WO2024042888A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2024042888A1
WO2024042888A1 PCT/JP2023/025310 JP2023025310W WO2024042888A1 WO 2024042888 A1 WO2024042888 A1 WO 2024042888A1 JP 2023025310 W JP2023025310 W JP 2023025310W WO 2024042888 A1 WO2024042888 A1 WO 2024042888A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
less
electrolyte secondary
silicon
Prior art date
Application number
PCT/JP2023/025310
Other languages
English (en)
French (fr)
Inventor
基浩 坂田
陽祐 佐藤
真仁 大塚
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024042888A1 publication Critical patent/WO2024042888A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a non-aqueous electrolyte secondary battery.
  • Patent Document 1 describes a silicon-containing material that includes porous carbon and silicon and is applicable to negative electrodes for secondary batteries, including silicon containing 15% by mass or more and 85% by mass or less, and 0.05cm 3 /g or more and 0.05% by mass or more and 0.05cm 3 /g or more. Materials are disclosed that have a nitrogen-inaccessible volume of 5 cm 3 /g or less and a particle skeletal density of 1.5 g/cm 3 or more and 2.2 g/cm 3 or less. Patent Document 1 attempts to realize a battery with high capacity, high durability, and high output by optimizing the true density and pore state of a silicon-containing material.
  • a negative electrode using a silicon-containing material is effective in increasing the capacity of a battery, but the silicon-containing material has a large volume change due to charging and discharging, and there are problems with durability (charge-discharge cycle characteristics). For this reason, in conventional techniques including Patent Document 1, it is common to use a larger amount of graphite as a negative electrode active material than the silicon-containing material, and it is not easy to achieve both high capacity and high durability.
  • a nonaqueous electrolyte secondary battery is a nonaqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a nonaqueous electrolyte, and the positive electrode includes a lithium-containing transition metal composite oxide and a lithium-containing transition metal composite oxide.
  • sulfonic acid compound present on the particle surface of the object is a compound represented by formula (I),
  • A is a Group 1 or Group 2 element
  • R is a hydrocarbon group
  • n is 1 or 2
  • the negative electrode has a negative electrode mixture layer containing a silicon-containing material as a negative electrode active material.
  • the proportion of the silicon-containing material in the substance is 50% by mass or more, and the value obtained by dividing the volumetric capacity of the negative electrode mixture layer by the porosity is 48.0mAh/cc ⁇ % or less.
  • cycle characteristics can be improved in a high capacity non-aqueous electrolyte secondary battery containing a silicon-containing material.
  • FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery that is an example of an embodiment.
  • the present inventors found that the volume specific capacity and porosity of the negative electrode mixture layer containing silicon-containing materials It was found that the relationship between A negative electrode in which the proportion of silicon-containing material in the negative electrode active material is 50% by mass or more generally has a large capacity drop due to charging and discharging, but when the volume specific capacity of the negative electrode mixture layer is divided by the porosity It has been found that by controlling the value (volume specific volume/porosity) to 48.0 mAh/cc ⁇ % or less, such capacity reduction can be highly suppressed.
  • the porosity in the present disclosure means the proportion of voids between negative electrode active material particles in the mixture layer, and voids within the active material particles are not counted in the porosity.
  • Batteries using negative electrodes containing a large amount of silicon-containing material have been thought to be difficult to use, for example, as batteries for in-vehicle applications or power storage applications, from the viewpoint of cycle characteristics. If the excess voids are introduced into the negative electrode mixture layer and the volume specific volume/porosity is controlled to 48.0 mAh/cc ⁇ % or less, it is possible to achieve both high capacity and high durability. In other words, in a non-aqueous electrolyte secondary battery that contains a large amount of silicon-containing material, such as the proportion of silicon-containing material in the negative electrode active material being 50% by mass or more, the volume ratio/porosity may reach a boundary of 48.0 mAh/cc.%. The cycle characteristics are specifically improved.
  • volume specific volume/porosity of the negative electrode mixture layer is 48.0 mAh/cc ⁇ % or less, a sufficient movement path for cations in the negative electrode is secured, and as a result, non-uniformity of battery reactions is suppressed, and as a result, the cycle It is thought that the characteristics will be greatly improved.
  • the sulfonic acid compound represented by the above formula (I) exist on the particle surface of the lithium-containing transition metal composite oxide used as the positive electrode active material, a non-woven fabric with higher capacity and excellent initial charge/discharge efficiency can be obtained. It has become clear that a water electrolyte secondary battery can be realized. This is considered to be because the reaction resistance at the positive electrode was reduced by the function of the sulfonic acid compound, making it possible to increase the depth of charge and discharge. On the other hand, if the depth of charging and discharging becomes deeper due to the reduction in reaction resistance, there is a concern that the cycle characteristics will deteriorate.
  • non-aqueous electrolyte secondary battery a cylindrical battery in which a wound electrode body 14 is housed in a cylindrical outer can 16 with a bottom is exemplified.
  • the non-aqueous electrolyte secondary battery according to the present disclosure may be, for example, a prismatic battery with a prismatic exterior can, a coin-shaped battery with a coin-shaped exterior can, and a laminate sheet containing a metal layer and a resin layer.
  • a pouch-type battery may be provided with an exterior body made up of.
  • the electrode body is not limited to a wound type electrode body, and may be a laminated type electrode body in which a plurality of positive electrodes and a plurality of negative electrodes are alternately laminated with separators interposed therebetween.
  • FIG. 1 is a cross-sectional view of a nonaqueous electrolyte secondary battery 10 that is an example of an embodiment.
  • the non-aqueous electrolyte secondary battery 10 includes a wound electrode body 14, a non-aqueous electrolyte, and an outer can 16 that houses the electrode body 14 and the non-aqueous electrolyte.
  • the electrode body 14 includes a positive electrode 11 , a negative electrode 12 , and a separator 13 , and has a wound structure in which the positive electrode 11 and the negative electrode 12 are spirally wound with the separator 13 in between.
  • the outer can 16 is a bottomed cylindrical metal container with an open end in the axial direction, and the opening of the outer can 16 is closed by a sealing member 17 .
  • the sealing body 17 side of the battery will be referred to as the upper side
  • the bottom side of the outer can 16 will be referred to as the lower side.
  • the non-aqueous electrolyte has lithium ion conductivity.
  • the non-aqueous electrolyte may be a liquid electrolyte (electrolyte solution) or a solid electrolyte.
  • the liquid electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • a non-aqueous solvent for example, esters, ethers, nitriles, amides, mixed solvents of two or more of these, and the like are used.
  • nonaqueous solvents include ethylene carbonate (EC), ethylmethyl carbonate (EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and mixed solvents thereof.
  • the non-aqueous solvent may contain a halogen-substituted product (for example, fluoroethylene carbonate) in which at least a portion of hydrogen in these solvents is replaced with a halogen atom such as fluorine.
  • a halogen-substituted product for example, fluoroethylene carbonate
  • a lithium salt such as LiPF 6 is used as the electrolyte salt.
  • the solid electrolyte for example, a solid or gel polymer electrolyte, an inorganic solid electrolyte, etc.
  • an inorganic solid electrolyte materials known for use in all-solid lithium ion secondary batteries and the like (for example, oxide-based solid electrolytes, sulfide-based solid electrolytes, halogen-based solid electrolytes, etc.) can be used.
  • the polymer electrolyte includes, for example, a lithium salt and a matrix polymer, or a nonaqueous solvent, a lithium salt, and a matrix polymer.
  • the matrix polymer for example, a polymer material that absorbs a non-aqueous solvent and gels is used. Examples of polymer materials include fluororesins, acrylic resins, polyether resins, and the like.
  • the positive electrode 11, the negative electrode 12, and the separator 13 that constitute the electrode body 14 are all long strip-shaped bodies, and are wound in a spiral shape so that they are alternately stacked in the radial direction of the electrode body 14.
  • the negative electrode 12 is formed to be one size larger than the positive electrode 11 in order to prevent precipitation of lithium. That is, the negative electrode 12 is formed longer than the positive electrode 11 in the length direction and the width direction.
  • the separators 13 are formed to be at least one size larger than the positive electrode 11, and for example, two separators 13 are arranged so as to sandwich the positive electrode 11 therebetween.
  • the electrode body 14 has a positive electrode lead 20 connected to the positive electrode 11 by welding or the like, and a negative electrode lead 21 connected to the negative electrode 12 by welding or the like.
  • Insulating plates 18 and 19 are arranged above and below the electrode body 14, respectively.
  • the positive electrode lead 20 passes through the through hole of the insulating plate 18 and extends toward the sealing body 17, and the negative electrode lead 21 passes through the outside of the insulating plate 19 and extends toward the bottom of the outer can 16.
  • the positive electrode lead 20 is connected by welding or the like to the lower surface of the internal terminal plate 23 of the sealing body 17, and the cap 27, which is the top plate of the sealing body 17 and electrically connected to the internal terminal plate 23, serves as a positive electrode terminal.
  • the negative electrode lead 21 is connected to the bottom inner surface of the outer can 16 by welding or the like, and the outer can 16 serves as a negative electrode terminal.
  • a gasket 28 is provided between the outer can 16 and the sealing body 17 to ensure airtightness inside the battery.
  • the outer can 16 is formed with a grooved part 22 that supports the sealing body 17 and has a part of the side surface protruding inward.
  • the grooved portion 22 is preferably formed in an annular shape along the circumferential direction of the outer can 16, and supports the sealing body 17 on its upper surface.
  • the sealing body 17 is fixed to the upper part of the outer can 16 by the grooved part 22 and the open end of the outer can 16 which is crimped to the sealing body 17 .
  • the sealing body 17 has a structure in which an internal terminal plate 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a cap 27 are laminated in order from the electrode body 14 side.
  • Each member constituting the sealing body 17 has, for example, a disk shape or a ring shape, and each member except the insulating member 25 is electrically connected to each other.
  • the lower valve body 24 and the upper valve body 26 are connected at their respective central portions, and an insulating member 25 is interposed between their respective peripheral portions.
  • the positive electrode 11, negative electrode 12, and separator 13 that make up the electrode body 14 will be explained in detail, particularly the positive electrode active material that makes up the positive electrode 11, and the negative electrode active material that makes up the negative electrode 12.
  • the positive electrode 11 includes a positive electrode core 30 and a positive electrode mixture layer 31 provided on the positive electrode core 30.
  • a metal foil such as aluminum that is stable in the potential range of the positive electrode 11, a film with the metal disposed on the surface, or the like can be used.
  • the positive electrode mixture layer 31 contains a positive electrode active material, a conductive agent, and a binder, and is preferably provided on both surfaces of the positive electrode core 30 except for the portion to which the positive electrode lead 20 is connected.
  • the positive electrode 11 is formed by applying a positive electrode mixture slurry containing a positive electrode active material, a conductive agent, and a binder to the surface of the positive electrode core 30, drying the coating film, and then compressing it to form the positive electrode mixture layer 31. It can be produced by forming on both sides of the positive electrode core body 30.
  • Examples of the conductive agent included in the positive electrode mixture layer 31 include carbon black such as acetylene black and Ketjen black, graphite, carbon nanotubes (CNT), carbon nanofibers, and carbon materials such as graphene.
  • Examples of the binder included in the positive electrode mixture layer 31 include fluorine-containing resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), polyimide, acrylic resin, and polyolefin. . Further, these resins, carboxymethyl cellulose (CMC) or a salt thereof, polyethylene oxide, etc. may be used in combination.
  • the content of the conductive agent and the binder is, for example, 0.1% by mass or more and 5% by mass or less with respect to the mass of the negative electrode mixture layer 31, respectively.
  • the positive electrode 11 includes a lithium-containing transition metal composite oxide and a sulfonic acid compound present on the particle surface of the composite oxide.
  • the lithium-containing transition metal composite oxide with a sulfonic acid compound attached to the particle surface functions as a positive electrode active material.
  • the sulfonic acid compound is a compound represented by formula (I). In the formula, A is a Group 1 or Group 2 element, R is a hydrocarbon group, and n is 1 or 2.
  • the sulfonic acid compound represented by formula (I) functions specifically when applied to the particle surface of the lithium-containing transition metal oxide to form the positive electrode 11. reduce the reaction resistance in As a result, it becomes possible to increase the depth of charging and discharging, and further increase in capacity can be achieved.
  • the sulfonic acid compound exhibits the effect even in a very small amount, it is preferably present on the particle surface of the composite oxide in an amount of 0.01% by mass or more based on the lithium-containing transition metal composite oxide.
  • the content of the sulfonic acid compound is more preferably 0.05% by mass or more, particularly preferably 0.10% by mass or more, based on the lithium-containing transition metal composite oxide.
  • the upper limit of the content of the sulfonic acid compound is not particularly limited, but from the viewpoint of achieving both output characteristics and cycle characteristics, 2.0% by mass is preferable with respect to the lithium-containing transition metal composite oxide, and 1.5% by mass is preferable. More preferably, 1.0% by mass is particularly preferred.
  • the sulfonic acid compound is present in an amount of, for example, 0.05% by mass or more and 1.50% by mass or less, or 0.1% by mass or more and 1.0% by mass or less based on the lithium-containing transition metal composite oxide. .
  • the positive electrode active material may have as a main component composite particles that are a lithium-containing transition metal composite oxide with a sulfonic acid compound attached to the particle surface, and may be substantially composed only of the composite particles.
  • the positive electrode active material may contain a composite oxide other than the composite particles or other compounds as long as the purpose of the present disclosure is not impaired.
  • a composite oxide without a sulfonic acid compound attached to the particle surface may be included as part of the positive electrode active material.
  • the lithium-containing transition metal oxide preferably has a layered rock salt structure.
  • the layered rock salt structure of the lithium-containing transition metal oxide include a layered rock salt structure belonging to space group R-3m, a layered rock salt structure belonging to space group C2/m, and the like.
  • a layered rock salt structure belonging to space group R-3m is preferred from the viewpoint of high capacity and stability of crystal structure.
  • the layered rock salt structure of the lithium-containing transition metal oxide includes a transition metal layer, a Li layer, and an oxygen layer.
  • the lithium-containing transition metal oxide is a composite oxide containing metal elements such as Co, Mn, Ni, and Al in addition to Li.
  • Metal elements constituting the lithium-containing transition metal oxide include, for example, Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Sn. , Sb, W, Pb, and Bi. Among these, it is preferable to contain at least one selected from Co, Ni, and Mn.
  • suitable composite oxides include composite oxides containing Ni, Co, and Mn, and composite oxides containing Ni, Co, and Al.
