WO2024040636A1 - 一种高银灰分钯粉中银铂钯的测定方法 - Google Patents

一种高银灰分钯粉中银铂钯的测定方法 Download PDF

Info

Publication number
WO2024040636A1
WO2024040636A1 PCT/CN2022/117951 CN2022117951W WO2024040636A1 WO 2024040636 A1 WO2024040636 A1 WO 2024040636A1 CN 2022117951 W CN2022117951 W CN 2022117951W WO 2024040636 A1 WO2024040636 A1 WO 2024040636A1
Authority
WO
WIPO (PCT)
Prior art keywords
palladium
silver
filter residue
filtrate
filter
Prior art date
Application number
PCT/CN2022/117951
Other languages
English (en)
French (fr)
Inventor
黄安平
唐志波
李红湘
蔡亚飞
舒巧月
揭辉
陈海燕
李懋
Original Assignee
水口山有色金属有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 水口山有色金属有限责任公司 filed Critical 水口山有色金属有限责任公司
Publication of WO2024040636A1 publication Critical patent/WO2024040636A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4055Concentrating samples by solubility techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4044Concentrating samples by chemical techniques; Digestion; Chemical decomposition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/73Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • G01N2001/4088Concentrating samples by other techniques involving separation of suspended solids filtration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of precious metal detection, and in particular to a method for determining silver, platinum and palladium in high silver ash palladium powder.
  • High-silver ash palladium powder is obtained by recovering and enriching palladium during the smelting process.
  • This palladium powder contains silver and partially wrapped platinum and palladium, which is difficult to separate. Therefore, how to efficiently separate and detect high-silver ash palladium powder?
  • the content of medium palladium, silver and platinum can lay the foundation for the application of high silver ash palladium powder.
  • Patent CN111337477A discloses a method for measuring the content of gold, platinum and palladium in high-silver, high-platinum and palladium chemical slag.
  • the detection steps of the invention method are to first use fire assay pretreatment, ash blowing and nitric acid dissolution, and then also The filter residue obtained after dissolution and filtration needs to be ashed at a high temperature of 700°C before being measured by ICP-OES.
  • this method is suitable for the determination of gold, platinum and palladium in high-silver chemical slag, its pretreatment not only requires fire assay pretreatment, but also requires ashing treatment of the filter residue at high temperature, so that the sample needs two steps during the detection process.
  • it When entering a high-temperature furnace for the first time, it consumes a lot of energy and produces toxic heavy metal gases, resulting in the loss of the elements to be measured.
  • CN106841180A discloses a method for the continuous determination of platinum and palladium in ores.
  • the detection steps required by this method are to first burn the sample at 700-750°C, then add hydrochloric acid and hydrogen peroxide to heat and dissolve, and the filtrate is adsorbed by activated carbon and then heated at 700-750°C. Burn, and finally acid dissolve the resulting liquid to determine the content by colorimetry.
  • the pretreatment of this method does not use fire assay pretreatment, it does need to be burned twice at 700-750°C for about 3-5 hours during the detection process, which is not only time-consuming and energy-consuming, but also produces heavy metal toxic gases, resulting in loss of measured elements.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the existing technology and provide a method for measuring silver, platinum and palladium in high silver ash palladium powder with simple operating steps, low energy consumption and accurate determination of structure.
