JP5529514B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP5529514B2
JP5529514B2 JP2009278421A JP2009278421A JP5529514B2 JP 5529514 B2 JP5529514 B2 JP 5529514B2 JP 2009278421 A JP2009278421 A JP 2009278421A JP 2009278421 A JP2009278421 A JP 2009278421A JP 5529514 B2 JP5529514 B2 JP 5529514B2
Authority
JP
Japan
Prior art keywords
gate electrode
drain
source
layer
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009278421A
Other languages
English (en)
Other versions
JP2011124268A (ja
Inventor
克彦 西口
聡 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2009278421A priority Critical patent/JP5529514B2/ja
Publication of JP2011124268A publication Critical patent/JP2011124268A/ja
Application granted granted Critical
Publication of JP5529514B2 publication Critical patent/JP5529514B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thin Film Transistor (AREA)

Description

本発明は、急峻なオン・オフ電流特性を、低電圧で実現する半導体装置に関するものである。
トランジスタは、スイッチング素子としてコンピュータや様々な電子機器に利用されている。例えば、電界効果型トランジスタ(FET)は、広く一般に用いられている。このFETは、図6Aに示すように、例えばシリコン基板601に絶縁層602を介して形成されたゲート電極603と、ゲート電極603を挟むようにシリコン基板601に形成されたソース604およびドレイン605から構成されている。ソース604およびドレイン605は、いわゆる不純物を導入することで形成されている。
このFETは、ソース604,ドレイン605に用いる不純物の種類、ゲート電極603に印加する電圧、およびソース・ドレイン間に印加すする電圧の制御により、ソース604からドレイン605に対して正孔または電子を流すことが可能になる。このようなFETは、図6Bに示すような、ゲート電圧(Vg)に対するソース・ドレイン間の電流(I)の特性を備えている。
通常、FETをスイッチング素子として利用するときは、十分なソース・ドレイン間電流(オン電流Ion)が得られるゲート電圧(オン電圧Von)と、電流値が小さいソース・ドレイン間電流(オフ電流Ioff)となるゲート電圧(オフ電圧Voff)とを2値信号として利用する。このため、正常なスイッチング動作を実現するためには、十分に大きなオン電流Ionおよびオン/オフ比(Ion/Ioff)を得ることとが重要となる。一方、低消費電力化などの観点から、オン電圧Vonとオフ電圧Voffの差は小さいことが望まれている。
これらを実現するため、一般的に、ソース・ドレイン間電流が、ゲート電圧に対して非線形に変化する飽和領域にオフ電圧Voffを設定し、線形的に変化する線形領域にオン電圧Vonを設定している。また、さらなる改善として、飽和領域においてlog(I)/Vgを大きくすることも望まれる。このlog(I)/Vgの逆数は、サブスレッショルドスイング値(subthreshold swing value:S値)と表現され、FETの重要な性能(特性)を示すものとして用いられている。現在、FETの構造によりS値を小さくすることが試みられているが、S値の最小値は温度で決定され、上述した構造のFETでは、室温(20℃)で60mV/dec以下にすることはできない。
一方、S値を60mV/dec以下にする新たなFETも報告されている。この一例として、インパクト・イオン化現象を用いたMOS(Metal Oxide Semiconductor)がある(非特許文献1参照)。インパクト・イオン化現象を用いるMOSは、図7Aに示すように、絶縁層702を介して形成されたゲート電極703と、ゲート電極703を挟むように配置されたソース704およびドレイン705を備え、ソース704はp型領域とされ、ドレイン705はn型領域とされ、ソース704は、ゲート電極703から離れて形成されている。
