WO2024038577A1 - 整流器 - Google Patents

整流器 Download PDF

Info

Publication number
WO2024038577A1
WO2024038577A1 PCT/JP2022/031333 JP2022031333W WO2024038577A1 WO 2024038577 A1 WO2024038577 A1 WO 2024038577A1 JP 2022031333 W JP2022031333 W JP 2022031333W WO 2024038577 A1 WO2024038577 A1 WO 2024038577A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
semiconductor layer
rectifier
signal
charge storage
Prior art date
Application number
PCT/JP2022/031333
Other languages
English (en)
French (fr)
Inventor
克彦 西口
健作 知田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/031333 priority Critical patent/WO2024038577A1/ja
Publication of WO2024038577A1 publication Critical patent/WO2024038577A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output

Definitions

  • the present invention relates to a rectifier that converts an AC signal into a DC signal.
  • Wireless communication and microwave power transmission require the use of antennas to receive AC signals and rectify them into DC signals, and various rectifiers are used.
  • a diode as a rectifier
  • the impedance decreases at high frequencies due to the capacitance component formed by the pn junction, and rectification characteristics cannot be maintained due to the diode's recovery characteristics when switching from forward bias to reverse bias. Therefore, there is a limit to the frequency band that can be used.
  • the usable frequency band is limited by the parasitic components of the diode and the RC time constant due to wiring.
  • Non-Patent Document 1 devices using low-dimensional materials such as carbon nanotubes and semiconductor quantum dots have also been reported in order to rectify high frequency signals such as THz (Non-Patent Document 1).
  • this device by inputting a THz signal with energy corresponding to the energy level of a low-dimensional material, electrons are excited at the energy level of the input signal and monitored as a direct current. Since this device does not transmit the THz signal itself and convert it into direct current, it has the advantage that the problem of the RC time constant can be easily solved.
  • the present invention was made to solve the above-mentioned problems, and aims to provide a rectifier that can convert a high frequency signal of 100 GHz to THz into direct current at room temperature.
  • a rectifier according to the present invention includes a semiconductor layer having a columnar shape extending in a predetermined direction and forming a channel, and a first gate disposed apart from one end of the semiconductor layer to apply a gate voltage to the semiconductor layer. , a second gate that is placed apart from the first gate on the other end side of the semiconductor layer and applies a gate voltage to the semiconductor layer; and a charge formed in the semiconductor layer between the first gate and the second gate.
  • An AC signal is input to one end of the semiconductor layer, and a DC signal is output from the other end of the semiconductor layer.
  • the rectifier according to the present invention includes a first semiconductor layer having a columnar shape extending in a predetermined first direction and in which a channel is formed, and a first semiconductor layer disposed apart from one end of the first semiconductor layer. a first gate to which a gate voltage is applied; a columnar second semiconductor layer extending in a second direction intersecting the first direction and having the other end of the first semiconductor layer as a second gate; A charge storage region is formed in the first semiconductor layer between the second gate and an AC signal is input to one end of the first semiconductor layer, and a DC signal flows through the second semiconductor layer.
  • a first gate and a second gate are provided in a columnar semiconductor layer, a charge storage region is formed in the semiconductor layer between the first gate and the second gate, and a charge storage region is formed in the semiconductor layer between the first gate and the second gate. Since the configuration is such that an AC signal is input to one end of the semiconductor layer on the gate side, it is possible to provide a rectifier that can convert a high frequency signal of 100 GHz to THz into DC at room temperature.
  • FIG. 1A is a sectional view showing the basic configuration of a rectifier for explaining the principle of the present invention.
  • FIG. 1B is a plan view showing the basic configuration of a rectifier for explaining the principle of the present invention.
  • FIG. 1C is a circuit diagram showing an equivalent circuit of the basic configuration of a rectifier for explaining the principle of the present invention.
  • FIG. 2A is a band diagram showing the energy band structure of the semiconductor layer 101 of the rectifier for explaining the principle of the present invention.
  • FIG. 2B is a band diagram showing the energy band structure of the semiconductor layer 101 of the rectifier for explaining the principle of the present invention.
  • FIG. 2C is a band diagram showing the energy band structure of the semiconductor layer 101 of the rectifier for explaining the principle of the present invention.
  • FIG. 1A is a sectional view showing the basic configuration of a rectifier for explaining the principle of the present invention.
  • FIG. 1B is a plan view showing the basic configuration of a rectifier for explaining the principle of the present invention.
  • FIG. 3A is a characteristic diagram showing the relationship between the frequency of the AC signal applied to one end 111 and the rise in potential of the charge storage region 104.
  • FIG. 4A is a sectional view showing the configuration of a rectifier according to Embodiment 1 of the present invention.
  • FIG. 4B is a plan view showing the configuration of the rectifier according to Embodiment 1 of the present invention.
  • FIG. 4C is a sectional view showing the configuration of the rectifier according to Embodiment 1 of the present invention.
  • FIG. 4D is a circuit diagram showing an equivalent circuit of the configuration of the rectifier according to Embodiment 1 of the present invention.
  • FIG. 5A is an energy band diagram showing the operating principle of the rectifier according to Embodiment 1 of the present invention.
  • FIG. 5B is an energy band diagram showing the operating principle of the rectifier according to Embodiment 1 of the present invention.
  • FIG. 6A is a cross-sectional view showing the configuration of a rectifier according to Embodiment 2 of the present invention.
  • FIG. 6B is a plan view showing the configuration of a rectifier according to Embodiment 2 of the present invention.
  • FIG. 6C is a circuit diagram showing an equivalent circuit of the configuration of a rectifier according to Embodiment 2 of the present invention.
  • FIG. 5A is an energy band diagram showing the operating principle of the rectifier according to Embodiment 1 of the present invention.
  • FIG. 5B is an energy band diagram showing the operating principle of the rectifier according to Embodiment 1 of the present
  • FIG. 7A is a sectional view showing the configuration of a rectifier according to Embodiment 3 of the present invention.
  • FIG. 7B is a plan view showing the configuration of a rectifier according to Embodiment 3 of the present invention.
  • FIG. 8A is a cross-sectional view showing the configuration of a rectifier according to Embodiment 4 of the present invention.
  • FIG. 8B is a plan view showing the configuration of a rectifier according to Embodiment 4 of the present invention.
  • FIG. 1A is a sectional view showing the basic configuration of a rectifier
  • FIG. 1B is a plan view showing the basic configuration of the rectifier
  • FIG. 1C is an equivalent circuit of the basic configuration of the rectifier.
  • This rectifier basically includes a semiconductor layer 101 and a first gate 102.
  • the semiconductor layer 101 has a columnar shape extending in a predetermined direction, and a channel through which carriers flow is formed.
  • the first gate 102 is placed apart from one end of the semiconductor layer 101 and applies a gate voltage to the semiconductor layer 101.