  • the technical solution adopted by the present invention to solve the technical problem is: a method for measuring silver, platinum and palladium in high silver ash palladium powder, which includes the following steps:
  • hydrochloric acid can be used to dissolve platinum and palladium, and can also dissolve silver. Silver chloride is formed and precipitates.
  • adding hydrogen peroxide can make the elemental and free silver, palladium, and platinum generate silver oxide, palladium oxide, and platinum oxide, so that the substances contained in the No. 1 filtrate include chlorine salt solutions such as platinum and palladium, and the No. 1 filter residue.
  • the substances contained in it include silver chloride and a small amount of incompletely dissolved silver, platinum, palladium, and palladium oxide, platinum oxide, etc. that are not easily soluble in hydrochloric acid;
  • the filter residue is called It is the No. 2 filter residue.
  • the substances contained in the No. 2 filter residue are: platinum, palladium, silver chloride, palladium oxide and platinum oxide; the filtrate obtained after each filtration is combined with the No. 1 filtrate to obtain the No. 2 filtrate.
  • the No. 2 filtrate is obtained.
  • the filtrate contains chlorine salt solutions such as platinum and palladium; by repeating the steps of dissolution and oxidation, the remaining platinum and palladium in the filter residue can be further dissolved and effectively separated from the silver in the filter residue, thereby improving the accuracy of detection;
  • the filter residue left behind is called the No. 4 filter residue. It contains the following substances: silver, platinum, palladium and a small amount of unreduced silver chloride, palladium oxide, and platinum oxide.
  • the reducing agent used in this step can reduce the No. 3 filter residue. Insoluble substances such as silver chloride, palladium oxide, and platinum oxide in the filter residue are reduced to silver, platinum, and palladium;
  • the No. 1 test solution It is a hydrochloric acid system, mainly containing palladium; the No. 2 liquid to be tested is a nitric acid-containing silver system, and then ICP-OES is used to measure the contents of silver, platinum, and palladium in the No. 1 liquid to be tested and the No. 2 liquid to be tested, respectively, to obtain high silver ash content of palladium.
  • steps 6) and 7) are: if there is filter residue left in the funnel used for filtration in steps 1) and 2), the filter can be washed with water and the washed liquid is filtered, and the filtrate Combine with the No. 1 filtrate or the No. 2 filtrate.
  • the steps from step 3) to step 7) for the same No. 1 filter residue or No. 2 filter residue.
  • This step can effectively collect the filter residue remaining in the funnel used during filtration, avoid the loss of silver, platinum and palladium contained in this part of the filter residue, causing inaccurate detection results, and further improve the accuracy of the detection results.
  • step 1) accurately weigh 0.1g of the sample to be tested, dropwise add 1-2mL hydrochloric acid, 1-2mL 30% hydrogen peroxide to the sample to be tested, and conduct low-temperature heating at 50-150°C 2 -5 minutes to dissolve and filter.
  • step 2) is 2-3 times until the reaction is complete.
  • step 4 the specific operation steps of step 4) are: dropwise add 1-2 mL of 80% hydrazine hydrate as a reducing agent into the No. 3 filter residue, 1-2 mL of water, dissolve it under low-temperature heating at 50-150°C for 2-5 minutes, and then suck it out. Liquid, discard the sucked liquid, leave the residue, continue to repeat this operation for the remaining residue several times, and collect the No. 4 filter residue left after discarding the liquid for the last time.
  • step 4) is 2-3 times.
  • step 6 the specific operation steps of step 6) are: add 5-10 mL of concentrated nitric acid to the No. 5 filter residue to dissolve and obtain a solution.