このMOSでは、単にドレイン705に正のバイアスを印加した状態では、図7Aの(a)に示すように、pn接合ダイオードの逆バイアス状態となるので、電流は流れない。ところが、この状態で、ゲート電極703にゲート電圧を印加してゲート電極703直下の半導体領域を反転すれば、図7Aの(b)に示すように、キャリアが直下の半導体領域に注入されてドレイン705と同じ電位となり、形成された反転領域の端(ピンチオフ点)とソース704端との間の電界が大きくなる。
これにより高電界領域で加速される少数キャリアが、高エネルギーを持つことになり電子−正孔ペアを形成する。この現象が雪崩式に起きることで、図7Aの(b)に示すように、急激に電子(白丸)および正孔(黒丸)が発生し、電子はn領域であるドレイン705に流れ込み、正孔はp領域であるソース704に流れ込む。この結果、ソース・ドレイン電流が発生するようになる。
上述したインパクト・イオン化現象を用いたMOS(インパクト・イオン化MOS)では、雪崩式に発生するキャリアを利用するので、図7Bに示すように、通常のトランジスタに比べ、ゲート電圧の印加により急激に電流が増える特性が得られ、60mV/decより小さなS値を得ることができる。従って、インパクト・イオン化MOSでは、VonとVoffの差を小さくしても大きなIon/Ioffが確保でき、低消費電力化や高速動作が期待できる。このため、インパクト・イオン化MOSは、高性能素子として注目を浴びている。
K. Gopalakrishnan, et al, "Impact Ionization MOS (I-MOS).Part I: Device and Circuit Simulations", IEEE TRANSACTIONS ON ELECTRON DEVICES, vol.52, no.1, pp.69-76, 2005. William M. Reddick and Gehan A. J. Amaratunga, "Silicon surface tunnel transistor", Appl. Phys. Lett. , vol.67, no.4, pp.494-496, 1995. N. Abele1, et al. , "Suspended-Gate MOSFET: bringing new MEMS functionality into solid-state MOS transistor",International Electron Devices Meeting Technical Digest, pp.479-481, 2005. K. Nishiguchi, et al. ,"Long Retention of Gain-Cell Dynamic Random Access Memory With Undoped Memory Node",IEEE ELECTRON DEVICE LETTERS, vol.28, no.1, pp.48-50, 2007.
しかしながら、上述したインパクト・イオン化MOSは、次に示すような問題がある。
まず、インパクト・イオン化MOSは、電子−正孔ペアを形成するのに十分なエネルギーをキャリアに持たせるために、大きなソース・ドレイン間電圧が必要となる点が問題となる。一般的な報告として、上述したソース・ドレイン間電圧として、5V以上は必要となっている。ソース−ドレイン間電圧で消費電力が決まるので、大きなソース・ドレイン間電圧は、低消費電力化の妨げとなる。
また、インパクト・イオン化MOSでは、電流−ゲート電圧特性にヒステリシスが現れる点が、問題点としてあげられる。インパクト・イオン化MOSでは、図7Cに示すように、オン状態における電流−ゲート電圧特性(実線)とオフ状態における電流−ゲート電圧特性(点線)とが異なる。これは、インパクト・イオン化MOSでは、オフ状態からオン状態にし、もう一度オフ状態に戻す際、雪崩的に増えたキャリアを除去することができないためである。また、インパクト・イオン化MOSでは、オフ状態であっても、少数キャリアは電流として流れてしまうので、オフ電流Ioffが通常のFETより大きくなってしまう傾向にある。これらは、本質的に解決が難しいといえる。
また、作製上の難しさもある。インパクト・イオン化MOSでは、ソースおよびドレインを異なる導電形とし、また、ソースをゲート電極より離して形成することになる。このように、ソースおよびドレインで導入する不純物を異なるものとし、また、ゲート電極とソースとの間にギャップを形成することは、通常のFETと比較し、作製方法が複雑になるという問題がある。
また、上述したインパクト・イオン化MOS以外にも、S値をより小さくする新しいFETが提案されている。例えば、トンネルFET(非特許文献2参照)および架橋ゲート型FET(非特許文献3参照)などがある。しかしながら、これらのFETにおいても、高いドレイン−ソース間電圧や、複雑な素子構造、電流特性におけるヒステリシスなどの問題がある。
