WO2024037625A1 - 富锂锰基正极材料及其制备方法和应用 - Google Patents

富锂锰基正极材料及其制备方法和应用 Download PDF

Info

Publication number
WO2024037625A1
WO2024037625A1 PCT/CN2023/113757 CN2023113757W WO2024037625A1 WO 2024037625 A1 WO2024037625 A1 WO 2024037625A1 CN 2023113757 W CN2023113757 W CN 2023113757W WO 2024037625 A1 WO2024037625 A1 WO 2024037625A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
rich manganese
manganese
cathode material
based cathode
Prior art date
Application number
PCT/CN2023/113757
Other languages
English (en)
French (fr)
Inventor
李红磊
陈志宇
吉长印
吕菲
徐宁
Original Assignee
天津巴莫科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津巴莫科技有限责任公司 filed Critical 天津巴莫科技有限责任公司
Publication of WO2024037625A1 publication Critical patent/WO2024037625A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of lithium battery materials, and specifically to a lithium-rich manganese-based cathode material and its preparation method and application.
  • cathode materials are a key factor in achieving high energy density of lithium-ion secondary batteries.
  • cathode materials such as lithium cobalt oxide, spinel lithium manganate, lithium iron phosphate and lithium nickel cobalt manganate ternary materials are difficult to meet the demand for high specific energy of lithium-ion secondary batteries in electric vehicles and other fields. Therefore, there is an urgent need for new cathode materials with low cost, high energy density, and good safety.
  • Lithium-rich manganese-based layered cathode materials have a high specific capacity of more than 250mAh/g and a high operating voltage of 4.8V. They are also low-cost and have attracted widespread attention from researchers. However, it still faces problems such as low first Coulombic efficiency, serious capacity and voltage attenuation, and poor rate performance, which hinders the industrial application of this material in lithium-ion secondary batteries.
  • the low initial Coulombic efficiency and severe voltage attenuation of lithium-rich manganese-based layered cathode materials are mainly due to the irreversible oxygen evolution during the first cycle, which on the one hand causes a large irreversible capacity loss and on the other hand reduces the binding energy of transition metal ions and oxygen. , inducing the migration of transition metal ions and changes in valence state, leading to the occurrence of irreversible phase transitions and voltage attenuation.
  • the present invention provides a lithium-rich manganese-based cathode material that can self-regulate oxygen vacancies and can improve the first Coulombic efficiency while suppressing voltage attenuation during battery cycling, as well as its preparation method and application.
  • the present invention provides a lithium-rich manganese-based cathode material.
  • the surface of the lithium-rich manganese-based cathode material has oxygen vacancies, and its molecular formula is Li 1+a Mn b M c O 2 , wherein Mn includes n-trivalent manganese. and positive tetravalent manganese, and positive trivalent manganese accounts for Mn
  • the overall molar percentage is 20% to 60%
  • M includes one or more of Ni, Co, Al, Mo, Ti and Zr, 0 ⁇ a ⁇ 0.25, b ⁇ 0.5, 0.8 ⁇ a+b+c ⁇ 1.2.
  • the lithium-rich manganese-based cathode material is a layered material and has a stacking fault structure, and the thickness of the stacking fault structure is ⁇ 50 nm.
  • the lithium-rich manganese-based cathode material satisfies at least one of the following properties (1) to (3):
  • Particle size D50 is 3 ⁇ m ⁇ 15 ⁇ m
  • the lithium-rich manganese-based cathode material includes secondary particles, and the secondary particles are formed by agglomeration of primary particles of the lithium-rich manganese-based cathode material.
  • the particle size D50 of the primary particles of the lithium-rich manganese-based cathode material is 50 nm to 500 nm.
  • the present invention also provides a method for preparing the lithium-rich manganese-based cathode material as described above, which includes the following steps:
  • the mixed powder is calcined and cooled.
  • the organic matter includes one or more of sucrose, glucose, chitosan, urea and citric acid.
  • the mass percentage of the organic matter in the mixed powder is 0.5% to 10%.
  • At least one of the following features (1) to (3) is provided:
  • the lithium source includes one or more of LiOH, Li 2 CO 3 , Li 2 SO 4 , LiCl and LiNO 3 ;
  • the manganese source includes one or more of MnO, MnO 2 , Mn 3 O 4 , MnCO 3 and MnSO 4 ;
  • the M source is one or more of oxides, hydroxides, carbonates and sulfates of M-containing metal elements.
  • the M source is selected from nickel oxide, nickel hydroxide, nickel carbonate, nickel sulfate, cobalt oxide, cobalt hydroxide, cobalt carbonate, cobalt sulfate, aluminum oxide, aluminum hydroxide, aluminum carbonate, sulfuric acid
  • the calcination is segmented calcination, and the specific process of the segmented calcination is as follows:
  • the cooling method is air cooling or liquid nitrogen quenching
  • the air inlet rate of the air cooling is 5m 3 /h ⁇ 30m 3 /h.
  • the method used to prepare the mixed powder is as follows:
  • the drying method is spray drying, the liquid inlet rate of the spray drying is 0.5L min -1 ⁇ 5L min -1 , the air inlet temperature is 150°C ⁇ 300°C, and the air outlet temperature is 80°C ⁇ 200°C, carrier gas rate is 20L min -1 ⁇ 200L min -1 .
  • the present invention further provides a cathode, which includes a cathode current collector and a cathode active material layer located on one or both sides of the cathode current collector.
  • the cathode active material in the cathode active material layer is the above-mentioned rich Lithium manganese-based cathode material.
  • the present invention also provides a lithium secondary battery, which includes the above-mentioned positive electrode.
  • the present invention also provides an electrical device, which includes the above-mentioned lithium secondary battery.
  • Figure 1 is an XRD pattern of the lithium-rich manganese-based layered cathode material prepared in Example 1 of the present invention
  • Figure 2 is a TEM image of the lithium-rich manganese-based layered cathode material prepared in Example 1 of the present invention
  • Figure 3 is an XPS image of the Mn element on the surface of the lithium-rich manganese-based layered cathode material prepared in Example 1 and Comparative Example 1;
  • Figure 4 is a TEM image of the lithium-rich manganese-based layered cathode material prepared in Comparative Example 3 of the present invention.
  • Figure 5 is a chart showing the rate performance test results of lithium-ion secondary batteries formed from the lithium-rich manganese-based layered cathode materials in Example 1 and Comparative Examples 1 and 2;
  • Figure 6 is a graph showing the cycle performance test results of the lithium-ion secondary batteries formed from the lithium-rich manganese-based layered cathode materials in Example 1 and Comparative Examples 1 and 2.
  • the first object of the present invention is to provide a lithium-rich manganese-based cathode material, in which the surface of the lithium-rich manganese-based cathode material has oxygen vacancies, and its molecular formula is Li 1+a Mn b M c O 2 , where Mn includes positive three valent manganese and n-tetravalent manganese, and n-trivalent manganese accounts for 20% to 60% of the total molar percentage of Mn.
  • M includes one or more of Ni, Co, Al, Mo, Ti and Zr, 0 ⁇ a ⁇ 0.25 , b ⁇ 0.5, 0.8 ⁇ a+b+c ⁇ 1.2.
  • the lithium-rich manganese-based cathode material provided above introduces oxygen vacancy defects on its surface, and the self-regulation of oxygen vacancies can make the valence state of the manganese element on the surface of the lithium-rich manganese-based cathode material present a mixed state of +3 valence and +4 valence, thus It is beneficial to promote the charge transport and transfer on the surface of lithium-rich manganese-based cathode materials, improve the diffusion and reaction kinetics of lithium ions, and improve the rate performance of lithium-rich manganese-based cathode materials. Further regulating the molar percentage of n-trivalent manganese in the manganese element within a specific range is beneficial to improving the conductivity of lithium-rich manganese-based cathode materials.
  • the molar percentage of n-trivalent manganese can be any value between 20% and 60%, for example, it can also be 25%, 30%, 35%, 40%, 45%, and 50%.
  • the self-regulation of oxygen vacancies can induce the molar percentage of positive trivalent manganese in the material to be within a specific range of 20% to 60%, which is beneficial to improving the conductivity of lithium-rich manganese-based cathode materials, promoting charge transport and transfer on the material surface, and improving The diffusion and reaction kinetics of lithium ions improve the rate performance of lithium-rich manganese-based cathode materials.
  • the lithium-rich manganese-based cathode material is a layered material and has a stacking fault structure, and the thickness of the stacking fault structure is ⁇ 50 nm.