  • the No. 3 filtrate and dissolved solution are diluted to volume using a 100 mL volumetric flask.
  • a G4 glass sand core funnel is used for filtration or an ordinary funnel and filter paper are used for filtration. If there is residue when filtering with filter paper, it needs to be ashed at 200-500°C for 3-5 minutes. The ashing residue is merged into the No. 3 filter residue, and the subsequent steps 4) to 7) are performed together. And used for filtering.
  • the low-temperature heating instrument in steps 1-2) and 4) is a graphite furnace.
  • the reducing agent hydrazine hydrate used in the scheme can be replaced by other hydrazine reducing agents, nitrites, etc., such as sodium nitrite, hydroxylamine, etc., which are both key points and protection points of the present invention.
  • the invention has the beneficial effects of a method for measuring silver, platinum and palladium in high-silver ash palladium powder: the method has simple operating steps, low energy consumption, and is environmentally friendly.
  • the sample does not require fire assay and high-temperature enrichment during pretreatment, and only requires hydrochloric acid, Nitric acid is dissolved and filtered several times with hydrogen peroxide and hydrazine hydrate.
  • the solution is collected and then measured by ICP-OES.
  • This detection method is divided into nitric acid system and hydrochloric acid system, which can completely dissolve silver, platinum and palladium.
  • the entire operation does not require high-temperature burning treatment. It can reduce sample residues, reduce laboratory errors and improve the accuracy of test results. It is suitable for on-site rapid measurement in industrial and mining enterprises.
  • Figure 1 - is an operation flow chart of a method for measuring silver, platinum and palladium in high silver ash palladium powder according to the present invention.
  • a method for measuring silver, platinum and palladium in high-silver ash palladium powder The operation flow chart of the determination is shown in Figure 1.
  • the determination method specifically includes the following steps:
  • step 2) Filter the liquid obtained by filtration in step 1) with a G4 glass sand core funnel.
  • the No. 1 filtrate obtained is collected into a No. 1 100mL volumetric flask.
  • the No. 1 filter residue obtained is left in the No. 1 beaker. After washing the funnel, filter the washed liquid. Collect the filtrate into the No. 1 100mL volumetric flask until the No. 1 filtrate is combined.
  • the filter residue is collected in the No. 1 beaker and combined with the No. 1 filter residue;
  • step 6) Repeat step 5) for No. 4 filter residue three times to ensure complete reduction;
  • the No. 1 test liquid is a hydrochloric acid system, mainly Contains palladium;
  • No. 2 liquid to be tested is a nitric acid-containing silver system;
  • ICP working curve platinum and palladium mixed standard solution, silver standard solution, the concentration gradient range is 0-10 ⁇ g/mL, the medium is 10% HNO 3 , and then use ICP-OES to measure the No. 1 test solution and No. 2 solution respectively.
  • the contents of silver, platinum and palladium in the liquid to be measured are used to obtain the contents of silver, platinum and palladium in the high silver ash palladium powder.
  • the sampling mass is m (unit g)
  • the concentration of No. 100mL volumetric flask is C 1 (unit ⁇ g/mL)
  • the concentration of No. 100mL volumetric flask is C 2 (unit ⁇ g/mL)
  • the concentration of No. 100mL volumetric flask is C 2 (unit ⁇ g/mL).
  • the volumes of the volumetric flask and the No. 2 100mL volumetric flask are V 1 and V 2 (unit mL) respectively.
  • the calculation formula is:
  • Example 1 According to the measurement method of Example 1, the samples were weighed and analyzed in parallel. The results are as shown in the following table:

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

一种高银灰分钯粉中银铂钯的测定方法,包括以下步骤:1)称取样品,加入盐酸、双氧水溶解,过滤,得到一号滤液和一号滤渣;2)一号滤渣中加盐酸、双氧水溶解、过滤,重复操作多次,收集滤液和二号滤渣,将过滤后的滤液与一号滤液合并得到二号滤液;3)二号滤渣用水洗多次后过滤得到的三号滤渣,滤液与二号滤液合并得到三号滤液;4)三号滤渣中滴加还原剂、水于低温溶解后,弃液留渣,重复操作多次,得到四号滤渣;5)四号滤渣用水洗多次后吸出液体,留下五号滤渣;6)向五号滤渣中加入硝酸溶解,得到溶解液;7)将三号滤液与溶解液分别定容后取样稀释,采用ICP-OES测定。该方法可减少物样残留,降低化验误差,提高检测准确度。

Description

一种高银灰分钯粉中银铂钯的测定方法 技术领域
本发明涉及贵金属检测技术领域,特别涉及一种高银灰分钯粉中银铂钯的测定方法。
背景技术
高银灰分钯粉是在冶炼过程中对钯进行回收富集后得到钯粉,该钯粉中含有银以及部分被包裹的铂钯,分离困难,因此,如何高效分离并检测高银灰分钯粉中钯、银和铂的含量可为高银灰分钯粉的应用奠定基础。
目前,铂钯等贵金属的检测方法主要采用传统火试金法预处理结合ICP-OES测定,此种检测方法需配备试金炉、灰吹炉等设备,不仅作业流程繁琐、耗时耗能,而且该方法在检测时需要高温条件,高温条件反应会产生铅等重金属毒害气体,不利于检测人员身体健康,还在一定程度上有待测元素的损耗,使得检测结果不精准。如:专利CN111337477A公开了一种测定高银高铂钯化工渣中金、铂、钯含量的方法,该发明方法的检测步骤为先采用火试金预处理、灰吹合粒和硝酸溶解,然后还需要对溶解过滤后得到的滤渣在700℃高温下进行灰化后再上ICP-OES测定。该方法虽然适用于高银化工渣中金铂钯的测定,但其预处理不仅需要采用火试金预处理,而且还需要对滤渣在高温下进行灰化处理,使得样品在检测过程中需二次进入高温炉,其耗能较大,而且会产生重金属毒害气体,导致待测元素的损失。
CN106841180A公开了一种矿石中铂、钯的连续测定方法,该方法需的检测步骤为先将样品在700-750℃灼烧,再加入盐酸双氧水加热溶解,滤液经活性炭吸附再在700-750℃灼烧,最后酸溶所得液体经比色测定含量。该方法的预处理虽然不采用火试金预处理,但在检测过程中需要两次在700-750℃灼烧约3-5h,不仅耗时耗能,而且也会产生重金属毒害气体,导致待测元素的损失。
发明内容
本发明要解决的技术问题是:克服现有技术的不足,提供一种操作步骤简单,且能耗低、测定结构精准的高银灰分钯粉中银铂钯的测定方法。
本发明解决其技术问题所采用的技术方案是:一种高银灰分钯粉中银铂钯的测定方法,包括以下步骤:
1)称取待测样品,向样品中加入少量浓盐酸、双氧水于低温加热下溶解,过滤,得到一号滤液和一号滤渣;该步骤中采用盐酸既可溶解铂、钯,还可使银形成氯化银而沉淀,同时 添加双氧水可使单质及游离态的银、钯、铂生成氧化银、氧化钯和氧化铂,使一号滤液中含有的物质有铂钯等氯盐溶液,一号滤渣中含有的物质有氯化银及少量未溶解完全的银、铂、钯、和不易溶于盐酸的氧化钯、氧化铂等;
2)向一号滤渣中继续滴加少量浓盐酸、双氧水于低温加热下溶解、过滤,并重复该操作多次,收集每次过滤后得到的滤液和经最后一次过滤得到的滤渣,该滤渣称为二号滤渣,该二号滤渣中含有的物质有:铂、钯、氯化银、氧化钯和氧化铂;将每次过滤后得到的滤液与一号滤液合并后得到二号滤液,该二号滤液中含有铂钯等氯盐溶液;采用重复溶解氧化的步骤,可使滤渣中残留的铂、钯进一步溶解后与滤渣中的银有效分离,提高检测的准确度;
