WO2024040814A1 - 一种蓄电池化成用的灌酸壶、蓄电池化成方法 - Google Patents

一种蓄电池化成用的灌酸壶、蓄电池化成方法 Download PDF

Info

Publication number
WO2024040814A1
WO2024040814A1 PCT/CN2022/140308 CN2022140308W WO2024040814A1 WO 2024040814 A1 WO2024040814 A1 WO 2024040814A1 CN 2022140308 W CN2022140308 W CN 2022140308W WO 2024040814 A1 WO2024040814 A1 WO 2024040814A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
battery
charging
pot
amps
Prior art date
Application number
PCT/CN2022/140308
Other languages
English (en)
French (fr)
Inventor
郭志刚
张天任
张昊
李桂发
高勇
刘玉
李斌
邓成智
孔鹤鹏
李雪辉
Original Assignee
天能电池集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天能电池集团股份有限公司 filed Critical 天能电池集团股份有限公司
Publication of WO2024040814A1 publication Critical patent/WO2024040814A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of battery production, and specifically relates to an acid filling pot for battery formation and a battery formation method.
  • Lead-acid battery is a widely used chemical power source.
  • the product has the advantages of good reversibility, stable voltage characteristics, long service life, wide application range, abundant raw materials, renewable use, and low cost.
  • lead-acid batteries play an extremely important role in electric vehicle systems as power sources.
  • an acid filling pot is generally used, and a vacuum acid adding method is used to quantitatively add acid to each cell of the battery, and then placed in a water-cooling tank or an air-conditioned room.
  • the utility model with the authorization announcement number CN215184452U discloses a quantitative acid adding kettle that is automatically opened by pressing down.
  • the quantitative acid adding kettle includes a kettle body and an acid lowering pipe.
  • a control valve is provided in the acid lowering pipe.
  • the control valve includes a trigger rod, and the trigger rod includes a push rod and a plug.
  • the acid lowering pipe has a mounting section with a reduced inner diameter.
  • the blocking block has a function of snapping into the installation section to block the acid lowering pipe.
  • the valve is in a closed state, and the valve is in an open state when the ejector pin pushes against the battery when the quantitative acid adding kettle is pressed down, and the blocking block is ejected from the installation section to make the lower acid pipe unobstructed.
  • the utility model with the authorization announcement number CN215644911U discloses a quantitative acid adding kettle for negative pressure formation, including a kettle body.
  • the kettle body includes a number of single chambers for storing acid liquid, and the bottom of each single chamber is equipped with There is an acidizing pipe, and the quantitative acid adding pot for negative pressure formation also includes a lid that is closed with the top surface of the pot body.
  • the lid is provided with an annular sealing line surrounding each acid-adding port and used to cooperate with the negative pressure device to seal the cell cavity during battery formation.
  • the present invention provides an acid filling kettle for battery formation, and the battery formation using this acid filling kettle.
  • the purpose of this method is to provide a method to make the specific gravity of each cell consistent, thereby improving the life of the battery.
  • An acid filling pot for battery formation The inner cavity of the acid filling pot is divided into a plurality of small chambers by partition plates. Each small chamber corresponds to a single cell of the battery. The bottom surface of the acid filling pot corresponds to each small chamber.
  • each partition plate has a connecting structure that connects each small chamber. The volume of each small chamber below the lowest point of the connecting structure is 10% to 15% of the saturated liquid absorption capacity of each pole group of the corresponding battery.
  • the communication structure is a communication hole, and each partition plate has a single row or multiple rows of communication holes distributed along the horizontal direction, and each row of communication holes includes a plurality of communication holes arranged from top to bottom.
  • the communication structure is a communication groove, and the communication groove extends downward from the top surface of the partition plate.
  • connection structure No matter what kind of connection structure is used, the effect is the same. They all have the ability to connect the acid pot acid liquid so that the density of the acid liquid in each unit is as consistent as possible.