  • the crystal structure of the lithium-rich manganese-based cathode material is a layered structure. Due to the introduction of oxygen vacancies, the system energy of the material is changed, disrupting the atomic layered arrangement and crystal plane stacking structure, forming a layered crystal structure. Crystal defects form stacking fault structures at local locations in the normal layered crystal structure.
  • the lithium-rich manganese-based cathode material satisfies at least one of the following properties (1) to (3):
  • Particle size D50 is 3 ⁇ m ⁇ 15 ⁇ m
  • the lithium-rich manganese-based cathode material particles are formed by agglomeration of primary particles, wherein the particle size D50 of the primary particles in the lithium-rich manganese-based cathode material can be any value between 50 nm and 500 nm. .
  • the second object of the present invention is to provide a method for preparing the lithium-rich manganese-based cathode material as described above, which includes steps S100 to S200:
  • Step S100 Mix a lithium source, a manganese source, an M source and an organic matter to prepare mixed powder, and the organic matter is used to provide a nitrogen source and/or a carbon source.
  • the organic matter includes, but is not limited to, one or more of sucrose, glucose, chitosan, urea, and citric acid.
  • the mass percentage of organic matter in the mixed powder, can be any value between 0.5% and 10%, for example, it can also be 1%, 2%, 3%, 4%, 5%, 6% ,7%,8%,9%.
  • the selection of lithium source is not limited, and any lithium source known in the art can be used, including but not limited to one or more of LiOH, Li 2 CO 3 , Li 2 SO 4 , LiCl and LiNO 3 kind.
  • the selection of the manganese source is not limited.
  • the manganese source can be selected from one or more of MnO, MnO 2 , Mn 3 O 4 , MnCO 3 and MnSO 4 .
  • the M source can be one or more of oxides, hydroxides, carbonates and sulfates of M-containing metal elements.
  • the M source can be nickel oxide, nickel hydroxide, nickel carbonate, nickel sulfate, cobalt oxide, cobalt hydroxide, cobalt carbonate, cobalt sulfate, aluminum oxide, aluminum hydroxide, aluminum carbonate, aluminum sulfate, molybdenum oxide, hydrogen One or more of molybdenum oxide, molybdenum carbonate, molybdenum sulfate, titanium oxide, titanium hydroxide, titanium sulfate, zirconium oxide, zirconium hydroxide, zirconium carbonate and zirconium sulfate.
  • the method used to prepare the mixed powder can be any mixing method known in the art, such as dry mixing or wet mixing.
  • the mixing method can be specifically as follows:
  • the solvent can be any commonly used solvent in the art, for example, it can be an alcoholic solvent and/or water, wherein the alcoholic solvent can be methanol and/or ethanol.
  • the mass ratio of the solvent to the total mass of the lithium source, manganese source, M source and organic matter is (0.5-1.5):1.
  • the drying method is not limited, and is preferably spray drying; more preferably, the liquid inlet rate of spray drying can be 0.5L min -1 ⁇ 5L min -1 , and the air inlet temperature can be 150°C ⁇ 300°C, the air outlet temperature can be 80°C ⁇ 200°C, and the carrier gas rate can be 20L min -1 ⁇ 200L min -1 .
  • Step S200 Calculate and cool the mixed powder obtained in step S100.
  • the calcination is staged calcination, and the specific process of the staged calcination is as follows:
  • the cooling method is air cooling or liquid nitrogen quenching.
  • the air inlet rate of air cooling can be any value between 5m 3 /h and 30m 3 /h, for example, it can also be 10m 3 /h, 12m 3 /h, 15m 3 /h, 20m 3 /h , 25m 3 /h, 28m 3 /h.
  • the preparation method of the above-mentioned lithium-rich manganese-based cathode material can control the local oxygen partial pressure of the raw materials during the calcination process due to the differences in the decomposition temperature of different organic matter and the gas products produced by the decomposition, and by finely regulating the calcination formula, the calcination process can be achieved.
  • the coupling of the temperature field and the mixed atmosphere fluid field introduces oxygen vacancy defects in the structure of lithium-rich manganese-based cathode materials.
  • the third object of the present invention is to further provide a cathode, which includes a cathode current collector and a cathode active material layer located on one or both sides of the cathode current collector.
  • the cathode active material in the cathode active material layer is the above-mentioned lithium-rich manganese-based cathode. Material.
  • a fourth object of the present invention is to provide a lithium ion secondary battery, which includes the above-mentioned positive electrode.
  • a fifth object of the present invention is to provide an electrical device including the above-mentioned lithium secondary battery.
  • step 2) Pump the first mixture prepared in step 1) into the spray drying equipment through a peristaltic pump.
  • the liquid inlet rate is set to 0.8L min -1
  • the spray drying air inlet temperature is set to 250°C
  • the outlet air temperature is set to 120°C.
  • the carrier gas rate is set to 50L min -1
  • the liquid in the first mixture is evaporated, and a powder of uniformly mixed metal ions is obtained;
  • step 2) Place the powder obtained in step 2) in an air atmosphere furnace for calcination.
  • the calcination process is as follows: first, increase the temperature to 450°C for 4 hours at a heating rate of 3°C/min, with the air intake rate being 3m 3 /h. ; Then the temperature rise rate is 3°C/min to 900°C for calcination for 12h, in which the air intake rate is 2m 3 /h. Then, air was continued to be introduced into the air atmosphere furnace for air cooling, with the air intake rate being 10m 3 /h.
  • step 1 The product was then crushed and sieved to obtain an oxygen vacancy self-regulated lithium-rich manganese-based layered cathode material (Li 1.2 Mn 0.6 Ni 0.1 Co 0.1 O 2 ) with a stacking fault thickness of 4 nm.
  • the excess lithium hydroxide in step 1) is 5wt.%, which can make up for the volatilization loss of lithium during high-temperature calcination.
  • the measured XRD pattern of the lithium-rich manganese-based layered cathode material is shown in Figure 1.
  • Figure 1 except for the weak diffraction peaks of the Li 2 MnO 3 structure belonging to the C2/m space point group between 20° and 25°, the other diffraction peaks can correspond to the hexagonal layered structure, and the introduction of oxygen vacancies has not Change the bulk structural characteristics of the lithium-rich manganese-based layered cathode material.
  • the surface of the lithium-rich manganese-based layered cathode material is due to oxygen vacancies.
  • the relative content of +3-valent Mn in the Mn element is higher (about 32.5%). This highly mixed valence state is beneficial to improving the electronic conductivity of lithium-rich manganese-based layered cathode materials.
  • step 2) Pump the first mixture prepared in step 1) into the spray drying equipment through a peristaltic pump.
  • the liquid inlet rate is set to 1L min -1
  • the spray drying air inlet temperature is set to 220°C
  • the outlet air temperature is set to 100°C.
  • the carrier gas rate is set to 150L min -1
  • the liquid in the first mixture is evaporated to obtain a powder with evenly mixed metal ions;
  • step 2) Place the powder obtained in step 2) in an air atmosphere furnace for calcination.
  • the calcination process is as follows: first, increase the temperature to 400°C for 6 hours at a heating rate of 2.5°C/min, with the air intake rate being 6m 3 /h. ; Then, the temperature is raised to 920°C for 10 hours at a heating rate of 2.5°C/min, with the air intake rate being 3m 3 /h. Then, air was continued to be introduced into the air atmosphere furnace for air cooling, with the air intake rate being 15m 3 /h.
  • the product was then crushed and sieved to obtain an oxygen vacancy self-regulated lithium-rich manganese-based layered cathode material (Li 1.1 Mn 0.55 Ni 0.2 Co 0.2 O 2 ) with a stacking fault thickness of 10 nm.
  • the excess lithium carbonate in step 1) is 5wt.%, which can make up for the volatilization loss of lithium during high-temperature calcination.
  • the relative content of +3-valent Mn in the Mn element of the lithium-rich manganese-based layered cathode material was measured to be approximately 36.8%.
  • step 2) Pump the first mixture prepared in step 1) into the spray drying equipment through a peristaltic pump.
  • the liquid inlet rate is set to 0.8L min -1
  • the spray drying air inlet temperature is set to 200°C
  • the outlet air temperature is set to 80°C.
  • the carrier gas rate is set to 80L min -1
  • the liquid in the first mixture is evaporated, and a powder of uniformly mixed metal ions is obtained;
  • step 2) Place the powder obtained in step 2) in an air atmosphere furnace for calcination.
  • the calcination process is as follows: first The temperature rise rate is 4°C/min to 500°C and calcined for 3 hours, in which the air intake rate is 2m 3 /h; then the temperature rise rate is 4°C/min to 940°C and calcined for 10 hours, in which the air intake rate is 3m 3 /h. Then, air was continued to be introduced into the air atmosphere furnace for air cooling, with the air intake rate being 12m 3 /h.