  • the lithium-containing transition metal oxide is preferably 50 mol% or more, more preferably 70 mol% or more, particularly preferably 80 mol%, based on the total number of moles of metal elements excluding Li. Contains the above amount of Ni. Further, the effect of adding a sulfonic acid compound is more remarkable when a lithium-containing transition metal oxide with a high Ni content is used.
  • the Ni content may be 85 mol% or more, or 90 mol% or more with respect to the total number of moles of metal elements excluding Li.
  • the upper limit of the Ni content is, for example, 95 mol%.
  • a suitable lithium-containing transition metal oxide is a composite oxide containing Ni, Co, and Al, as described above.
  • the Al content is 4 mol% or more and 15 mol% or less, and the Co content is 1.5 mol% or less. If the Al content is within this range, the crystal structure will be stabilized and the cycle characteristics will be improved.
  • Co may not be substantially added, battery performance is improved by adding a small amount of Co.
  • M1 is Mn, Fe, Ti, Si, Nb, It is a composite oxide represented by at least one element selected from Zr, Mo, and Zn.
  • M1 is Mn.
  • the content of the elements constituting the lithium-containing transition metal composite oxide is measured using an inductively coupled plasma emission spectrometer (ICP-AES), an electron beam microanalyzer (EPMA), an energy dispersive X-ray analyzer (EDX), etc. can be measured.
  • ICP-AES inductively coupled plasma emission spectrometer
  • EPMA electron beam microanalyzer
  • EDX energy dispersive X-ray analyzer
  • a lithium-containing transition metal composite oxide is, for example, a secondary particle formed by agglomerating a plurality of primary particles.
  • the volume-based median diameter (D50) of the composite oxide is not particularly limited, but is, for example, 3 ⁇ m or more and 30 ⁇ m or less, preferably 5 ⁇ m or more and 25 ⁇ m or less.
  • the D50 of the composite oxide means the D50 of the secondary particles.
  • D50 means a particle size at which the cumulative frequency is 50% from the smallest particle size in the volume-based particle size distribution, and is also called the median diameter.
  • the particle size distribution of the composite oxide (the same applies to the negative electrode active material) can be measured using a laser diffraction type particle size distribution measuring device (for example, MT3000II manufactured by Microtrac Bell Co., Ltd.) using water as a dispersion medium.
  • a laser diffraction type particle size distribution measuring device for example, MT3000II manufactured by Microtrac Bell Co., Ltd.
  • the average particle size of the primary particles constituting the lithium-containing transition metal composite oxide is, for example, 0.05 ⁇ m or more and 1 ⁇ m or less.
  • the average particle diameter of the primary particles is calculated by averaging the diameters of the circumscribed circles of the primary particles extracted by analyzing a scanning electron microscope (SEM) image of a cross section of the secondary particles.
  • the sulfonic acid compound present on the particle surface of the lithium-containing transition metal composite oxide is a compound represented by formula (I).
  • A is a Group 1 or Group 2 element
  • R is a hydrocarbon group
  • n is 1 or 2.
  • A is preferably a Group 1 element.
  • Li or Na is more preferred, and Li is particularly preferred.
  • R is preferably an alkyl group.
  • the number of carbon atoms in the alkyl group is preferably 5 or less, more preferably 3 or less. From the viewpoint of reducing reaction resistance, etc., a suitable example of R is an alkyl group having 3 or less carbon atoms, and among them, a methyl group is preferable.
  • a part of hydrogen bonded to carbon may be substituted with fluorine.
  • n in formula (I) is preferably 1.
  • sulfonic acid compounds include lithium methanesulfonate, lithium ethanesulfonate, lithium propanesulfonate, sodium methanesulfonate, sodium ethanesulfonate, magnesium methanesulfonate, lithium fluoromethanesulfonate, and the like.
  • at least one selected from the group consisting of lithium methanesulfonate, lithium ethanesulfonate, and sodium methanesulfonate is preferred, and lithium methanesulfonate is particularly preferred.
  • the sulfonic acid compound exists homogeneously over the entire particle surface of the lithium-containing transition metal composite oxide.
  • the presence of the sulfonic acid compound on the particle surface of the composite oxide can be confirmed by Fourier transform infrared spectroscopy (FT-IR).
  • FT-IR Fourier transform infrared spectroscopy
  • a positive electrode active material containing lithium methanesulfonate has absorption peaks around 1238 cm ⁇ 1 , 1175 cm ⁇ 1 , 1065 cm ⁇ 1 , and 785 cm ⁇ 1 , for example.
  • the peaks around 1238 cm ⁇ 1 , 1175 cm ⁇ 1 , and 1065 cm ⁇ 1 are peaks caused by SO stretching vibrations derived from lithium methanesulfonate.
  • the peak around 785 cm ⁇ 1 is a peak resulting from CS stretching vibration derived from lithium methanesulfonate.
  • positive electrode active materials containing sulfonic acid compounds other than lithium methanesulfonate can also be confirmed from the absorption peak derived from the sulfonic acid compound in the infrared absorption spectrum.
  • the presence of a sulfonic acid compound on the particle surface of a lithium-containing transition metal composite oxide can also be confirmed by ICP, atomic absorption spectrometry, X-ray photoelectron spectroscopy (XPS), synchrotron radiation XRD measurement, TOF-SIMS, etc. .
  • a positive electrode active material that is an example of an embodiment can be manufactured by the following method. Note that the manufacturing method described here is just an example, and the method for manufacturing the positive electrode active material is not limited to this method.
  • Metal oxides can be prepared by, for example, adding an alkaline solution such as sodium hydroxide dropwise to a solution of metal salts containing Ni, Al, Co, Mn, etc. while stirring the solution, and adjusting the pH to an alkaline side (for example, 8.5 to 12.5%). 5 or less), a composite hydroxide containing metal elements such as Ni, Al, Co, and Mn is precipitated (co-precipitated), and the composite hydroxide can be synthesized by heat treatment.
  • the heat treatment temperature is not particularly limited, but is, for example, 300°C or higher and 600°C or lower.
  • lithium compound examples include Li 2 CO 3 , LiOH, Li 2 O 2 , Li 2 O, LiNO 3 , LiNO 2 , Li 2 SO 4 , LiOH ⁇ H 2 O, LiH, and LiF.
  • the metal oxide and the lithium compound are mixed such that, for example, the molar ratio of the metal element in the metal oxide to Li in the lithium compound is 1:0.98 or more and 1:1.1 or less. Note that when mixing the metal oxide and the lithium compound, other metal raw materials may be added as necessary.
  • the mixture of metal oxide and lithium compound is fired, for example, in an oxygen atmosphere.
  • the mixture may be fired through multiple heating processes.
  • the firing step includes, for example, a first temperature raising step of increasing the temperature from 450° C. to 680° C. at a temperature increasing rate of 1.0° C./min or more and 5.5° C./min or less, and 0.1° C./min.
  • a second heating step is included in which the temperature is raised to a temperature exceeding 680° C. at a heating rate of 3.5° C./min or less.
  • the maximum temperature of the firing step may be set to 700° C. or higher and 850° C. or lower, and the temperature may be maintained at this temperature for 1 hour or more and 10 hours or less.
  • the fired product (lithium-containing transition metal composite oxide) is washed with water and dehydrated to obtain a cake-like composition.
  • This cleaning step removes remaining alkaline components. Washing with water and dehydration can be performed by conventionally known methods.
  • the cake-like composition is dried to obtain a powder-like composition.
  • the drying step may be performed under a vacuum atmosphere. An example of the drying conditions is at a temperature of 150° C. or higher and 400° C. or lower for 0.5 hours or more and 15 hours or less.
  • the sulfonic acid compound is added, for example, to the cake-like composition obtained in the washing step or the powder-like composition obtained in the drying step.
  • a sulfonic acid solution may be added instead of or together with the sulfonic acid compound.
  • the sulfonic acid compound may be added as an aqueous dispersion.
  • the sulfonic acid solution is an aqueous solution of sulfonic acid.
  • the concentration of sulfonic acid in the sulfonic acid solution is, for example, 0.5% by mass or more and 40% by mass or less.
  • the negative electrode 12 includes a negative electrode core 40 and a negative electrode mixture layer 41 provided on the negative electrode core 40.
  • a metal foil such as copper that is stable in the potential range of the negative electrode 12, a film with the metal disposed on the surface, or the like can be used.
  • the negative electrode mixture layer 41 contains a negative electrode active material and a binder, and is provided on both sides of the negative electrode core 40 except for the portion to which the negative electrode lead 21 is connected.
  • the negative electrode 12 is made by applying a negative electrode mixture slurry containing a negative electrode active material and a binder to the surface of the negative electrode core 40, drying the coating film, and then compressing the negative electrode mixture layer 41 to the negative electrode core. It can be produced by forming it on both sides of 40.
  • the binder contained in the negative electrode mixture layer 41 fluororesin, PAN, polyimide, acrylic resin, polyolefin, etc. can be used as in the case of the positive electrode 11, but styrene-butadiene rubber (SBR) is preferably used.
  • the negative electrode mixture layer 41 preferably contains CMC or a salt thereof, polyacrylic acid (PAA) or a salt thereof, polyvinyl alcohol (PVA), or the like. Among these, it is preferable to use SBR, CMC or a salt thereof, and PAA or a salt thereof in combination.
  • the content of the binder is, for example, 0.1% by mass or more and 5% by mass or less with respect to the mass of the negative electrode mixture layer 41.
  • the negative electrode mixture layer 41 may contain a conductive agent such as CNT.
  • the negative electrode mixture layer 41 contains a silicon-containing material as a negative electrode active material.
  • the proportion of the silicon-containing material in the negative electrode active material is 50% by mass or more.
  • Silicon-containing materials can absorb more Li ions than carbon-based active materials such as graphite, which are commonly used as negative electrode active materials, so increasing the content of silicon-containing materials can increase the capacity of batteries. It is possible to aim for As will be described in detail later, simply increasing the content of the silicon-containing material will significantly reduce the cycle characteristics.
  • volume specific capacity/porosity the value obtained by dividing the volume specific capacity of the negative electrode mixture layer 41 by the porosity (hereinafter referred to as "volume specific capacity/porosity") ) is 48.0mAh/cc ⁇ % or less.
  • the proportion (content) of the silicon-containing material in the negative electrode active material is preferably 60% by mass or more, more preferably 70% by mass or more, particularly preferably 80% by mass or more, and may be 90% by mass or more. .
  • the upper limit of the content of the silicon-containing material is not particularly limited, and may be 100% by mass.
  • An example of a suitable range for the content of the silicon-containing material is 70 to 100% by mass of the negative electrode active material, more preferably 80% by mass or more and 100% by mass or less.
  • the negative electrode mixture layer 41 may contain substantially only a silicon-containing material as a negative electrode active material, but may also contain a carbon material in an amount of 50% by mass or less.
  • the carbon material that functions as the negative electrode active material is, for example, at least one selected from the group consisting of natural graphite, artificial graphite, soft carbon, and hard carbon.
  • at least artificial graphite such as massive artificial graphite (MAG) and graphitized mesophase carbon microbeads (MCMB), natural graphite such as flaky graphite, lumpy graphite, and earthy graphite, or a mixture thereof is used as the carbon material. It is preferable.
  • the volume-based D50 of the carbon material is, for example, 1 ⁇ m or more and 30 ⁇ m or less, preferably 5 ⁇ m or more and 25 ⁇ m or less.
  • Soft carbon and hard carbon are classified as amorphous carbon in which the graphite crystal structure is not developed. More specifically, it means a carbon component having a d(002) plane spacing of 0.342 nm or more as determined by X-ray diffraction. Soft carbon is also called easily graphitizable carbon, and is carbon that is more easily graphitized by high-temperature treatment than hard carbon. Hard carbon is also called non-graphitizable carbon. Note that, in view of the configuration of the present invention, it is not necessary to clearly distinguish between soft carbon and hard carbon. Graphite and at least one amorphous carbon of soft carbon and hard carbon may be used together as the negative electrode active material.
  • the negative electrode mixture layer 41 has a volume specific capacity/porosity of 48.0 mAh/cc ⁇ % or less.
  • the voids between the particles of the negative electrode active material are considered to be the main movement paths for Li ions that move within the negative electrode mixture layer 41 during charging and discharging, and the value of the volume specific capacity/porosity of the negative electrode mixture layer 41 is If it is 48.0 mAh/cc ⁇ % or less, it is considered that a sufficient movement path for Li ions is secured. Further, if it is 48.0 mAh/cc ⁇ % or less, it is considered that the influence of expansion of the silicon-containing material during charging can be sufficiently alleviated. If the volume specific capacity/porosity is 48.0 mAh/cc ⁇ % or less, for these reasons, the capacity decrease due to charging and discharging is highly suppressed, and the cycle characteristics are greatly improved.
  • the cycle characteristics of the non-aqueous electrolyte secondary battery 10 change greatly when the volume specific capacity/porosity of the negative electrode mixture layer 41 reaches 48.0 mAh/cc.%, so for example, the cycle characteristics of the battery performance, etc. From this point of view, the volume specific capacity/porosity is controlled to be 45.0 mAh/cc ⁇ % or less.
  • An example of a suitable volume specific capacity/porosity is 45.0 mAh/cc ⁇ % or less, or 40.0 mAh/cc ⁇ % or less.
  • the lower limit of the volume specific capacity/porosity of the negative electrode mixture layer 41 is not particularly limited, but if it is too small, the cycle characteristic improvement effect will reach a ceiling, so it is preferably 25.0 mAh/cc ⁇ %. More preferably, it is 30.0mAh/cc ⁇ %. If the volume specific capacity/porosity of the negative electrode mixture layer 41 is 48.0mAh/cc.% or less, 25.0mAh/cc.% or more, or 30.0Ah/cc.% or more, high capacity and high Achieves a higher level of durability.
  • the volume specific capacity of the negative electrode mixture layer is measured by the following method.
  • the battery to be evaluated is dismantled, the negative electrode plate is cut out, and a monopolar cell is fabricated using metal Li as the counter electrode and ionic liquid as the electrolyte.
  • (2) Charge the unipolar cell at 0.1C in a temperature environment of 25°C until the cell voltage reaches 5mV, rest for 20 minutes, and then discharge at 0.1C until the cell voltage reaches 1.0V. , find the discharge capacity (C).
  • the porosity of the negative electrode mixture layer 41 is preferably 25% or more, more preferably 35% or more, or 40% or more. As described above, the porosity refers to the proportion of voids between the negative electrode active material particles in the negative electrode mixture layer 41, and voids within the active material particles are not included in the porosity.
  • the porosity of the negative electrode mixture layer 41 is controlled so that the volumetric capacity/porosity ratio becomes a desired value, and changes depending on, for example, the compression conditions of the negative electrode mixture layer 41 during manufacture of the negative electrode 12. Generally, when the compression force of the negative electrode mixture layer 41 is decreased, the porosity increases, and when the compression force is increased, the porosity decreases.
  • the porosity of the negative electrode mixture layer 41 can also be controlled by the particle size distribution of the negative electrode active material.
  • the upper limit of the porosity of the negative electrode mixture layer 41 is not particularly limited, but if the porosity is made too high, the cycle characteristic improvement effect will reach a ceiling, so it is preferably 65%, more preferably 60%, Or 55%. If the porosity of the negative electrode mixture layer 41 is 25% or more and 65% or less, or 60% or less, both high capacity and high durability can be achieved to a higher degree.
  • the porosity of the negative electrode mixture layer is measured using a mercury porosimeter.
  • a mercury porosimeter (1) After discharging the battery to be evaluated to 2.5V, disassemble the battery, cut out the negative electrode plate, and insert a plurality of negative electrode plates as samples into a measurement cell of a mercury porosimeter.
  • the density of the negative electrode mixture layer 41 is preferably 1.5 g/cc or less, more preferably 1.2 g/cc or less. In this case, the effect of improving cycle characteristics becomes more significant.