  • the first gate 102 is provided to the semiconductor layer 101 with a gate insulating layer 121 interposed therebetween.
  • An AC signal is input to one end 111 of the semiconductor layer 101 based on the formation position of the first gate 102. Further, a charge storage region 104 is arranged on the other end side of the semiconductor layer 101 with reference to the formation position of the first gate 102.
  • An input terminal is connected to one end 111 of the field effect transistor formed of the semiconductor layer 101 and the first gate 102, and nothing is connected to the other end 112, but since it has a capacitive component, as shown in FIG. 1C, It can be considered as an equivalent circuit in which the capacitor 122 is connected.
  • 2A, 2B, and 2C show the energy band structure of the semiconductor layer 101.
  • the first gate 102 forms an energy barrier and the charge storage region 104 connected to the capacitor is electrically disconnected from one end 111 (input terminal).
  • the electrons on the one end 111 side and the electrons in the charge storage region 104 have energy due to heat (thermal energy) and move randomly. Therefore, for each Fermi level, the energy possessed by an electron varies from electron to electron, and the probability of having that energy follows a Boltzmann distribution based on the Fermi level.
  • the Boltzmann distribution is uniquely determined by thermal energy, that is, temperature, when no signal is input to one end 111, the electron energy distribution (a) in the semiconductor layer 101 on the one end 111 side and the charge storage region 104 are different.
  • the electron energy distribution (b) has the same shape (Fig. 2A). Therefore, an equilibrium state is maintained in which the flow of electrons entering the charge storage region 104 from the one end 111 side via the first gate 102 is equal to the flow of electrons entering the one end 111 side from the charge storage region 104. .
  • the electron energy distribution (a) in the semiconductor layer 101 on the one end 111 side is as follows.
  • a difference occurs in the electron energy distribution between the charge storage region 104 that is not affected by the AC signal and the semiconductor layer 101 on the one end 111 side to which the AC signal is applied, resulting in an energetically unbalanced state. Therefore, electrons with high energy flow into the charge storage region 104 from the one end 111 side, exceeding the energy barrier caused by the gate voltage of the first gate 102 .
  • the potential of the charge storage region 104 increases as shown in FIG. 2C.
  • electrons in the semiconductor layer 101 at one end 111 exceed the energy barrier in a state where no alternating current signal is applied. (equivalent) must be at least one order of magnitude longer than the period T ac of the AC signal. If T ac is longer than T electron (T electron is shorter than T ac ), electrons will move in and out of the charge storage region 104 according to changes in the AC signal, and the electron energy distribution and charge at one end 111 will change. This is because the electron energy distribution in the storage region 104 is aligned and no non-equilibrium state occurs.
  • the frequency of the alternating current signal required to store energy in the charge storage region 104 is 10/T electron or more, in other words, the alternating current signal must be faster than the time constant T electron . This is contrary to the common concept that for a circuit or device to work, the input signal must be slower than the time constant.
  • FIG. 3A shows the simulation results, and it can be seen that as the frequency of the AC signal applied to the terminal 111 increases, the potential of the charge storage region 104 increases, and when the frequency becomes 10/T electron or more, the potential increase becomes saturated.
  • the upper frequency limit of the AC signal for which this operating principle holds true determines the time required for electrons to move beyond the energy barrier formed in the semiconductor layer 110 by the gate voltage of the first gate 102, and therefore the distance The shorter the , the higher the upper limit of the frequency of the AC signal can be.
  • FIG. 4D shows an equivalent circuit of the rectifier according to the first embodiment.
  • This rectifier first includes a semiconductor layer 101 that has a columnar shape extending in a predetermined direction and has a channel formed therein. Further, a first gate 102 is arranged apart from one end 111 of the semiconductor layer 101 and applies a gate voltage to the semiconductor layer 101, and a first gate 102 is arranged apart from the first gate 102 on the other end 112 side of the semiconductor layer 101. and a second gate 103 for applying a gate voltage to the semiconductor layer 101.
  • the first gate 102 and the second gate 103 are formed on the semiconductor layer 101 with a gate insulating layer 121 in between. It also includes a charge storage region 104 formed in the semiconductor layer 101 between the first gate 102 and the second gate 103.
  • An AC signal is input to one end 111 of the semiconductor layer 101, and a DC signal is output from the other end 112 of the semiconductor layer 101.
  • 5A and 5B are energy band diagrams showing the operating principle. Energy barriers are formed on both sides of the charge storage region 104 using the first gate 102 and the second gate 103.
  • the gate voltage caused by the second gate 103 is made lower than the gate voltage caused by the first gate 102, and the energy barrier on the other end 112 side of the charge storage region 104 is made smaller than the energy barrier on the one end 111 side.
  • the gate insulating layer 121 must suppress the tunnel current flowing between the first gate 102, the second gate 103, and the semiconductor layer 101.
  • Silicon oxide, hafnium oxide, or the like is used for the gate insulating layer of a typical FET, but in the case of silicon oxide (SiO 2 ), the gate insulating layer 121 only needs to have a thickness of about 10 nm. Although the thickness may be 10 nm or more, it is better to be thinner in order to improve the controllability by the gate voltages from the first gate 102 and the second gate 103.
  • GIDL gate induced drain leakage
  • the width of the columnar semiconductor layer 101 is preferably 100 nm or less.
  • the gate lengths of the first gate 102 and the second gate 103 are preferably 100 nm or less, and it is also expected that AC signals of about 1 THz can be rectified.
  • the thickness of the columnar semiconductor layer 101 is preferably 100 nm or less, it may be even thicker. The narrower the distance between the first gate 102 and the second gate 103, the less affected by defects, so it is desirable that the distance be 100 nm or less.
  • FIG. 6C shows an equivalent circuit of the rectifier according to the second embodiment.
  • this rectifier includes a third gate 105 that is arranged between the first gate 102 and the second gate 103 and applies a gate voltage to the semiconductor layer 101.
  • a back gate 106 is provided so as to sandwich the semiconductor layer 101 in a region where the first gate 102, the second gate 103, and the third gate 105 are formed, and applies a gate voltage to the semiconductor layer 101.
  • the back gate 106 is formed on the back side of the semiconductor layer 101 with the back gate insulating layer 107 interposed therebetween.
  • the potential of the charge storage region 104 formed in the semiconductor layer 101 between the first gate 102 and the second gate 103 is precisely controlled by the first gate 102 and the back gate 106. becomes possible. Furthermore, when the AC signal input to one end 111 propagates through space, the third gate 105 can be used as a shield electrode to prevent this propagation signal from affecting the charge storage region 104. Further, by inducing carriers in the semiconductor layer 101 using the back gate 106, carriers can be conducted without introducing impurities into the semiconductor layer 101. For example, if a positive voltage is applied to the semiconductor layer 101 using the back gate 106, electrons are induced in the semiconductor layer 101.