  • step 1 The product was then crushed and sieved to obtain an oxygen vacancy self-regulated lithium-rich manganese-based layered cathode material (Li 1.2 Mn 0.6 Ni 0.2 O 2 ) with a stacking fault thickness of 8 nm.
  • the excess lithium carbonate in step 1) is 5wt.%, which can make up for the volatilization loss of lithium during high-temperature calcination. It is measured that the relative content of +3-valent Mn in the Mn element of the lithium-rich manganese-based layered cathode material is approximately 30.5%.
  • step 2) Pump the first mixture prepared in step 1) into the spray drying equipment through a peristaltic pump.
  • the liquid inlet rate is set to 3L min -1
  • the spray drying air inlet temperature is set to 280°C
  • the air outlet temperature is set to 120°C.
  • the carrier gas rate is set to 180L min -1
  • the liquid in the first mixture is evaporated to obtain a powder with evenly mixed metal ions;
  • step 2) Place the powder obtained in step 2) in an air atmosphere furnace for calcination.
  • the calcination process is as follows: first, increase the temperature to 450°C for 6 hours at a heating rate of 5°C/min, with the air intake rate being 4m 3 /h. ; Then, the temperature is raised to 880°C for calcination at a heating rate of 5°C/min for 16h, in which the air intake rate is 5m 3 /h. Then, air was continued to be introduced into the air atmosphere furnace for air cooling, with the air intake rate being 25m 3 /h.
  • the product was then crushed and sieved to obtain an oxygen vacancy self-regulated lithium-rich manganese-based layered cathode material (Li 1.15 Mn 0.56 Ni 0.24 O 2 ) with a stacking fault thickness of 12 nm.
  • the excess lithium sulfate in step 1) is 5wt.%, which can make up for the volatilization loss of lithium during high-temperature calcination.
  • the relative content of +3-valent Mn in the Mn element of the lithium-rich manganese-based layered cathode material was measured to be approximately 36.2%.
  • step 2) Pump the first mixture prepared in step 1) into the spray drying equipment through a peristaltic pump.
  • the liquid inlet rate is set to 1L min -1
  • the spray drying air inlet temperature is set to 240°C
  • the outlet air temperature is set to 160°C.
  • the carrier gas rate is set to 150L min -1
  • the liquid in the first mixture is evaporated to obtain a powder with evenly mixed metal ions;
  • step 2) Place the powder obtained in step 2) in an air atmosphere furnace for calcination.
  • the calcination process is as follows: first, increase the temperature to 350°C for 8 hours at a heating rate of 2°C/min, with the air intake rate being 4.5m 3 / h; then increase the temperature to 850°C for 20h at a heating rate of 2°C/min, in which the air intake rate is 5m 3 /h. Then, air was continued to be introduced into the air atmosphere furnace for air cooling, with the air intake rate being 20m 3 /h. The product was then crushed and sieved to obtain a stacking fault thickness of 23 nm.
  • Oxygen vacancy self-regulating lithium-rich manganese-based layered cathode material Li 1.2 Mn 0.56 Ni 0.12 Co 0.12 O 2 .
  • the excess lithium chloride in step 1) is 5wt.%, which can make up for the volatilization loss of lithium during high-temperature calcination.
  • the relative content of +3-valent Mn in the Mn element of the lithium-rich manganese-based layered cathode material was measured to be approximately 40.2%.
  • step 2) Pump the first mixture prepared in step 1) into the spray drying equipment through a peristaltic pump.
  • the liquid inlet rate is set to 0.8L min -1
  • the spray drying air inlet temperature is set to 300°C
  • the outlet air temperature is set to 100°C.
  • the carrier gas rate is set to 30L min -1
  • the liquid in the first mixture is evaporated, and a powder of uniformly mixed metal ions is obtained;
  • step 3 Place the powder obtained in step 2) in an air atmosphere furnace for calcination.
  • the calcination process is as follows: first, increase the temperature to 550°C for 4 hours at a heating rate of 3.5°C/min, with the air intake rate being 1.5m 3 / h; then increase the temperature to 900°C for calcination at a heating rate of 3.5°C/min for 14h, in which the air intake rate is 0.5m 3 /h. This is followed by liquid nitrogen quenching.
  • the product was then crushed and sieved to obtain a lithium-rich manganese-based layered cathode material (Li 1.2 Mn 0.5 Co 0.2 Al 0.1 O 2 ) with a stacking fault thickness of 18 nm and self-regulated oxygen vacancies.
  • the excess lithium carbonate in step 1) is 5wt.%, which can make up for the volatilization loss of lithium during high-temperature calcination. It was measured that the relative content of +3-valent Mn in the Mn element of the lithium-rich manganese-based layered cathode material was approximately 30.6%.
  • the preparation method of this comparative example is basically the same as that of Example 1, except that no organic matter is added. Specific steps are as follows:
  • step 2) Pump the first mixture prepared in step 1) into the spray drying equipment through a peristaltic pump.
  • the liquid inlet rate is set to 0.8L min -1
  • the spray drying air inlet temperature is set to 250°C
  • the outlet air temperature is set to 120°C.
  • the carrier gas rate is set to 50L min -1
  • the liquid in the first mixture is evaporated, and a powder of uniformly mixed metal ions is obtained;
  • step 2) Place the powder obtained in step 2) in an air atmosphere furnace for calcination.
  • the calcination process is as follows: first, increase the temperature to 450°C for 4 hours at a heating rate of 3°C/min, with the air intake rate being 3m 3 /h. ; Then the temperature rise rate is 3°C/min to 900°C for calcination for 12h, in which the air intake rate is 2m 3 /h. Then, air was continued to be introduced into the air atmosphere furnace for air cooling, with the air intake rate being 10m 3 /h. The product is then crushed and sieved to obtain a lithium-rich manganese-based layered cathode material (Li 1.2 Mn 0.6 Ni 0.1 Co 0.1 O 2 ).
  • the excess lithium hydroxide in step 1) is 5wt.%, which can make up for the volatilization loss of lithium during high-temperature calcination.
  • O Mn 9.67-1.27 ⁇ E 3s .
  • the ⁇ E 3s of the lithium-rich manganese-based layered cathode material prepared above is 4.50eV, that is, the average valence state of Mn in the lithium-rich manganese-based layered cathode material is +3.96.
  • the lithium-rich manganese-based layered cathode material prepared above Since there are no oxygen vacancies on the surface of the material, the relative content of +3-valent Mn in the Mn element is lower (about 4%), and the electronic conductivity of the lithium-rich manganese-based layered cathode material is low.
  • the preparation method of this comparative example is acid etching to form oxygen vacancies. Specific steps are as follows:
  • step 2) Place the precipitate obtained in step 2) into a muffle furnace and keep it at 500°C for 5 hours to obtain a lithium-rich manganese-based material precursor.
  • step 2) After mixing the metal elements and lithium hydroxide in the lithium-rich manganese-based material precursor at a molar ratio of 1:1.06, grind them evenly and place them in a muffle furnace.
  • the temperature is raised to 800°C at a heating rate of 3°C/min and calcined for 12 hours. After cooling to room temperature, take it out to prepare pre-modified lithium-rich manganese-based material;
  • step 3 Take 50g of the pre-modified lithium-rich manganese-based material prepared in step 3), dissolve it in an oxalic acid solution with a concentration of 0.02mol/L, stir for 30 minutes, then filter and dry it, place it in a muffle furnace, and heat it at 500 Heat treatment at °C for 5 hours to obtain acid-treated modified lithium-rich manganese-based layered cathode material (Li 1.2 Mn 0.6 Ni 0.1 Co 0.1 O 2 ).
  • the preparation method of this comparative example is basically the same as that of Example 1, except that the mass percentage of organic matter is 15%. Specific steps are as follows:
  • step 2) Pump the first mixture prepared in step 1) into the spray drying equipment through a peristaltic pump.
  • the liquid inlet rate is set to 0.8L min -1
  • the spray drying air inlet temperature is set to 250°C
  • the outlet air temperature is set to 120°C.
  • the carrier gas rate is set to 50L min -1
  • the liquid in the first mixture is evaporated, and a powder of uniformly mixed metal ions is obtained;
  • step 2) Place the powder obtained in step 2) in an air atmosphere furnace for calcination.
