WO2024041061A1 - 一种控制电容电阻及免焊锡铜导电片的电容制作工艺 - Google Patents

一种控制电容电阻及免焊锡铜导电片的电容制作工艺 Download PDF

Info

Publication number
WO2024041061A1
WO2024041061A1 PCT/CN2023/096152 CN2023096152W WO2024041061A1 WO 2024041061 A1 WO2024041061 A1 WO 2024041061A1 CN 2023096152 W CN2023096152 W CN 2023096152W WO 2024041061 A1 WO2024041061 A1 WO 2024041061A1
Authority
WO
WIPO (PCT)
Prior art keywords
product
electroplating
capacitor
pure water
cleaning
Prior art date
Application number
PCT/CN2023/096152
Other languages
English (en)
French (fr)
Inventor
王凡
王成相
Original Assignee
苏州聚生精密冲件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州聚生精密冲件有限公司 filed Critical 苏州聚生精密冲件有限公司
Publication of WO2024041061A1 publication Critical patent/WO2024041061A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/224Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals

Definitions

  • the invention relates to the technical field of capacitor processing, in particular to a capacitor manufacturing process for controlling capacitor resistance and solder-free copper conductive sheets.
  • the processing of these three materials is three different processes. Combining these three to achieve the purpose of use requires overcoming many difficulties, and in order to control the resistance to less than 3 milliliters
  • copper conductive sheets need to be soldered on the capacitor to meet the demand.
  • the existing capacitor processing methods can no longer meet our needs. People require the thickness of the capacitor to be thinner and thinner. Today's capacitors Processing requires the thickness of the capacitor. If the thickness is small, the existing process capacitor will not be processed and used;
  • the purpose of the present invention is to solve the above problems by designing a capacitor manufacturing process that controls capacitor resistance and solder-free copper conductive sheets.
  • the technical solution of the present invention to achieve the above objectives is a capacitor manufacturing process for controlling capacitor resistance and solder-free copper conductive sheets, which includes the following steps:
  • Electroplating the base layer of electroplated capacitors is used to be compatible with different metal materials
  • vacuum metal plating layer is used to be compatible with different metal materials and non-metal materials
  • Electroplating electroplating the metal outer layer is used to reduce the capacitor resistance value and thereby control the capacitor resistance to ⁇ 3 milliohms.
  • the capacitor resistance is the capacitor surface contact resistance.
  • the step (1) of electroplating the capacitor base layer includes the following steps:
  • Cleaning Cleaning with pure water at room temperature is used to remove residual degreaser on the surface of the product, and cleaning involves turning the product in pure water to make its surface clean;
  • Zinc sinking soak the sinking zinc in the zinc solution to facilitate subsequent electroplating
  • Cleaning and activation Use 5%-10% sulfuric acid pure water solution to activate the product so that the metal surface of the product remains active for electroplating. Cleaning is done in pure water at room temperature, and the product is turned over in the pure water to make the surface clean;
  • Electroless nickel plating the chemical nickel solution for electroless nickel plating includes 25g/L-28g/L nickel sulfate, 23g/L-28g/L sodium hypophosphite, and the balance is ionized water;
  • Cleaning and activation Use 5%-10% sulfuric acid pure water solution to activate the product so that the metal surface of the product remains active for electroplating. Cleaning is done in pure water at room temperature, and the product is turned over in the pure water to make the surface clean;
  • Gold plating electroplating in 35-75°C gold solution for 5-10 minutes or using chemical plating.
  • the step (2) of vacuum metal plating includes the following steps:
  • Vacuum electroplating metal layer the temperature in the vacuum furnace is 150-280°C, and the vacuum degree is controlled at 3.0 ⁇ 10 -3 Pa to start production.
  • the operation time is 30-60 minutes;
  • Inspection through inspection equipment, checks whether different metal materials and non-metal materials in the product are compatible.
  • the step (3) of electroplating the metal outer layer includes the following steps:
  • Cleaning and activation Use a pure water solution containing 5%-10% sulfuric acid to activate the product so that the metal surface of the product remains active for electroplating. Cleaning is done in pure water at room temperature, and the product is turned over in pure water to make the surface clean;