  • impurities are introduced into the source and drain to conduct carriers between them, but in the process of introducing these impurities, crystal defects occur in the semiconductor layer (channel), causing leakage current such as GIDL. occurs.
  • leakage current such as GIDL. occurs.
  • the thickness of the back gate insulating layer 107 is preferably 10 nm or more in order to suppress leakage current due to tunnel current from the back gate 106. Further, by making the back gate insulating layer 107 thinner, controllability by the back gate 106 is improved and drive can be performed at a lower voltage, but there is no problem even if the thickness is several hundreds of nanometers.
  • the third gate 105 may be of any size that fits between the first gate 102 and the second gate 103, but a longer gate length is preferable because it improves controllability with the gate voltage of the third gate 105, but it is not essential. do not have.
  • This rectifier first includes a first semiconductor layer 201 that has a columnar shape extending in a predetermined first direction and has a channel formed therein.
  • the first direction is the left-right direction on the page of FIG. 7B.
  • the semiconductor device also includes a first gate 202 that is spaced apart from one end 211 of the first semiconductor layer 201 and applies a gate voltage to the first semiconductor layer 201 .
  • the third embodiment includes a columnar second semiconductor layer 205 that extends in a second direction intersecting the first direction and has a second gate 203 at the other end of the first semiconductor layer 201 .
  • the second direction is the vertical direction of the page of FIG. 7B.
  • the first semiconductor layer 201 and the second semiconductor layer 205 are embedded in an insulating layer 221.
  • a portion of the insulating layer 221 above the first semiconductor layer 201 functions as a gate insulating layer of the first gate 202.
  • the rectifier also includes a charge storage region 204 formed in the first semiconductor layer 201 between the first gate 202 and the second gate 203.
  • An AC signal is input to one end 211 of the first semiconductor layer 201, and a DC signal flows to the second semiconductor layer 205.
  • the charge storage region 204 Since the other end of the region of the first semiconductor layer 201 where the charge storage region 204 is formed is capacitively coupled to the second semiconductor layer 205, the charge storage region 204 is connected to the second gate 203 with respect to the second semiconductor layer 205. functions as Therefore, if the potential of the charge storage region 204 changes by applying an AC signal to one end 111, this potential change is applied to the second semiconductor layer 205 as the gate voltage of the second gate 203. The direct current 212 flowing through the semiconductor layer 205 changes. In other words, the AC signal applied to one end 111 is read out by the DC current 212 of the second semiconductor layer 205, thereby functioning as a rectifier.
  • Embodiment 3 even if the rectified current obtained by the configurations of Embodiments 1 and 2 is small and difficult to measure when the strength of the AC signal applied to one end 111 is weak, Changes in the DC current 212 in the second semiconductor layer 205 make it possible to read out AC signals with high sensitivity.
  • the distance between the second gate 203 and the second semiconductor layer 205 due to the charge storage region 204 is set to 50 nm or less. Further, the width and thickness of the first semiconductor layer 201 and the second semiconductor layer 205 are set to 10 nm or less. Further, the length of the charge storage region 204 (the distance between the first gate 202 and the other end of the first semiconductor layer 201) is set to 100 nm or less.
  • this rectifier includes a third gate 206 that is arranged between the first gate 202 and the second gate 203 and applies a gate voltage to the first semiconductor layer 201. Further, a back gate 207 is provided so as to sandwich the first semiconductor layer 201 in a region where the first gate 202 and the third gate 206 are formed, and applies a gate voltage to the first semiconductor layer 201 .
  • the first semiconductor layer 201 and the second semiconductor layer 205 are formed embedded in the insulating layer 221.
  • a portion of the insulating layer 221 above the first semiconductor layer 201 functions as a gate insulating layer of the first gate 202.
  • the insulating layer 221 under the first semiconductor layer 201 and the second semiconductor layer 205 functions as a gate insulating layer of the back gate 207.
  • the potential of the charge storage region 204 formed in the first semiconductor layer 201 between the first gate 202 and the second gate 203 can be precisely controlled by the third gate 206 and the back gate 207. It becomes possible to control. Furthermore, when the AC signal input to one end 211 propagates through space, the third gate 206 can be used as a shield electrode to prevent this propagation signal from affecting the charge storage region 204. Further, by inducing carriers in the first semiconductor layer 201 using the back gate 207, carriers can be conducted without introducing impurities into the first semiconductor layer 201. For example, if a positive voltage is applied to the first semiconductor layer 201 using the back gate 207, electrons are induced in the first semiconductor layer 201.
  • impurities are introduced into the source and drain to conduct carriers between them, but in the process of introducing these impurities, crystal defects occur in the semiconductor layer (channel), causing leakage current such as GIDL. occurs.
  • leakage current such as GIDL. occurs.
  • the thickness of the insulating layer 221 in the portion that functions as a gate insulating layer for the back gate 207 is desirably 10 nm or more in order to suppress leakage current due to tunnel current from the back gate 207, as described above. Further, by making the insulating layer 221 thinner, controllability by the back gate 207 is improved and driving can be performed at a lower voltage, but there is no problem even if the thickness is several hundreds of nanometers.
  • the third gate 206 may be of any size that fits between the first gate 202 and the second gate 203, but a longer gate length is preferable because it improves controllability with the gate voltage of the third gate 206, but it is not essential. do not have.
  • a first gate and a second gate are provided in a columnar semiconductor layer, a charge storage region is formed in the semiconductor layer between the first gate and the second gate, and a charge storage region is formed in the semiconductor layer between the first gate and the second gate. Since the configuration is such that an AC signal is input to one end of the semiconductor layer on the 1-gate side, it is possible to provide a rectifier that can convert a high frequency signal of 100 GHz to THz into DC at room temperature.
  • the rectifier according to the present invention utilizes a steady state process that occurs by inducing a non-equilibrium state using a leakage current-free FET configured by providing a first gate and a second gate in a columnar semiconductor layer. The place has its characteristics. Further, the rectifier according to the present invention is characterized in that an AC signal with low intensity is accumulated in a capacitor between a columnar first semiconductor layer and a columnar second semiconductor layer, and is read out by an FET using these signals. According to the present invention, high frequency signals can be handled without the AC signal frequency that can be rectified being limited by the RC time constant. It can also handle AC signals with low intensity.
  • 101 Semiconductor layer, 102... First gate, 103... Second gate, 104... Charge storage region, 111... One end, 112... Other end, 121... Gate insulating layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