  • the calcination process is as follows: first, increase the temperature to 450°C for 4 hours at a heating rate of 3°C/min, with the air intake rate being 3m 3 /h. ; Then the temperature rise rate is 3°C/min to 900°C for calcination for 12h, in which the air intake rate is 2m 3 /h. Then continue to introduce air into the air atmosphere furnace Air cooling is used, where the air intake rate is 10m 3 /h. The product is then crushed and sieved to obtain a lithium-rich manganese-based layered cathode material (Li 1.2 Mn 0.6 Ni 0.1 Co 0.1 O 2 ). Among them, the excess lithium hydroxide in step 1) is 5wt.%, which can make up for the volatilization loss of lithium during high-temperature calcination.
  • the measured TEM image of the lithium-rich manganese-based layered cathode material is shown in Figure 4.
  • the surface of the lithium-rich manganese-based layered cathode material prepared above has a spinel structure and an electrochemically inert rock salt structure.
  • the relative content of +3-valent Mn in the Mn element is too high (about 60.4%), and the lithium-rich Lithium ion diffusion is inhibited in manganese-based layered cathode materials.
  • the lithium-rich manganese-based layered cathode materials prepared in Examples 1 to 6 and Comparative Examples 1 to 3 were prepared according to the following method to form button-type lithium ion secondary batteries to test the electrochemical properties of the lithium-rich manganese-based layered cathode materials.
  • the specific preparation steps are as follows:
  • the loading amount of the lithium-rich manganese-based layered cathode material loaded on the circular pole piece is controlled at ⁇ 10 mg cm -2 .
  • the half-cells were assembled in an argon atmosphere glove box with a water pressure ⁇ 0.1 ppm and an oxygen partial pressure ⁇ 0.1 ppm.
  • metallic lithium as the counter electrode
  • 1M LiPF 6 LiPF 6 (FEC/EC/DMC, volume ratio 1:1:1) solution
  • the constant current charge and discharge mode was used to perform charge and discharge tests at room temperature, with a voltage range of 2.0V to 4.65V and a current density of 50mA/g (0.2C rate) for 100 charge and discharge cycles.
  • the lithium ion diffusion coefficients of different lithium-rich manganese-based layered cathode materials were compared through electrochemical impedance EIS testing.
  • the frequency range of the test was 100kHz ⁇ 0.01Hz.
  • the battery rate performance test current densities are 50mA/g, 500mA/g, 1250mA/g and 2500mA/g, corresponding to 0.2C, 2C, 5C and 10C respectively.
  • the lithium-rich manganese-based layered cathode material provided by the present invention can accurately control the lithium-rich manganese-based layered cathode material during the calcining process by adding organic matter and regulating its content during the preparation process, and further optimizing the calcination and cooling process.
  • the local oxygen partial pressure in the raw material induces the formation of oxygen vacancies on the surface of the lithium-rich manganese-based layered cathode material, and self-regulation of the number and stacking fault thickness of the oxygen vacancies can be achieved.
  • the oxygen vacancy self-regulated lithium-rich manganese-based layered cathode material exhibits a higher first-cycle Coulombic efficiency, and the capacity retention rate after 100 cycles is still significantly higher than that of the lithium-rich manganese-based layered cathode material prepared in the comparative example, and Significantly suppresses voltage attenuation conditions.