  • the lower limit of the density is preferably 0.65 g/cc from the viewpoint of achieving both high capacity and high durability.
  • An example of a suitable range for the density of the negative electrode mixture layer 41 is 0.65 g/cc or more and 1.5 g/cc or less, or 0.72 g/cc or more and 1.2 g/cc or less. When the materials used are the same, the density of the negative electrode mixture layer 41 becomes lower as the porosity increases.
  • the density of the negative electrode mixture layer is measured by the following method. (1) After discharging the battery to be evaluated to 2.5V, disassemble the battery and cut out the negative electrode plate, wash it by immersing it in DMC, vacuum dry it at 100°C for 5 hours, and then ) to measure. (2) After peeling off the negative electrode mixture layer from the negative electrode plate and performing ultrasonic cleaning, the mass (Wc) of the negative electrode core is measured.
  • the particle expansion coefficient of the silicon-containing material is preferably 3.0 times or less.
  • the particle expansion rate of the silicon-containing material is preferably 3.0 times or less from the viewpoint of improving cycle characteristics, but if the particle expansion rate becomes too small, the capacity tends to decrease. Therefore, the particle expansion coefficient of the silicon-containing material is preferably 1.1 times or more.
  • An example of a suitable range for the particle expansion coefficient is 1.1 times or more and 3.0 times or less, more preferably 1.3 times or more and 2.1 times or less. If the particle expansion coefficient of the silicon-containing material is within the range, it becomes easy to achieve both high capacity and high durability.
  • the particle expansion coefficient of silicon-containing materials is measured by the method described below.
  • the battery to be evaluated is disassembled, the negative electrode plate is cut out, and a monopolar cell is fabricated using metal Li as the counter electrode and an ionic liquid as the electrolyte, with the particle cross section of the silicon-containing material exposed.
  • the expansion rate of the negative electrode mixture layer 41 depends on the expansion rate and amount of the negative electrode active material.
  • the expansion coefficient of the negative electrode mixture layer 41 is preferably 1.5 times or less. In this case, the effect of improving cycle characteristics becomes more significant.
  • the lower limit of the expansion coefficient of the negative electrode mixture layer 41 is not particularly limited, but is 1.1 times as an example.
  • An example of a suitable range for the expansion coefficient of the negative electrode mixture layer 41 is 1.1 times or more and 1.5 times or less, more preferably 1.2 times or more and 1.4 times or less. If the expansion coefficient of the negative electrode mixture layer 41 is within this range, it becomes easy to achieve both high capacity and high durability.
  • the expansion coefficient of the negative electrode mixture layer is measured by the following method.
  • the battery to be evaluated is dismantled, the negative electrode plate is cut out, and a monopolar cell is fabricated using metal Li as the counter electrode and ionic liquid as the electrolyte.
  • the silicon-containing material may be any material containing Si, and examples thereof include silicon alloys, silicon compounds, and composite materials containing Si. Among these, composite materials containing Si are preferred.
  • the D50 of silicon-containing materials is generally lower than that of graphite.
  • the volume-based D50 of the silicon-containing material is, for example, 1 ⁇ m or more and 20 ⁇ m or less, or 1 ⁇ m or more and 15 ⁇ m or less. Note that one type of silicon-containing material may be used alone, or two or more types may be used in combination.
  • Suitable silicon-containing materials are composite particles comprising an ion-conducting phase and a Si phase dispersed within the ion-conducting phase.
  • the ion conductive phase is, for example, at least one selected from the group consisting of a silicate phase, a carbon phase, a silicide phase, and a silicon oxide phase.
  • the silicide phase is a phase of a compound consisting of Si and an element more electropositive than Si, and examples thereof include NiSi, Mg 2 Si, TiSi 2 and the like.
  • the Si phase is formed by dispersing Si in the form of fine particles.
  • the ion conductive phase is a continuous phase composed of aggregation of particles finer than the Si phase.
  • the average value of the size of the Si phase is preferably 1 nm or more and 200 nm or less, more preferably 1 nm or more and 100 nm or less.
  • the average size of the Si phase may be, for example, 1 nm or more and 10 nm or less.
  • the above composite material may have a conductive layer covering the surface of the ion conductive phase.
  • the conductive layer is made of a material having higher conductivity than the ion conductive layer, and forms a good conductive path in the negative electrode mixture layer 41.
  • the conductive layer is, for example, a carbon film made of a conductive carbon material.
  • carbon black such as acetylene black and Ketjen black, graphite, amorphous carbon with low crystallinity (amorphous carbon), etc. can be used.
  • the thickness of the conductive layer is preferably 1 nm or more and 200 nm or less, or 5 nm or more and 100 nm or less, in consideration of ensuring conductivity and diffusibility of Li ions into the inside of the particles.
  • the thickness of the conductive layer can be measured by observing the cross section of the composite material using a SEM or a transmission electron microscope (TEM).
  • the ion conductive phase may contain at least one element selected from the group consisting of Group 1 and Group 2 elements of the periodic table.
  • the ion conductive layer may be a Li-doped silicon oxide phase.
  • the ion conductive phase is selected from the group consisting of B, Al, Zr, Nb, Ta, V, Y, Ti, P, Bi, Zn, Sn, Pb, Sb, Co, Er, F, W, and lanthanoids. It may contain at least one kind.
  • An example of a suitable composite material containing Si has a sea-island structure in which fine Si is substantially uniformly dispersed in an amorphous silicon oxide phase, and has the general formula SiO x (0 ⁇ x ⁇ 2) as a whole.
  • This is a composite particle represented.
  • the main component of silicon oxide may be silicon dioxide.
  • the silicon oxide phase may be doped with Li.
  • the content ratio (x) of oxygen to Si is, for example, 0.5 ⁇ x ⁇ 2.0, preferably 0.8 ⁇ x ⁇ 1.5.
  • a suitable composite material containing Si is a composite particle having a sea-island structure in which fine Si is substantially uniformly dispersed in an amorphous silicate phase.
  • a preferred silicate phase is a lithium silicate phase containing Li.
  • the lithium silicate phase is, for example, a complex oxide phase represented by the general formula Li 2z SiO (2+z) (0 ⁇ z ⁇ 2).
  • Li 4 SiO 4 is an unstable compound and exhibits alkalinity when reacting with water, so it may alter Si and cause a decrease in charge/discharge capacity.
  • a suitable composite material containing Si is a composite particle having a sea-island structure in which fine Si is substantially uniformly dispersed in a carbon phase.
  • the carbon phase is an amorphous carbon phase.
  • the carbon phase may contain a crystalline phase component, it is preferable that the carbon phase contains more amorphous phase components.
  • the amorphous carbon phase is composed of, for example, a carbon material having an average interplanar spacing of (002) planes of more than 0.34 nm as measured by X-ray diffraction.
  • the composite material containing a carbon phase may have a conductive layer separate from the carbon phase, or may not have the conductive layer.
  • a porous sheet having ion permeability and insulation properties is used.
  • porous sheets include microporous thin films, woven fabrics, and nonwoven fabrics.
  • Suitable materials for the separator 13 include polyolefins such as polyethylene and polypropylene, cellulose, and the like.
  • the separator 13 may have a single layer structure or a multilayer structure. Further, a resin layer with high heat resistance such as aramid resin may be formed on the surface of the separator 13.
  • a filler layer containing an inorganic filler may be formed at the interface between the separator 13 and at least one of the positive electrode 11 and the negative electrode 12.
  • the inorganic filler include oxides and phosphoric acid compounds containing metal elements such as Ti, Al, Si, and Mg.
  • the filler layer can be formed by applying a slurry containing the filler to the surface of the positive electrode 11, the negative electrode 12, or the separator 13.
  • the nonaqueous electrolyte secondary battery 10 with the above configuration has a charging upper limit voltage of 4.2V and a cutoff voltage of 2.0V. That is, the nonaqueous electrolyte secondary battery 10 is preferably charged and discharged in a voltage range of 2.0V or more and 4.2V or less. More preferably, charging and discharging is controlled within a voltage range of 2.5V or more and 4.2V or less. In this case, it is possible to achieve both high capacity and high durability.
  • a positive electrode mixture slurry is prepared using N-methyl-2-pyrrolidone (NMP) as a dispersion medium.
  • NMP N-methyl-2-pyrrolidone
  • a positive electrode mixture slurry is applied onto the positive electrode core made of aluminum foil, the coating film is dried and compressed, and then the positive electrode core is cut into a predetermined electrode size, and the positive electrode mixture is coated on both sides of the positive electrode core.
  • a positive electrode on which the agent layer was formed was obtained. Note that an exposed portion in which the surface of the positive electrode core was exposed was provided in a part of the positive electrode.
  • a silicon-containing material composite particles having a sea-island structure in which fine Si is almost uniformly dispersed in a carbon phase (average size of Si phase: 5 nm, D50: 10 ⁇ m, true density: 1.5 g/cc) are used. there was.
  • the silicon-containing material sodium carboxymethyl cellulose (CMC-Na), and a dispersion of styrene-butadiene rubber (SBR) were mixed at a solid content mass ratio of 100:1:1.
  • SBR styrene-butadiene rubber
  • the negative electrode mixture slurry is applied to both sides of a negative electrode core made of copper foil, and after the coating film is dried, the coating film is compressed using a roller and cut into a predetermined electrode size to form the negative electrode core.
  • a negative electrode was obtained in which negative electrode mixture layers were formed on both sides. Note that an exposed portion in which the surface of the negative electrode core was exposed was provided in a part of the negative electrode.
  • Non-aqueous electrolyte 1.2 mol of LiPF 6 was added to a mixed solvent of ethylene carbonate (EC), methyl ethyl carbonate (MEC), and dimethyl carbonate (DMC) mixed at a volume ratio of 3:3:4 (25°C).
  • EC ethylene carbonate
  • MEC methyl ethyl carbonate
  • DMC dimethyl carbonate
  • a non-aqueous electrolyte solution was prepared by dissolving the solution at a concentration of 1/liter.
  • test cell non-aqueous electrolyte secondary battery
  • Leads were attached to the positive electrode and the negative electrode, respectively, and the positive and negative electrodes were spirally wound through a separator to obtain a wound electrode body.
  • the electrode body was housed in a cylindrical outer can with a bottom, and the negative electrode lead was welded to the inner surface of the bottom of the outer can, and the positive electrode lead was welded to the internal terminal plate of the sealing body. Thereafter, the non-aqueous electrolyte was poured into the outer can, and the opening edge of the outer can was caulked and fixed to the sealing body to produce a cylindrical test cell.
  • the particle expansion rate of the silicon-containing material, the density of the negative electrode mixture layer, and the expansion rate of the negative electrode mixture layer were measured by the above method, the particle expansion rate was 1.78 times, and the density of the negative electrode mixture layer was 0.
  • the expansion rate was 864 g/cc, which was 1.27 times that of the negative electrode mixture layer.
  • the above test cell was evaluated for initial charge/discharge efficiency and cycle characteristics (capacity retention rate) by the following method, and the evaluation results are shown in Table 1.
  • the same evaluation was performed for each test cell of Examples and Comparative Examples described below, and the evaluation results are shown in Table 1 together with the physical properties of the negative electrode.
  • Examples 1 to 10 are labeled A1 to A10
  • Comparative Examples 1 to 6 are labeled B1 to B6.
  • the capacity retention rate of each test cell shown in Table 1 is a relative value when the capacity retention rate of the test cell of Example 1 (A1) is set to 100.
  • Capacity retention rate (%) (100th cycle discharge capacity ⁇ 1st cycle discharge capacity) x 100
  • Examples 2 to 10 A negative electrode and a non-aqueous electrolyte were prepared in the same manner as in Example 1, except that the compression conditions of the negative electrode mixture layer were changed and the volume specific capacity/porosity values of the negative electrode mixture layer were set to the values shown in Table 1. A second battery was produced and the performance evaluation described above was performed.
  • test cells of the examples have higher capacity retention rates after the cycle test than the test cells of Comparative Examples 1 to 6, and have excellent cycle characteristics.
  • test cells of Examples have higher initial charge/discharge efficiency than the test cells of Comparative Examples 5 and 6.
  • lithium methanesulfonate is applied to the positive electrode, but if a sulfonic acid compound is not used, the charge/discharge efficiency decreases.
  • a sulfonic acid compound is applied to the positive electrode, and the volume specific capacity/porosity of the negative electrode mixture layer is By controlling this to 48.0 mAh/cc ⁇ % or less, it is possible to improve the charging/discharging efficiency and achieve both high capacity and high durability.
  • Configuration 1 A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte
  • the positive electrode includes a lithium-containing transition metal composite oxide and a sulfonic acid compound present on the particle surface of the composite oxide,
  • the sulfonic acid compound is a compound represented by formula (I),
  • A is a Group 1 or Group 2 element
  • R is a hydrocarbon group
  • n is 1 or 2
  • the negative electrode has a negative electrode mixture layer containing a silicon-containing material as a negative electrode active material, the proportion of the silicon-containing material in the negative electrode active material is 50% by mass or more, and the volume ratio of the negative electrode mixture layer is
  • a non-aqueous electrolyte secondary battery whose capacity divided by porosity is 48.0 mAh/cc ⁇ % or less.
  • Configuration 2 The non-aqueous electrolyte secondary according to Configuration 1, wherein the sulfonic acid compound is present in an amount of 0.1% by mass or more and 1.0% by mass or less based on the lithium-containing transition metal composite oxide. battery.
  • Configuration 3 The nonaqueous electrolyte secondary battery according to Configuration 1 or Configuration 2, wherein A in formula (I) is Li or Na.
  • Configuration 4 The nonaqueous electrolyte secondary battery according to any one of configurations 1 to 3, wherein R in formula (I) is an alkyl group having 3 or less carbon atoms.
  • Configuration 5 The nonaqueous electrolyte secondary battery according to any one of configurations 1 to 4, wherein the negative electrode mixture layer has a density of 1.5 g/cc or less.
  • Configuration 6 The nonaqueous electrolyte secondary battery according to any one of configurations 1 to 5, wherein the proportion of the silicon-containing material in the negative electrode active material is 70% by mass or more.
  • Configuration 7 The nonaqueous electrolyte secondary battery according to any one of configurations 1 to 6, wherein the silicon-containing material has a particle expansion coefficient of 3.0 times or less.
  • Configuration 8 The non-aqueous electrolyte secondary battery according to any one of configurations 1 to 7, wherein the expansion coefficient of the negative electrode mixture layer is 1.5 times or less.
  • Configuration 9 Any of configurations 1 to 8, wherein the negative electrode mixture layer contains at least one carbon material selected from the group consisting of natural graphite, artificial graphite, soft carbon, and hard carbon as the negative electrode active material.
  • Configuration 10 The silicon-containing material includes an ion-conducting phase and a Si phase dispersed in the ion-conducting phase, and the ion-conducting phase is a group consisting of a silicate phase, a carbon phase, a silicide phase, and a silicon oxide phase.
  • Configuration 12 The non-aqueous electrolyte secondary battery according to any one of Configurations 1 to 11, wherein charging and discharging are controlled in a voltage range of 2.0 V or more and 4.2 V or less.
  • Non-aqueous electrolyte secondary battery 11 positive electrode, 12 negative electrode, 13 separator, 14 electrode body, 16 outer can, 17 sealing body, 18, 19 insulating plate, 20 positive electrode lead, 21 negative electrode lead, 22 grooved part, 23 internal terminal Plate, 24 lower valve body, 25 insulating member, 26 upper valve body, 27 cap, 28 gasket, 30 positive electrode core, 31 positive electrode mixture layer, 40 negative electrode core, 41 negative electrode mixture layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