この整流器は、まず、所定の方向に延在する柱状とされてチャネルが形成される半導体層(101)を備える。また、半導体層(101)の一端(111)から離間して配置されて半導体層(101)にゲート電圧を印加する第1ゲート(102)と、半導体層(101)の他端(112)の側において第1ゲート(102)と離間して配置されて半導体層(101)にゲート電圧を印加する第2ゲート(103)とを備える。第1ゲート(102)、第2ゲート(103)は、ゲート絶縁層121を介して半導体層(101)の上に形成される。また、第1ゲート(102)と第2ゲート(103)との間の半導体層(101)に形成される電荷蓄積領域(104)とを備える。半導体層(101)の一端(111)に交流信号が入力され、半導体層(101)の他端(112)から直流信号が出力される。

Description

整流器
 本発明は、交流信号を直流信号に変換する整流器に関する。
 無線通信やマイクロ波による電力伝送は、アンテナを用いて交流信号を受信し、直流信号に整流する必要があり、様々な整流器が利用される。ダイオードを整流器として利用する場合、pn接合で形成される容量成分のため高周波数ではインピーダンスが下がり、また、ダイオードの順バイアスから逆バイアスに切り替えた時のリカバリ特性などの理由により整流特性を維持できなくなるため、使用できる周波数帯域に限界がある。また、交流信号を伝送する必要があるため、ダイオードの寄生成分や配線などによるRC時定数でも、利用できる周波数帯域が限られる。
 一方、THzなどの高周波数信号を整流するため、カーボンナノチューブ、半導体量子ドットなどの低次元材料を用いたデバイスも報告されている(非特許文献1)。このデバイスでは、低次元材料のエネルギー準位に相当するエネルギーのTHz信号を入力することで、入力された信号のエネルギー準位に電子を励起して直流電流としてモニタする。このデバイスは、THz信号そのものを伝送して直流に変換する訳ではないため、RC時定数の問題が解決しやすいというメリットがある。
Y. Kawano, "Terahertz Response of Carbon Nanotubes and Graphene", Journal of the Physical Society of Japan, vol. 84, 121010, 2015.
 しかしながら、上述した技術では、THz信号による電子励起を利用していることから原理的に室温動作が難しいだけでなく、エネルギー準位に対する依存性が強いことから材料選択が限られデバイス作製も容易ではなかった。このように、従来の整流器では、デバイスの動作原理やRC時定数などの理由により、室温で100GHz~THzの高周波信号を直流に変換することが困難であった。
 本発明は、以上のような問題点を解消するためになされたものであり、室温で100GHz~THzの高周波信号を直流に変換できる整流器の提供を目的とする。
 本発明に係る整流器は、所定の方向に延在する柱状とされてチャネルが形成される半導体層と、半導体層の一端から離間して配置されて半導体層にゲート電圧を印加する第1ゲートと、半導体層の他端の側において第1ゲートと離間して配置されて半導体層にゲート電圧を印加する第2ゲートと、第1ゲートと第2ゲートとの間の半導体層に形成される電荷蓄積領域とを備え、半導体層の一端に交流信号が入力され、半導体層の他端から直流信号が出力される。
 また、本発明に係る整流器は、所定の第1方向に延在する柱状とされてチャネルが形成される第1半導体層と、第1半導体層の一端から離間して配置されて第1半導体層にゲート電圧を印加する第1ゲートと、第1方向に交差する第2方向に延在し、第1半導体層の他端を第2ゲートとする柱状の第2半導体層と、第1ゲートと第2ゲートと間の第1半導体層に形成される電荷蓄積領域とを備え、第1半導体層の一端に交流信号が入力され、第2半導体層に直流信号が流れる。
 以上説明したように、本発明によれば、柱状の半導体層に第1ゲートおよび第2ゲートを設け、第1ゲートと第2ゲートとの間の半導体層に電荷蓄積領域を形成し、第1ゲート側の半導体層の一端に交流信号を入力する構成としたので、室温で100GHz~THzの高周波信号を直流に変換できる整流器の提供できる。
図1Aは、本発明の原理を説明するための整流器の基本構成を示す断面図である。 図1Bは、本発明の原理を説明するための整流器の基本構成を示す平面図である。 図1Cは、本発明の原理を説明するための整流器の基本構成の等価回路を示す回路図である。 図2Aは、本発明の原理を説明するための整流器の半導体層101のエネルギーバンド構造を示すバンド図である。 図2Bは、本発明の原理を説明するための整流器の半導体層101のエネルギーバンド構造を示すバンド図である。 図2Cは、本発明の原理を説明するための整流器の半導体層101のエネルギーバンド構造を示すバンド図である。 図3Aは、一端111に印加する交流信号の周波数と電荷蓄積領域104の電位の上昇との関係を示す特性図である。 図3Bは、Telectron=3秒の時に、交流信号の有無によって電荷蓄積領域104の電子数が変化する状態をモニタした結果を示す特性図である。 図4Aは、本発明の実施の形態1に係る整流器の構成を示す断面図である。 図4Bは、本発明の実施の形態1に係る整流器の構成を示す平面図である。 図4Cは、本発明の実施の形態1に係る整流器の構成を示す断面図である。 図4Dは、本発明の実施の形態1に係る整流器の構成の等価回路を示す回路図である。 図5Aは、本発明の実施の形態1に係る整流器の動作原理を表したエネルギーバンド図である。 図5Bは、本発明の実施の形態1に係る整流器の動作原理を表したエネルギーバンド図である。 図6Aは、本発明の実施の形態2に係る整流器の構成を示す断面図である。 図6Bは、本発明の実施の形態2に係る整流器の構成を示す平面図である。 図6Cは、本発明の実施の形態2に係る整流器の構成の等価回路を示す回路図である。 図7Aは、本発明の実施の形態3に係る整流器の構成を示す断面図である。 図7Bは、本発明の実施の形態3に係る整流器の構成を示す平面図である。 図8Aは、本発明の実施の形態4に係る整流器の構成を示す断面図である。 図8Bは、本発明の実施の形態4に係る整流器の構成を示す平面図である。