  • rate performance tests at different current densities of 0.2C to 8C show that the discharge capacity retention rate (8C discharge capacity/0.2C discharge capacity) of the lithium-rich manganese-based layered cathode material provided by the present invention at a high rate of 8C is 80%. The above is much higher than that of the lithium-rich manganese-based layered cathode material prepared in the comparative example. It can be seen from the lithium ion diffusion coefficient obtained from the EIS test that the lithium-rich manganese-based layered cathode material provided by the present invention has a higher lithium ion diffusion coefficient and exhibits stronger reaction kinetics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种富锂锰基正极材料及其制备方法和应用。富锂锰基正极材料的表面具有氧空位,其分子式为Li 1+aMn bM cO 2,其中,Mn包括正三价锰和正四价锰,且正三价锰占Mn整体的摩尔百分比为20%~60%,M包括Ni、Co、Al、Mo、Ti和Zr中的一种或多种, 0<a≤0.25,b≥0.5,0.8≤a+b+c≤1.2。

Description

富锂锰基正极材料及其制备方法和应用
相关申请
本申请要求2022年8月19日申请的,申请号为202210998592.5,名称为“富锂锰基正极材料及其制备方法和应用”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本发明涉及锂电池材料领域,具体而言,涉及一种富锂锰基正极材料及其制备方法和应用。
背景技术
近年来,新能源汽车的快速发展对锂离子二次电池的能量密度提出了更高的要求,正极材料是实现锂离子二次电池高能量密度的关键因素。然而当前较为成熟的正极材料如钴酸锂、尖晶石锰酸锂、磷酸铁锂和镍钴锰酸锂三元材料等难以满足电动汽车等领域对锂离子二次电池高比能量的需求。因此,迫切需要成本低、能量密度高、安全性好的新型正极材料。
富锂锰基层状正极材料具有超过250mAh/g的高比容量和4.8V的高工作电压,并且成本低廉,受到研究者的广泛关注。但是其仍然面临着首次库仑效率低、容量和电压衰减严重以及倍率性能差等问题,从而阻碍了该材料在锂离子二次电池中的产业化应用。富锂锰基层状正极材料首次库仑效率低和电压的严重衰减主要是由于首次循环中不可逆的氧析出,一方面造成较大的不可逆容量损失,另一方面降低了过渡金属离子与氧的结合能,诱发过渡金属离子的迁移以及价态变化,导致不可逆相转变的发生和电压的衰减。
目前,用于改善富锂锰基层状正极材料电化学性能的方法在提高富锂锰基层状正极材料首次库伦效率和倍率性能的同时,常常会导致其结构的破坏,易造成锂的析出和损失。
发明内容
基于此,本发明提供了一种氧空位可以自调控,且能够在提高首次库伦效率的同时抑制电池循环过程中电压衰减的富锂锰基正极材料及其制备方法和应用。
本发明一方面,提供一种富锂锰基正极材料,所述富锂锰基正极材料的表面具有氧空位,其分子式为Li1+aMnbMcO2,其中,Mn包括正三价锰和正四价锰,且正三价锰占Mn 整体的摩尔百分比为20%~60%,M包括Ni、Co、Al、Mo、Ti和Zr中的一种或多种,0<a≤0.25,b≥0.5,0.8≤a+b+c≤1.2。
在其中一些实施例中,所述富锂锰基正极材料为层状材料且具有层错结构,所述层错结构的厚度≤50nm。
在其中一些实施例中,所述富锂锰基正极材料满足以下性能(1)至(3)中的至少一种:
(1)粒径D50为3μm~15μm;
(2)比表面积为0.3m2/g~6.0m2/g;
(3)振实密度为1.5g/cm3~2.8g/cm3
在其中一些实施例中,所述的富锂锰基正极材料包括二次颗粒,所述二次颗粒由富锂锰基正极材料一次颗粒团聚形成。
在其中一些实施例中,所述富锂锰基正极材料一次颗粒的粒径D50为50nm~500nm。
本发明一方面,还提供一种如上述所述的富锂锰基正极材料的制备方法,其包括以下步骤:
将锂源、锰源、M源和有机物混合,制备混合粉末,所述有机物用于提供氮源和/或碳源;及
将所述混合粉末进行煅烧、冷却。
在其中一些实施例中,所述有机物包括蔗糖、葡萄糖、壳聚糖、尿素及柠檬酸中的一种或多种。
在其中一些实施例中,在所述混合粉末中,所述有机物的质量百分比为0.5%~10%。
在其中一些实施例中,具有如下特征(1)至(3)中的至少一种:
(1)所述锂源包括LiOH、Li2CO3、Li2SO4、LiCl及LiNO3中的一种或多种;
(2)所述锰源包括MnO、MnO2、Mn3O4、MnCO3及MnSO4中的一种或多种;
(3)所述M源为含M金属元素的氧化物、氢氧化物、碳酸盐及硫酸盐中的一种或多种。
在其中一些实施例中,所述M源选自氧化镍、氢氧化镍、碳酸镍、硫酸镍、氧化钴、氢氧化钴、碳酸钴、硫酸钴、氧化铝、氢氧化铝、碳酸铝、硫酸铝、氧化钼、氢氧化钼、碳酸钼、硫酸钼、氧化钛、氢氧化钛、硫酸钛、氧化锆、氢氧化锆、碳酸锆及硫酸锆中的一种或多种。
在其中一些实施例中,所述煅烧为分段煅烧,所述分段煅烧的具体工艺如下:
在含氧气氛下,先控制进气速率为0.5m3/h~5m3/h,以升温速率为1.0℃/min~ 5.0℃/min升温至300℃~600℃,保温2h~8h;再控制进气速率为0.5m3/h~5m3/h,以升温速率为1.0℃/min~5.0℃/min升温至800℃~1000℃,保温10h~20h。
在其中一些实施例中,所述冷却方式为风冷或液氮淬冷;
可选地,所述风冷的进风速率为5m3/h~30m3/h。
在其中一些实施例中,制备所述混合粉末所采用的方法具体如下:
将所述锂源、所述锰源、所述M源和所述有机物溶于溶剂中,干燥;
可选地,所述干燥的方式为喷雾干燥,所述喷雾干燥的入液速率为0.5L min-1~5L min-1,进风温度为150℃~300℃,出风温度为80℃~200℃,载气速率为20L min-1~200L min-1
本发明另一方面,进一步提供一种正极,其包括正极集流体及位于所述正极集流体一面或两面的正极活性材料层,所述正极活性材料层中的正极活性材料为上述所述的富锂锰基正极材料。
本发明再一方面,还提供一种锂二次电池,其包括上述所述的正极。
本发明另一方面,还提供一种用电装置,其包括上述所述的锂二次电池。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1中制得的富锂锰基层状正极材料的XRD图;
图2为本发明实施例1中制得的富锂锰基层状正极材料的TEM图;
图3为实施例1与对比例1制得的富锂锰基层状正极材料表面的Mn元素XPS图;
图4为本发明对比例3中制得的富锂锰基层状正极材料的TEM图;
图5为实施例1与对比例1和2中富锂锰基层状正极材料所形成的锂离子二次电池的倍率性能测试结果图;
图6为实施例1与对比例1和2中富锂锰基层状正极材料所形成的锂离子二次电池的循环性能测试结果图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本 申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明第一目的,提供了一种富锂锰基正极材料,其中,富锂锰基正极材料的表面具有氧空位,其分子式为Li1+aMnbMcO2,其中,Mn包括正三价锰和正四价锰,且正三价锰占Mn整体的摩尔百分比为20%~60%,M包括Ni、Co、Al、Mo、Ti和Zr中的一种或多种,0<a≤0.25,b≥0.5,0.8≤a+b+c≤1.2。
通过研究发现,传统的富锂锰基正极材料在首次充电过程中,部分氧离子在晶格中脱出,产生不可逆容量,使得富锂锰基正极材料的首次库伦效率偏低,并且氧离子脱出后留下氧空穴会导致过渡金属离子发生迁移,造成富锂锰基正极材料的不可逆相转变和电压衰减。上述提供的富锂锰基正极材料在其表面引入氧空位缺陷,而且氧空位的自调控可以使得富锂锰基正极材料表面的锰元素价态呈现+3价和+4价混合的状态,从而有利于促进富锂锰基正极材料表面的电荷输运与转移,提升了锂离子的扩散与反应动力学,提高了富锂锰基正极材料的倍率性能。进一步调控锰元素中正三价锰的摩尔百分比在特定范围内,有利于富锂锰基正极材料电导率的提升。
在一些实施方式中,正三价锰的摩尔百分比可以为20%~60%之间的任意值,例如,还可以为25%、30%、35%、40%、45%、50%。氧空位的自调控可以诱导材料中正三价锰摩尔百分比含量在20%~60%特定范围内,有利于富锂锰基正极材料电导率的提升,促进材料表面的电荷输运与转移,提升了锂离子的扩散与反应动力学,提高了富锂锰基正极材料的倍率性能。
在一些实施方式中,富锂锰基正极材料为层状材料且具有层错结构,所述层错结构的厚度≤50nm。具体的,富锂锰基正极材料的晶体结构为层状结构,由于氧空位的引入改变了材料的体系能量,打乱了原子层状排布与晶面堆叠结构,在层状晶体结构中形成晶体缺陷,从而正常的层状晶体结构的局部位置形成层错结构。
在一些实施方式中,富锂锰基正极材料满足以下性能(1)至(3)中的至少一种:
(1)粒径D50为3μm~15μm;
(2)比表面积为0.3m2/g~6.0m2/g;
(3)振实密度为1.5g/cm3~2.8g/cm3
在一些实施方式中,富锂锰基正极材料颗粒(即二次颗粒)由一次颗粒团聚形成,其中,富锂锰基正极材料中一次颗粒的粒径D50可以为50nm~500nm之间的任意值。