実施形態の一例である非水電解質二次電池(10)において、正極(11)は、リチウム含有遷移金属複合酸化物と、当該複合酸化物の粒子表面に存在するスルホン酸化合物とを含み、スルホン酸化合物は、式(I)で表される化合物である。負極(12)において、負極活物質に占めるケイ素含有材料の割合は50質量%以上であり、かつ負極合剤層(41)の体積比容量を空隙率で除した値が48.0mAh/cc・%以下である。式中、Aは第1族又は第2族元素、Rは炭化水素基、nは1又は2である。

Description

非水電解質二次電池
 本開示は、非水電解質二次電池に関する。
 ケイ素含有材料は、高容量の負極活物質として注目されている。特許文献1には、多孔質炭素およびケイ素を含む、二次電池用負極に適用可能なケイ素含有材料であって、15質量%以上85質量%以下のケイ素、0.05cm/g以上0.5cm/g以下の窒素アクセス不能な容積、および1.5g/cm以上2.2g/cm以下の粒子骨格密度を有する材料が開示されている。特許文献1では、ケイ素含有材料の真密度および細孔の状態を適正化することにより、高容量、高耐久、高出力の電池の実現を図っている。
特表2018-534720号公報
 ケイ素含有材料を用いた負極は、電池の高容量化に有効であるが、ケイ素含有材料は充放電に伴う体積変化が大きく、耐久性(充放電サイクル特性)に課題がある。このため、特許文献1を含む従来の技術では、負極活物質としてケイ素含有材料よりも多い量の黒鉛を併用することが一般的であり、高容量と高耐久を両立することは容易ではない。
 本開示に係る非水電解質二次電池は、正極と、負極と、非水電解質とを備えた非水電解質二次電池であって、正極は、リチウム含有遷移金属複合酸化物と、当該複合酸化物の粒子表面に存在するスルホン酸化合物とを含み、スルホン酸化合物は、式(I)で表される化合物であり、
Figure JPOXMLDOC01-appb-C000002
 式中、Aは第1族又は第2族元素、Rは炭化水素基、nは1又は2であり、負極は、負極活物質としてケイ素含有材料を含む負極合剤層を有し、負極活物質に占めるケイ素含有材料の割合が50質量%以上であり、かつ負極合剤層の体積比容量を空隙率で除した値が48.0mAh/cc・%以下である。
 本開示に係る二次電池用負極によれば、ケイ素含有材料を含む高容量の非水電解質二次電池において、サイクル特性を改善できる。
実施形態の一例である非水電解質二次電池の断面図である。
 本発明者らは、ケイ素含有材料を多く含む高容量の非水電解質二次電池において、サイクル特性を改善すべく鋭意検討した結果、ケイ素含有材料を含む負極合剤層の体積比容量と空隙率の関係が、サイクル特性の改善において重要であることを突き止めた。負極活物質に占めるケイ素含有材料の割合が50質量%以上であるような負極は、一般的に、充放電に伴う容量低下が大きいが、負極合剤層の体積比容量を空隙率で除した値(体積比容積/空隙率)を48.0mAh/cc・%以下に制御することで、かかる容量低下を高度に抑制できることが分かった。本開示における空隙率とは、合剤層に占める負極活物質粒子間の空隙の割合を意味し、活物質粒子内の空隙は空隙率にカウントされない。
 ケイ素含有材料を多く含む負極を用いた電池は、サイクル特性の観点から、例えば、車載用途、蓄電用途等の電池として使用することは困難であると考えられてきたが、従来技術の範疇を大きく超えた空隙を負極合剤層に導入し、体積比容積/空隙率を48.0mAh/cc・%以下に制御すれば高容量と高耐久を高度に両立することが可能である。即ち、負極活物質に占めるケイ素含有材料の割合が50質量%以上のようにケイ素含有材料を多く含む非水電解質二次電池では、体積比容積/空隙率が48.0mAh/cc・%を境にしてサイクル特性が特異的に改善される。負極合剤層の体積比容積/空隙率が48.0mAh/cc・%以下である場合、負極における陽イオンの移動経路が十分に確保され、電池反応の不均一化が抑制される結果、サイクル特性が大きく向上すると考えられる。
 さらに、正極活物質として用いられるリチウム含有遷移金属複合酸化物の粒子表面に、上記式(I)で表されるスルホン酸化合物を存在させることにより、より高容量で初期充放電効率に優れた非水電解質二次電池を実現できることが明らかになった。これは、スルホン酸化合物の機能により正極における反応抵抗が低減され、充放電深度を深くすることが可能になったためであると考えられる。一方、反応抵抗の低減により充放電深度が深くなると、サイクル特性の低下が懸念される。正極活物質として粒子表面に特定のスルホン酸化合物が付着したリチウム含有遷移金属複合酸化物を用いると共に、負極合剤層の体積比容積/空隙率を48.0mAh/cc・%以下とすることにより、高容量を確保しつつ、初期充放電効率およびサイクル特性を向上させることが可能になる。
 以下、図面を参照しながら、本開示に係る非水電解質二次電池の実施形態の一例について詳細に説明する。なお、以下で説明する複数の実施形態、変形例の各構成要素を選択的に組み合わせてなる構成は本開示の範囲に含まれている。
 以下では、非水電解質二次電池として、巻回型の電極体14が有底円筒形状の外装缶16に収容された円筒形電池を例示するが、電池の外装体は円筒形の外装缶に限定されない。本開示に係る非水電解質二次電池は、例えば、角形の外装缶を備えた角形電池、コイン形の外装缶を備えたコイン形電池であってもよく、金属層および樹脂層を含むラミネートシートで構成された外装体を備えたパウチ型電池であってもよい。また、電極体は巻回型に限定されず、複数の正極と複数の負極がセパレータを介して交互に積層された積層型の電極体であってもよい。
 図1は、実施形態の一例である非水電解質二次電池10の断面図である。図1に示すように、非水電解質二次電池10は、巻回型の電極体14と、非水電解質と、電極体14および非水電解質を収容する外装缶16とを備える。電極体14は、正極11、負極12、およびセパレータ13を有し、正極11と負極12がセパレータ13を介して渦巻き状に巻回された巻回構造を有する。外装缶16は、軸方向一端側が開口した有底円筒形状の金属製容器であって、外装缶16の開口は封口体17によって塞がれている。以下では、説明の便宜上、電池の封口体17側を上、外装缶16の底部側を下とする。
 非水電解質は、リチウムイオン伝導性を有する。非水電解質は、液状の電解質(電解液)であってもよく、固体電解質であってもよい。
 液状の電解質(電解液)は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えば、エステル類、エーテル類、ニトリル類、アミド類、およびこれらの2種以上の混合溶媒等が用いられる。非水溶媒の一例としては、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、およびこれらの混合溶媒等が挙げられる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体(例えば、フルオロエチレンカーボネート等)を含有していてもよい。電解質塩には、例えば、LiPF等のリチウム塩が使用される。
 固体電解質としては、例えば、固体状もしくはゲル状のポリマー電解質、無機固体電解質等を用いることができる。無機固体電解質としては、全固体リチウムイオン二次電池等で公知の材料(例えば、酸化物系固体電解質、硫化物系固体電解質、ハロゲン系固体電解質等)を用いることができる。ポリマー電解質は、例えば、リチウム塩とマトリックスポリマー、あるいは、非水溶媒とリチウム塩とマトリックスポリマーとを含む。マトリックスポリマーとしては、例えば、非水溶媒を吸収してゲル化するポリマー材料が使用される。ポリマー材料としては、フッ素樹脂、アクリル樹脂、ポリエーテル樹脂等が挙げられる。
 電極体14を構成する正極11、負極12、およびセパレータ13は、いずれも帯状の長尺体であって、渦巻状に巻回されることで電極体14の径方向に交互に積層される。負極12は、リチウムの析出を防止するために、正極11よりも一回り大きな寸法で形成される。即ち、負極12は、正極11よりも長さ方向および幅方向に長く形成される。セパレータ13は、少なくとも正極11よりも一回り大きな寸法で形成され、例えば、正極11を挟むように2枚配置される。電極体14は、溶接等により正極11に接続された正極リード20と、溶接等により負極12に接続された負極リード21とを有する。
 電極体14の上下には、絶縁板18,19がそれぞれ配置される。図1に示す例では、正極リード20が絶縁板18の貫通孔を通って封口体17側に延び、負極リード21が絶縁板19の外側を通って外装缶16の底部側に延びている。正極リード20は封口体17の内部端子板23の下面に溶接等で接続され、内部端子板23と電気的に接続された封口体17の天板であるキャップ27が正極端子となる。負極リード21は外装缶16の底部内面に溶接等で接続され、外装缶16が負極端子となる。
 外装缶16と封口体17の間にはガスケット28が設けられ、電池内部の密閉性が確保される。外装缶16には、側面部の一部が内側に張り出した、封口体17を支持する溝入部22が形成されている。溝入部22は、外装缶16の周方向に沿って環状に形成されることが好ましく、その上面で封口体17を支持する。封口体17は、溝入部22と、封口体17に対して加締められた外装缶16の開口端部とにより、外装缶16の上部に固定される。
 封口体17は、電極体14側から順に、内部端子板23、下弁体24、絶縁部材25、上弁体26、およびキャップ27が積層された構造を有する。封口体17を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材25を除く各部材は互いに電気的に接続されている。下弁体24と上弁体26は各々の中央部で接続され、各々の周縁部の間には絶縁部材25が介在している。異常発熱で電池の内圧が上昇すると、下弁体24が上弁体26をキャップ27側に押し上げるように変形して破断することにより、下弁体24と上弁体26の間の電流経路が遮断される。さらに内圧が上昇すると、上弁体26が破断し、キャップ27の開口部からガスが排出される。
 以下、電極体14を構成する正極11、負極12、セパレータ13について、特に正極11を構成する正極活物質、および負極12を構成する負極活物質について詳説する。
 [正極]
 正極11は、正極芯体30と、正極芯体30上に設けられた正極合剤層31とを有する。正極芯体30には、アルミニウムなどの正極11の電位範囲で安定な金属の箔、当該金属を表面に配置したフィルム等を用いることができる。正極合剤層31は、正極活物質、導電剤、および結着剤を含み、正極リード20が接続される部分を除く正極芯体30の両面に設けられることが好ましい。正極11は、例えば、正極活物質、導電剤、および結着剤を含む正極合剤スラリーを正極芯体30の表面に塗布し、塗膜を乾燥させた後、圧縮して正極合剤層31を正極芯体30の両面に形成することにより作製できる。
 正極合剤層31に含まれる導電剤としては、アセチレンブラック、ケッチェンブラック等のカーボンブラック、黒鉛、カーボンナノチューブ(CNT)、カーボンナノファイバー、グラフェンなどの炭素材料が例示できる。正極合剤層31に含まれる結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等の含フッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド、アクリル樹脂、ポリオレフィンなどが例示できる。また、これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩、ポリエチレンオキシド等が併用されてもよい。導電剤および結着剤の含有率は、それぞれ、負極合剤層31の質量に対して、例えば0.1質量%以上5質量%以下である。
 正極11は、リチウム含有遷移金属複合酸化物と、当該複合酸化物の粒子表面に存在するスルホン酸化合物とを含む。粒子表面にスルホン酸化合物が付着したリチウム含有遷移金属複合酸化物は、正極活物質として機能する。スルホン酸化合物は、式(I)で表される化合物である。
Figure JPOXMLDOC01-appb-C000003
 式中、Aは第1族又は第2族元素、Rは炭化水素基、nは1又は2である。