  • the lowest position of the connection structure must be controlled to avoid excessive leakage current. As a result, the formation cannot be completed, and when the lowest position is set too high, the homogeneous mixing effect of the acid liquid will not be achieved.
  • the lowest position range set based on the present invention the smaller the value, the better the acid liquid homogeneous mixing effect but the formation efficiency is slightly lower. On the contrary, the larger the value, the worse the acid liquid homogeneous mixing effect, but the formation efficiency is higher.
  • each chamber is inclined downward toward the location of the acid adding pipe. This arrangement facilitates the flow of acid into the battery.
  • the bottom surface of the acid filling pot is provided with supporting feet.
  • the acid filling tube on the bottom of the acid filling pot matches the acid filling hole on the top surface of the battery.
  • the supporting feet on the bottom surface of the acid filling pot can be supported on the top surface of the battery to keep the acid filling pot in a stable state.
  • the present invention also provides a storage battery formation method, using the acid filling pot, and the storage battery formation method includes the following steps:
  • the first stage the charging current is 0.5C ⁇ 1C ampere, and the charging capacity is 1.5C ampere-hour;
  • the second stage the charging current is 0.5C ⁇ 0.75C amps, and the charging capacity is 1.5C amps;
  • the third stage the charging current is 0.4C ⁇ 0.5C amps, and the charging capacity is 1.5C amps;
  • the fourth stage charging current 0.3C ⁇ 0.35C amps, charging capacity 2.8C amps;
  • the first stage the charging current is 0.5C ⁇ 1C ampere, and the charging capacity is 0.8C ampere-hour;
  • the second stage the charging current is 0.2C ⁇ 0.25C amps, and the charging amount is controlled within 1.2C amps;
  • the third stage The charging current is 0.1C ampere, charge for 3 to 5 hours, and then absorb excess acid.
  • the vacuum degree in step (1) is -0.08 ⁇ -0.095Mpa.
  • a negative vacuum value represents the pressure reduction relative to standard atmospheric pressure.
  • the density of the acid liquid used for acid filling is 1.13-1.22g/cm 3 .
  • the invention uses an acid-filling kettle connected at the bottom of the middle to keep the liquid level consistent during the main process of battery formation. It is formed under vacuum conditions, plays a stirring role, and reduces the volume deviation and water loss deviation of each unit. The difference in the specific gravity of the cells improves the consistency of each cell, increases the battery capacity, and extends the battery life.
  • Figure 1 is a schematic three-dimensional structural diagram of the first embodiment of the acid filling pot of the present invention.
  • Figure 2 is a schematic top structural view of the first embodiment of the acid-filling pot of the present invention.
  • FIG. 3 is a cross-sectional view along the A-A direction in FIG. 2 .
  • Figure 4 is a schematic three-dimensional structural diagram of the second embodiment of the acid-filling pot of the present invention.
  • Figure 5 is a schematic cross-sectional structural diagram of the second embodiment of the acid-filling pot of the present invention.
  • Figure 6 is a schematic three-dimensional structural diagram of the third embodiment of the acid-filling pot of the present invention.
  • Figure 7 is a schematic cross-sectional structural diagram of a third embodiment of the acid-filling pot of the present invention.
  • Figure 8 is a schematic three-dimensional structural diagram of the fourth embodiment of the acid filling pot of the present invention.
  • FIGS 1 to 3 show the first embodiment of the acid filling pot of the present invention.
  • the inner cavity of the acid filling pot used for battery formation is divided into a plurality of small chambers 2 by a partition plate 1, generally 6 small chambers 2.
  • each small chamber 2 corresponds to a single cell of the battery
  • the bottom surface of the acid filling pot has an acid adding pipe 3 corresponding to each small chamber 2
  • each partition plate 1 has a connecting structure connecting each small chamber 2.
  • the communication structure is a communication hole 4.
  • Each partition plate 1 has a single row of communication holes 4, and each row of communication holes 4 includes multiple communication holes 4 arranged from top to bottom.
  • the volume of each small chamber 2 below the lowest point of the connecting structure is 10% to 15% of the saturated liquid absorption capacity of each pole group of the corresponding battery.