本発明は、以上のような問題点を解消するためになされたものであり、製造しやすい構造で、ソース・ドレイン間電圧を高くすることなく、安定した電流特性で、FETのS値を小さくすることを目的とする。
本発明に係る半導体装置は、半導体層に形成されたチャネル層と、このチャネル層を挟んで半導体層に形成されたソースおよびドレインと、ソースおよびドレインの位置から離間してチャネル層の上に形成された第1ゲート電極と、第1ゲート電極およびソースの間のチャネル層の上に第1ゲート電極と絶縁分離されて形成された第2ゲート電極と、第1ゲート電極およびドレインの間のチャネル層の上に第1ゲート電極と絶縁分離されて形成された第3ゲート電極と、チャネル層を挟んで第1ゲート電極,第2ゲート電極,および第3ゲート電極に対向配置された第4ゲート電極とを少なくとも備える。
上記半導体装置において、第2ゲート電極および第3ゲート電極は等電位とされていてもよい。また、ソースおよびドレインは、半導体層に不純物が導入された領域であればよい。
上記半導体装置、第2ゲート電極および第3ゲート電極に各々電圧が印加されることで、第2ゲート電極および第3ゲート電極の位置のチャネル層の各々にキャリアが誘起された2つの蓄積層が形成され、2つの蓄積層が形成されている状態で、第1ゲート電極にゲート電圧が印加されることで、2つの蓄積層の間のチャネル層に反転層が形成されて2つの蓄積層が反転層で接続され、ソースとドレインとの間に電流を流すことが可能とされる。
上記半導体装置において、2つの蓄積層が形成されている状態で、第1ゲート電極にゲート電圧が印加されているときに、第4ゲート電極にゲート電圧と同極性の電圧が印加されるようにしてもよい。また、2つの蓄積層が形成されている状態で、第1ゲート電極にゲート電圧が印加されているときに、第4ゲート電極にゲート電圧と異なる極性の電圧が印加されるようにしてもよい。
以上説明したように、本発明によれば、第1ゲート電極およびソースの間のチャネル層の上に第1ゲート電極と絶縁分離されて形成された第2ゲート電極、および第1ゲート電極およびドレインの間のチャネル層の上に第1ゲート電極と絶縁分離されて形成された第3ゲート電極を備えるようにしたので、製造しやすい構造で、ソース・ドレイン間電圧を高くすることなく、安定した電流特性で、FETのS値を小さくすることできるという優れた効果が得られる。
本発明の実施の形態1における半導体装置の一部構成を示す断面図である。 本発明の実施の形態1における半導体装置の一部構成を示す平面図である。 本発明の実施の形態1における半導体装置の一部構成を示す断面図である。 本発明の実施の形態1における半導体装置の一部構成を示す断面図である。 本発明の実施の形態1における半導体装置の一部構成を示す断面図である。 本発明の実施の形態1における半導体装置の一部構成を示す断面図である。 本発明の実施の形態1における半導体装置の一部構成を示す断面図である。 本発明の実施の形態1における半導体装置の等価回路を示す回路図である。 本発明の実施の形態1における半導体装置の特性を示す特性図である。 本発明の実施の形態1における半導体装置の一部構成を示す断面図である。 本発明の実施の形態2における半導体装置の一部構成を示す断面図である。 電界効果型のトランジスタの構成を示す断面図である。 電界効果型のトランジスタの特性を示す特性図である。 インパクト・イオン化MOSの構成を示す断面図である。 インパクト・イオン化MOSの特性を示す特性図である。 インパクト・イオン化MOSの特性を示す特性図である。
以下、本発明の実施の形態について図を参照して説明する。
[実施の形態1]
はじめに、本発明の実施の形態1について説明する。本実施の形態1における半導体装置は、図1A〜1Cに示すように、まず、半導体層100に形成されたチャネル層101と、チャネル層101の上に形成された第1ゲート電極103と、チャネル層101を挟んで半導体層100に形成されたソース104およびドレイン105とを備えている。また、第1ゲート電極103は、絶縁層102を介してチャネル層101の上に形成され、ソース104およびドレイン105の位置から離間してチャネル層101の上に形成されている。なお、図1Aは、図1Bの平面図のaa’線の断面を示し、図1Cは、図1Bの平面図のcc’線の断面を示している。
また、本実施の形態における半導体装置は、第1ゲート電極103およびソース104の間のチャネル層101の上に第1ゲート電極103と絶縁分離されて形成された第2ゲート電極109と、第1ゲート電極103およびドレイン105の間のチャネル層101の上に第1ゲート電極103と絶縁分離されて形成された第3ゲート電極111とを備える。また、チャネル層101を挟んで第1ゲート電極103,第2ゲート電極109,および第3ゲート電極111に対向配置された第4ゲート電極107を備える。第2ゲート電極109は、絶縁層108により第第1ゲート電極103と絶縁分離し、第3ゲート電極111は、絶縁層110により第1ゲート電極103と絶縁分離している。また、第4ゲート電極107とチャネル層101との間には、絶縁層106が形成されている。