 以下、本発明の実施の形態に係る整流器について説明する。はじめに、本発明の原理について、図1A、図1B、図1Cを参照して説明する。図1A、整流器の基本的な構成を示す断面図、図1Bは、整流器の基本的な構成を示す平面図、図1Cは、整流器の基本的な構成の等価回路である。この整流器は、半導体層101と、第1ゲート102とを基本的な構成とする。半導体層101は、所定の方向に延在する柱状とされ、キャリアが流れるチャネルが形成される。第1ゲート102は、半導体層101の一端から離間して配置されて半導体層101にゲート電圧を印加する。第1ゲート102は、半導体層101に対してゲート絶縁層121を介して設けられている。
 第1ゲート102の形成位置を基準に、半導体層101の一端111に交流信号が入力される。また、第1ゲート102の形成位置を基準に、半導体層101の他端側に電荷蓄積領域104が配置される。
 半導体層101と第1ゲート102とによる電界効果トランジスタの一端111には入力端子が接続され、他端112には何も接続されていないが、容量成分を持つため、図1Cに示すように、キャパシタ122が接続された等価回路で考えることができる。
 図2A、図2B、図2Cは、半導体層101のエネルギーバンド構造を示している。ここでは、第1ゲート102によってエネルギーバリアが形成され、キャパシタと接続された電荷蓄積領域104が、一端111(入力端子)から電気的に切断されている場合を考える。一端111の側の電子、および電荷蓄積領域104の電子は、熱に起因するエネルギー(熱エネルギー)を有しており、ランダムに動いている。このため、それぞれのフェルミ準位に対し、電子が持つエネルギーは電子ごとにバラつきを持ち、そのエネルギーを有する確率はフェルミ準位を基準としたボルツマン分布に従う。
 ボルツマン分布は、熱エネルギーつまり温度で一意に決まることから、一端111に信号が入力されていない状態では、一端111の側の半導体層101における電子のエネルギー分布(a)と、電荷蓄積領域104における電子エネルギー分布(b)は同じ形なる(図2A)。このため、第1ゲート102を介して、一端111の側から電荷蓄積領域104に入る電子の流れと、電荷蓄積領域104から一端111の側に入る電子の流れとが等しい平衡状態が維持される。
 次に、一端111に交流信号を印加すると、この交流信号分だけ電子のエネルギーが変化するので、図2Bに示すように、一端111の側の半導体層101における電子のエネルギー分布(a)は、電子が持つことができる電子エネルギーの幅が広がる。この結果、交流信号の影響を受けない電荷蓄積領域104と、交流信号が印加された一端111側の半導体層101との間で電子エネルギー分布に差が生じ、エネルギー的に非平衡状態になる。このため、高いエネルギーを持った電子が、一端111の側から第1ゲート102のゲート電圧によるエネルギーバリアを超えて、電荷蓄積領域104に流れ込む。この結果、図2Cに示すように、電荷蓄積領域104の電位が上昇する。
 一端111の側から電荷蓄積領域104に入る電子の流れと、電荷蓄積領域104から一端111の側に入る電子の流れとが等しくなった時点で、電荷蓄積領域104の電位上昇が止まり、定常状態となる。このように、一端111に交流信号を印加することで、電荷蓄積領域104の電位が上昇しエネルギーが蓄積されることとなる。
 このエネルギー蓄積を実現するには、交流信号を印加しない状態で、一端111の側における半導体層101の電子が、エネルギーバリアを超える時間Telectron(FETとキャパシタで構成される電流パスの時定数に相当)が、交流信号の周期Tacよりも1桁以上、長くなくてはならない。TacがTelectronよりも長い(TelectronがTacよりも短い)場合、交流信号の変化に応じて電子が電荷蓄積領域104を出入りすることになり、一端111の側の電子エネルギー分布と電荷蓄積領域104の電子エネルギー分布とが揃い非平衡状態とならないためである。
 よって、電荷蓄積領域104にエネルギーをためるために必要な交流信号の周波数は10/Telectron以上であり、換言すると時定数Telectronよりも高速な交流信号でなくてはならない。これは、回路やデバイスが動作するには、時定数よりも入力信号が遅くなくてはならない、という通常の概念と逆である。
 図3Aはシミュレーション結果を示しており、一端111に印加する交流信号の周波数を高くするにつれて電荷蓄積領域104の電位が上昇し、周波数が10/Telectron以上になると電位上昇が飽和することが分かる。図3Bは、Telectron=3秒の時に、交流信号の有無によって電荷蓄積領域104の電子数が変化する様子をモニタする電流を示している。交流信号を印加することで無印加時に比べて電子カウント電流が全体的に減少しており、これは電荷蓄積領域104の電位が上昇したことを表している。
 この動作原理が成立する交流信号の周波数上限は、第1ゲート102によるゲート電圧で半導体層110形成されるエネルギーバリアを、電子が超えて移動するのに要する時間が決めることとなるので、その距離が短いほど交流信号の周波数の上限を高めることができる。
 上記の説明では、半導体層101において、一端111の側と電荷蓄積領域104とを電子が出入りすることを述べているが、この出入りはエネルギーバリアを越えることに起因しなくてはならない。このため、第1ゲート102を設けた半導体層101によるFETにリーク電流などが発生する状態では、本発明の動作原理を満たさない。また、一端111の側と電荷蓄積領域104とを電子が出入りする際、そのエネルギーを散乱などにより失ってはならない。
[実施の形態1]
 上述した原理を踏まえて、本発明の実施の形態1に係る整流器について図4A、図4B、図4C、図4Dを参照して説明する。図4Dは、実施の形態1に係る整流器の等価回路を示している。
 この整流器は、まず、所定の方向に延在する柱状とされてチャネルが形成される半導体層101を備える。また、半導体層101の一端111から離間して配置されて半導体層101にゲート電圧を印加する第1ゲート102と、半導体層101の他端112の側において第1ゲート102と離間して配置されて半導体層101にゲート電圧を印加する第2ゲート103とを備える。第1ゲート102、第2ゲート103は、ゲート絶縁層121を介して半導体層101の上に形成される。また、第1ゲート102と第2ゲート103との間の半導体層101に形成される電荷蓄積領域104とを備える。半導体層101の一端111に交流信号が入力され、半導体層101の他端112から直流信号が出力される。