  • each small chamber is inclined downward toward the position of the acid adding pipe 3, so that the acid liquid can flow into the battery conveniently.
  • the bottom surface of the acid filling pot is provided with supporting feet 6.
  • the acid adding tube 3 on the bottom surface of the acid filling pot matches the acid filling hole on the top surface of the battery.
  • the supporting feet 6 on the bottom surface of the acid filling pot can be supported on the top surface of the battery. to keep the acid pot in a stable state.
  • Figures 4 and 5 show the second embodiment of the acid-filling pot of the present invention.
  • the overall structure of the acid-filling pot for battery formation in this embodiment is different from that of the above-mentioned first embodiment.
  • the difference lies in the connecting structure.
  • the connecting structure in this embodiment is Communication holes 4, but each partition plate 1 has two rows of communication holes 4 distributed along the horizontal direction.
  • Each row of communication holes 4 includes a plurality of communication holes 4 arranged from top to bottom, and the communication holes 4 between the two rows of communication holes are at Misaligned vertically.
  • Figures 6 and 7 show the third embodiment of the acid-filling pot of the present invention.
  • the overall structure of the acid-filling pot for battery formation in this embodiment is different from the above-mentioned first embodiment in the connection structure.
  • the connection structure in this embodiment is Communication holes 4, but each partition plate 1 has three rows of communication holes 4 distributed in the horizontal direction.
  • Each row of communication holes 4 includes a plurality of communication holes 4 arranged from top to bottom, and the communication holes 4 between the two rows of communication holes are at Misaligned vertically.
  • Figure 8 shows the fourth embodiment of the acid-filling pot of the present invention.
  • the overall structure of the acid-filling pot for battery formation in this embodiment is different from the above-mentioned first embodiment in that the communication structure.
  • the communication structure is a communication groove. 5.
  • the communication groove 5 extends downward from the top surface of the partition plate 1 .
  • the volume of the single compartment of the acid filling pot is 350ml (approximately 2.1 times the saturated liquid absorption capacity of the battery).
  • the lowest liquid level position of the acid filling pot hole is the saturated liquid absorption capacity (saturated liquid absorption capacity). 10% of the amount (calculated based on 165ml);
  • the volume of the single compartment of the acid filling pot is 250ml (approximately 1.5 times the saturated liquid absorption capacity of the battery).
  • the lowest liquid level position of the acid filling pot is the saturated liquid absorption capacity (saturated liquid absorption capacity). 10% of the amount (calculated based on 165ml);
  • the specific gravity range of a single cell is the result calculated by subtracting the minimum value from the maximum value of the electrolyte density value measured by extracting the residual acid from each cell after the formation;
  • the 2hr capacity test is the result of discharging to 10.5V with a current of 10A. Release time value (take the maximum value after three tests); cycle life test process: (1) Discharge with 10A current to 10.5V; (2) Charge with constant voltage 14.6V and current limit 8A for 6 hours; (3) Combine steps (1) and (2) Cycle until the discharge capacity is lower than 80% of the rated capacity and the experiment is terminated.
  • the electrolyte between the single cells of the acid pot of the present invention is a side reaction caused by the connection (leakage current causes the formation efficiency to decrease), so the lowest position of the connection setting must be controlled, that is, the volume of the lowest part of the connected structure mentioned in the present invention is Corresponding to 10% to 15% of the saturated liquid absorption capacity of each pole group of the battery, it cannot affect the formation efficiency too much, nor can it affect the consistency of density between single cells.
  • Comparative Example 1 is disconnected, so the formation efficiency is the highest. The initial capacity is the highest. If the setting for Comparative Example 2 is too low, it directly affects the formation and cannot be formed. For Comparative Example 3, the setting is too high and the effect is not obvious.