 式(I)で表されるスルホン酸化合物(以下、単に「スルホン酸化合物」という場合がある)は、リチウム含有遷移金属酸化物の粒子表面に適用された場合に特異的に機能して正極11における反応抵抗を低減する。その結果、充放電深度を深くすることが可能となり、さらなる高容量化を実現できる。スルホン酸化合物は極少量であっても当該効果を発揮するが、リチウム含有遷移金属複合酸化物に対して0.01質量%以上の量で複合酸化物の粒子表面に存在させることが好ましい。スルホン酸化合物の含有率は、リチウム含有遷移金属複合酸化物に対して、0.05質量%以上がより好ましく、0.10質量%以上が特に好ましい。
 スルホン酸化合物の含有率の上限は、特に限定されないが、出力特性とサイクル特性の両立の観点から、リチウム含有遷移金属複合酸化物に対して2.0質量%が好ましく、1.5質量%がより好ましく、1.0質量%が特に好ましい。スルホン酸化合物は、例えば、リチウム含有遷移金属複合酸化物に対して0.05質量%以上1.50質量%以下、又は0.1質量%以上1.0質量%以下の量で存在している。
 正極活物質は、粒子表面にスルホン酸化合物が付着したリチウム含有遷移金属複合酸化物である複合粒子を主成分とし、実質的に当該複合粒子のみで構成されていてもよい。なお、正極活物質には、本開示の目的を損なわない範囲で、当該複合粒子以外の複合酸化物、或いはその他の化合物が含まれてもよい。例えば、正極活物質の一部として、粒子表面にスルホン酸化合物が付着していない複合酸化物が含まれていてもよい。
 リチウム含有遷移金属酸化物は、層状岩塩構造を有することが好ましい。スルホン酸化合物が層状岩塩構造の複合酸化物に適用された場合、上記効果がより顕著になる。リチウム含有遷移金属酸化物の層状岩塩構造としては、例えば、空間群R-3mに属する層状岩塩構造、空間群C2/mに属する層状岩塩構造等が挙げられる。中でも、高容量化、結晶構造の安定性の観点から、空間群R-3mに属する層状岩塩構造が好ましい。リチウム含有遷移金属酸化物の層状岩塩構造は、遷移金属層、Li層、および酸素層を含む。
 リチウム含有遷移金属酸化物は、Liの他に、Co、Mn、Ni、Al等の金属元素を含有する複合酸化物である。リチウム含有遷移金属酸化物を構成する金属元素は、例えば、Mg、Al、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Sn、Sb、W、Pb、およびBiから選択される少なくとも1種である。中でも、Co、Ni、およびMnから選択される少なくとも1種を含有することが好ましい。好適な複合酸化物の一例としては、Ni、Co、Mnを含有する複合酸化物、Ni、Co、Alを含有する複合酸化物が挙げられる。
 リチウム含有遷移金属酸化物は、高容量化等の観点から、Liを除く金属元素の総モル数に対して、好ましくは50モル%以上、より好ましくは70モル%以上、特に好ましくは80モル%以上のNiを含有する。また、スルホン酸化合物の添加の効果は、Ni含有率が高いリチウム含有遷移金属酸化物を用いた場合により顕著である。Niの含有率は、Liを除く金属元素の総モル数に対して、85モル%以上であってもよく、90モル%以上であってもよい。Ni含有率の上限は、例えば、95モル%である。
 好適なリチウム含有遷移金属酸化物の一例は、上記の通り、Ni、Co、Alを含有する複合酸化物である。Liを除く金属元素の総モル数に対して、Alの含有率は4モル%以上15モル%以下であり、Coの含有率は1.5モル%以下である。Alの含有率が当該範囲内であれば、結晶構造の安定化し、サイクル特性の向上に寄与する。Coは実質的に添加されていなくてもよいが、Coを少量添加することで電池性能が向上する。
 リチウム含有遷移金属酸化物は、例えば、一般式LiNiAlCoM12-b(式中、0.8≦a≦1.2、0.50≦x≦0.95、0.04≦y≦0.15、0≦z≦0.015、0≦w≦0.50、0≦b<0.05、x+y+z+w=1、M1はMn、Fe、Ti、Si、Nb、Zr、Mo、およびZnから選択される少なくとも1種以上の元素である。)で表される複合酸化物である。M1は、Mnであることが好ましい。
 リチウム含有遷移金属複合酸化物を構成する元素の含有率は、誘導結合プラズマ発光分光分析装置(ICP-AES)、電子線マイクロアナライザー(EPMA)、又はエネルギー分散型X線分析装置(EDX)等により測定することができる。
 リチウム含有遷移金属複合酸化物は、例えば、複数の一次粒子が凝集してなる二次粒子である。複合酸化物の体積基準のメジアン径(D50)は特に限定されないが、一例としては3μm以上30μm以下、好ましくは5μm以上25μm以下である。複合酸化物が一次粒子の集合した二次粒子である場合、複合酸化物のD50は二次粒子のD50を意味する。D50は、体積基準の粒度分布において頻度の累積が粒径の小さい方から50%となる粒径を意味し、中位径とも呼ばれる。複合酸化物の粒度分布(負極活物質の場合も同様)は、レーザー回折式の粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製、MT3000II)を用い、水を分散媒として測定できる。
 リチウム含有遷移金属複合酸化物を構成する一次粒子の平均粒径は、例えば、0.05μm以上1μm以下である。一次粒子の平均粒径は、二次粒子断面の走査型電子顕微鏡(SEM)画像の解析により抽出された一次粒子の外接円の直径を平均化して算出される。
 リチウム含有遷移金属複合酸化物の粒子表面に存在するスルホン酸化合物は、上記の通り、式(I)で表される化合物である。
Figure JPOXMLDOC01-appb-C000004
 式中、Aは第1族又は第2族元素、Rは炭化水素基、nは1又は2である。Aは、好ましくは第1族元素である。中でも、Li又はNaがより好ましく、Liが特に好ましい。
 式(I)において、Rは、アルキル基であることが好ましい。アルキル基の炭素数は、5以下が好ましく、3以下がより好ましい。反応抵抗の低減等の観点から、好適なRの一例は、炭素数が3以下のアルキル基であり、中でも、メチル基が好ましい。なお、Rにおいて、炭素と結合している水素の一部がフッ素に置換されていてもよい。また、式(I)のnは1であることが好ましい。
 スルホン酸化合物の具体例としては、メタンスルホン酸リチウム、エタンスルホン酸リチウム、プロパンスルホン酸リチウム、メタンスルホン酸ナトリウム、エタンスルホン酸ナトリウム、メタンスルホン酸マグネシウム、フルオロメタンスルホン酸リチウムなどが挙げられる。中でも、メタンスルホン酸リチウム、エタンスルホン酸リチウム、およびメタンスルホン酸ナトリウムからなる群より選択される少なくとも1種が好ましく、メタンスルホン酸リチウムが特に好ましい。
 スルホン酸化合物は、例えば、リチウム含有遷移金属複合酸化物の粒子表面全体に均質に存在している。複合酸化物の粒子表面におけるスルホン酸化合物の存在は、フーリエ変換赤外分光法(FT-IR)で確認することができる。FT-IRによって得られる赤外吸収スペクトルにおいて、メタンスルホン酸リチウムを含む正極活物質は、例えば、1238cm-1、1175cm-1、1065cm-1、785cm-1付近に吸収ピークを有する。1238cm-1、1175cm-1、1065cm-1付近のピークは、メタンスルホン酸リチウム由来のSO伸縮振動に起因するピークである。785cm-1付近のピークは、メタンスルホン酸リチウム由来のCS伸縮振動に起因するピークである。
 メタンスルホン酸リチウム以外のスルホン酸化合物を含む正極活物質についても、赤外吸収スペクトルのスルホン酸化合物由来の吸収ピークからその存在を確認できる。なお、リチウム含有遷移金属複合酸化物の粒子表面におけるスルホン酸化合物の存在は、ICP、原子吸光法、X線光電子分光法(XPS)、放射光XRD測定、TOF-SIMS等でも確認することができる。
 実施形態の一例である正極活物質は、下記の方法により製造できる。なお、ここで説明する製造方法は一例であって、正極活物質の製造方法はこの方法に限定されない。
 まず初めに、Ni、Al、Co、Mn等の金属元素を含有する金属酸化物を合成する。次に、当該金属酸化物と、リチウム化合物とを混合して焼成することにより、リチウム含有遷移金属複合酸化物を得る。金属酸化物は、例えば、Ni、Al、Co、Mn等を含む金属塩の溶液を撹拌しながら、水酸化ナトリウム等のアルカリ溶液を滴下し、pHをアルカリ側(例えば、8.5以上12.5以下)に調整することにより、Ni、Al、Co、Mn等の金属元素を含む複合水酸化物を析出(共沈)させ、当該複合水酸化物を熱処理することにより合成できる。熱処理温度は、特に制限されないが、一例としては、300℃以上600℃以下である。
 リチウム化合物としては、LiCO、LiOH、Li、LiO、LiNO、LiNO、LiSO、LiOH・HO、LiH、LiF等が例示できる。金属酸化物とリチウム化合物は、例えば、金属酸化物中の金属元素とリチウム化合物中のLiのモル比が、1:0.98以上1:1.1以下となるように混合される。なお、金属酸化物とリチウム化合物を混合する際に、必要に応じて他の金属原料を添加してもよい。
 金属酸化物とリチウム化合物の混合物は、例えば、酸素雰囲気下で焼成される。混合物は、複数の昇温プロセスを経て焼成されてもよい。焼成工程には、例えば、1.0℃/分以上5.5℃/分以下の昇温速度で450℃以上680℃以下まで昇温する第1の昇温工程、および0.1℃/分以上3.5℃/分以下の昇温速度で680℃を超える温度まで昇温する第2の昇温工程が含まれる。焼成工程の最高到達温度は700℃以上850℃以下に設定されてもよく、この温度で1時間以上10時間以下の時間保持されてもよい。
 次に、焼成物(リチウム含有遷移金属複合酸化物)を水洗し、脱水してケーキ状組成物を得る。この洗浄工程により、残存するアルカリ成分が除去される。水洗および脱水は、従来公知の方法で行うことができる。続いて、ケーキ状組成物を乾燥させて粉体状組成物を得る。乾燥工程は、真空雰囲気下で行ってもよい。乾燥条件の一例は、150℃以上400℃以下の温度で0.5時間以上15時間以下である。
 スルホン酸化合物は、例えば、洗浄工程で得られたケーキ状組成物、又は乾燥工程で得られた粉体状組成物に添加される。このとき、スルホン酸化合物の代わりに、又はスルホン酸化合物と共に、スルホン酸溶液を添加してもよい。これにより、リチウム含有遷移金属複合酸化物の粒子表面にスルホン酸化合物が付着した正極活物質が得られる。スルホン酸化合物は、水分散体として添加されてもよい。また、スルホン酸溶液はスルホン酸の水溶液であることが好ましい。スルホン酸溶液におけるスルホン酸の濃度は、例えば、0.5質量%以上40質量%以下である。
 なお、ケーキ状組成物にはリチウム化合物がある程度残存しているため、ケーキ状組成物にスルホン酸溶液を添加することで、ケーキ中の水に溶けているLiとスルホン酸が反応してスルホン酸リチウムが得られる。
 [負極]
 負極12は、負極芯体40と、負極芯体40上に設けられた負極合剤層41とを有する。負極芯体40には、銅などの負極12の電位範囲で安定な金属の箔、当該金属を表面に配置したフィルム等を用いることができる。負極合剤層41は、負極活物質および結着剤を含み、負極リード21が接続される部分を除く負極芯体40の両面に設けられることが好ましい。負極12は、例えば、負極芯体40の表面に負極活物質および結着剤を含む負極合剤スラリーを塗布し、塗膜を乾燥させた後、圧縮して負極合剤層41を負極芯体40の両面に形成することにより作製できる。
 負極合剤層41に含まれる結着剤には、正極11の場合と同様に、フッ素樹脂、PAN、ポリイミド、アクリル樹脂、ポリオレフィン等を用いることもできるが、好ましくはスチレン-ブタジエンゴム(SBR)を用いる。また、負極合剤層41は、CMC又はその塩、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコール(PVA)などを含むことが好ましい。中でも、SBRと、CMC又はその塩、PAA又はその塩を併用することが好適である。結着剤の含有率は、負極合剤層41の質量に対して、例えば0.1質量%以上5質量%以下である。なお、負極合剤層41には、CNT等の導電剤が含まれていてもよい。
 負極合剤層41は、負極活物質としてケイ素含有材料を含む。負極活物質に占めるケイ素含有材料の割合は50質量%以上である。ケイ素含有材料は、負極活物質として一般的に使用される黒鉛等の炭素系活物質と比較して多くのLiイオンを吸蔵できるので、ケイ素含有材料の含有量を多くすることで電池の高容量化を図ることができる。詳しくは後述するが、ケイ素含有材料の含有量を単純に増やすだけではサイクル特性が大きく低下する。そこで、非水電解質二次電池10では高容量と高耐久の両立を図るべく、負極合剤層41の体積比容量を空隙率で除した値(以下、「体積比容量/空隙率」とする)を48.0mAh/cc・%以下としている。