3)将二号滤渣用水洗多次去除氯离子,过滤,收集水洗液和滤液后与二号滤液合并得到三号滤液,过滤后得到的滤渣称为三号滤渣,留下备用;由于盐酸具有氧化性,会与后续步骤4)中的还原剂反应而降低还原效果,因此,该步骤中采用水洗的方式去除氯离子以提高后续的还原效果;
4)向三号滤渣中滴加少量还原剂、水于低温加热下溶解后吸出液体,弃去吸出的液体,留渣,继续对留下的渣重复该操作多次,收集最后一次弃去液体后留下的滤渣,该滤渣称为四号滤渣,含有的物质有:银、铂、钯及少量未还原完全的氯化银、氧化钯、氧化铂;该步骤中采用还原剂可将三号滤渣中不溶物氯化银、氧化钯、氧化铂等还原为银、铂、钯;
5)将四号滤渣用水洗多次洗去还原剂后吸出液体,留下滤渣,该滤渣称为五号滤渣;由于后续步骤6)中添加的硝酸具有氧化性,会与还原剂反应而降低五号滤渣的溶解效果,因此,该步骤中采用水洗的方式去除还原剂以提高后续的溶解效果;
6)向五号滤渣中加入少量浓硝酸溶解,得到溶解液;由于五号滤渣中主要含银和少量被包裹的铂钯,加入硝酸可使银和钯全部溶解;
7)将步骤3)得到的三号滤液与步骤6)得到的溶解液分别定容,分别取样后稀释10-20倍,得到一号待测液和二号待测液,一号待测液为盐酸体系,主要含钯;二号待测液为硝酸含银体系,再采用ICP-OES分别测定一号待测液和二号待测液中银、铂、钯的含量,获得高银灰分钯粉中银、铂、钯的含量。
进一步,所述步骤6)和步骤7)之间还包括的步骤有:若步骤1)和步骤2)过滤时采用的漏斗中留有滤渣,可用水洗漏并将水洗后的液体进行过滤,滤液与一号滤液或二号滤液合并,滤渣与一号滤渣或二号滤渣合并中,同一号滤渣或二号滤渣进行步骤3)至步骤7)的操作步骤。采用该步骤可有效将因过滤时使用的漏斗中残留的滤渣进行收集,避免该部分滤渣中含有的银、铂和钯的流失造成检测结果的不准确,进一步可提高检测结果的精准度。
进一步,所述步骤1)的具体操作步骤为:准确称取0.1g待测样品,向待测样品中滴加1-2mL盐酸、1-2mL 30%双氧水于50-150℃下进行低温加热2-5min溶解,过滤。
进一步,所述步骤2)中重复操作的次数为2-3次,至反应完全。
进一步,所述步骤4)的具体操作步骤为:向三号滤渣中滴加1-2mL 80%水合肼作还原剂、1-2mL水于50-150℃下低温加热下2-5min溶解后吸出液体,弃去吸出的液体,留渣,继续对留下的渣重复该操作多次,收集最后一次弃去液体后留下的四号滤渣。
进一步,所述步骤4)中重复操作的次数为2-3次。
进一步,所述步骤6)的具体操作步骤为:向五号滤渣中加入5-10mL浓硝酸溶解溶解,得到溶解液。
进一步,所述步骤7)中三号滤液和溶解液采用100mL容量瓶定容。
进一步,所述步骤步骤1-3)中过滤时均采用G4玻璃砂芯漏斗进行过滤或使用普通漏斗加滤纸过滤,且如使用滤纸过滤时有残渣需要在200-500℃灰化3-5min,灰化渣合并至三号滤渣,一同进行后续步骤4)至步骤7)的操作。且过滤时使用的。
进一步,所述步骤1-2)和步骤4)中低温加热的仪器为石墨炉。
进一步,根据本发明的原理,方案中所用到的还原剂水合肼可用其他肼类还原物、亚硝酸盐等替代,如亚硝酸钠、羟胺等,同为本发明的关键点和欲保护点。
本发明一种高银灰分钯粉中银铂钯的测定方法的有益效果:本方法的操作步骤简单,耗能低,环境友好,样品在预处理时无需火试金高温富集,只需盐酸、硝酸配合使用双氧水、水合肼溶解过滤多次,收集溶液再上ICP-OES测定,该检测方法分为硝酸系和盐酸系,能完全溶解银铂钯,整个操作过程均无需进行高温灼烧处理,可减少物样残留,降低化验误差进而可提高检测结果的准确度,适用于工矿企业现场快速测定使用。
附图说明