Abstract

本发明公开了一种蓄电池化成用的灌酸壶、蓄电池化成方法。本发明采用中隔底部连通的灌酸壶,使电池化成的主要过程中,液面保持一致,在真空条件下化成,起到了搅拌作用,减少了各个单格的体积偏差和失水量偏差造成单格的比重差异,提高了各个单格的一致性,提高了电池容量,并延长电池使用寿命。

Description

一种蓄电池化成用的灌酸壶、蓄电池化成方法 技术领域
本发明属于蓄电池生产技术领域,具体涉及一种蓄电池化成用的灌酸壶、蓄电池化成方法。
背景技术
铅蓄电池是一种广泛使用的化学电源,该产品具有良好的可逆性、电压特性平稳、使用寿命长、适用范围广、原材料丰富、可再生使用,且造价低廉等优点。近年来,随着环保意识的增强及能源问题的日趋严重,铅蓄电池作为动力电源在电动车系统中起着极其重要的作用。
电池化成时,一般使用灌酸壶,采用真空加酸方式,对电池的每个单格进行定量加酸,然后,放置在水冷槽或空调的房间进行。
由于电池各个单格的尺寸差异以及正负极板涂膏量的差异,以及在电池化成过程中,由于边单格散热面积较大,造成边单格和中间单格失水量的明显差异,导致电池化成后各个单格比重差异,严重者比重差异在0.05g/cm3以上,严重影响电池各个单格的比重一致性、容量一致性,导致电池容量低、电池寿命短。
比如,授权公告号为CN215184452U的实用新型公开了一种通过下压自动打开的定量加酸壶,所述定量加酸壶包括壶体和下酸管,下酸管内设有控制阀,所述控制阀包括触发杆,所述触发杆包括顶杆和堵块,所述下酸管内具有一段内径缩小的安装段,所述堵块具有卡入所述安装段中以阻断所述下酸管的闭阀状态,以及在定量加酸壶被下压时因顶杆顶到蓄电池而将所述堵块从所述安装段中顶出以使下酸管畅通的开阀状态。
再比如,授权公告号为CN215644911U的实用新型公开了一种负压化成用定量加酸壶,包括壶体,所述壶体包括若干用于存放酸液的单体腔,各单体腔底部设有下酸管,所述负压化成用定量加酸壶还包括与壶体顶面盖合的壶盖,所述壶盖顶面设有与壶体各单体腔一一对应、用于向壶体各单体腔加酸的加酸口,所述壶盖上设有将各加酸口环绕在内、用于在电池化成时与负压装置配合将单体腔密封的环形密封线。
因此,如何解决电池化成过程中单格的一致性成为行业的难题,需要技术人员提供创造性的方案。
发明内容
本发明针对现有技术中存在的电池化成过程中各个单格电解液比重差异大、电池寿命短的问题,提供了一种蓄电池化成用的灌酸壶,以及使用该种灌酸壶的蓄电池化成方法,目的在于提供一种使各个单格比重一致性的方法,从而提高电池的寿命。
一种蓄电池化成用的灌酸壶,所述灌酸壶的内腔被分隔板分隔为多个小室,每个小室对应蓄电池的一个单格,所述灌酸壶的底面对应每个小室具有加酸管,各分隔板上具有将各个小室连通的连通结构,各小室低于连通结构最低处部分的体积为对应蓄电池每个极群饱和吸液量的10%~15%。
所述连通结构为连通孔,各分隔板上具有沿水平方向分布的单列或多列连通孔,每列连通孔包括从上到下排列的多个。
所述连通结构为连通槽,所述连通槽从分隔板的顶面向下延伸。
不论是哪种连通结构,对其作用效果是一样的,都具有将酸壶酸液连通使得各单格酸液密度尽可能相同,但必须控制连通结构最低处位置,以免造成漏电流过大而导致无法完成化成,当最低处位置设置过高时也就起不到酸液均混作用。在基于本发明设置的最低处位置范围内,其值越小酸液均混效果越好但化成效率略低,反之,其值越大酸液均混效果越差但化成效率更高。
优选的,每个小室的内底面向加酸管所在位置倾斜向下。这样设置方便酸液流向蓄电池内。
优选的,所述灌酸壶的底面设有支撑脚。使用时,灌酸壶底面的加酸管与蓄电池顶面的注酸孔配合,此时,灌酸壶底面的支撑脚可以支撑在蓄电池顶面上,使灌酸壶保持平稳状态。
本发明又提供了一种蓄电池化成方法,使用所述灌酸壶,所述蓄电池化成方法包括以下步骤:
(1)将所述灌酸壶装配到蓄电池上,加酸管与蓄电池顶面的注酸孔柱连接,灌酸壶内腔体积为蓄电池饱和吸液量的1.5~3.0倍,使用真空泵 对蓄电池抽真空加酸,使灌酸壶内酸液加入蓄电池中;
(2)保持步骤(1)真空度下,对蓄电池进行充电,充电分为四个阶段,
第一阶段:充电电流为0.5C~1C安培,充电量为1.5C安时;
第二阶段:充电电流为0.5C~0.75C安培,充电量为1.5C安时;