本发明第二目的,还提供一种如上述所述的富锂锰基正极材料的制备方法,其包括步骤S100~S200:
步骤S100:将锂源、锰源、M源和有机物混合,制备混合粉末,所述有机物用于提供氮源和/或碳源。
在一些实施方式中,有机物包括但不限于蔗糖、葡萄糖、壳聚糖、尿素及柠檬酸中的一种或多种。
在一些实施方式中,在混合粉末中,有机物的质量百分比可以为0.5%~10%之间的任意值,例如,还可以为1%、2%、3%、4%、5%、6%、7%、8%、9%。
在一些实施方式中,锂源的选择不做限制,可以选用本领域公知的任意锂源,包括但不限于LiOH、Li2CO3、Li2SO4、LiCl及LiNO3中的一种或多种。
可以理解,锰源的选择也不做限制,例如,锰源可以选自MnO、MnO2、Mn3O4、MnCO3及MnSO4中的一种或多种。
同样的,本领域技术人员有能力根据需要对M源进行选择,例如可以为含M金属元素的氧化物、氢氧化物、碳酸盐及硫酸盐中的一种或多种。具体地,M源可以为氧化镍、氢氧化镍、碳酸镍、硫酸镍、氧化钴、氢氧化钴、碳酸钴、硫酸钴、氧化铝、氢氧化铝、碳酸铝、硫酸铝、氧化钼、氢氧化钼、碳酸钼、硫酸钼、氧化钛、氢氧化钛、硫酸钛、氧化锆、氢氧化锆、碳酸锆及硫酸锆中的一种或多种。
在一些实施方式中,制备混合粉末所采用的方法可以为本领域公知的任意混合方法,例如干混或湿法混合。在本发明中,混合方法可以具体如下:
将锂源、锰源、M源和有机物溶于溶剂中,干燥。
可理解地,所述溶剂可以为本领域任意常用的溶剂,例如可以为醇类溶剂和/或水,其中醇类溶剂可以为甲醇和/或乙醇。
进一步地,溶剂与锂源、锰源、M源和有机物的总质量的质量比为(0.5~1.5):1。
在一些实施方式中,干燥的方式也不做限制,优选为喷雾干燥;更优选地,喷雾干燥的入液速率可以为0.5L min-1~5L min-1、进风温度可以为150℃~300℃、出风温度可以为80℃~200℃、载气速率可以为20L min-1~200L min-1
步骤S200:将步骤S100中制得的混合粉末进行煅烧、冷却。
在其中一些实施例中,煅烧为分段煅烧,所述分段煅烧的具体工艺如下:
在含氧气氛下,先控制进气速率为0.5m3/h~5m3/h,以升温速率为1.0℃/min~ 5.0℃/min升温至300℃~600℃,保温2h~8h;再控制进气速率为0.5m3/h~5m3/h,以升温速率为1.0℃/min~5.0℃/min升温至800℃~1000℃,保温10h~20h。
在其中一些实施例中,冷却方式为风冷或液氮淬冷。通过选用上述冷却方式可以实现快速冷却,从而能够确保形成较好的氧空位。
优选地,风冷的进风速率可以为5m3/h~30m3/h之间的任意值,例如,还可以为10m3/h、12m3/h、15m3/h、20m3/h、25m3/h、28m3/h。
上述富锂锰基正极材料的制备方法,由于不同有机物的分解温度和分解所产生的气体产物的差异,可以控制煅烧过程中原材料的局部氧分压,并通过精细调控煅烧制式,实现煅烧过程中温度场与混合气氛流体场的耦合,在富锂锰基正极材料结构中引入氧空位缺陷。进一步优化煅烧后冷却工艺,诱导空位缺陷在表面的自限域扩散,实现富锂锰基正极材料中氧空位的自调控(氧空位的数量和层错厚度等),从而改善富锂锰基正极材料表面和界面稳定性,提高了首次库伦效率并抑制了电池循环过程中电压的衰减。
本发明第三目的,进一步提供一种正极,其包括正极集流体及位于正极集流体一面或两面的正极活性材料层,正极活性材料层中的正极活性材料为上述所述的富锂锰基正极材料。
本发明第四目的,还提供一种锂离子二次电池,其包括上述所述的正极。
本发明第五目的,还提供一种用电装置,其包括上述所述的锂二次电池。
以下结合具体实施例和对比例对本发明作进一步详细的说明。
实施例1
1)称取530g氢氧化锂(LiOH·H2O)、458g四氧化三锰(Mn3O4)、92g氢氧化镍(Ni(OH)2)、93g氢氧化钴(Co(OH)2)、59g葡萄糖、3.2g三氧化二铝(Al2O3)和2.8g二氧化锆(ZrO2)加入至1000mL去离子水中,搅拌混合均匀,得到第一混合物;
2)将步骤1)中制得的第一混合物通过蠕动泵泵入喷雾干燥设备,入液速率设置为0.8L min-1,喷雾干燥进风温度设置为250℃,出风温度设置为120℃,载气速率设置为50L min-1,蒸发第一混合物中的液体,得到金属离子均匀混合的粉末;
3)将步骤2)中制得的粉末放置于空气气氛炉中进行煅烧,煅烧的工艺如下:先以3℃/min的升温速率升至450℃煅烧4h,其中进气速率为3m3/h;然后以3℃/min的升温速率升至900℃煅烧12h,其中进气速率为2m3/h。随后在空气气氛炉内继续通入空气进行风冷,其中进气速率为10m3/h。然后将产物进行粉碎、过筛,得到层错厚度为4nm的氧空位自调控富锂锰基层状正极材料(Li1.2Mn0.6Ni0.1Co0.1O2)。其中,步骤1)中氢氧化锂过量5wt.%,可以弥补高温煅烧时锂的挥发损失。
测得富锂锰基层状正极材料的XRD图如图1所示。由图1可知,除了20°~25°之间属于C2/m空间点群的Li2MnO3结构较弱的衍射峰以外,其余衍射峰可对应于六方层状结构,且氧空位的引入未改变富锂锰基层状正极材料的体相结构特征,此外,I(003)/I(104)>1.2,说明Li+/Ni2+阳离子混排程度较低。由图2可知,富锂锰基层状正极材料表面存在氧空位缺陷引入的局部结构层错,且层错厚度约4nm。由图3可知,由于Mn元素的价态与Mn 3s双峰劈裂能之间存在线性关系,即OMn=9.67-1.27ΔE3s。其中上述制得的富锂锰基层状正极材料的ΔE3s为4.73eV,即富锂锰基层状正极材料中Mn平均价态为+3.66,由此可知富锂锰基层状正极材料表面由于氧空位的产生,Mn元素中+3价Mn相对含量更高(约为32.5%),这种高度混合价态有利于提升富锂锰基层状正极材料的电子电导率。
实施例2
1)称取466g碳酸锂(Li2CO3)、632g碳酸锰(MnCO3)、184g氢氧化镍(Ni(OH)2)、310g硫酸钴(CoSO4)、48g蔗糖、2.2g三氧化二铝(Al2O3)、4.5g三氧化钼(MoO3)和2.5g二氧化钛(TiO2)加入至1300mL乙醇中,搅拌混合均匀,得到第一混合物;
2)将步骤1)中制得的第一混合物通过蠕动泵泵入喷雾干燥设备,入液速率设置为1L min-1,喷雾干燥进风温度设置为220℃,出风温度设置为100℃,载气速率设置为150L min-1,蒸发第一混合物中的液体,得到金属离子均匀混合的粉末;
3)将步骤2)中制得的粉末放置于空气气氛炉中进行煅烧,煅烧的工艺如下:先以2.5℃/min的升温速率升至400℃煅烧6h,其中进气速率为6m3/h;然后以2.5℃/min的升温速率升至920℃煅烧10h,其中进气速率为3m3/h。随后在空气气氛炉内继续通入空气进行风冷,其中进气速率为15m3/h。然后将产物进行粉碎、过筛,得到层错厚度为10nm的氧空位自调控富锂锰基层状正极材料(Li1.1Mn0.55Ni0.2Co0.2O2)。其中,步骤1)中碳酸锂过量5wt.%,可以弥补高温煅烧时锂的挥发损失。测得富锂锰基层状正极材料Mn元素中+3价Mn相对含量约为36.8%。
实施例3
1)称取466g碳酸锂(Li2CO3)、522g二氧化锰(MnO2)、308g硫酸镍(NiSO4)、26g壳聚糖、5.0g三氧化钼(MoO3)和3.0g二氧化锆(ZrO2)加入至1350mL乙醇中,搅拌混合均匀,得到第一混合物;
2)将步骤1)中制得的第一混合物通过蠕动泵泵入喷雾干燥设备,入液速率设置为0.8L min-1,喷雾干燥进风温度设置为200℃,出风温度设置为80℃,载气速率设置为80L min-1,蒸发第一混合物中的液体,得到金属离子均匀混合的粉末;
3)将步骤2)中制得的粉末放置于空气气氛炉中进行煅烧,煅烧的工艺如下:先以 4℃/min的升温速率升至500℃煅烧3h,其中进气速率为2m3/h;然后以4℃/min的升温速率升至940℃煅烧10h,其中进气速率为3m3/h。随后在空气气氛炉内继续通入空气进行风冷,其中进气速率为12m3/h。然后将产物进行粉碎、过筛,得到层错厚度为8nm的氧空位自调控富锂锰基层状正极材料(Li1.2Mn0.6Ni0.2O2)。其中,步骤1)中碳酸锂过量5wt.%,可以弥补高温煅烧时锂的挥发损失。测得富锂锰基层状正极材料Mn元素中+3价Mn相对含量约为30.5%。
实施例4
1)称取664g硫酸锂(Li2SO4)、845g硫酸锰(MnSO4)、177g氧化镍(NiO)、169g葡萄糖、2.4g二氧化锆(ZrO2)和3.6g二氧化钛(TiO2)加入至2250mL去离子水中,搅拌混合均匀,得到第一混合物;
2)将步骤1)中制得的第一混合物通过蠕动泵泵入喷雾干燥设备,入液速率设置为3L min-1,喷雾干燥进风温度设置为280℃,出风温度设置为120℃,载气速率设置为180L min-1,蒸发第一混合物中的液体,得到金属离子均匀混合的粉末;
3)将步骤2)中制得的粉末放置于空气气氛炉中进行煅烧,煅烧的工艺如下:先以5℃/min的升温速率升至450℃煅烧6h,其中进气速率为4m3/h;然后以5℃/min的升温速率升至880℃煅烧16h,其中进气速率为5m3/h。随后在空气气氛炉内继续通入空气进行风冷,其中进气速率为25m3/h。然后将产物进行粉碎、过筛,得到层错厚度为12nm的氧空位自调控富锂锰基层状正极材料(Li1.15Mn0.56Ni0.24O2)。其中,步骤1)中硫酸锂过量5wt.%,可以弥补高温煅烧时锂的挥发损失。测得富锂锰基层状正极材料Mn元素中+3价Mn相对含量约为36.2%。