例えば、よく知られたSOI(Silicon on Insulator)基板を用いることで、本実施の形態における半導体装置を作製することができる。この場合、SOI基板のシリコン基部が、第4ゲート電極107となり、埋め込み絶縁層が絶縁層106となり、表面シリコン層が半導体層100となる。
製造方法について簡単に説明すると、まず、SOI基板の表面シリコン層を、公知のフォトリソグラフィー技術とエッチング技術とによりパターニングし、幅50nmおよび高さ(厚さ)30nm程度の筋状の半導体層100を形成する。半導体層100に、チャネル層101およびソース104,ドレイン105が形成される。
次に、形成した半導体層100を覆う絶縁層(絶縁層102)を形成し、この絶縁層の上にポリシリコン層を形成する。これらは、よく知られたCVD法やスパッタ法などにより各材料を堆積することで形成すればよい。次に、形成したポリシリコン層を、公知のフォトリソグラフィー技術とエッチング技術とによりパターニングし、第1ゲート電極103を形成する。第1ゲート電極103は、半導体層100の延在方向に直交する方向に延在する状態に形成する。
次に、第1ゲート電極103を覆う絶縁層を形成する。例えば、第1ゲート電極103の表面を熱酸化することで、この絶縁層を形成することができる。この絶縁層が絶縁層108および絶縁層110となる。
次に、上述した絶縁層を形成した第1ゲート電極103を覆うように、第1ゲート電極103の上にポリシリコン層を形成し、このポリシリコン層を、公知のフォトリソグラフィー技術とエッチング技術とによりパターニングする。このパターニングでは、半導体層100が延在する方向において、チャネル層101を形成しようとする領域に対応する幅となるポリシリコンパターンを形成する。
次に、このポリシリコンパターンをエッチバックして第1ゲート電極103の絶縁層が形成されている上面を露出させ、第1ゲート電極103の両脇に、第2ゲート電極109および第3ゲート電極111が形成された状態とする。例えば、よく知られたCMP法を用いてエッチバックすればよい。
次に、上述したようにすることで形成した第2ゲート電極109,第3ゲート電極111,および第1ゲート電極103をマスクとし、半導体層100の上に形成されている絶縁層を選択的にエッチングする。このエッチングにより、前述した絶縁層102が形成され、絶縁層102により被覆されている領域の半導体層100にチャネル層101が形成され、半導体層100の、ソース104およびドレイン105となる領域が露出する。
次に、例えば、よく知られたイオン注入法により、半導体層100の上述した露出部分に不純物を導入し、例えば、n形とすることで、チャネル層101を挟むソース104およびドレイン105を形成する。以上のことにより、半導体層100,チャネル層101,第1ゲート電極103,ソース104,ドレイン105,第2ゲート電極109,第3ゲート電極111,および第4ゲート電極107が形成される。
この後、図1A〜図1Cには示していないが、第2ゲート電極109,第3ゲート電極111,および第1ゲート電極103などを覆う層間絶縁層を形成し、また、層間絶縁層にコンタクトホールを形成することで、ソース104,ドレイン105に接続するソース電極配線,ドレイン電極配線を形成する。また、同様にすることで、第1ゲート電極103,第2ゲート電極109,第3ゲート電極111の各々に接続するゲート電極配線を形成すればよい。
ここで、各部分の設計寸法について、一例を示す。絶縁層102,絶縁層106,絶縁層108,および絶縁層110は、FETを駆動する際の電圧で絶縁破壊が起きない程度で可能な限り薄い方が良い。例えば、これらの層厚は、駆動電圧(ゲート電圧など)が10Vであれば、10nm程度でよい。また、駆動電圧が下がれば、これに比例して層厚を薄くすることができる。また、絶縁層102,絶縁層108,および絶縁層110に関しては、これらの接する各ゲート電極からチャネル層101に電流が流れないことが望ましく、5nm以上が求められる。
チャネル層101は、層厚が20〜40nm程度であればよい。また、幅(図1Bの紙面上下方向の長さ)は、20〜100nm程度であればよい。また、第1ゲート電極103の高さ(層厚)は、50nm程度であればよく、幅(図1Bの紙面左右方向の長さ)は、10nm以上であればよい。また、第2ゲート電極109および第3ゲート電極111は、高さが50nm程度であればよい。また、第2ゲート電極109および第3ゲート電極111は、チャネル層101の幅内に収まっていればよい。
次に、各ゲート電極や、ソース104およびドレイン105における不純物濃度について説明する。各ゲート電極をシリコンで構成する場合、リンなどのドナーを不純物として導入して金属的な特性を示す状態とすればよい。また、ソース104およびドレイン105についても同様である。このためには、例えば、導入されているリンの濃度が1018/cm3程度あれば問題ない。チャネル層101は、半導体特性を有する程度の不純物濃度であれば良い。ただし、後述するように、ソース104およびドレイン105との間に形成される物理的なpn接合を起因とするオフ電流Ioffを下げるためには、チャネル層101に含まれている不純物は低濃度のほうが望ましい。