  • Cleaning and activation Use a pure water solution containing 5%-10% sulfuric acid to activate the product so that the metal surface of the product remains active for electroplating. Cleaning is done in pure water at room temperature, and the product is turned over in pure water to make the surface clean;
  • Ni plating electroplating in 35-75°C nickel solution for 15-30 minutes or using chemical plating;
  • Cleaning and activation Use a pure water solution containing 5%-10% sulfuric acid to activate the product so that the metal surface of the product remains active for electroplating. Cleaning is done in pure water at room temperature, and the product is turned over in pure water to make the surface clean;
  • Ag or Au plating is electroplating in a silver solution at 35-75°C for 5-10 minutes or electroless plating;
  • Au plating is electroplating in a gold solution at 30-60°C for 5-10 minutes or electroless plating;
  • Cleaning and drying use pure water to clean the remaining plating solution on the surface of the product, and cleaning is to turn the product in pure water to make its surface clean, and use hot air to dry the product to remove residual moisture on the surface of the product;
  • step 4 step 6, step step step
  • the pure aqueous sulfuric acid solution containing 5%-10% sulfuric acid means that the pure aqueous sulfuric acid solution contains 5%-10% sulfuric acid by volume.
  • the activation in steps (1), (2) and (3) is in an activation solution at room temperature.
  • the temperature of the ultrasonic solution in step (1) is 50-80°C and the time is 15 minutes.
  • the cleaning time in steps (1), (2) and (3) is 1-2 minutes.
  • the vacuum electroplating metal in step (2) is any one of Ag, Au, and Cu.
  • a capacitor is produced using any one of the above manufacturing processes.
  • the beneficial effect is that a new process can be used to directly combine different metal materials and non-metal materials at the same time, and the capacitor can be directly welded to the circuit board to meet the use needs.
  • the capacitor resistance can be controlled to be less than 3 milliohms.
  • electroplated metal The outer layer can be used to reduce the resistivity of the capacitor, and at the same time, there is no need to solder the external tin-copper conductive sheet, and the capacitor can be directly welded on the circuit board; the use effect is good, and the processing is convenient and stable; compared with the traditional process, the process is simplified
  • the process reduces the complexity of the process, and for the development of capacitor miniaturization, this process can be produced in batches.
  • a capacitor manufacturing process for controlling capacitor resistance and solder-free copper conductive sheets including the following work steps:
  • Electroplating the base layer of electroplated capacitors is used to be compatible with different metal materials (such as copper, aluminum and other different metal materials);
  • vacuum metal plating layer is used to be compatible with different metal materials and non-metal materials (such as engineering plastics, ceramics, etc.);
  • Electroplating The electroplated metal outer layer is used to reduce the capacitor resistance value and control the capacitor resistance to ⁇ 3 milliohms. At the same time, there is no need to solder external conductive sheets and can be directly welded on the circuit board.
  • the capacitor resistance is the capacitor surface contact resistance.
  • the plated capacitor can avoid soldering traditional external conductive sheets to reduce the resistance value; 2.
  • the plated capacitor can be directly soldered to the circuit board; 3. Compared with the traditional process, the process is simplified and the process time is reduced. Complexity; 4. Due to the development of capacitor miniaturization, this process can be mass-produced for subsequent micro-capacitors (thickness reduced to half or more of the current capacitor).
  • the step (1) of electroplating the capacitor base layer to be compatible with different metal materials includes the following steps:
  • Zinc sinking the purpose of this setting is that since aluminum parts cannot be directly electroplated, they need to be soaked in zinc solution to facilitate subsequent electroplating;
  • Cleaning and activation Use a pure water solution containing 5%-10% sulfuric acid to activate the product so that the metal surface of the product remains active for electroplating. Cleaning is to wash the product in pure water at room temperature for 1-2 minutes, and turn the product in pure water. Make its surface clean;