第三阶段:充电电流为0.4C~0.5C安培,充电量为1.5C安时;
第四阶段:充电电流0.3C~0.35C安培,充电量2.8C安时;
(3)取消抽真空,使蓄电池内部恢复常压,在常压下进行放电,放电电流为0.5C安培,放电到单只电池电压至10.5伏;
(4)对蓄电池进行充电,充电分三个阶段,
第一阶段:充电电流为0.5C~1C安培,充电量为0.8C安时;
第二阶段:充电电流为0.2C~0.25C安培,充电量控制在1.2C安时以内;
第三阶段:充电电流为0.1C安培,充电3~5小时,然后吸去多余酸液。
优选的,步骤(1)中真空度为-0.08~-0.095Mpa。真空度负值表示相对于标准大气压降低的压力大小。
更优选的,灌酸所用的酸液密度为1.13~1.22g/cm 3
本发明采用中隔底部连通的灌酸壶,使电池化成的主要过程中,液面保持一致,在真空条件下化成,起到了搅拌作用,减少了各个单格的体积偏差和失水量偏差造成单格的比重差异,提高了各个单格的一致性,提高了电池容量,并延长电池使用寿命。
附图说明
图1为本发明灌酸壶第一种实施方式的立体结构示意图。
图2为本发明灌酸壶第一种实施方式的俯视结构示意图。
图3为图2中沿A-A方向的剖视图。
图4为本发明灌酸壶第二种实施方式的立体结构示意图。
图5为本发明灌酸壶第二种实施方式的剖视结构示意图。
图6为本发明灌酸壶第三种实施方式的立体结构示意图。
图7为本发明灌酸壶第三种实施方式的剖视结构示意图。
图8为本发明灌酸壶第四种实施方式的立体结构示意图。
具体实施方式
实施例1
如图1~3所示为本发明灌酸壶第一种实施方式,本实施方式蓄电池化成用的灌酸壶的内腔被分隔板1分隔为多个小室2,一般为6个小室2,每个小室2对应蓄电池的一个单格,灌酸壶的底面对应每个小室2具有加酸管3,各分隔板1上具有将各个小室2连通的连通结构。
该连通结构为连通孔4,各分隔板1上具有单列连通孔4,每列连通孔4包括从上到下排列的多个。各小室2低于连通结构最低处部分的体积为对应蓄电池每个极群饱和吸液量的10%~15%。
每个小室的内底面向加酸管3所在位置倾斜向下,这样设置方便酸液流向蓄电池内。灌酸壶的底面设有支撑脚6,使用时,灌酸壶底面的加酸管3与蓄电池顶面的注酸孔配合,此时,灌酸壶底面的支撑脚6可以支撑在蓄电池顶面上,使灌酸壶保持平稳状态。
如图4和5所示为本发明灌酸壶第二种实施方式,本实施方式蓄电池化成用的灌酸壶整体结构与上述第一种实施方式,区别在于连通结构,本实施方式连通结构为连通孔4,但各分隔板1上具有沿水平方向分布的两列连通孔4,每列连通孔4包括从上到下排列的多个,并且两列连通孔之间的连通孔4在竖直方向上错位设置。
如图6和7所示为本发明灌酸壶第三种实施方式,本实施方式蓄电池化成用的灌酸壶整体结构与上述第一种实施方式,区别在于连通结构,本实施方式连通结构为连通孔4,但各分隔板1上具有沿水平方向分布的三列连通孔4,每列连通孔4包括从上到下排列的多个,并且两列连通孔之间的连通孔4在竖直方向上错位设置。
如图8所示为本发明灌酸壶第四种实施方式,本实施方式蓄电池化成用的灌酸壶整体结构与上述第一种实施方式,区别在于连通结构,本实施方式连通结构为连通槽5,连通槽5从分隔板1的顶面向下延伸。
实施例2
取6-DZF-20电池半成品,采用本发明方法进行加酸与化成,制样过 程如下:
1)灌酸壶的准备:灌酸壶单格内腔容积为450ml(约为蓄电池饱和吸液量的2.73倍),灌酸壶打孔的最低液面位置为饱和吸液量(饱和吸液量按165ml计算)的10%;
2)加酸,将铅蓄电池安装上实施例1中第一种实施方式的灌酸壶,加入密度为1.13g/cm 3的硫酸溶液,加酸体积370ml;
3)将上述的灌酸壶和真空泵连接,采用抽真空和加压的方式,将灌酸壶的部分酸液充分加到蓄电池极群中,真空度最高控制-0.08MPa,真空1~3次。
4)第一阶段化成,将电池化成连接线接好后,迅速将真空泵真空度控制在-0.09~-0.095MPa之间,蓄电池立即按如下的工艺进行充电。以20A(充电电流1C安培)充电1.5h,15A(充电电流0.75C安培)充电2h,10A(充电电流0.5C安培)充电3h,7A(充电电流0.35C安培)充电8h。
5)第二阶段化成,将真空装置与电池之间的连接断开,在常压下进行充放电,以10A放电至单只电池电压至10.5V,然后用20A充电0.8h,5A充电4h,2A充电5h,3h后抽酸,测量各个单格的电解液比重并计算单格间的比重极差。化成后将安全阀扣好,即可进行后续成品工序,得到成品电池。