图1-为本发明一种高银灰分钯粉中银铂钯的测定方法的操作流程图。
具体实施方式
以下结合附图及实施例对本发明作进一步说明,但这些具体实施方案不以任何方式限制本发明的保护范围。
实施例1
一种高银灰分钯粉中银铂钯的测定方法,其测定的操作流程图如图1所示,该测定方法具体包括以下步骤:
1)准确称取0.1g试样于100mL一号烧杯中,滴加2mL浓盐酸、2mL 30%双氧水于50℃ 下用石墨炉进行低温加热5min溶解,过滤;
2)将步骤1)过滤所得液体用G4玻璃砂芯漏斗过滤,得到一号滤液收集进一号100mL容量瓶,得到一号滤渣留在一号烧杯中,水洗漏斗后将水洗得到的液体过滤,收集滤液进一号100mL容量瓶至一号滤液合并,滤渣收集于一号烧杯中与一号滤渣合并;
3)将一号烧杯中的一号滤渣重复步骤1)和2)的操作3次,收集每次过滤后得到的滤液和经最后一次过滤得到的滤渣,该滤渣称为二号滤渣,将每次过滤后得到的滤液收集于一号100mL容量瓶中与一号滤液合并得到二号滤液,存放;
4)将二号滤渣用水洗多次去除氯离子,过滤,收集水洗液和滤液于一号100mL容量瓶中后与二号滤液合并得到三号滤液(即图1中的溶液1),过滤后得到的三号滤渣留下备用;
5)向三号滤渣中滴加2mL 80%水合肼作还原剂、2mL水于100℃下用石墨炉低温加热下5min溶解后吸出液体,弃去吸出的液体,留渣,继续对留下的渣重复该操作多次,收集最后一次弃去液体后留下滤渣,该滤渣称为四号滤渣;
6)将四号滤渣重复步骤5)的操作3次,保证还原完全;
7)将四号滤渣用水洗2-3次洗去水合肼后吸出液体,留下滤渣,该滤渣称为五号滤渣;
8)向五号滤渣中加入6mL浓硝酸溶解,得到溶解液(即图1中的溶液2),收集溶解液进二号100mL容量瓶;
9)用水定容一号100mL容量瓶和二号100mL容量瓶后,分别取样后稀释10-20倍,得到一号待测液和二号待测液,一号待测液为盐酸体系,主要含钯;二号待测液为硝酸含银体系;
配制ICP工作曲线,铂钯混合标准液、银标准液,浓度梯度范围均为0-10μg/mL,介质为10%HNO 3,再采用ICP-OES上机分别测定一号待测液和二号待测液中银、铂、钯的含量,获得高银灰分钯粉中银、铂、钯的含量。
各元素含量计算,设取样质量为m(单位g),一号100mL容量瓶浓度为C 1(单位μg/mL),二号100mL容量瓶浓度为C 2(单位μg/mL),一号100mL容量瓶、二号100mL容量瓶的体积分别为V 1、V 2(单位mL),计算公式为:
Figure PCTCN2022117951-appb-000001
根据该实施例1的测定方法,称取样品,平行分析测定,结果如下表所示:
项目 Ag(%) Pd(%) Pt(%)
1 7.062 60.077 7.401
2 7.033 60.071 7.392
3 7.046 60.062 7.394
均值 7.047 60.070 7.396
相对标准偏差RSD% 0.21 0.01 0.06
样品火法试金参考值 7.07 59.92 7.33
相对误差% 0.325 0.250 0.90
由上表可知,相对误差小于1%,在可控范围内,结果准确可靠。
需要另行说明的是,本文使用术语“一号”、“二号”、“三号”、“四号、等来描述各种步骤中的物质或使用的仪器,但是这些物质或使用的仪器不应受这些术语的限制。这些术语仅用于将一个元件和另一个元件区分开。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 一种高银灰分钯粉中银铂钯的测定方法,其特征在于:包括以下步骤:
    1)称取待测样品,向样品中加入少量浓盐酸、双氧水于低温加热下溶解,过滤,得到一号滤液和一号滤渣;