次に、本実施の形態における半導体装置(FET)の動作について説明する。
初期状態としては、第1ゲート電極103,第2ゲート電極109,および第3ゲート電極111に電圧を印加せず、図2Aに示すように、チャネル層101に電子がない場合を考える。
この初期状態に対し、第2ゲート電極109および第3ゲート電極111に正の電圧を印加する。例えば、第2ゲート電極109および第3ゲート電極111に、同じ正の電圧を印加する。この印加電圧がある値以上になると、チャネル層101が反転し、図2Bに示すように、第2ゲート電極109の下のチャネル層101に電子(キャリア)が誘起された蓄積層201が形成され、第3ゲート電極111の下のチャネル層101にも、電子が誘起された蓄積層202が形成される。これは、いわゆるソースおよびドレインを、電気的に形成したことを意味する。
このようにして蓄積層201および蓄積層202が形成されている状態で、第1ゲート電極103に正の電圧を印加すれば、図2Cに示すように、第1ゲート電極103の下のチャネル層101に反転層203が形成され、蓄積層201と蓄積層202とが反転層203で接続されて、ソース104とドレイン105との間に電流が流れるようになる。
以上に説明したように、本実施の形態によれば、トランジスタ電流に寄与する第1ゲート電極103で形成する反転層と、第2ゲート電極109および第3ゲート電極111で電気的に形成するソース(蓄積層)とドレイン(蓄積層)との間に物理的なpn接合がないため、物理的なpn接合に起因するオフ電流Ioffを抑制することが可能となる。よく知られているように、MOSトランジスタなどでは、ソース/反転層および反転層/ドレインにpn接合が存在しており、このpn接合に起因するオフ電流がnチャネルMOSトランジスタで問題となる(非特許文献3参照)。これに対し、本実施の形態における半導体装置によれば、反転層203と、これに隣接する蓄積層201および蓄積層202との間にはpn接合がないため、オフ電流の問題が発生しない。
次に、本実施の形態の半導体装置におけるS値について説明する。まず、ドレイン105に正の電圧を印加し、ソース104を接地した場合を考える。この場合、図3Aに示すように、第1ゲート電極103の下に完全な反転層が形成されず、少数の電子(白丸)がソース104からドレイン105に流れているとき、チャネル層101を構成する半導体のバンドギャップ以上のエネルギーを持った電子は、ある確率で電子−正孔ペアを形成する。また、新たに発生した電子はドレイン105に流れ込む。
一方、正孔(黒丸)は、第1ゲート電極103とは反対側(第4ゲート電極107の側)のチャネル層101に溜まる。これは、いわゆる、フローティングボディー効果と呼ばれる現象が原因である。他方、ソース104−チャネル層101−ドレイン105は,n領域−真性領域(または低濃度領域)−n領域というバイポーラ・トランジスタ構造となっており、各々エミッタ−ベース−コレクタの役割をなす。この状態は、図3Bに示すように、通常の電界効果トランジスタにバイポーラ・トランジスタが並列に接続された状態に等しい。
従って、チャネル層101に溜まった正孔は、ベース領域に流れ込むことになり、エミッタからコレクタ、つまりソース104からドレイン105に流れ込む電子数が増幅される。これにより、さらに電子−正孔ペアが形成(増幅)され、ソース・ドレイン間電流が雪崩式に急激に増加する。これは、結果的に電流特性のS値が小さくなることに等しい。
本実施の形態によれば、チャネル層101に溜まる正孔や、この正孔と電子との再結合レートなどを、素子寸法およびゲート電圧などで制御することで、図3Cに示すように、ドレイン電圧の低減化、小ヒステリシス特性を実現しながら、S値を60mV/dec以下に下げることができる。
ところで、上述したようにバイポーラ・トランジスタ構造による増幅効果を利用すると、一般にはオフ電流Ioffも増幅されてしまうが、本実施の形態では、上述したように、オフ電流Ioff自体が抑えられているので、図3Cに示すように良好なオフ電流特性が得られる。
以上に説明したように、本実施の形態における半導体装置では、まず、第2ゲート電極および第3ゲート電極を新たに設ければよく、また、ソースおよびドレインを同じ導電形とすればよい。また、ソースとゲート電極との間隔およびドレインとゲート電極との間隔を、異なる状態とする必要がない。このように、本実施の形態における半導体装置は、現在一般に用いられているFETの製造プロセスを大きく変更するとなく、容易に製造できる構造となっている。また、本実施の形態における半導体装置によれば、上述したように、ソース・ドレイン間電圧を高くすることなく、安定した電流特性で、FETのS値を小さくすることができる。