实施例3
除灌酸壶打孔的最低液面位置为饱和吸液量(饱和吸液量按165ml计算)的15%,其它与实施例2相同。
实施例4
取与实施例2同批次的6-DZF-20电池半成品,采用本发明方法进行加酸与化成,制样过程如下:
1)灌酸壶的准备:灌酸壶单格内腔容积为350ml(约为蓄电池饱和吸液量的2.1倍),灌酸壶打孔的最低液面位置为饱和吸液量(饱和吸液量按165ml计算)的10%;
2)加酸,将铅蓄电池安装上上述的灌酸壶,加入密度为1.18g/cm 3的硫酸溶液,加酸体积280ml;
3)将上述的灌酸壶和真空泵连接,采用抽真空和加压的方式,将灌酸壶的部分酸液充分加到蓄电池极群中,真空度最高控制-0.08MPa,真空1~3次。
4)第一阶段化成,将电池化成连接线接好后,迅速将真空泵真空度控制在-0.085~-0.090MPa之间,蓄电池立即按如下的工艺进行充电。以15A充电2h,10A充电3h,8A充电3.75h,6A充电9.33h。
5)第二阶段化成,将真空装置与电池之间的连接断开,在常压下进行充放电,以10A放电至单只电池电压至10.5V,然后用10A充电1.6h,4A充电5h,2A充电5h,3h后抽酸,测量各个单格的电解液比重并计算单格间的比重极差。化成后将安全阀扣好,即可进行后续成品工序,得到成品电池。
实施例5
取与实施例2同批次的6-DZF-20电池半成品,采用本发明方法进行加酸与化成,制样过程如下:
1)灌酸壶的准备:灌酸壶单格内腔容积为250ml(约为蓄电池饱和吸液量的1.5倍),灌酸壶打孔的最低液面位置为饱和吸液量(饱和吸液量按165ml计算)的10%;
2)加酸,将铅蓄电池安装上上述的灌酸壶,加入密度为1.22g/cm 3的硫酸溶液,加酸体积220ml;
3)将上述的灌酸壶和真空泵连接,采用抽真空和加压的方式,将灌酸壶的部分酸液充分加到蓄电池极群中,真空度最高控制-0.08MPa,真空1~3次。
4)第一阶段化成,将电池化成连接线接好后,迅速将真空泵真空度控制在-0.080~-0.085MPa之间,蓄电池立即按如下的工艺进行充电。以10A充电3h,10A充电3h,8A充电3.75h,6A充电9.33h。
5)第二阶段化成,将真空装置与电池之间的连接断开,在常压下进行充放电,以10A放电至单只电池电压至10.5V,然后用10A充电1.6h,4A充电5h,2A充电5h,3h后抽酸,测量各个单格的电解液比重并计算单格间的比重极差。化成后将安全阀扣好,即可进行后续成品工序,得到成品电池。
对比例1:
除灌酸壶中各小室不打通外,其它与实施例2相同。
对比例2:
除灌酸壶打孔的位置,为饱和吸液量的8%外,其它与实施例2相同。
对比例3:
除灌酸壶打孔的位置,为饱和吸液量的20%外,其它与实施例2相同。
实施例6
实施例2~5与对比例1~3的单格比重极差、初期容量测试以及循环寿命测试对比结果见表1。
表1中,单格比重极差即化成后抽取各单格余酸测定的电解液密度值以最大值减去最小值计算得出的结果;2hr容量测试即为以10A电流放电至10.5V所放出的时间值(测试三次取最大值);循环寿命测试工艺:(1)以10A电流放电至10.5V;(2)恒压14.6V限流8A充电6h;(3)将步骤(1)和(2)进行循环,直到放电容量低于额定容量的80%时实验终止。
表1
Figure PCTCN2022140308-appb-000001
从表1数据中可以看出,采用本发明灌酸壶及工艺,电池单格间电解液密度极差可以控制在0.009之内,单格电解液密度的一致性直接影响电池单格放电性能的一致性,也就直接影响电池循环寿命,很明显实施例2~5循环寿命得到了大幅度提升(45%以上),同时能看到对比例的初期性能 略高于实施例,这是因为采用本发明酸壶单格间电解液为连通所致的副反应(漏电电流致使化成效率降低),故必须要控制连通设置的最低位置,也就是本发明提及的连通结构最低处部分的体积为对应蓄电池每个极群饱和吸液量的10%~15%,即不能影响化成效率降低太多,也不能影响单格间密度的一致性,对比例1为不连通,则化成效率最高,其初期容量就最高,对比例2设置过低直接影响化成导致无法化成,对比例3则设置过高,效果不明显。