 図5A、図5Bは、動作原理を表したエネルギーバンド図である。第1ゲート102と第2ゲート103を用いて電荷蓄積領域104の両側にエネルギーバリアを形成する。この例では、第2ゲート103によるゲート電圧を第1ゲート102によるゲート電圧より小さくし、電荷蓄積領域104の他端112の側のエネルギーバリアを、一端111の側のエネルギーバリアより小さくする。
 一端111に交流信号を印加すると、既述の通り電荷蓄積領域104に電子131が転送されて電荷蓄積領域104の電位が上昇する。この結果、電荷蓄積領域104の電位が、出力端子が接続される他端112の側よりも高くなるため、電荷蓄積領域104の電子131が他端112に転送され、電子131は一端111から他端112に流れ出て電流となる。交流信号の周波数が10/Telectronよりも高い時、電荷蓄積領域104の電位上昇量は一定であるため、電荷蓄積領域104から他端112の側に転送される電子131の流れも直流電流となる。つまり、一端111に印加された交流電流を、直流電流に変換して他端112に出力する整流器として機能する。
 次に、実施の形態1に係る整流器を実現するための構造について説明する。この整流器を実現するためには、第1ゲート102によるFET、第2ゲート103によるFETにおいて、リーク電流があってはならない。このため、ゲート絶縁層121は第1ゲート102,第2ゲート103と半導体層101の間を流れるトンネル電流を抑制しなくてはならない。
 一般的なFETのゲート絶縁層は、酸化シリコンや酸化ハフニウムなどが使われるが、酸化シリコン(SiO2)の場合、ゲート絶縁層121は、10nm程度の厚さがあればよい。10nm以上の厚さでも良いが、第1ゲート102,第2ゲート103からのゲート電圧による制御性を高めるためには薄いほうがよい。
 また、オフ状態のFETに流れる電流としてゲート誘起ドレイン・リーク(Gate Induced Drain Leakage:GIDL)があり、これは半導体層101の結晶的な欠陥に起因していることから、半導体層101は、欠陥のない高品質な結晶から構成されていることが重要となる。しかしながら、実際のFET構造では確率的に欠陥が生じることから、それを避けるため、柱状とする半導体層101は、幅が狭く、ゲート長も短いほうが望ましい。また、整流できる交流信号の周波数上限を高くするためにもゲート長は短いことが望ましい。
 例えば、柱状としている半導体層101の幅は100nm以下が望ましい。第1ゲート102と第2ゲート103のゲート長は、100nm以下が望ましく、1THz程度の交流信号を整流できることも期待できる。また、柱状としている半導体層101の厚さ100nm以下が望ましいが、さらに厚くても良い。第1ゲート102と第2ゲート103との間隔も狭いほど欠陥の影響を受けにくいため100nm以下が望ましい。
[実施の形態2]
 次に、本発明の実施の形態2に係る整流器について、図6A、図6B、図6Cを参照して説明する。図6Cは、実施の形態2に係る整流器の等価回路を示している。
 この整流器は、前述した実施の形態1に係る整流器に加え、まず、第1ゲート102と第2ゲート103との間に配置され、半導体層101にゲート電圧を印加する第3ゲート105を備える。また、半導体層101を挾むように、第1ゲート102、第2ゲート103、および第3ゲート105が形成された領域に配置されて半導体層101にゲート電圧を印加するバックゲート106を備える。バックゲート106は、裏面ゲート絶縁層107を介して半導体層101の裏面側に形成される。
 実施の形態2によれば、第1ゲート102と第2ゲート103との間の半導体層101に形成される電荷蓄積領域104の電位を、第1ゲート102とバックゲート106とにより精密に制御することが可能となる。さらに、一端111に入力した交流信号が空間を伝搬するとき、この伝搬信号が電荷蓄積領域104に影響を及ぼすのを、第3ゲート105をシールド電極として防ぐことができる。また、バックゲート106を用いて半導体層101のキャリアを誘起することで、半導体層101に不純物を導入しなくてもキャリアを伝導させることができる。例えば、バックゲート106を用いて半導体層101に正電圧を印加すれば、半導体層101電子が誘起される。
 一般に、FETではソースおよびドレインに不純物を導入し、これらの間でキャリアを伝導させるが、この不純物を導入する過程において半導体層(チャネル)に結晶的な欠陥が発生し、GIDLのようなリーク電流が発生する。バックゲート106を利用することでこのリーク電流を抑制することも可能となる。
 裏面ゲート絶縁層107の厚さは、前述したように、バックゲート106からのトンネル電流によるリーク電流を抑制するために、10nm以上とすることが望ましい。また、裏面ゲート絶縁層107を薄くすることで、バックゲート106による制御性が高まるとともに低い電圧で駆動できるが、厚さは数100nmの単位となっても問題ない。第3ゲート105は、第1ゲート102と第2ゲート103との間に入るサイズであればよいが、ゲート長が長いほうが第3ゲート105のゲート電圧による制御性が高まるので望ましいが、必須ではない。
[実施の形態3]
 次に、本発明の実施の形態3に係る整流器について、図7A、図7Bを参照して説明する。
 この整流器は、まず、所定の第1方向に延在する柱状とされてチャネルが形成される第1半導体層201を備える。第1方向は、図7Bの紙面の左右方向である。また、第1半導体層201の一端211から離間して配置されて第1半導体層201にゲート電圧を印加する第1ゲート202を備える。また、実施の形態3では、第1方向に交差する第2方向に延在し、第1半導体層201の他端を第2ゲート203とする柱状の第2半導体層205を備える。第2方向は、図7Bの紙面の上下方向である。