    2)向一号滤渣中继续滴加少量浓盐酸、双氧水于低温加热下溶解、过滤,并重复该操作多次,收集每次过滤后得到的滤液和经最后一次过滤的滤渣,得到二号滤渣,将每次过滤后得到的滤液与一号滤液合并得到二号滤液;
    3)将二号滤渣用水洗多次后过滤,收集水洗液和滤液后与二号滤液合并得到三号滤液,过滤后得到的三号滤渣留下备用;
    4)向三号滤渣中滴加少量还原剂、水于低温加热下溶解后吸出液体,弃去吸出的液体,留渣,继续对留下的渣重复该操作多次,收集最后一次弃去液体后留下滤渣,得到四号滤渣;
    5)将四号滤渣用水洗多次后吸出液体,留下的滤渣为五号滤渣;
    6)向五号滤渣中加入少量浓硝酸溶解,得到溶解液;
    7)将步骤3)得到的三号滤液与步骤6)得到的溶解液分别定容,分别取样后稀释10-20倍,得到一号待测液和二号待测液,再采用ICP-OES分别测定一号待测液和二号待测液中银、铂、钯的含量,获得高银灰分钯粉中银、铂、钯的含量。
  2. 如权利要求1所述一种高银灰分钯粉中银铂钯的测定方法,其特征在于:所述步骤6)和步骤7)之间还包括的步骤有:若步骤1)和步骤2)过滤时采用的漏斗中留有滤渣,可用水洗漏斗并将水洗后的液体进行过滤,滤液与一号滤液或二号滤液合并,滤渣与一号滤渣或二号滤渣合并中,同一号滤渣或二号滤渣进行步骤3)至步骤7)的操作步骤。
  3. 如权利要求1所述一种高银灰分钯粉中银铂钯的测定方法,其特征在于:所述步骤1)的具体操作步骤为:准确称取0.1g待测样品,向待测样品中滴加1-2mL浓盐酸、1-2mL 30%双氧水于50-150℃下进行低温加热2-5min溶解,过滤。
  4. 如权利要求1所述一种高银灰分钯粉中银铂钯的测定方法,其特征在于:所述步骤2)中重复操作的次数为2-3次,至反应完全。
  5. 如权利要求1所述一种高银灰分钯粉中银铂钯的测定方法,其特征在于:所述步骤4)的具体操作步骤为:向三号滤渣中滴加1-2mL 80%水合肼作还原剂、1-2mL水于50-150℃下低温加热下2-5min溶解后吸出液体,弃去吸出的液体,留渣,继续对留下的渣重复该操作多次,收集最后一次弃去液体后留下的四号滤渣。
  6. 如权利要求5所述一种高银灰分钯粉中银铂钯的测定方法,其特征在于:所述步骤4) 中重复操作的次数为2-3次,至反应完全。
  7. 如权利要求1所述一种高银灰分钯粉中银铂钯的测定方法,其特征在于:所述步骤6)的具体操作步骤为:向五号滤渣中加入5-10mL浓硝酸溶解,得到溶解液。
  8. 如权利要求1所述一种高银灰分钯粉中银铂钯的测定方法,其特征在于:所述步骤7)中三号滤液和溶解液采用容量瓶定容。
  9. 如权利要求1所述一种高银灰分钯粉中银铂钯的测定方法,其特征在于:所述步骤步骤1-3)中过滤时均采用G4玻璃砂芯漏斗进行过滤或使用普通漏斗加滤纸过滤,且如使用滤纸过滤时有残渣需要在200-500℃灰化3-5min,灰化渣合并至三号滤渣,一同进行后续步骤4)至步骤7)的操作。
  10. 如权利要求1所述一种高银灰分钯粉中银铂钯的测定方法,其特征在于:所述步骤1-2)和步骤4)中低温加热的仪器为石墨炉。
PCT/CN2022/117951 2022-08-23 2022-09-08 一种高银灰分钯粉中银铂钯的测定方法 WO2024040636A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211011746.3 2022-08-23
CN202211011746.3A CN115326528A (zh) 2022-08-23 2022-08-23 一种高银灰分钯粉中银铂钯的测定方法