次に、他の動作について説明する。
上述では、第4ゲート電極107を固定電位としたが、これに限るものではな。例えば、第4ゲート電極107を利用することで、より柔軟な電流制御が可能となる。第4ゲート電極107もチャネル層101と容量結合しているので、例えば正の電圧を印加することで、チャネル層101における蓄積層や反転層がより形成されやすくなる。この結果、第1ゲート電極103,第2ゲート電極109,および第3ゲート電極111への印加電圧を下げることができる。
例えば、第4ゲート電極107に正の電圧(ゲート電圧と同極性の電圧)を印加することで、第1ゲート電極103に対するゲート電圧を低くしても、ソース・ドレイン間に流せる電流が小さくならずに済み、第1ゲート電極103に対するゲート電圧を低くしても、前述した場合と同程度の電流を流すことが可能となる。言い換えると、同じゲート電圧であれば、第4ゲート電極107に正の電圧を印加することで、ソース・ドレイン間の電流を増幅することができる。
ところで、第1ゲート電極103と、第2ゲート電極109および第3ゲート電極111との間には絶縁層108,絶縁層110があるため、これらの絶縁層の直下のチャネル層101においては、形成しようとする蓄積層の電荷密度が下がる。このため、動作時において、第1ゲート電極103,第2ゲート電極109,および第3ゲート電極111への印加電圧が大きくなる可能性がある。これに対し、第4ゲート電極107を利用する(第4ゲート電極107にゲート電圧と同極性の電圧を印加する)ことで、上述した各ゲート電極への印加電圧を補償することが可能となる。
また、第4ゲート電極107に印加する電圧により、ソース104およびドレイン105の間の電圧をさらに下げることが可能となる。第4ゲート電極107に負の電圧(ゲート電圧と異なる極性の電圧)を印加すると、図4に示すように、チャネル層101中の正孔(黒丸)は第4ゲート電極107の側に溜まりやすくなる。これにより、図3Bを用いて説明したバイポーラ・トランジスタ効果が、より顕著になり、さらにソース104−ドレイン105間の低電圧化が可能となる。これは、ソース・ドレイン間電圧を低くしても、前述の場合と同程度のソース・ドレイン間電流が得られることを示しており、言い換えると、第4ゲート電極107に対する電圧の印加により、ソース・ドレイン間電流の増幅効果が得られることになる。
[実施の形態2]
次に、本発明の実施の形態2について説明する。上述では、第2ゲート電極109および第3ゲート電極111に同じ電位を印加する場合について説明した。これは、第2ゲート電極109および第3ゲート電極111を一体に形成した場合と同様であり、例えば、図5に示すように、第1ゲート電極103の上を跨ぐように、絶縁層508を介して一体に形成した電極509としてもよい。なお、図5において、他の構成は、図1A〜図1Cを用いて説明した半導体装置と同様である。
ただし、前述した実施の形態1において、第2ゲート電極109および第3ゲート電極111は、等電位とする必要はなく、各々に異なる電位を与え、第2ゲート電極109および第3ゲート電極111の下のチャネル層101に、各々異なる状態の電子の蓄積層を形成してもよい。
なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形が実施可能であることは明白である。
例えば、上述では、ソースおよびドレインとする領域にいわゆる不純物を導入し、半導体層に不純物が導入された領域とすることで、n形もしくはp形としているが、これに限るものではない。例えば、チャネル層およびソース・ドレインを形成するシリコン層が20nm以下と薄い場合、ソース・ドレインに不純物を導入しなくてもよい。この場合、ソース・ドレインに対する電気的なコンタクトを金属で形成する際、金属が半導体領域と反応しその部分がn領域として作用するためである。また、第4ゲート電極107でチャネル層などの半導体領域を反転することでも、ソース・ドレインに不純物を導入する必要がなくなる。
また、上述では、第1ゲート電極形成位置とソースとの間隔、および第1ゲート電極形成位置とドレインとの間隔を、同じ距離としたが、これに限るものではなく、これらの距離を異なる状態としてもよい。また、上述では、ソースおよびドレインをn形としたが、これに限るものではなく、ソースおよびドレインをp形の領域としてもよい。この場合、電流(ソース・ドレイン間電流)のキャリアは正孔となり、印加する各電圧の極性を逆にする。
また、上述では、半導体としてシリコンを用いて説明したが、これに限るものではなく、例えば、ゲルマニウムや、化合物半導体などの他の半導体材料を用いる場合についても同様である。
100…半導体層、101…チャネル層、102…絶縁層、103…第1ゲート電極、104…ソース、105…ドレイン、106…絶縁層、107…第4ゲート電極、108…絶縁層、109…第2ゲート電極、110…絶縁層、111…第3ゲート電極。