 なお、この例では、第1半導体層201、第2半導体層205は、絶縁層221に埋め込まれて形成されている。第1半導体層201の上側の絶縁層221の一部が、第1ゲート202のゲート絶縁層として機能する。また、この整流器は、第1ゲート202と第2ゲート203と間の第1半導体層201に形成される電荷蓄積領域204を備える。第1半導体層201の一端211に交流信号が入力され、第2半導体層205に直流信号が流れる。
 第1半導体層201の電荷蓄積領域204が形成される領域の他端が、第2半導体層205と容量的に結合するので、電荷蓄積領域204は第2半導体層205に対して第2ゲート203として機能する。このため、一端111に交流信号を印加することで電荷蓄積領域204の電位が変化すれば、この電位の変化が第2ゲート203のゲート電圧として第2半導体層205に印加されるので、第2半導体層205に流れる直流電流212が変化する。つまり、一端111に印加される交流信号を、第2半導体層205の直流電流212で読み出すことによって整流器として機能する。
 実施の形態3によれば、一端111に印加される交流信号の強度が弱い時に、実施の形態1,実施の形態2の構成によって得られる整流電流が小さく測定が困難な場合であっても、第2半導体層205の直流電流212の変化で高感度に交流信号を読み出すことが可能となる。
 実施の形態3に係る整流器を実現するためには、電荷蓄積領域204による第2ゲート203と第2半導体層205との距離が短いほど、交流信号を正確に読み出すことができる。また、柱状とした第1半導体層201、第2半導体層205の幅や厚さも小さいほうが望ましい。
 例えば、電荷蓄積領域204による第2ゲート203と第2半導体層205との距離を50nm以下とする。また、第1半導体層201および第2半導体層205の幅や厚さを10nm以下とする。また、電荷蓄積領域204の長さ(第1ゲート202と第1半導体層201の他端との距離)を100nm以下とする。これらの構成とすることで、電荷蓄積領域204内の電子数が1個変化した程度でも、第2半導体層205の直流電流212の変化として検出できる(参考文献1)。
 この結果、図3Bに示すように高感度に電荷蓄積領域204を出入りする電子を単一電子レベルでモニタすることができる。なお、図3Bでは電流が階段状に変化しているが、時間平均をとることで電荷蓄積領域204での電位変化量を得ることができる。
[実施の形態4]
 次に、本発明の実施の形態4に係る整流器について、図8A、図8Bを参照して説明する。この整流器は、前述した実施の形態3に係る整流器に加え、第1ゲート202と第2ゲート203との間に配置され、第1半導体層201にゲート電圧を印加する第3ゲート206を備える。また、第1半導体層201を挾むように、第1ゲート202および第3ゲート206が形成された領域に配置されて第1半導体層201にゲート電圧を印加するバックゲート207を備える。
 この例でも、第1半導体層201、第2半導体層205は、絶縁層221に埋め込まれて形成されている。第1半導体層201の上側の絶縁層221の一部が、第1ゲート202のゲート絶縁層として機能する。また、第1半導体層201、第2半導体層205の下側の絶縁層221が、バックゲート207のゲート絶縁層として機能する。
 実施の形態4によれば、第1ゲート202と第2ゲート203との間の第1半導体層201に形成される電荷蓄積領域204の電位を、第3ゲート206とバックゲート207とにより精密に制御することが可能となる。さらに、一端211に入力した交流信号が空間を伝搬するとき、この伝搬信号が電荷蓄積領域204に影響を及ぼすのを、第3ゲート206をシールド電極として防ぐことができる。また、バックゲート207を用いて第1半導体層201のキャリアを誘起することで、第1半導体層201に不純物を導入しなくてもキャリアを伝導させることができる。例えば、バックゲート207を用いて第1半導体層201に正電圧を印加すれば、第1半導体層201電子が誘起される。
 一般に、FETではソースおよびドレインに不純物を導入し、これらの間でキャリアを伝導させるが、この不純物を導入する過程において半導体層(チャネル)に結晶的な欠陥が発生し、GIDLのようなリーク電流が発生する。バックゲート207を利用することでこのリーク電流を抑制することも可能となる。
 バックゲート207に対するゲート絶縁層として機能する部分の絶縁層221の厚さは、前述したように、バックゲート207からのトンネル電流によるリーク電流を抑制するために、10nm以上とすることが望ましい。また、上述した絶縁層221を薄くすることで、バックゲート207による制御性が高まるとともに低い電圧で駆動できるが、厚さは数100nmの単位となっても問題ない。第3ゲート206は、第1ゲート202と第2ゲート203との間に入るサイズであればよいが、ゲート長が長いほうが第3ゲート206のゲート電圧による制御性が高まるので望ましいが、必須ではない。
 以上に説明したように、本発明によれば、柱状の半導体層に第1ゲートおよび第2ゲートを設け、第1ゲートと第2ゲートとの間の半導体層に電荷蓄積領域を形成し、第1ゲート側の半導体層の一端に交流信号を入力する構成としたので、室温で100GHz~THzの高周波信号を直流に変換できる整流器の提供できるようになる。
 本発明に係る整流器は、柱状の半導体層に第1ゲートおよび第2ゲートを設けることで構成したリーク電流のないFETを用いて、非平衡状態を誘発することで発生する定常状態過程を利用するところに特徴がある。また、本発明に係る整流器は、柱状の第1半導体層と柱状の第2半導体層との間のキャパシタに強度が小さい交流信号を蓄積し、これらによるFETで読み出すところに特徴がある。本発明によれば、整流できる交流信号周波数がRC時定数で律則されることなく、高周波信号を扱うことができる。また、強度が小さい交流信号も扱うことができる。
[参考文献1]K. Nishiguchi et al., "Single-Electron-Resolution Electrometer Based on Field-Effect Transistor", Japanese Journal of Applied Physics, vol. 47, no. 11, pp. 8305-8310, 2008.
 101…半導体層、102…第1ゲート、103…第2ゲート、104…電荷蓄積領域、111…一端、112…他端、121…ゲート絶縁層。