Claims (8)

  1. 一种蓄电池化成用的灌酸壶,所述灌酸壶的内腔被分隔板分隔为多个小室,每个小室对应蓄电池的一个单格,所述灌酸壶的底面对应每个小室具有加酸管,其特征在于,各分隔板上具有将各个小室连通的连通结构,各小室低于连通结构最低处部分的体积为对应蓄电池每个极群饱和吸液量的10%~15%。
  2. 根据权利要求1所述蓄电池化成用的灌酸壶,其特征在于,所述连通结构为连通孔,各分隔板上具有沿水平方向分布的单列或多列连通孔,每列连通孔包括从上到下排列的多个。
  3. 根据权利要求1所述蓄电池化成用的灌酸壶,其特征在于,所述连通结构为连通槽,所述连通槽从分隔板的顶面向下延伸。
  4. 根据权利要求1所述蓄电池化成用的灌酸壶,其特征在于,每个小室的内底面向加酸管所在位置倾斜向下。
  5. 根据权利要求1所述蓄电池化成用的灌酸壶,其特征在于,所述灌酸壶的底面设有支撑脚。
  6. 一种蓄电池化成方法,其特征在于,使用权利要求1~5任一所述灌酸壶,所述蓄电池化成方法包括以下步骤:
    (1)将所述灌酸壶装配到蓄电池上,加酸管与蓄电池顶面的注酸孔柱连接,灌酸壶内腔体积为蓄电池饱和吸液量的1.5~3.0倍,使用真空泵对蓄电池抽真空加酸,使灌酸壶内酸液加入蓄电池中;
    (2)保持步骤(1)真空度下,对蓄电池进行充电,充电分为四个阶段,
    第一阶段:充电电流为0.5C~1C安培,充电量为1.5C安时;
    第二阶段:充电电流为0.5C~0.75C安培,充电量为1.5C安时;
    第三阶段:充电电流为0.4C~0.5C安培,充电量为1.5C安时;
    第四阶段:充电电流0.3C~0.35C安培,充电量2.8C安时;
    (3)取消抽真空,使蓄电池内部恢复常压,在常压下进行放电,放电电流为0.5C安培,放电到单只电池电压至10.5伏;
    (4)对蓄电池进行充电,充电分三个阶段,
    第一阶段:充电电流为0.5C~1C安培,充电量为0.8C安时;
    第二阶段:充电电流为0.2C~0.25C安培,充电量控制在1.2C安时以内;
    第三阶段:充电电流为0.1C安培,充电3~5小时,然后吸去多余酸液。
  7. 根据权利要求6所述蓄电池化成方法,其特征在于,步骤(1)中真空度为-0.08~-0.095Mpa。
  8. 根据权利要求6所述蓄电池化成方法,其特征在于,灌酸所用的酸液密度为1.13~1.22g/cm 3
PCT/CN2022/140308 2022-08-25 2022-12-20 一种蓄电池化成用的灌酸壶、蓄电池化成方法 WO2024040814A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211025289.3 2022-08-25
CN202211025289.3A CN115312993B (zh) 2022-08-25 2022-08-25 一种蓄电池化成用的灌酸壶、蓄电池化成方法

Publications (1)

Publication Number Publication Date
WO2024040814A1 true WO2024040814A1 (zh) 2024-02-29

Family

ID=83864881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140308 WO2024040814A1 (zh) 2022-08-25 2022-12-20 一种蓄电池化成用的灌酸壶、蓄电池化成方法

Country Status (2)