实施例5
1)称取529g氯化锂(LiCl)、397g氧化亚锰(MnO)、110g氢氧化镍(Ni(OH)2)、110g羟基氧化钴(CoOOH)、46g柠檬酸、1.2g氢氧化铝(Al(OH)3)和4.0g二氧化锆(ZrO2)加入至1400mL甲醇中,搅拌混合均匀,得到第一混合物;
2)将步骤1)中制得的第一混合物通过蠕动泵泵入喷雾干燥设备,入液速率设置为1L min-1,喷雾干燥进风温度设置为240℃,出风温度设置为160℃,载气速率设置为150L min-1,蒸发第一混合物中的液体,得到金属离子均匀混合的粉末;
3)将步骤2)中制得的粉末放置于空气气氛炉中进行煅烧,煅烧的工艺如下:先以2℃/min的升温速率升至350℃煅烧8h,其中进气速率为4.5m3/h;然后以2℃/min的升温速率升至850℃煅烧20h,其中进气速率为5m3/h。随后在空气气氛炉内继续通入空气进行风冷,其中进气速率为20m3/h。然后将产物进行粉碎、过筛,得到层错厚度为23nm 的氧空位自调控富锂锰基层状正极材料(Li1.2Mn0.56Ni0.12Co0.12O2)。其中,步骤1)中氯化锂过量5wt.%,可以弥补高温煅烧时锂的挥发损失。测得富锂锰基层状正极材料Mn元素中+3价Mn相对含量约为40.2%。
实施例6
1)称取466g碳酸锂(Li2CO3)、435g二氧化锰(MnO2)、186g氢氧化钴(Co(OH)2)、11g尿素、51g三氧化二铝(Al2O3)、4.5g三氧化钼(MoO3)和2.4g二氧化钛(TiO2)加入至1450mL甲醇中,搅拌混合均匀,得到第一混合物;
2)将步骤1)中制得的第一混合物通过蠕动泵泵入喷雾干燥设备,入液速率设置为0.8L min-1,喷雾干燥进风温度设置为300℃,出风温度设置为100℃,载气速率设置为30L min-1,蒸发第一混合物中的液体,得到金属离子均匀混合的粉末;
3)将步骤2)中制得的粉末放置于空气气氛炉中进行煅烧,煅烧的工艺如下:先以3.5℃/min的升温速率升至550℃煅烧4h,其中进气速率为1.5m3/h;然后以3.5℃/min的升温速率升至900℃煅烧14h,其中进气速率为0.5m3/h。随后进行液氮淬冷。然后将产物进行粉碎、过筛,得到层错厚度为18nm的氧空位自调控的富锂锰基层状正极材料(Li1.2Mn0.5Co0.2Al0.1O2)。其中,步骤1)中碳酸锂过量5wt.%,可以弥补高温煅烧时锂的挥发损失。测得富锂锰基层状正极材料Mn元素中+3价Mn相对含量约为30.6%。
对比例1
本对比例与实施例1的制备方法基本相同,不同之处在于:未添加有机物。具体步骤如下:
1)称取530g氢氧化锂(LiOH·H2O)、458g四氧化三锰(Mn3O4)、92g氢氧化镍(Ni(OH)2)、93g氢氧化钴(Co(OH)2)、3.2g三氧化二铝(Al2O3)和2.8g二氧化锆(ZrO2)加入至1000mL去离子水中,搅拌混合均匀,得到第一混合物;
2)将步骤1)中制得的第一混合物通过蠕动泵泵入喷雾干燥设备,入液速率设置为0.8L min-1,喷雾干燥进风温度设置为250℃,出风温度设置为120℃,载气速率设置为50L min-1,蒸发第一混合物中的液体,得到金属离子均匀混合的粉末;
3)将步骤2)中制得的粉末放置于空气气氛炉中进行煅烧,煅烧的工艺如下:先以3℃/min的升温速率升至450℃煅烧4h,其中进气速率为3m3/h;然后以3℃/min的升温速率升至900℃煅烧12h,其中进气速率为2m3/h。随后在空气气氛炉内继续通入空气进行风冷,其中进气速率为10m3/h。然后将产物进行粉碎、过筛,得到富锂锰基层状正极材料(Li1.2Mn0.6Ni0.1Co0.1O2)。其中,步骤1)中氢氧化锂过量5wt.%,可以弥补高温煅烧时锂的挥发损失。由图3可知,由于Mn元素的价态与Mn 3s双峰劈裂能之间存在线性关系, 即OMn=9.67-1.27ΔE3s。其中上述制得的富锂锰基层状正极材料的ΔE3s为4.50eV,即富锂锰基层状正极材料中Mn平均价态为+3.96,由此可知,上述制得的富锂锰基层状正极材料表面由于不存在氧空位,Mn元素中+3价Mn相对含量更低(约为4%),富锂锰基层状正极材料的电子电导率较低。
对比例2
本对比例的制备方法为酸刻蚀形成氧空位。具体步骤如下:
1)按照Mn:Ni:Co的摩尔比为6:1:1,分别取245.2g四水合乙酸锰、41.6g四水合乙酸钴和41.6g四水合乙酸镍溶于4L乙二醇溶液中,得到摩尔浓度为2mol/L的第一金属盐溶液;
2)将350g碳酸氢铵溶于2.5L水和聚乙二醇400(体积比1:1)的混合溶液中,得到第二溶液;在磁力搅拌下,将第二溶液通过蠕动泵泵入步骤1)中制得的第一金属盐溶液中,然后置于180℃的高压反应釜中保温10h;随后冷却、离心,制得沉淀物;
3)将步骤2)中制得的沉淀物置于马弗炉中,并在500℃下保温5h,制得富锂锰基材料前驱体。按照富锂锰基材料前驱体中的金属元素与氢氧化锂摩尔比为1:1.06混合后,研磨均匀并置于马弗炉中,以3℃/min的升温速率升温至800℃煅烧12h,冷却至室温后取出,制得预改性富锂锰基材料;
4)取50g步骤3)中制得的预改性富锂锰基材料溶于浓度为0.02mol/L的草酸溶液中搅拌30min,随后进行抽滤烘干,置于马弗炉内,于500℃热处理5h,得到酸处理改性的富锂锰基层状正极材料(Li1.2Mn0.6Ni0.1Co0.1O2)。
对比例3
本对比例与实施例1的制备方法基本相同,不同之处在于:有机物的质量百分比为15%。具体步骤如下:
1)称取530g氢氧化锂(LiOH·H2O)、458g四氧化三锰(Mn3O4)、92g氢氧化镍(Ni(OH)2)、93g氢氧化钴(Co(OH)2)、177g葡萄糖、3.2g三氧化二铝(Al2O3)和2.8g二氧化锆(ZrO2)加入至1000mL去离子水中,搅拌混合均匀,得到第一混合物;
2)将步骤1)中制得的第一混合物通过蠕动泵泵入喷雾干燥设备,入液速率设置为0.8L min-1,喷雾干燥进风温度设置为250℃,出风温度设置为120℃,载气速率设置为50L min-1,蒸发第一混合物中的液体,得到金属离子均匀混合的粉末;
3)将步骤2)中制得的粉末放置于空气气氛炉中进行煅烧,煅烧的工艺如下:先以3℃/min的升温速率升至450℃煅烧4h,其中进气速率为3m3/h;然后以3℃/min的升温速率升至900℃煅烧12h,其中进气速率为2m3/h。随后在空气气氛炉内继续通入空气进 行风冷,其中进气速率为10m3/h。然后将产物进行粉碎、过筛,得到富锂锰基层状正极材料(Li1.2Mn0.6Ni0.1Co0.1O2)。其中,步骤1)中氢氧化锂过量5wt.%,可以弥补高温煅烧时锂的挥发损失。
测得富锂锰基层状正极材料的TEM图如图4所示。由图4可知,上述制得的富锂锰基层状正极材料表面出现尖晶石结构以及电化学惰性的岩盐结构,Mn元素中+3价Mn相对含量过高(约为60.4%),富锂锰基层状正极材料的锂离子扩散受到抑制。
将实施例1~6及对比例1~3中制得的富锂锰基层状正极材料按照如下方法制备形成扣式锂离子二次电池,以测试富锂锰基层状正极材料的电化学性能。具体制备步骤如下:
分别取实施例1~6及对比例1~3中制得的富锂锰基层状正极材料粉末与乙炔黑、聚偏氟乙烯混合(质量比为90:6:4),加入适量的N-甲基吡咯烷酮作为分散剂,研磨成浆料;随后将浆料均匀涂覆在铝箔上,在120℃下真空干燥10h后,用对辊机将干燥好的极片进行辊压,使用切片机对铝箔进行裁剪,裁成直径为1.3cm的圆形极片。其中,圆形极片上负载的富锂锰基层状正极材料的负载量控制在~10mg cm-2。在氩气气氛手套箱中组装半电池,其中水分压≤0.1ppm,氧分压≤0.1ppm。以金属锂为对电极,以1M LiPF6(FEC/EC/DMC,体积比为1:1:1)溶液为电解液,组装规格为CR2032型扣式锂离子二次电池。随后使用恒流充放电模式在室温条件下进行充放电测试,电压范围为2.0V~4.65V,电流密度为50mA/g(0.2C倍率)进行充放电循环100圈。通过电化学阻抗EIS测试对比不同富锂锰基层状正极材料的锂离子扩散系数,测试的频率范围为100kHz~0.01Hz。电池倍率性能测试电流密度分别为50mA/g、500mA/g、1250mA/g和2500mA/g,分别对应0.2C、2C、5C和10C。
其中,采用实施例1和对比例1~2中制得的富锂锰基层状正极材料形成的CR2032型扣式锂离子二次电池的倍率性能测试结果如图5所示。
采用实施例1和对比例1~2中制得的富锂锰基层状正极材料形成的CR2032型扣式锂离子二次电池的循环性能测试结果如图6所示。
测得上述CR2032型扣式锂离子二次电池的首周充电比容量、首周放电比容量、首周库伦效率、100周后容量保持率、放电中压衰减以及锂离子扩散系数如表1所示:
表1

测得上述CR2032型扣式锂离子二次电池的倍率性能如表2所示:
表2