  • Electroless nickel plating the chemical nickel solution for electroless nickel plating includes 25g/L-28g/L nickel sulfate, 23g/L-28g/L sodium hypophosphite, and the balance is ionized water;
  • Cleaning and activation Use 5%-10% sulfuric acid pure water solution to activate the product so that the metal surface of the product remains active for electroplating. Cleaning is to wash the product in pure water at room temperature for 1-2 minutes, and turn the product in pure water. Make its surface clean;
  • Gold plating electroplating in 35-75°C gold solution for 5-10 minutes or using chemical plating.
  • step (2) vacuum metal plating includes the following steps:
  • Vacuum electroplating metal among them, the metal is preferably any one of Ag, Au, and Cu.
  • the temperature in the vacuum furnace is 150-280°C, and the vacuum degree is controlled at 3.0 ⁇ 10 -3 Pa to start production.
  • the operation time is 30- 60min;
  • the vacuum electroplated metal layer is processed on the basis of the electroplated capacitor base layer.
  • the material of the vacuum electroplated metal layer is the material behind the capacitor base layer. Since aluminum cannot be directly electroplated, it must be zinc immersed. It is convenient for subsequent electroplating, so the zinc immersion operation needs to be performed first before electroplating; the metal target is deposited on the non-metallic material through the vacuum electroplating process.
  • the vacuum electroplating implementation conditions are: the vacuum electroplating process requires a vacuum degree of 3.0 ⁇ 10 -3
  • the inert gas argon is filled into the vacuum state of Pa, and high-voltage direct current is applied between the metal and non-metal substrate (anode) and the metal target (cathode).
  • the electrons generated by the glow discharge excite the inert gas, thereby generating
  • step (3) of electroplating the metal outer layer to reduce the capacitor resistance value and thereby control the capacitor resistance to ⁇ 3 milliohms includes the following steps:
  • Cleaning and activation Use a pure water solution containing 5%-10% sulfuric acid to activate the product so that the metal surface of the product remains active for electroplating. Cleaning is to wash the product in pure water at room temperature for 1-2 minutes, and turn the product in pure water to make it surface cleaning;
  • Cleaning and activation Use a pure water solution containing 5%-10% sulfuric acid to activate the product so that the metal surface of the product remains active for electroplating. Cleaning is to wash the product in pure water at room temperature for 1-2 minutes, and turn the product in pure water to make it surface cleaning;
  • Ni plating electroplating in 35-75°C nickel solution for 15-30 minutes or using chemical plating;
  • Cleaning and activation Use a pure water solution containing 5%-10% sulfuric acid to activate the product so that the metal surface of the product remains active for electroplating. Cleaning is to wash the product in pure water at room temperature for 1-2 minutes, and turn the product in pure water to make it surface cleaning;
  • Ag or Au plating is electroplating in a silver solution at 35-75°C for 5-10 minutes or electroless plating;
  • Au plating is electroplating in a gold solution at 30-60°C for 5-10 minutes or electroless plating;
  • Cleaning and drying use pure water to clean the remaining plating solution on the surface of the product, use hot air to dry the product to remove residual moisture on the surface of the product, the cleaning time is 1-2 minutes, and cleaning is to turn the product in pure water to make its surface clean;
  • step 4 step 6, step step step
  • the pure aqueous sulfuric acid solution containing 5%-10% of sulfuric acid means that the pure aqueous sulfuric acid solution contains 5%-10% by volume of sulfuric acid; at the same time, the "zinc solution”, “copper solution” and “nickel solution” mentioned in this plan ” and “gold solution” are materials that can be purchased directly on the market.
  • step (1), step (2), and step (3) is activation in an activation solution at room temperature.
  • a kind of capacitor the capacitor is manufactured using the above-mentioned manufacturing process, and after the manufacturing is completed, tin is directly soldered to the circuit board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本发明公开了一种控制电容电阻及免焊锡铜导电片的电容制作工艺,所述制作工艺包括以下工作步骤:(1)、电镀;电镀电容基础层,用于兼容不同金属材质;(2)、真空镀;真空镀金属层,用于兼容不同金属和非金属材质;(3)、电镀;电镀金属外层用于减小电容电阻值进而控制电容电阻<3毫欧;本发明的有益效果是,采用一种工艺能够直接将不同金属材质和非金属材质同时结合且电容可以直接焊接至线路板上从而满足使用需求,同时能够控制电容电阻小于3毫欧,使用效果佳,并且加工方便,稳定性强。