 負極活物質に占めるケイ素含有材料の割合(含有率)は、好ましくは60質量%以上、より好ましくは70質量%以上、特に好ましくは80質量%以上であり、90質量%以上であってもよい。ケイ素含有材料の含有率の上限は特に限定されず、100質量%であってもよい。ケイ素含有材料の含有率の好適な範囲の一例は、負極活物質の質量の70~100質量%であり、より好ましくは80質量%以上100質量%以下である。負極合剤層41は、負極活物質として、実質的にケイ素含有材料のみを含んでいてもよいが、50質量%以下の量で炭素材料を含んでいてもよい。
 負極活物質として機能する炭素材料は、例えば、天然黒鉛、人造黒鉛、ソフトカーボン、およびハードカーボンからなる群より選択される少なくとも1種である。中でも、炭素材料として、少なくとも、塊状人造黒鉛(MAG)、黒鉛化メソフェーズカーボンマイクロビーズ(MCMB)等の人造黒鉛、鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、又はこれらの混合物を用いることが好ましい。炭素材料の体積基準のD50は、例えば、1μm以上30μm以下であり、好ましくは5μm以上25μm以下である。
 ソフトカーボンおよびハードカーボンは、グラファイト結晶構造が発達していない非晶質炭素に分類される。より具体的には、X線回折によるd(002)面間隔が0.342nm以上である炭素成分を意味する。ソフトカーボンは易黒鉛化炭素とも呼ばれ、ハードカーボンと比べて高温処理により黒鉛化し易い炭素である。ハードカーボンは、難黒鉛化炭素とも呼ばれる。なお、本発明の構成上、ソフトカーボンとハードカーボンを明確に区別する必要はない。負極活物質として、黒鉛と、ソフトカーボンおよびハードカーボンの少なくとも一方の非晶質炭素とを併用してもよい。
 負極合剤層41は、上記の通り、体積比容量/空隙率が48.0mAh/cc・%以下である。負極活物質の粒子間の空隙は充放電に伴って負極合剤層41内を移動するLiイオンの主な移動経路になると考えられ、負極合剤層41の体積比容量/空隙率の値が48.0mAh/cc・%以下であれば、Liイオンの移動経路が十分に確保されると考えられる。また、48.0mAh/cc・%以下であれば、充電時におけるケイ素含有材料の膨張の影響を十分に緩和できると考えられる。体積比容量/空隙率が48.0mAh/cc・%以下であれば、このような理由から充放電に伴う容量低下が高度に抑制され、サイクル特性が大きく改善される。
 非水電解質二次電池10のサイクル特性は、負極合剤層41の体積比容量/空隙率が48.0mAh/cc・%を境にして大きく変化するため、例えば、電池性能の安定性等の観点から、体積比容量/空隙率は45.0mAh/cc・%以下に制御される。好適な体積比容量/空隙率の一例は、45.0mAh/cc・%以下、又は40.0mAh/cc・%以下である。
 負極合剤層41の体積比容量/空隙率の下限値は、特に限定されないが、小さくし過ぎてもサイクル特性の改善効果は頭打ちになるため、好ましくは25.0mAh/cc・%であり、より好ましくは30.0mAh/cc・%である。負極合剤層41の体積比容量/空隙率が、48.0mAh/cc・%以下で、25.0mAh/cc・%以上、又は30.0Ah/cc・%以上であれば、高容量と高耐久をより高度に両立できる。
 本開示において、負極合剤層の体積比容量は、下記の方法により測定される。
(1)評価対象の電池を解体して負極板を切り出し、対極に金属Liを、電解液にイオン液体を用いて単極セルを作製する。
(2)単極セルを、25℃の温度環境下、0.1Cでセル電圧が5mVになるまで充電し、20分間休止した後、0.1Cでセル電圧が1.0Vになるまで放電し、放電容量(C)を求める。
(3)放電容量(C)を放電状態の負極合剤層の体積(Va)で除して、体積比容量(Cv(mAh/cc)=C/Va)を算出する。
 負極合剤層41の空隙率は、好ましくは25%以上、より好ましくは35%以上、又は40%以上である。空隙率は、上記のように、負極合剤層41に占める負極活物質粒子間の空隙の割合を意味し、活物質粒子内の空隙は空隙率に含まれない。負極合剤層41の空隙率は、体積比容量/空隙率が目的の値となるように制御され、例えば、負極12の製造時における負極合剤層41の圧縮条件によって変化する。一般的には、負極合剤層41の圧縮力を小さくすると空隙率は高くなり、圧縮力を大きくすると空隙率は低くなる。負極合剤層41の空隙率は、その他、負極活物質の粒度分布等によっても制御できる。
 負極合剤層41の空隙率の上限値は、特に限定されないが、空隙率を高くし過ぎてもサイクル特性の改善効果は頭打ちになるため、好ましくは65%であり、より好ましくは60%、又は55%である。負極合剤層41の空隙率が、25%以上で、65%以下、又は60%以下であれば、高容量と高耐久をより高度に両立できる。
 本開示において、負極合剤層の空隙率は、水銀ポロシメータを用いて測定される。
(1)評価対象の電池を2.5Vまで放電した後、電池を解体して負極板を切り出し、水銀ポロシメータの測定用セルに試料として複数枚の負極板を枚投入する。
(2)試料間の隙間が空隙としてカウントされることを防止するため、細孔径が20μm以上の細孔に圧入された水銀の総体積(Vh)を求める。
(3)水銀の総体積(Vh)を放電状態の負極合剤層の体積(Va)で除して、空隙率(P(%)=Vh×100/Va)を算出する。
 負極合剤層41の密度は、1.5g/cc以下であることが好ましく、1.2g/cc以下がより好ましい。この場合、サイクル特性の改善効果がより顕著になる。密度の下限値は、高容量と高耐久の両立の観点から、0.65g/ccが好ましい。負極合剤層41の密度の好適な範囲の一例は、0.65g/cc以上1.5g/cc以下、又は0.72g/cc以上1.2g/cc以下である。負極合剤層41の密度は、使用する材料が同じである場合、空隙率が高くなるほど低くなる。
 本開示において、負極合剤層の密度は、下記の方法により測定される。
(1)評価対象の電池を2.5Vまで放電した後、電池を解体して負極板を切り出し、DMCに浸漬して洗浄し、100℃で5時間真空乾燥した後、負極板の質量(Wa)を測定する。
(2)負極板から負極合剤層を剥離し、超音波洗浄した後、負極芯体の質量(Wc)を測定する。
(3)負極板の質量(Wa)から負極芯体の質量(Wc)を引いて負極合剤層の質量を求め、負極合剤層の質量を放電状態の負極合剤層の体積(Va)で除して、負極合剤層の密度(D(g/cc)=(Wa-Wc)/Va)を算出する。
 ケイ素含有材料の粒子膨張率は、3.0倍以下であることが好ましい。ケイ素含有材料の粒子膨張率は、サイクル特性向上の観点からは3.0倍以下が好ましいが、粒子膨張率が小さくなり過ぎると容量が低下する傾向が見られる。このため、ケイ素含有材料の粒子膨張率は、1.1倍以上が好ましい。粒子膨張率の好適な範囲の一例は、1.1倍以上3.0倍以下であり、より好ましくは1.3倍以上2.1倍以下である。ケイ素含有材料の粒子膨張率が当該範囲内であれば、高容量と高耐久を両立することが容易になる。
 本明細書において、ケイ素含有材料の粒子膨張率は、下記の方法により測定される。
(1)評価対象の電池を解体して負極板を切り出し、対極に金属Liを、電解液にイオン液体を用いて、ケイ素含有材料の粒子断面が露出した状態の単極セルを作製する。
(2)単極セルを、25℃の温度環境下、0.002Cでセル電圧が0.6Vになるまで充電し、10分間休止した後、0.05Cでセル電圧が1.9Vになるまで放電し、in-situでケイ素含有材料の粒子断面をSEMで観察する。
(3)ケイ素含有材料の粒子断面積の変化から、充電状態のケイ素含有材料の粒子断面積(Spc)、および放電状態のケイ素含有材料の粒子断面積(Spd)を求め、粒子膨張率(Sp=(Spc/Spd)1.5)を算出する。
 負極合剤層41の膨張率は、負極活物質の膨張率と添加量に依存する。負極合剤層41の膨張率は、1.5倍以下であることが好ましい。この場合、サイクル特性の改善効果がより顕著になる。負極合剤層41の膨張率の下限値は、特に限定されないが、一例としては1.1倍である。負極合剤層41の膨張率の好適な範囲の一例は、1.1倍以上1.5倍以下であり、より好ましくは1.2倍以上1.4倍以下である。負極合剤層41の膨張率が当該範囲内であれば、高容量と高耐久を両立することが容易になる。
 本開示において、負極合剤層の膨張率は、下記の方法により測定される。
(1)評価対象の電池を解体して負極板を切り出し、対極に金属Liを、電解液にイオン液体を用いて単極セルを作製する。
(2)単極セルを、25℃の温度環境下、0.1Cでセル電圧が5mVになるまで充電し、20分間休止した後、0.1Cでセル電圧が1.0Vになるまで放電する。
(3)充電状態の負極合剤層の厚み(Tac)、および放電状態の負極合剤層の厚み(Tad)を求め、当該厚みの比率として負極合剤層の膨張率(Sa=Tac/Tad)を算出する。
 ケイ素含有材料は、Siを含有する材料であればよく、一例としては、ケイ素合金、ケイ素化合物、およびSiを含有する複合材料が挙げられる。中でもSiを含有する複合材料が好ましい。ケイ素含有材料のD50は、一般的に、黒鉛のD50より小さい。ケイ素含有材料の体積基準のD50は、例えば、1μm以上20μm以下、又は1μm以上15μm以下である。なお、ケイ素含有材料には、1種類を単独で用いてもよく、2種類以上を併用してもよい。
 好適なケイ素含有材料(複合材料)は、イオン伝導相と、イオン伝導相中に分散したSi相とを含む複合粒子である。イオン伝導相は、例えば、シリケート相、炭素相、シリサイド相、および酸化ケイ素相からなる群より選択される少なくとも1種である。シリサイド相は、SiとSiよりも電気的に陽性な元素とからなる化合物の相であって、一例としてはNiSi、MgSi、TiSiなどが挙げられる。Si相は、Siが微細な粒子状に分散して形成されている。イオン伝導相は、Si相よりも微細な粒子の集合によって構成される連続相である。
 Si相のサイズ(結晶子サイズ)の平均値は、1nm以上200nm以下が好ましく、1nm以上100nm以下がより好ましい。Si相のサイズの平均値は、D=kλ/Bcosθ(k=0.89、λ=0.15418、2θ=28.4°、Bが半値全幅)の式を用いて、XRDパターンのSiに起因するピーク(2θ=28.4°)の半値幅から算出される。Si相の平均サイズは、例えば、1nm以上10nm以下であってもよい。Si相のサイズを小さくすることにより、高容量を維持しつつ充放電に伴う粒子膨張率を抑えることができる。
 上記複合材料は、イオン伝導相の表面を覆う導電層を有していてもよい。導電層は、イオン導電層よりも導電性が高い材料で構成され、負極合剤層41中に良好な導電パスを形成する。導電層は、例えば、導電性の炭素材料で構成される炭素被膜である。導電性の炭素材料には、アセチレンブラック、ケッチェンブラック等のカーボンブラック、黒鉛、結晶性の低い無定形炭素(非晶質炭素)などを用いることができる。導電層の厚みは、導電性の確保と粒子内部へのLiイオンの拡散性を考慮して、好ましくは1nm以上200nm以下、又は5nm以上100nm以下である。導電層の厚みは、SEM又は透過型電子顕微鏡(TEM)を用いた複合材料の断面観察により計測できる。
 イオン伝導相は、周期表の第1族および第2族元素からなる群より選択される少なくとも1種を含んでいてもよい。イオン導電層は、Liがドープされた酸化ケイ素相であってもよい。また、イオン伝導相は、B、Al、Zr、Nb、Ta、V、Y、Ti、P、Bi、Zn、Sn、Pb、Sb、Co、Er、F、W、およびランタノイドからなる群より選択される少なくとも1種を含んでいてもよい。
 Siを含有する好適な複合材料の一例は、非晶質の酸化ケイ素相中に微細なSiが略均一に分散した海島構造を有し、全体として一般式SiO(0<x≦2)で表される複合粒子である。酸化ケイ素の主成分は、二酸化ケイ素であってもよい。また、酸化ケイ素相には、Liがドープされていてもよい。Siに対する酸素の含有比率(x)は、例えば、0.5≦x<2.0であり、好ましくは0.8≦x≦1.5である。