Publications (1)

Publication Number Publication Date
WO2024040636A1 true WO2024040636A1 (zh) 2024-02-29

Family

ID=83925587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117951 WO2024040636A1 (zh) 2022-08-23 2022-09-08 一种高银灰分钯粉中银铂钯的测定方法

Country Status (2)

Country Link
CN (1) CN115326528A (zh)
WO (1) WO2024040636A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08260065A (ja) * 1995-03-24 1996-10-08 Sumitomo Metal Mining Co Ltd 貴金属含有物からの貴金属の分別回収方法
JPH10265863A (ja) * 1997-03-27 1998-10-06 Mitsubishi Materials Corp 製錬残渣からの貴金属回収方法
CN107014766A (zh) * 2017-06-02 2017-08-04 江苏理工学院 一种铜阳极泥湿法处理工艺的脱铜渣中金、钯的测定方法
CN108844949A (zh) * 2018-08-28 2018-11-20 长春黄金研究院有限公司 一种准确高效的矿石中铂钯含量的测定方法
CN111337477A (zh) * 2020-03-25 2020-06-26 吉林吉恩镍业股份有限公司 一种测定高银高铂钯化工渣中金、铂、钯含量的方法
CN113267485A (zh) * 2020-10-27 2021-08-17 水口山有色金属有限责任公司 一种适用于金银生产贵金属溶液样铂钯的测定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08260065A (ja) * 1995-03-24 1996-10-08 Sumitomo Metal Mining Co Ltd 貴金属含有物からの貴金属の分別回収方法
JPH10265863A (ja) * 1997-03-27 1998-10-06 Mitsubishi Materials Corp 製錬残渣からの貴金属回収方法
CN107014766A (zh) * 2017-06-02 2017-08-04 江苏理工学院 一种铜阳极泥湿法处理工艺的脱铜渣中金、钯的测定方法
CN108844949A (zh) * 2018-08-28 2018-11-20 长春黄金研究院有限公司 一种准确高效的矿石中铂钯含量的测定方法
CN111337477A (zh) * 2020-03-25 2020-06-26 吉林吉恩镍业股份有限公司 一种测定高银高铂钯化工渣中金、铂、钯含量的方法
CN113267485A (zh) * 2020-10-27 2021-08-17 水口山有色金属有限责任公司 一种适用于金银生产贵金属溶液样铂钯的测定方法

Also Published As

Publication number Publication date
CN115326528A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
Pratt Potassium
KR20120085296A (ko) 광석에서 칼슘 성분 분석 및 검출 방법
CN103471879A (zh) 一种烟气捕集装置及快速准确测定烟气中7种重金属的方法
CN105738362A (zh) 铁矿石中氧化钙、氧化镁含量的测定方法
CN104458623A (zh) 一种利用光度法测定硅铁中磷的方法
CN113267485A (zh) 一种适用于金银生产贵金属溶液样铂钯的测定方法
CN104034722A (zh) 一种复合碳化硅中物质含量测定方法
WO2024040636A1 (zh) 一种高银灰分钯粉中银铂钯的测定方法
CN111443079A (zh) 一种同时检测三氯化铁中痕量As、Pb、Cd、Zn、Cr、Co、V元素含量的方法
Pollard The micro-determination of gold
CN113049738A (zh) 一种快速测定铜矿石中铁含量的方法
US20020146348A1 (en) Universal pickle liquor acid analyzer
CN108037088A (zh) 碳化渣中碳化钛的精确测定方法
CN111257097A (zh) 碳化钒待测样品制作方法及其杂质含量分析方法
CN100485365C (zh) 等离子发射光谱测定对苯二甲酸中金属含量的方法
CN105466910A (zh) 强化弥散铂金中锆及氧化锆含量的测量方法
CN110231337A (zh) 一种食品中铅含量的检测方法
Kolthoff et al. Polarographic Analysis of Aluminum Alloys
CN102680307A (zh) 含碳的钨合金中游离碳的收集方法和测定方法
CN114354579B (zh) 一种对银钯混合物中银钯元素同时检测的方法
CN106442361B (zh) 碳化渣中碳化钛含量的检测方法
CN110779830A (zh) 碳化钒中游离碳的分析方法
CN1306268C (zh) 铜阳极泥中银的分析方法
CN104749172B (zh) 硫代硫酸钠滴定法测定铅金合金中金含量的方法
Natelson et al. Estimation of gold in biological materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956180

Country of ref document: EP

Kind code of ref document: A1