Description

一种控制电容电阻及免焊锡铜导电片的电容制作工艺 技术领域
本发明涉及电容加工技术领域,特别是一种控制电容电阻及免焊锡铜导电片的电容制作工艺。
背景技术
由于电容是由三种材料组成,即铝、铜、塑料,这三种材料加工是三种不同的工艺,将这三者组合从而实现使用目的需要克服多种困难,并且为了控制电阻小于3毫欧,需要在电容上焊锡铜导电片从而满足需求,然而在不同场景下使用时,现有的电容加工方式已经不能满足我们的使用需求,对于电容的厚度人们要求越来越薄,现在的电容加工对电容的厚度是有要求的,如果厚度较小的话,现有工艺电容将无法加工使用;
鉴于上述情况,有必要对现有的电容制备方式加以改进,使其能够适应现在对电容使用的需要。
发明内容
本发明的目的是为了解决上述问题,设计了一种控制电容电阻及免焊锡铜导电片的电容制作工艺。
实现上述目的本发明的技术方案为,一种控制电容电阻及免焊锡铜导电片的电容制作工艺,包括以下工作步骤:
(1)、电镀;电镀电容基础层,用于兼容不同金属材质;
(2)、真空镀;真空镀金属层,用于兼容不同金属材质和非金属材质;
(3)、电镀;电镀金属外层,用于减小电容电阻值进而控制电容电阻<3毫欧,所述电容电阻为电容表面接触电阻。
对本技术方案的进一步补充,所述步骤(1)电镀电容基础层包括以下工作步骤:
①、清洗除油;利用超声波和除油剂去除产品表面制造过程中产生的油污;
②、清洗;采用纯水常温清洗用于去除产品表面残余除油剂,并且清洗是在纯水中翻动产品,使其表面清洁;
③、沉锌;在锌溶液中浸泡沉锌,便于后续电镀;
④、清洗活化;利用含5%-10%的硫酸纯水溶液对产品进行活化使得产品金属表层保持活泼状态便于电镀,清洗是在纯水中常温清洗,并且在纯水中翻动产品,使其表面清洁;
⑤、镀化学镍;镀化学镍的化学镍溶液包括25g/L-28g/L的硫酸镍,23g/L-28g/L的次亚磷酸钠,余量为离子水;
⑥、清洗活化;利用含5%-10%的硫酸纯水溶液对产品进行活化使得产品金属表层保持活泼状态便于电镀,清洗是在纯水中常温清洗,并且在纯水中翻动产品,使其表面清洁;
⑦、镀金;在35-75℃金溶液中电镀5-10min或采用化学镀。
对本技术方案的进一步补充,所述步骤(2)真空镀金属层包括以下工作步骤:
⑧、清洗烘干;用纯水清洗产品表面残余的电镀溶液,并且清洗是在纯水中翻动产品,使其表面清洁;利用热风将产品烘干,去除产品表面残余水分;
⑨、真空电镀金属层;真空炉炉内温度在150-280℃,真空度控制在3.0×10-3Pa状态开始生产,作业时间30-60min;
⑩、降温出炉;待炉温降至100℃以下,放气使真空压力回到正常大气压状态开炉;
检验,通过检验设备对产品中的不同金属材质和非金属材质检验是否兼容。
对本技术方案的进一步补充,所述步骤(3)电镀金属外层包括以下步骤:
清洗活化;利用含5%-10%的硫酸纯水溶液对产品进行活化使得产品金属表层保持活泼状态便于电镀,清洗是在纯水中常温清洗,并且在纯水中翻动产品,使其表面清洁;
镀铜;在35-75℃铜溶液中电镀产品40-90min或采用化学镀;
清洗活化;利用含5%-10%的硫酸纯水溶液对产品进行活化使得产品金属表层保持活泼状态便于电镀,清洗是在纯水中常温清洗,并且在纯水中翻动产品,使其表面清洁;
镀Ni;在35-75℃镍溶液中电镀15-30min或采用化学镀;
清洗活化;利用含5%-10%的硫酸纯水溶液对产品进行活化使得产品金属表层保持活泼状态便于电镀,清洗是在纯水中常温清洗,并且在纯水中翻动产品,使其表面清洁;