Country Link
CN (1) CN115312993B (zh)
WO (1) WO2024040814A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115312993B (zh) * 2022-08-25 2024-03-26 天能电池集团股份有限公司 一种蓄电池化成用的灌酸壶、蓄电池化成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207038617U (zh) * 2017-05-23 2018-02-23 天能电池集团有限公司 一种铅蓄电池加酸壶及加酸装置
WO2021142852A1 (zh) * 2020-01-19 2021-07-22 超威电源集团有限公司 一种铅酸蓄电池的制造方法
CN215184452U (zh) * 2021-04-14 2021-12-14 天能电池集团股份有限公司 一种通过下压自动打开的定量加酸壶
CN215644911U (zh) * 2021-08-23 2022-01-25 天能电池集团股份有限公司 一种负压化成用定量加酸壶
CN216120677U (zh) * 2021-08-30 2022-03-22 长兴金润科技有限公司 一种加酸壶、加酸装置及应用该装置的全自动灌酸设备
CN115312993A (zh) * 2022-08-25 2022-11-08 天能电池集团股份有限公司 一种蓄电池化成用的灌酸壶、蓄电池化成方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201985200U (zh) * 2011-04-01 2011-09-21 江苏澳鑫科技发展有限公司 一种铅酸蓄电池化成用灌酸壶
CN204497309U (zh) * 2015-04-21 2015-07-22 长兴铁鹰电气有限公司 一种高精度铅酸蓄电池补酸加液装置
CN107331902B (zh) * 2017-06-16 2019-08-06 江苏海宝电池科技有限公司 一种铅酸蓄电池脉冲内化成工艺
CN216213980U (zh) * 2021-10-20 2022-04-05 浙江天能动力能源有限公司 一种用于蓄电池加酸的加酸壶结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207038617U (zh) * 2017-05-23 2018-02-23 天能电池集团有限公司 一种铅蓄电池加酸壶及加酸装置
WO2021142852A1 (zh) * 2020-01-19 2021-07-22 超威电源集团有限公司 一种铅酸蓄电池的制造方法
CN215184452U (zh) * 2021-04-14 2021-12-14 天能电池集团股份有限公司 一种通过下压自动打开的定量加酸壶
CN215644911U (zh) * 2021-08-23 2022-01-25 天能电池集团股份有限公司 一种负压化成用定量加酸壶
CN216120677U (zh) * 2021-08-30 2022-03-22 长兴金润科技有限公司 一种加酸壶、加酸装置及应用该装置的全自动灌酸设备
CN115312993A (zh) * 2022-08-25 2022-11-08 天能电池集团股份有限公司 一种蓄电池化成用的灌酸壶、蓄电池化成方法

Also Published As

Publication number Publication date
CN115312993A (zh) 2022-11-08
CN115312993B (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
CN101330158B (zh) 一种锂离子二次电池的化成方法
WO2024040814A1 (zh) 一种蓄电池化成用的灌酸壶、蓄电池化成方法
EP2960978B1 (en) Flooded lead-acid battery
CN109802089A (zh) 一种超大容量单体电池注液及化成方法
CN109004288B (zh) 一种锂电池高soc附近小电流扰动循环化成方法
CN110071335A (zh) 一种节能节水型内化成工艺
CN113394523B (zh) 一种铅蓄电池的加酸、化成方法
CN1639894A (zh) 放电性能增加的圆柱形碱性电池
CN110911629B (zh) Agm蓄电池内化成工艺及agm起停蓄电池
CN110994056B (zh) 一种大容量磷酸铁锂电池化成激活工艺
WO2021142853A1 (zh) 一种铅酸蓄电池的制造方法
CN112510275B (zh) 一种电动车用蓄电池的配组方法
CN108767347A (zh) 一种20Ah铅酸蓄电池用高效内化成方法
WO2011077640A1 (ja) 制御弁式鉛蓄電池
CN111682273B (zh) 一种铅蓄电池化成方法
JP6996274B2 (ja) 鉛蓄電池
May et al. Gelled-electrolyte lead/acid batteries for stationary and traction applications
CN104835940A (zh) 高性能电动车电池极板
CN112768789B (zh) 一种提升铅蓄电池低温容量的化成方法
CN109148970A (zh) 一种具有液体自循环装置的富液式铅蓄电池
CN103337667A (zh) 阀控密封铅酸蓄电池的负极活性物质、正极活性物质及电解液
CN112421191B (zh) 一种判定余酸是否抽尽的方法
JP2000208143A (ja) 鉛蓄電池及びその製造方法
CN116470251A (zh) 一种贫液式铅蓄电池化成用的酸循环系统及化成方法
CN118017053A (zh) 一种铅蓄电池化成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956347

Country of ref document: EP

Kind code of ref document: A1