Claims (4)

  1.  所定の方向に延在する柱状とされてチャネルが形成される半導体層と、
     前記半導体層の一端から離間して配置されて前記半導体層にゲート電圧を印加する第1ゲートと、
     前記半導体層の他端の側において前記第1ゲートと離間して配置されて前記半導体層にゲート電圧を印加する第2ゲートと、
     前記第1ゲートと前記第2ゲートとの間の前記半導体層に形成される電荷蓄積領域と
     を備え、
     前記半導体層の一端に交流信号が入力され、
     前記半導体層の他端から直流信号が出力される
     ことを特徴とする整流器。
  2.  請求項1記載の整流器において、
     前記第1ゲートと前記第2ゲートとの間に配置され、前記半導体層にゲート電圧を印加する第3ゲートと、
     前記半導体層を挾むように、前記第1ゲート、前記第2ゲート、および前記第3ゲートが形成された領域に配置されて前記半導体層にゲート電圧を印加するバックゲートと
     を備えることを特徴とする整流器。
  3.  所定の第1方向に延在する柱状とされてチャネルが形成される第1半導体層と、
     前記第1半導体層の一端から離間して配置されて前記第1半導体層にゲート電圧を印加する第1ゲートと、
     前記第1方向に交差する第2方向に延在し、前記第1半導体層の他端を第2ゲートとする柱状の第2半導体層と、
     前記第1ゲートと前記第2ゲートと間の前記第1半導体層に形成される電荷蓄積領域と
     を備え、
     前記第1半導体層の一端に交流信号が入力され、
     前記第2半導体層に直流信号が流れる
     ことを特徴とする整流器。
  4.  請求項3記載の整流器において、
     前記第1ゲートと前記第2ゲートとの間に配置され、前記第1半導体層にゲート電圧を印加する第3ゲートと、
     前記第1半導体層を挾むように、前記第1ゲートおよび前記第3ゲートが形成された領域に配置されて前記第1半導体層にゲート電圧を印加するバックゲートと
     を備えることを特徴とする整流器。
PCT/JP2022/031333 2022-08-19 2022-08-19 整流器 WO2024038577A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031333 WO2024038577A1 (ja) 2022-08-19 2022-08-19 整流器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031333 WO2024038577A1 (ja) 2022-08-19 2022-08-19 整流器

Publications (1)

Publication Number Publication Date
WO2024038577A1 true WO2024038577A1 (ja) 2024-02-22

Family

ID=89941728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031333 WO2024038577A1 (ja) 2022-08-19 2022-08-19 整流器

Country Status (1)

Country Link
WO (1) WO2024038577A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208072A (ja) * 1990-11-30 1992-07-29 Omron Corp 全波整流回路の半導体構造
JP2005175224A (ja) * 2003-12-11 2005-06-30 Nippon Telegr & Teleph Corp <Ntt> 電界型単電子箱多値メモリ回路およびその制御方法
JP2008113547A (ja) * 2006-10-06 2008-05-15 Semiconductor Energy Lab Co Ltd 整流回路、該整流回路を用いた半導体装置及びその駆動方法
JP2008161044A (ja) * 2006-11-29 2008-07-10 Semiconductor Energy Lab Co Ltd 整流回路、電源回路及び半導体装置
JP2009212499A (ja) * 2008-02-07 2009-09-17 Semiconductor Energy Lab Co Ltd 半導体装置
JP2012042216A (ja) * 2010-08-12 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> センサ
JP2013005308A (ja) * 2011-06-20 2013-01-07 Seiko Epson Corp 混合器、送信機及び通信システム
WO2016158862A1 (ja) * 2015-04-01 2016-10-06 東レ株式会社 整流素子、その製造方法および無線通信装置
JP2017005040A (ja) * 2015-06-08 2017-01-05 日本電信電話株式会社 半導体装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208072A (ja) * 1990-11-30 1992-07-29 Omron Corp 全波整流回路の半導体構造
JP2005175224A (ja) * 2003-12-11 2005-06-30 Nippon Telegr & Teleph Corp <Ntt> 電界型単電子箱多値メモリ回路およびその制御方法
JP2008113547A (ja) * 2006-10-06 2008-05-15 Semiconductor Energy Lab Co Ltd 整流回路、該整流回路を用いた半導体装置及びその駆動方法
JP2008161044A (ja) * 2006-11-29 2008-07-10 Semiconductor Energy Lab Co Ltd 整流回路、電源回路及び半導体装置
JP2009212499A (ja) * 2008-02-07 2009-09-17 Semiconductor Energy Lab Co Ltd 半導体装置
JP2012042216A (ja) * 2010-08-12 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> センサ
JP2013005308A (ja) * 2011-06-20 2013-01-07 Seiko Epson Corp 混合器、送信機及び通信システム
WO2016158862A1 (ja) * 2015-04-01 2016-10-06 東レ株式会社 整流素子、その製造方法および無線通信装置
JP2017005040A (ja) * 2015-06-08 2017-01-05 日本電信電話株式会社 半導体装置

Similar Documents

Publication Publication Date Title
Avouris et al. Carbon-based electronics
CN102113114B (zh) 互补型逻辑门器件
Weber et al. Reconfigurable nanowire electronics-enabling a single CMOS circuit technology
Yamada Analysis of submicron carbon nanotube field-effect transistors
Colinge et al. Junctionless nanowire transistor: complementary metal-oxide-semiconductor without junctions
Ravariu Semiconductor materials optimization for a TFET device with central nothing region on insulator
Kumar et al. Performance analysis of charge plasma based five layered black phosphorus-silicon heterostructure tunnel field effect transistor
WO2024038577A1 (ja) 整流器
US6605829B2 (en) Semiconductor device
US20240038875A1 (en) Semiconductor device
Shaukat et al. Impact of dielectric material and oxide thickness on the performance of Carbon Nanotube Field Effect Transistor
Modi et al. Design and performance augmentation of charge-plasma nanoFET with parametric analysis using non-equilibrium Green's function
JP5841013B2 (ja) 半導体装置
US20110175628A1 (en) Triple-gate or multi-gate component based on the tunneling effect
US20090309138A1 (en) Transistor and semiconductor device
Wang et al. Si single-electron transistors with in-plane point-contact metal gates
JP6420209B2 (ja) 半導体装置
JP5529514B2 (ja) 半導体装置
Dehzangi et al. Study of the side gate junctionless transistor in accumulation region
Suguna et al. Modeling and simulation based investigation of triple material surrounding gate tunnel FET for low power application
US20240186418A1 (en) Double-gate four-terminal semiconductor component with fin-type channel region
Bhaskar et al. Process variation immune dopingless dynamically reconfigurable FET
Tutuc et al. Gate tunable resonant tunneling in graphene-based heterostructures and device applications
US20210036133A1 (en) Graphene Spin Transistor and Graphene Rashba Spin Logic Gate for All-Electrical Operation at Room Temperature
Jha et al. Tuning the noise margins of gate-all-around MOSFET based inverters through non-circular multi-channel architecture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955750

Country of ref document: EP

Kind code of ref document: A1