镀Ag或Au;镀Ag是在35-75℃银溶液中电镀5-10min或采用化学镀;镀Au是在30-60℃金溶液中电镀5-10min或采用化学镀;
清洗烘干;用纯水清洗产品表面残余的电镀溶液,并且清洗是在纯水中翻动产品,使其表面清洁,利用热风将产品烘干,去除产品表面残余水分;
检验;用检验设备检验产品的电阻是否小于3毫欧;
其中,步骤④、步骤⑥、步骤步骤步骤中所述含5%-10%的硫酸纯水溶液代表硫酸纯水溶液中含有5%-10%体积的硫酸。
对本技术方案的进一步补充,步骤(1)、步骤(2)、步骤(3)中活化是在室温的活化液中活化。
对本技术方案的进一步补充,步骤(1)中超声波内溶液温度为50-80℃,时间为15min。
对本技术方案的进一步补充,步骤(1)、步骤(2)、步骤(3)中清洗时间为1-2min。
对本技术方案的进一步补充,步骤(2)真空电镀金属为Ag、Au、Cu中任意一种。
一种电容,采用上述任意一项制作工艺进行制作。
其有益效果在于,采用一种新型工艺能够直接将不同金属材质和非金属材质同时结合且电容可以直接焊接至线路板上从而满足使用需求,同时能够控制电容电阻小于3毫欧,其中,电镀金属外层能够用于减小电容电阻率,同时免焊外接锡铜导电片,可直接将电容焊接在线路板上;使用效果佳,并且加工方便,稳定性强;相比较传统工艺,简化了工艺流程,降低了工艺复杂度,并且针对电容微型化发展,本工艺可以批量生产。
具体实施方式
本技术方案是基于现有的电容加工方式渐渐不能满足我们的使用需求,其对厚度的控制较为严格,厚度较小的情况下,其加工效果较差,使用效果也不佳,因此我们在现有技术缺陷的基础上设计了一种新型电容以及制作工艺,采用一种加工工艺即可将铜、铝、塑料组合在一起。
为了便于本领域技术人员对本技术方案更加清楚,下面将详细阐述本发明的技术方案:
一种控制电容电阻及免焊锡铜导电片的电容制作工艺,包括以下工作步骤:
(1)、电镀;电镀电容基础层,用于兼容不同金属材质(如铜、铝等不同金属材质);
(2)、真空镀;真空镀金属层,用于兼容不同金属材质和非金属材质(如工程塑料、陶瓷等);
(3)、电镀;电镀金属外层,用于减小电容电阻值进而控制电容电阻<3毫欧,同时免焊外接导电片,可直接焊接在线路板上,电容电阻为电容表面接触电阻。
经过以上工艺,1.镀后电容可以免于焊接传统外接导电片减少电阻值;2.镀后电容可直接上锡焊接至线路板;3.相较传统工艺,简化了工艺流程,降低了工艺复杂度;4.由于电容微型化发展,针对后续微型电容(厚度减少至目前电容一半及以上)本工艺可以批量生产。
详细地,所述步骤(1)电镀电容基础层用于兼容不同金属材质包括以下工作步骤:
①、清洗除油;利用超声波和除油剂去除产品表面制造过程中产生的油污;其中,超声波内溶液温度为50-80℃,工作时间为15min;
②、清洗;采用纯水常温清洗用于去除产品表面残余除油剂;清洗时间为1-2min,并且清洗是在纯水中翻动产品,使其表面清洁;
③、沉锌;该设置目的是由于铝件无法直接电镀,因此需要在锌溶液中浸泡沉锌,便于后续电镀;
④、清洗活化;利用含5%-10%的硫酸纯水溶液对产品进行活化使得产品金属表层保持活泼状态便于电镀,清洗是在纯水中常温清洗1-2min,并且在纯水中翻动产品,使其表面清洁;
⑤、镀化学镍;镀化学镍的化学镍溶液包括25g/L-28g/L的硫酸镍,23g/L-28g/L的次亚磷酸钠,余量为离子水;