 Siを含有する好適な複合材料の他の一例は、非晶質のシリケート相中に微細なSiが略均一に分散した海島構造を有する複合粒子である。好適なシリケート相は、Liを含有するリチウムシリケート相である。リチウムシリケート相は、例えば、一般式Li2zSiO(2+z)(0<z<2)で表される複合酸化物の相である。リチウムシリケート相には、LiSiO(Z=2)が含まれないことが好ましい。LiSiOは、不安定な化合物であり、水と反応してアルカリ性を示すため、Siを変質させて充放電容量の低下を招く場合がある。リチウムシリケート相は、安定性、生産性、Liイオン導電性等の観点から、LiSiO(Z=1)又はLiSi(Z=1/2)を主成分とすることが好ましい。
 Siを含有する好適な複合材料の他の一例は、炭素相中に微細なSiが略均一に分散した海島構造を有する複合粒子である。炭素相は、非晶質炭素相であることが好ましい。炭素相には、結晶相成分が含まれていてもよいが、非晶質相成分の方が多いことが好ましい。非晶質炭素相は、例えば、X線回折法によって測定される(002)面の平均面間隔が0.34nmを超える炭素材料により構成される。なお、炭素相を含む複合材料は、炭素相と別の導電層を有していてもよく、当該導電層を有していなくてもよい。
 [セパレータ]
 セパレータ13には、イオン透過性および絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータ13の材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン、セルロースなどが好適である。セパレータ13は、単層構造であってもよく、複層構造を有していてもよい。また、セパレータ13の表面には、アラミド樹脂等の耐熱性の高い樹脂層が形成されていてもよい。
 セパレータ13と正極11および負極12の少なくとも一方との界面には、無機物のフィラーを含むフィラー層が形成されていてもよい。無機物のフィラーとしては、例えばTi、Al、Si、Mg等の金属元素を含有する酸化物、リン酸化合物などが挙げられる。フィラー層は、当該フィラーを含有するスラリーを正極11、負極12、又はセパレータ13の表面に塗布して形成することができる。
 上記構成を備えた非水電解質二次電池10は、充電上限電圧が4.2V、カットオフ電圧が2.0Vであることが好ましい。即ち、非水電解質二次電池10は、2.0V以上4.2V以下の電圧範囲で充放電制御されることが好ましい。より好ましくは、2.5V以上4.2V以下の電圧範囲で充放電制御される。この場合、高容量と高耐久をより高度に両立できる。
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
 <実施例1>
 [正極活物質の合成]
 共沈法により得られた[Ni0.90Al0.05Mn0.05](OH)で表される複合水酸化物を500℃で8時間焼成して酸化物(Ni0.90Al0.05Mn0.05)を得た。次に、LiOHおよび当該複合酸化物を、Liと、Ni、Al、およびMnの総量とのモル比が1.03:1になるように混合して混合物を得た。この混合物を酸素濃度95%の酸素気流下(10cmあたり2mL/minおよび混合物1kgあたり5L/minの流量)、昇温速度2.0℃/minで室温から650℃まで焼成した後、昇温速度0.5℃/minで650℃から780℃まで焼成してリチウム含有遷移金属複合酸化物を得た。
 得られたリチウム含有遷移金属複合酸化物に、スラリー濃度が1500g/Lとなるように水を加え、15分間攪拌し、濾過してケーキ状組成物を得た。このケーキ状組成物に、粉状のメタンスルホン酸リチウムを添加した。メタンスルホン酸リチウムの添加量は、リチウム含有遷移金属複合酸化物の総質量に対して、0.1質量%とした。メタンスルホン酸リチウムの添加後に、真空雰囲気下、180℃、2時間の条件で乾燥して正極活物質を得た。なお、フーリエ変換赤外分光法(FT-IR)により、複合酸化物の粒子表面にメタンスルホン酸リチウムが存在することを確認した。
 [正極の作製]
 上記正極活物質と、アセチレンブラックと、ポリフッ化ビニリデンとを、98:1:1の質量比で混合し、分散媒としてN-メチル-2-ピロリドン(NMP)を用いて、正極合剤スラリーを調製した。次に、アルミニウム箔からなる正極芯体上に正極合剤スラリーを塗布し、塗膜を乾燥、圧縮した後、正極芯体を所定の電極サイズに切断して、正極芯体の両面に正極合剤層が形成された正極を得た。なお、正極の一部に正極芯体の表面が露出した露出部を設けた。
 [負極の作製]
 ケイ素含有材料として、炭素相中に微細なSiが略均一に分散した海島構造を有する複合粒子(Si相のサイズの平均値:5nm、D50:10μm、真密度:1.5g/cc)を用いた。当該ケイ素含有材料を負極活物質として用い、負極活物質と、カルボキシメチルセルロースナトリウム(CMC-Na)と、スチレン-ブタジエンゴム(SBR)のディスパージョンとを、100:1:1の固形分質量比で混合し、分散媒として水を用いて負極合剤スラリーを調製した。当該負極合剤スラリーを銅箔からなる負極芯体の両面に塗布し、塗膜を乾燥させた後、ローラーを用いて塗膜を圧縮し、所定の電極サイズに切断して、負極芯体の両面に負極合剤層が形成された負極を得た。なお、負極の一部に負極芯体の表面が露出した露出部を設けた。
 [非水電解質の調製]
 エチレンカーボネート(EC)と、メチルエチルカーボネート(MEC)と、ジメチルカーボネート(DMC)を、3:3:4の体積比(25℃)で混合した混合溶媒に対して、LiPFを1.2モル/リットルの濃度で溶解させて非水電解液を調製した。
 [試験セル(非水電解質二次電池)の作製]
 上記正極および上記負極にリードをそれぞれ取り付け、セパレータを介して正極および負極を渦巻き状に巻回することにより、巻回型の電極体を得た。当該電極体を有底円筒形状の外装缶に収容し、負極リードの外装缶の底部内面に、正極リードを封口体の内部端子板にそれぞれ溶接した。その後、外装缶に上記非水電解液を注入し、外装缶の開口縁部を封口体にかしめ固定して、円筒形の試験セルを作製した。
 上記方法により、ケイ素含有材料の粒子膨張率、負極合剤層の密度、および負極合剤層の膨張率を測定したところ、粒子膨張率は1.78倍、負極合剤層の密度は0.864g/cc、負極合剤層の膨張率1.27倍であった。
 上記試験セルについて、下記の方法により、初期充放電効率およびサイクル特性(容量維持率)の評価を行い、評価結果を表1に示した。後述の実施例および比較例の各試験セルについても同じ評価を行い、その評価結果を負極の物性と共に表1に示した。表1では、実施例1~10をA1~A10、比較例1~6をB1~B6とする。表1に示す各試験セルの容量維持率は、実施例1(A1)の試験セルの容量維持率を100としたときの相対値である。
 [初期充放電効率の評価]
 試験セルについて、25℃の温度環境下、0.5Cの電流値で電池電圧が4.1Vになるまで定電流充電した後、4.1Vで電流値が0.05Cになるまで定電圧充電した。その後、0.7Cの電流値で電池電圧が2.85Vになるまで定電流放電した。この充放電における充電容量および放電容量を求め、初期充放電効率として充電容量に対する放電容量の割合(放電容量×100/充電容量)を算出した。
 [サイクル特性(容量維持率)の評価]
 上記充放電を100サイクル行い、1サイクル目の放電容量と、100サイクル目の放電容量を求め、下記式により容量維持率を算出した。
 容量維持率(%)=(100サイクル目放電容量÷1サイクル目放電容量)×100
 <実施例2~10>
 負極合剤層の圧縮条件を変更して、負極合剤層の体積比容量/空隙率の値を表1に示す値としたこと以外は、実施例1と同様にして負極および非水電解質二次電池を作製し、上記性能評価を行った。
 <比較例1~6>
 負極合剤層の圧縮条件を変更して、負極合剤層の体積比容量/空隙率の値を表1に示す値としたこと以外は、実施例1と同様にして負極および非水電解質二次電池を作製し、上記性能評価を行った。なお、比較例4~6の試験セルは、サイクル初期において容量維持率の大きな低下が確認された。
Figure JPOXMLDOC01-appb-T000005
 表1に示すように、実施例の試験セルはいずれも、比較例1~6の試験セルと比べてサイクル試験後の容量維持率が高く、サイクル特性に優れる。また、実施例の試験セルは、比較例5,6の試験セルと比べて初期充放電効率が高い。本実施例、比較例では、メタンスルホン酸リチウムを正極に適用しているが、スルホン酸化合物を用いない場合は、充放電効率が低下する。
 表1に示す評価結果から、負極合剤層の体積比容量/空隙率の値が48.0mAh/cc・%以下である場合に、特異的に容量維持率が向上し、サイクル特性が改善されることが理解される。換言すると、負極合剤層の体積比容量/空隙率の値が48.0mAh/cc・%を超えると、サイクル特性が急峻に低下する。特に、体積比容量/空隙率が70mAh/cc・%を超えると、充放電効率も大きく低下する。
 以上のように、負極活物質に占めるケイ素含有材料の割合が50質量%以上である非水電解質二次電池において、スルホン酸化合物を正極に適用し、負極合剤層の体積比容量/空隙率を48.0mAh/cc・%以下に制御することにより、充放電効率を改善し、高容量と高耐久を高度に両立することが可能である。
 本開示は、以下の実施形態によりさらに説明される。
 構成1:正極と、負極と、非水電解質とを備えた非水電解質二次電池であって、
 前記正極は、リチウム含有遷移金属複合酸化物と、当該複合酸化物の粒子表面に存在するスルホン酸化合物とを含み、
 前記スルホン酸化合物は、式(I)で表される化合物であり、
Figure JPOXMLDOC01-appb-C000006
 式中、Aは第1族又は第2族元素、Rは炭化水素基、nは1又は2であり、
 前記負極は、負極活物質としてケイ素含有材料を含む負極合剤層を有し、前記負極活物質に占める前記ケイ素含有材料の割合が50質量%以上であり、かつ前記負極合剤層の体積比容量を空隙率で除した値が48.0mAh/cc・%以下である、非水電解質二次電池。
 構成2:前記スルホン酸化合物は、前記リチウム含有遷移金属複合酸化物に対して0.1質量%以上1.0質量%以下の量で存在している、構成1に記載の非水電解質二次電池。
 構成3:式(I)のAが、Li又はNaである、構成1又は構成2に記載の非水電解質二次電池。
 構成4:式(I)のRが、炭素数が3以下のアルキル基である、構成1~3のいずれか1つに記載の非水電解質二次電池。
 構成5:前記負極合剤層の密度は、1.5g/cc以下である、構成1~4のいずれか1つに記載の非水電解質二次電池。
 構成6:前記負極活物質に占める前記ケイ素含有材料の割合は、70質量%以上である、構成1~5のいずれか1つに記載の非水電解質二次電池。
 構成7:前記ケイ素含有材料の粒子膨張率は、3.0倍以下である、構成1~6のいずれか1つに記載の非水電解質二次電池。
 構成8:前記負極合剤層の膨張率は、1.5倍以下である、構成1~7のいずれか1つに記載の非水電解質二次電池。
 構成9:前記負極合剤層は、前記負極活物質として、天然黒鉛、人造黒鉛、ソフトカーボン、およびハードカーボンからなる群より選択される少なくとも1種の炭素材料を含む、構成1~8のいずれか1つに記載の非水電解質二次電池。
 構成10:前記ケイ素含有材料は、イオン伝導相と、前記イオン伝導相中に分散したSi相とを含み、前記イオン伝導相は、シリケート相、炭素相、シリサイド相、および酸化ケイ素相からなる群より選択される少なくとも1種である、構成1~9のいずれか1つに記載の非水電解質二次電池。
 構成11:前記ケイ素含有材料の体積基準のメジアン径が、1μm以上20μm以下であり、前記Si相のサイズの平均値が、1nm以上200nm以下である、構成1~10のいずれか1つに記載の非水電解質二次電池。
 構成12:2.0V以上4.2V以下の電圧範囲で充放電制御される、構成1~11のいずれか1つのいずれか一項に記載の非水電解質二次電池。
 10 非水電解質二次電池、11 正極、12 負極、13 セパレータ、14 電極体、16 外装缶、17 封口体、18,19 絶縁板、20 正極リード、21 負極リード、22 溝入部、23 内部端子板、24 下弁体、25 絶縁部材、26 上弁体、27 キャップ、28 ガスケット、30 正極芯体、31 正極合剤層、40 負極芯体、41 負極合剤層