Claims (5)

  1. 半導体層に形成されたチャネル層と、
    このチャネル層を挟んで前記半導体層に形成されたソースおよびドレインと、
    前記ソースおよび前記ドレインの位置から離間して前記チャネル層の上に形成された第1ゲート電極と、
    この第1ゲート電極および前記ソースの間の前記チャネル層の上に前記第1ゲート電極と絶縁分離されて形成された第2ゲート電極と、
    前記第1ゲート電極および前記ドレインの間の前記チャネル層の上に前記第1ゲート電極と絶縁分離されて形成された第3ゲート電極と、
    前記チャネル層を挟んで前記第1ゲート電極,前記第2ゲート電極,および前記第3ゲート電極に対向配置された第4ゲート電極と
    を少なくとも備え
    前記第2ゲート電極および前記第3ゲート電極に各々電圧が印加されることで、前記第2ゲート電極および前記第3ゲート電極の位置の前記チャネル層の各々にキャリアが誘起された2つの蓄積層が形成され、
    2つの前記蓄積層が形成されている状態で、前記第1ゲート電極にゲート電圧が印加されることで、2つの前記蓄積層の間の前記チャネル層に反転層が形成されて2つの前記蓄積層が前記反転層で接続され、前記ソースと前記ドレインとの間に電流を流すことが可能とされることを特徴とする半導体装置。
  2. 請求項1記載の半導体装置において、
    前記第2ゲート電極および前記第3ゲート電極は等電位とされている
    ことを特徴とする半導体装置。
  3. 請求項1または2記載の半導体装置において、
    前記ソースおよびドレインは、前記半導体層に不純物が導入された領域である
    ことを特徴とする半導体装置。
  4. 請求項1〜3のいずれか1項に記載の半導体装置において、
    2つの前記蓄積層が形成されている状態で、前記第1ゲート電極に前記ゲート電圧が印加されているときに、前記第4ゲート電極に前記ゲート電圧と同極性の電圧が印加される
    ことを特徴とする半導体装置。
  5. 請求項1〜3のいずれか1項に記載の半導体装置において、
    2つの前記蓄積層が形成されている状態で、前記第1ゲート電極に前記ゲート電圧が印加されているときに、前記第4ゲート電極に前記ゲート電圧と異なる極性の電圧が印加される
    ことを特徴とする半導体装置。
JP2009278421A 2009-12-08 2009-12-08 半導体装置 Active JP5529514B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009278421A JP5529514B2 (ja) 2009-12-08 2009-12-08 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009278421A JP5529514B2 (ja) 2009-12-08 2009-12-08 半導体装置