⑥、清洗活化;利用含5%-10%的硫酸纯水溶液对产品进行活化使得产品金属表层保持活泼状态便于电镀,清洗是在纯水中常温清洗1-2min,并且在纯水中翻动产品,使其表面清洁;
⑦、镀金;在35-75℃金溶液中电镀5-10min或采用化学镀。
详细地,所述步骤(2)真空镀金属层包括以下工作步骤:
⑧、清洗烘干;用纯水清洗产品表面残余的电镀溶液,并且在纯水中翻动产品,使其表面清洁,利用热风将产品烘干,去除产品表面残余水分,清洗时间为1-2min;
⑨、真空电镀金属;其中,金属优选为Ag、Au、Cu中任意一种,真空炉炉内温度在150-280℃,真空度控制在3.0×10-3Pa状态开始生产,作业时间30-60min;
在本步骤中,真空电镀金属层是在电镀电容基础层的基础上进行加工,其中真空电镀金属层的材料为电容电容基础层后的材料,由于铝材无法直接电镀,必须要经过沉锌后才便于后续电镀,因此在电镀之前需要首先进行沉锌操作;金属靶材通过真空电镀的工艺沉积到非金属材质上,其中真空电镀实施条件为:真空电镀工艺要求真空度在3.0×10-3Pa的真空状态下充入惰性气体氩气,并在金属和非金属基材(阳极)和金属靶材(阴极)之间加上高压直流电,由于辉光放电产生的电子激发惰性气体,从而产生等离子体将金属靶材的原子轰出,沉积在金属或非金属基材上,即完成真空电镀金属层;
⑩、降温出炉;待炉温降至100℃以下,放气使真空压力回到正常大气压状态开炉;
检验;通过检验设备对产品中的不同金属材质和非金属材质检验是否兼容。
进一步地,所述步骤(3)电镀金属外层用于减小电容电阻值进而控制电容电阻<3毫欧包括以下步骤:
清洗活化;利用含5%-10%的硫酸纯水溶液对产品进行活化使得产品金属表层保持活泼状态便于电镀,清洗是在纯水中常温清洗1-2min,并且在纯水中翻动产品,使其表面清洁;
镀铜;在35-75℃铜溶液中电镀产品40-90min或采用化学镀;
清洗活化;利用含5%-10%的硫酸纯水溶液对产品进行活化使得产品金属表层保持活泼状态便于电镀,清洗是在纯水中常温清洗1-2min,并且在纯水中翻动产品,使其表面清洁;
镀Ni;在35-75℃镍溶液中电镀15-30min或采用化学镀;
清洗活化;利用含5%-10%的硫酸纯水溶液对产品进行活化使得产品金属表层保持活泼状态便于电镀,清洗是在纯水中常温清洗1-2min,并且在纯水中翻动产品,使其表面清洁;
镀Ag或Au;镀Ag是在35-75℃银溶液中电镀5-10min或采用化学镀;镀Au是在30-60℃金溶液中电镀5-10min或采用化学镀;
清洗烘干;用纯水清洗产品表面残余的电镀溶液,利用热风将产品烘干,去除产品表面残余水分,清洗时间为1-2min,并且清洗是在纯水中翻动产品,使其表面清洁;
检验;用检验设备检验产品的电阻是否小于3毫欧;
其中,步骤④、步骤⑥、步骤步骤步骤中所述含5%-10%的硫酸纯水溶液代表硫酸纯水溶液中含有5%-10%体积的硫酸;同时在本方案中所提到的“锌溶液”、“铜溶液”、“镍溶液”以及“金溶液”均为市面上可直接购买的材料。
对本方案的进一步限定,所述步骤(1)、步骤(2)、步骤(3)中活化是在室温的活化液中活化。
一种电容,所述电容采用上述制作工艺进行制作,制作完成后直接上锡焊接在线路板上。
上述技术方案仅体现了本发明技术方案的优选技术方案,本技术领域的技术人员对其中某些部分所可能做出的一些变动均体现了本发明的原理,属于本发明的保护范围之内。

