasaki Seisakusho:Kk キャッピングマシン及びキャッピングヘッドの取付方法
JP2005096842A (ja) * 2003-09-26 2005-04-14 Mitsubishi Materials Corp キャッピング装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137791A (en) * 1977-05-05 1978-12-01 Aluminum Co Of America Head unit for attaching plug in plug attaching machine
JPH06156585A (ja) * 1991-11-22 1994-06-03 Shibasaki Seisakusho:Kk キャッピングマシン及びキャッピングヘッドの取付方法
JP2005096842A (ja) * 2003-09-26 2005-04-14 Mitsubishi Materials Corp キャッピング装置

Similar Documents

Publication Publication Date Title
US20080069665A1 (en) Bottle-Shaped Can Manufacturing Method And Bottle-Shaped Can
US7503741B2 (en) Formation of a curl in a unitary closable container
WO2010117009A1 (ja) 金属ボトル缶
WO2024043338A1 (ja) キャッピングヘッドのボディ、キャッピングヘッド、スピンドルアセンブリ、キャッピング装置及びキャッピングシステム
CN110316447B (zh) 带盖的瓶形罐及其制造装置
EP0733415A1 (fr) Procédé de fabrication d'une boîte métallique de forme
WO2023190821A1 (ja) キャッピングヘッド、スピンドルアセンブリ、キャッピング装置及びキャッピングシステム
ITMI20060833A1 (it) Procedimento e apparato per la realizzazione di un bordo o collare a geometria complessa su sbozzati metallici estrusi,imbutiti-trafilati.
JP2023148808A (ja) キャッピング装置及びキャッピングシステム
CN110125271B (zh) 瓶形罐的颈部的成型装置以及成型方法
JP5090290B2 (ja) ボトル缶
JP2004210403A (ja) キャッピング成形方法及びキャッピング装置
JP4570838B2 (ja) ボトル缶体の口金部成形方法及びねじ成形装置
JP2005263230A (ja) キャッピング方法
JP2008013210A (ja) キャッピング方法及びその装置
JP6910222B2 (ja) 成形ローラの組立ユニット及びボトムスピンドル
JP4342988B2 (ja) ボトル缶体の製造装置及びボトル缶体の製造方法
JP2018176181A (ja) ボトル缶の製造方法
JP2006001619A (ja) ボトル型缶の製造方法
JP6546946B2 (ja) キャップ付きボトル
JP2003128186A (ja) キャッピングヘッドおよびキャッピングマシン
JP4267992B2 (ja) キャッピング装置及び加圧ユニット
JP2004059134A (ja) キャッピング装置
JP2004331176A (ja) キャッピング装置
JP2016137915A (ja) キャッピング方法及びキャッピング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857446

Country of ref document: EP

Kind code of ref document: A1