Publications (2)

Publication Number Publication Date
JP2011124268A JP2011124268A (ja) 2011-06-23
JP5529514B2 true JP5529514B2 (ja) 2014-06-25

Family

ID=44287904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009278421A Active JP5529514B2 (ja) 2009-12-08 2009-12-08 半導体装置

Country Status (1)

Country Link
JP (1) JP5529514B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258858A (zh) * 2013-04-22 2013-08-21 南京邮电大学 一种三材料异质栅结构的石墨烯纳米条带场效应管
KR20190091336A (ko) * 2016-12-24 2019-08-05 선전 로욜 테크놀로지스 컴퍼니 리미티드 박막 트랜지스터 어레이 기판, 저온 폴리 실리콘 박막 트랜지스터 및 저온 폴리 실리콘 박막 트랜지스터의 제조 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196698A (ja) * 1992-12-24 1994-07-15 Sony Corp Soi―mosfetとその製造方法およびアライメントマーク形成方法
JPH06350088A (ja) * 1993-06-11 1994-12-22 Sony Corp 電界効果トランジスタおよびその製造方法
US6262451B1 (en) * 1997-03-13 2001-07-17 Motorola, Inc. Electrode structure for transistors, non-volatile memories and the like

Also Published As

Publication number Publication date
JP2011124268A (ja) 2011-06-23

Similar Documents

Publication Publication Date Title
US6407427B1 (en) SOI wafer device and a method of fabricating the same
JP5325198B2 (ja) 電界効果トランジスタ
JP5424274B2 (ja) 相補型論理ゲート装置
CN102239562B (zh) 制造隧穿晶体管的方法和包括隧穿晶体管的ic
KR102425131B1 (ko) 그래핀 트랜지스터 및 이를 이용한 3진 논리 소자
JPS59193066A (ja) Mos型半導体装置
US7732282B2 (en) Transistor of the I-MOS type comprising two independent gates and method of using such a transistor
US11380766B2 (en) Transistor structure
US9276102B2 (en) Tunnel transistor with high current by bipolar amplification
Lim et al. Polarity control of carrier injection for nanowire feedback field-effect transistors
JP2016004873A (ja) 半導体装置
JP2015159180A (ja) 半導体装置
Kim et al. Vertical-structured electron-hole bilayer tunnel field-effect transistor for extremely low-power operation with high scalability
US10957771B2 (en) Transistor device with a field electrode that includes two layers
JP2008028263A (ja) 半導体装置
KR20140054744A (ko) 튜너블 배리어를 구비한 그래핀 스위칭 소자
WO2012017746A1 (ja) 半導体装置およびその製造方法ならびに不揮発性半導体記憶装置
JP3530521B2 (ja) 半導体装置
Lee et al. Sharp logic switch based on band modulation
JP5529514B2 (ja) 半導体装置
JP4220665B2 (ja) 半導体装置
JP6299658B2 (ja) 絶縁ゲート型スイッチング素子
KR102273935B1 (ko) 음성 트랜스 컨덕턴스 기반의 터널링 트랜지스터
JP2015095568A (ja) 半導体装置
CN113921611A (zh) 一种具有双侧面超结槽栅ldmos器件

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111104

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140417

R150 Certificate of patent or registration of utility model

Ref document number: 5529514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150