Claims (6)

  1. 一种控制电容电阻及免焊锡铜导电片的电容制作工艺,其特征在于,包括以下工作步骤:
    (1)、电镀;电镀电容基础层,用于兼容不同金属材质;
    (2)、真空镀;真空镀金属层,用于兼容不同金属材质和非金属材质;
    (3)、电镀;电镀金属外层,用于减小电容电阻值进而控制电容电阻<3毫欧,所述电容电阻为电容表面接触电阻;
    所述步骤(1)电镀电容基础层包括以下工作步骤:
    ①、清洗除油;利用超声波和除油剂去除产品表面制造过程中产生的油污;
    ②、清洗;采用纯水常温清洗用于去除产品表面残余除油剂;
    ③、沉锌;在锌溶液中浸泡沉锌,便于后续电镀;
    ④、清洗活化;利用含5%-10%的硫酸纯水溶液对产品进行活化使得产品金属表层保持活泼状态便于电镀,清洗是在纯水中常温清洗,并且清洗是在纯水中翻动产品,使其表面清洁;
    ⑤、镀化学镍;镀化学镍的化学镍溶液包括25g/L-28g/L的硫酸镍,23g/L-28g/L的次亚磷酸钠,余量为离子水;
    ⑥、清洗活化;利用含5%-10%的硫酸纯水溶液对产品进行活化使得产品金属表层保持活泼状态便于电镀,清洗是在纯水中常温清洗,并且清洗是在纯水中翻动产品,使其表面清洁;
    ⑦、镀金;在35-75℃金溶液中电镀5-10min或采用化学镀;
    所述步骤(2)真空镀金属层包括以下工作步骤:
    ⑧、清洗烘干;用纯水清洗产品表面残余的电镀溶液,并且清洗是在纯水中翻动产品,使其表面清洁;利用热风将产品烘干,去除产品表面残余水分;
    ⑨、真空电镀金属层;真空炉炉内温度在150-280℃,真空度控制在3.0×10-3Pa状态开始生产,作业时间30-60min;
    ⑩、降温出炉;待炉温降至100℃以下,放气使真空压力回到正常大气压状态开炉;
    检验,通过检验设备对产品中的不同金属材质和非金属材质检验是否兼容;
    所述步骤(3)电镀金属外层包括以下步骤:
    清洗活化;利用含5%-10%的硫酸纯水溶液对产品进行活化使得产品金属表层保持活泼状态便于电镀,清洗是在纯水中常温清洗并且在纯水中翻动产品,使其表面清洁;
    镀铜;在35-75℃铜溶液中电镀产品40-90min或采用化学镀;
    清洗活化;利用含5%-10%的硫酸纯水溶液对产品进行活化使得产品金属表层保持活泼状态便于电镀,清洗是在纯水中常温清洗,并且在纯水中翻动产品,使其表面清洁;
    镀Ni;在35-75℃镍溶液中电镀15-30min;
    清洗活化;利用含5%-10%的硫酸纯水溶液对产品进行活化使得产品金属表层保持活泼状态便于电镀,清洗是在纯水中常温清洗,并且在纯水中翻动产品,使其表面清洁;
    镀Ag或Au;镀Ag是在35-75℃银溶液中电镀5-10min或采用化学镀;镀Au是在30-60℃金溶液中电镀5-10min或采用化学镀;
    清洗烘干;用纯水清洗产品表面残余的电镀溶液,并且清洗是在纯水中翻动产品,使其表面清洁;利用热风将产品烘干,去除产品表面残余水分;
    检验;用检验设备检验产品的电阻是否小于3毫欧;
    其中,步骤④、步骤⑥、步骤步骤步骤中所述含5%-10%的硫酸纯水溶液代表硫酸纯水溶液中含有5%-10%体积的硫酸。
  2. 根据权利要求1所述的一种控制电容电阻及免焊锡铜导电片的电容制作工艺,其特征在于,步骤(1)、步骤(2)、步骤(3)中活化是在室温的活化液中活化。
  3. 根据权利要求2所述的一种控制电容电阻及免焊锡铜导电片的电容制作工艺,其特征在于,步骤(1)中超声波内溶液温度为50-80℃,时间为15min。
  4. 根据权利要求3所述的一种控制电容电阻及免焊锡铜导电片的电容制作工艺,其特征在于,步骤(1)、步骤(2)、步骤(3)中清洗时间为1-2min。
  5. 根据权利要求4所述的一种控制电容电阻及免焊锡铜导电片的电容制作工艺,其特征在于,步骤(2)真空电镀金属为Ag、Au、Cu中任意一种。
  6. 一种电容,其特征在于,所述电容采用权利要求1-5任意一项制作工艺进行制作。
PCT/CN2023/096152 2022-08-23 2023-05-25 一种控制电容电阻及免焊锡铜导电片的电容制作工艺 WO2024041061A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211009199.5A CN115116742B (zh) 2022-08-23 2022-08-23 一种控制电容电阻及免焊锡铜导电片的电容制作工艺
CN202211009199.5 2022-08-23

Publications (1)

Publication Number Publication Date
WO2024041061A1 true WO2024041061A1 (zh) 2024-02-29

Family

ID=83335353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096152 WO2024041061A1 (zh) 2022-08-23 2023-05-25 一种控制电容电阻及免焊锡铜导电片的电容制作工艺

Country Status (2)