Claims (12)

  1.  正極と、負極と、非水電解質とを備えた非水電解質二次電池であって、
     前記正極は、リチウム含有遷移金属複合酸化物と、当該複合酸化物の粒子表面に存在するスルホン酸化合物とを含み、
     前記スルホン酸化合物は、式(I)で表される化合物であり、
    Figure JPOXMLDOC01-appb-C000001
     式中、Aは第1族又は第2族元素、Rは炭化水素基、nは1又は2であり、
     前記負極は、負極活物質としてケイ素含有材料を含む負極合剤層を有し、前記負極活物質に占める前記ケイ素含有材料の割合が50質量%以上であり、かつ前記負極合剤層の体積比容量を空隙率で除した値が48.0mAh/cc・%以下である、非水電解質二次電池。
  2.  前記スルホン酸化合物は、前記リチウム含有遷移金属複合酸化物に対して0.1質量%以上1.0質量%以下の量で存在している、請求項1に記載の非水電解質二次電池。
  3.  式(I)のAが、Li又はNaである、請求項1に記載の非水電解質二次電池。
  4.  式(I)のRが、炭素数が3以下のアルキル基である、請求項1に記載の非水電解質二次電池。
  5.  前記負極合剤層の密度は、1.5g/cc以下である、請求項1に記載の非水電解質二次電池。
  6.  前記負極活物質に占める前記ケイ素含有材料の割合は、70質量%以上100質量%以下である、請求項1に記載の非水電解質二次電池。
  7.  前記ケイ素含有材料の粒子膨張率は、3.0倍以下である、請求項1に記載の非水電解質二次電池。
  8.  前記負極合剤層の膨張率は、1.5倍以下である、請求項1に記載の非水電解質二次電池。
  9.  前記負極合剤層は、前記負極活物質として、天然黒鉛、人造黒鉛、ソフトカーボン、およびハードカーボンからなる群より選択される少なくとも1種の炭素材料を含む、請求項1に記載の非水電解質二次電池。
  10.  前記ケイ素含有材料は、イオン伝導相と、前記イオン伝導相中に分散したSi相とを含み、
     前記イオン伝導相は、シリケート相、炭素相、シリサイド相、および酸化ケイ素相からなる群より選択される少なくとも1種である、請求項1に記載の非水電解質二次電池。
  11.  前記ケイ素含有材料の体積基準のメジアン径が、1μm以上20μm以下であり、
     前記Si相のサイズの平均値が、1nm以上200nm以下である、請求項10に記載の非水電解質二次電池。
  12.  2.0V以上4.2V以下の電圧範囲で充放電制御される、請求項1~11のいずれか一項に記載の非水電解質二次電池。
PCT/JP2023/025310 2022-08-26 2023-07-07 非水電解質二次電池 WO2024042888A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-135416 2022-08-26
JP2022135416 2022-08-26

Publications (1)

Publication Number Publication Date
WO2024042888A1 true WO2024042888A1 (ja) 2024-02-29

Family

ID=90013034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025310 WO2024042888A1 (ja) 2022-08-26 2023-07-07 非水電解質二次電池

Country Status (1)

Country Link
WO (1) WO2024042888A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008262768A (ja) * 2007-04-11 2008-10-30 Nec Tokin Corp リチウムイオン二次電池
CN109616657A (zh) * 2018-12-17 2019-04-12 中科廊坊过程工程研究院 一种高镍复合正极材料及其制备方法和应用
JP2019169286A (ja) * 2018-03-22 2019-10-03 Tdk株式会社 リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
JP2021168259A (ja) * 2020-04-10 2021-10-21 旭化成株式会社 リチウムイオン二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008262768A (ja) * 2007-04-11 2008-10-30 Nec Tokin Corp リチウムイオン二次電池
JP2019169286A (ja) * 2018-03-22 2019-10-03 Tdk株式会社 リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
CN109616657A (zh) * 2018-12-17 2019-04-12 中科廊坊过程工程研究院 一种高镍复合正极材料及其制备方法和应用
JP2021168259A (ja) * 2020-04-10 2021-10-21 旭化成株式会社 リチウムイオン二次電池

Similar Documents

Publication Publication Date Title
US20210020936A1 (en) Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
JP7236658B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
CN114424360A (zh) 锂离子二次电池用负极和锂离子二次电池
JP7324120B2 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
JP7324119B2 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
US20220271284A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2024042888A1 (ja) 非水電解質二次電池
JP7325050B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
WO2024042897A1 (ja) 二次電池用負極および非水電解質二次電池
WO2024042871A1 (ja) 非水電解質二次電池
WO2024042998A1 (ja) 非水電解質二次電池
WO2024042931A1 (ja) 非水電解質二次電池
WO2024042937A1 (ja) 非水電解質二次電池
WO2024042939A1 (ja) 非水電解質二次電池
WO2024106074A1 (ja) 非水電解質二次電池
WO2024090148A1 (ja) 非水電解質二次電池
WO2024070259A1 (ja) 非水電解質二次電池
WO2024070385A1 (ja) 非水電解質二次電池
WO2024106063A1 (ja) 非水電解質二次電池
WO2024070220A1 (ja) 非水電解質二次電池
WO2024004577A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2024004578A1 (ja) 非水電解質二次電池
WO2023204077A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2024062866A1 (ja) 二次電池用正極活物質および二次電池
US20240055595A1 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857005

Country of ref document: EP

Kind code of ref document: A1