Country Link
CN (1) CN115116742B (zh)
WO (1) WO2024041061A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115116742B (zh) * 2022-08-23 2022-11-29 苏州聚生精密冲件有限公司 一种控制电容电阻及免焊锡铜导电片的电容制作工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652967A (en) * 1985-02-21 1987-03-24 Murata Manufacturing Co., Ltd. Monolithic ceramic capacitor
CN102732865A (zh) * 2012-04-11 2012-10-17 中国电子科技集团公司第五十五研究所 一种化学镀镍液及碳硅铝镀覆方法
WO2015030323A1 (ko) * 2013-08-30 2015-03-05 ㈜인광 내흑변성이 우수한 도금층을 갖는 전기, 전자기기 부품 및 그 제조방법
CN105679535A (zh) * 2014-12-05 2016-06-15 太阳诱电株式会社 层叠陶瓷电子部件
CN111334795A (zh) * 2020-03-12 2020-06-26 成都四威高科技产业园有限公司 一种金刚石铝复合材料表面镀覆工艺
CN113445090A (zh) * 2021-07-14 2021-09-28 航天南湖电子信息技术股份有限公司 一种钼铜合金表面电镀金新方法
CN115116742A (zh) * 2022-08-23 2022-09-27 苏州聚生精密冲件有限公司 一种控制电容电阻及免焊锡铜导电片的电容制作工艺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1266729A (zh) * 1969-08-29 1972-03-15
CN104112608B (zh) * 2014-07-21 2016-09-14 南通万德科技有限公司 一种含难熔金属合金镀层的开关触点及其制备方法
CN207705134U (zh) * 2018-01-30 2018-08-07 苏州聚生精密冲件有限公司 微型热保护器静触片

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652967A (en) * 1985-02-21 1987-03-24 Murata Manufacturing Co., Ltd. Monolithic ceramic capacitor
CN102732865A (zh) * 2012-04-11 2012-10-17 中国电子科技集团公司第五十五研究所 一种化学镀镍液及碳硅铝镀覆方法
WO2015030323A1 (ko) * 2013-08-30 2015-03-05 ㈜인광 내흑변성이 우수한 도금층을 갖는 전기, 전자기기 부품 및 그 제조방법
CN105679535A (zh) * 2014-12-05 2016-06-15 太阳诱电株式会社 层叠陶瓷电子部件
CN111334795A (zh) * 2020-03-12 2020-06-26 成都四威高科技产业园有限公司 一种金刚石铝复合材料表面镀覆工艺
CN113445090A (zh) * 2021-07-14 2021-09-28 航天南湖电子信息技术股份有限公司 一种钼铜合金表面电镀金新方法
CN115116742A (zh) * 2022-08-23 2022-09-27 苏州聚生精密冲件有限公司 一种控制电容电阻及免焊锡铜导电片的电容制作工艺

Also Published As

Publication number Publication date
CN115116742B (zh) 2022-11-29
CN115116742A (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
US5098485A (en) Method of making electrically insulating metallic oxides electrically conductive
WO2024041061A1 (zh) 一种控制电容电阻及免焊锡铜导电片的电容制作工艺
TWI242607B (en) Bath and method of electroless plating of silver on metal surfaces
WO2015029478A1 (ja) セラミックス回路基板の製造方法
JP6651271B2 (ja) 半導体素子及びその製造方法
JPH05501852A (ja) 誘電セラミックピースのコーティング方法
CN101593589B (zh) 宇航级片式厚膜电阻器的制造方法
JP3348705B2 (ja) 電極形成方法
JP7170849B2 (ja) 半導体装置及びその製造方法
CN115551213A (zh) 一种覆铜陶瓷基板图形侧壁无镀银层的方法
JPH11279800A (ja) 小型電子部品のめっき方法
TW506100B (en) Plating method
CN102306628B (zh) 用铝箔做焊料制造平板二极管或晶闸管管芯的方法
CN112466512A (zh) 一种无机包覆绝缘铜线及其制备方法
JP2020105543A (ja) 置換金めっき液および置換金めっき方法
KR102301223B1 (ko) 대기압 플라즈마를 이용한 와이어 본딩 결합 구조체의 제조방법
KR100728550B1 (ko) 알루미늄재로 된 전기전자용 리드선재의 제조방법
JPH05160551A (ja) 電子部品実装窒化アルミニウム基板の製造方法
CN107119280B (zh) 焊盘表面处理方法
SU760216A1 (ru) СПОСОБ ПОДГОТОВКИ ВЫВОДНЫХ концов контактдеталей ГЕРКОНОВ ДЛЯ ЭЛЕКТРИЧЕСКОГО МОНТАЖА I
CN1751368B (zh) 电解电容器的接头端子
JPH08273967A (ja) 電子部品の電極形成方法
JPH023310B2 (zh)
CN114351154A (zh) 半导体Cu制程设备零部件表面双层附着物的清洗方法
JPS60149670A (ja) 導舗性ペ−スト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856153

Country of ref document: EP

Kind code of ref document: A1