由上述测试结果可知,本发明提供的富锂锰基层状正极材料,通过在制备过程中加入有机物并调控其含量,进一步优化煅烧和冷却工艺,可以精准控制煅烧过程中富锂锰基层状正极材料的原材料中的局部氧分压,诱导富锂锰基层状正极材料表面形成氧空位,且可以实现氧空位在数量及层错厚度上的自调控。从而使得氧空位自调控的富锂锰基层状正极材料表现出更高的首圈库伦效率,且循环100周后容量保持率仍明显高于对比例制得的富锂锰基层状正极材料,并且显著抑制了电压衰减状况。此外,0.2C~8C不同电流密度下的倍率性能测试显示,本发明提供的富锂锰基层状正极材料在8C高倍率下放电容量保持率(8C放电容量/0.2C放电容量)均在80%以上,远高于对比例制得的富锂锰基层状正极材料。从EIS测试得到的锂离子扩散系数可以看出本发明提供的富锂锰基层状正极材料具有更高的锂离子扩散系数,表现出更强的反应动力学。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说, 在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种富锂锰基正极材料,其特征在于,所述富锂锰基正极材料的表面具有氧空位,其分子式为Li1+aMnbMcO2,其中,Mn包括正三价锰和正四价锰,且正三价锰占Mn整体的摩尔百分比为20%~60%,M包括Ni、Co、Al、Mo、Ti和Zr中的一种或多种,0<a≤0.25,b≥0.5,0.8≤a+b+c≤1.2。
  2. 根据权利要求1所述的富锂锰基正极材料,其特征在于,所述富锂锰基正极材料为层状材料且具有层错结构,所述层错结构的厚度≤50nm。
  3. 根据权利要求1或2所述的富锂锰基正极材料,其特征在于,所述富锂锰基正极材料满足以下性能(1)至(3)中的至少一种:
    (1)粒径D50为3μm~15μm;
    (2)比表面积为0.3m2/g~6.0m2/g;
    (3)振实密度为1.5g/cm3~2.8g/cm3
  4. 根据权利要求1~3任一项所述的富锂锰基正极材料,其特征在于,包括二次颗粒,所述二次颗粒由富锂锰基正极材料一次颗粒团聚形成。
  5. 根据权利要求4所述的富锂锰基正极材料,其特征在于,所述富锂锰基正极材料一次颗粒的粒径D50为50nm~500nm。
  6. 一种如权利要求1~5任一项所述的富锂锰基正极材料的制备方法,其特征在于,包括以下步骤:
    将锂源、锰源、M源和有机物混合,制备混合粉末,所述有机物用于提供氮源和/或碳源;
    将所述混合粉末进行煅烧、冷却。
  7. 根据权利要求6所述的富锂锰基正极材料的制备方法,其特征在于,所述有机物包括蔗糖、葡萄糖、壳聚糖、尿素及柠檬酸中的一种或多种。
  8. 根据权利要求6或7所述的富锂锰基正极材料的制备方法,其特征在于,在所述混合粉末中,所述有机物的质量百分比为0.5%~10%。
  9. 根据权利要求6~8任一项所述的富锂锰基正极材料的制备方法,其特征在于,具有如下特征(1)至(3)中的至少一种:
    (1)所述锂源包括LiOH、Li2CO3、Li2SO4、LiCl及LiNO3中的一种或多种;
    (2)所述锰源包括MnO、MnO2、Mn3O4、MnCO3及MnSO4中的一种或多种;
    (3)所述M源为含M金属元素的氧化物、氢氧化物、碳酸盐及硫酸盐中的一种或多 种。
  10. 根据权利要求6~9任一项所述的富锂锰基正极材料的制备方法,其特征在于,所述M源选自氧化镍、氢氧化镍、碳酸镍、硫酸镍、氧化钴、氢氧化钴、碳酸钴、硫酸钴、氧化铝、氢氧化铝、碳酸铝、硫酸铝、氧化钼、氢氧化钼、碳酸钼、硫酸钼、氧化钛、氢氧化钛、硫酸钛、氧化锆、氢氧化锆、碳酸锆及硫酸锆中的一种或多种。
  11. 根据权利要求6~10任一项所述的富锂锰基正极材料的制备方法,其特征在于,所述煅烧为分段煅烧,所述分段煅烧的具体工艺如下:
    在含氧气氛下,先控制进气速率为0.5m3/h~5m3/h,以升温速率为1.0℃/min~5.0℃/min升温至300℃~600℃,保温2h~8h;再控制进气速率为0.5m3/h~5m3/h,以升温速率为1.0℃/min~5.0℃/min升温至800℃~1000℃,保温10h~20h。
  12. 根据权利要求6~11任一项所述的富锂锰基正极材料的制备方法,其特征在于,所述冷却方式为风冷或液氮淬冷;
    可选地,所述风冷的进风速率为5m3/h~30m3/h。
  13. 根据权利要求6~12任一项所述的富锂锰基正极材料的制备方法,其特征在于,制备所述混合粉末所采用的方法具体如下:
    将所述锂源、所述锰源、所述M源和所述有机物溶于溶剂中,干燥;
    可选地,所述干燥的方式为喷雾干燥,所述喷雾干燥的入液速率为0.5L min-1~5L min-1,进风温度为150℃~300℃,出风温度为80℃~200℃,载气速率为20L min-1~200L min-1
  14. 一种正极,其特征在于,包括正极集流体及位于所述正极集流体一面或两面的正极活性材料层,所述正极活性材料层中的正极活性材料包括权利要求1~5任一项所述的富锂锰基正极材料。
  15. 一种锂二次电池,其特征在于,包括权利要求14所述的正极。
  16. 一种用电装置,其特征在于,包括权利要求15所述的锂二次电池。
PCT/CN2023/113757 2022-08-19 2023-08-18 富锂锰基正极材料及其制备方法和应用 WO2024037625A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210998592.5 2022-08-19
CN202210998592.5A CN115275179A (zh) 2022-08-19 2022-08-19 富锂锰基正极材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2024037625A1 true WO2024037625A1 (zh) 2024-02-22

Family

ID=83751971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113757 WO2024037625A1 (zh) 2022-08-19 2023-08-18 富锂锰基正极材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115275179A (zh)
WO (1) WO2024037625A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115275179A (zh) * 2022-08-19 2022-11-01 天津巴莫科技有限责任公司 富锂锰基正极材料及其制备方法和应用
CN116143200B (zh) * 2023-04-23 2023-08-01 宜宾锂宝新材料有限公司 高压实微米单晶富锂锰基正极材料及制备方法和锂电池
CN116344791B (zh) * 2023-05-26 2023-08-08 天津巴莫科技有限责任公司 正极材料及其制备方法、正极片和电池
CN116885156B (zh) * 2023-09-07 2024-02-20 宁德时代新能源科技股份有限公司 镍锰酸锂材料、制备方法、二次电池及用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466157A (zh) * 2013-09-12 2015-03-25 中国科学院宁波材料技术与工程研究所 富锂锰基正极材料及其制备方法
CN109935817A (zh) * 2019-03-27 2019-06-25 上海电力学院 一种含氧空位的层状富锂正极材料及其制备方法
CN111029562A (zh) * 2019-12-23 2020-04-17 北京理工大学重庆创新中心 一种在富锂锰基正极材料表面预构建氧空位的方法
KR20200118768A (ko) * 2019-04-08 2020-10-16 주식회사 엘지화학 이차전지용 양극 및 이를 포함하는 리튬 이차전지
CN114335509A (zh) * 2022-01-04 2022-04-12 华南师范大学 改性富锂锰基材料及其制备方法、应用
CN115275179A (zh) * 2022-08-19 2022-11-01 天津巴莫科技有限责任公司 富锂锰基正极材料及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466157A (zh) * 2013-09-12 2015-03-25 中国科学院宁波材料技术与工程研究所 富锂锰基正极材料及其制备方法
CN109935817A (zh) * 2019-03-27 2019-06-25 上海电力学院 一种含氧空位的层状富锂正极材料及其制备方法
KR20200118768A (ko) * 2019-04-08 2020-10-16 주식회사 엘지화학 이차전지용 양극 및 이를 포함하는 리튬 이차전지
CN111029562A (zh) * 2019-12-23 2020-04-17 北京理工大学重庆创新中心 一种在富锂锰基正极材料表面预构建氧空位的方法
CN114335509A (zh) * 2022-01-04 2022-04-12 华南师范大学 改性富锂锰基材料及其制备方法、应用
CN115275179A (zh) * 2022-08-19 2022-11-01 天津巴莫科技有限责任公司 富锂锰基正极材料及其制备方法和应用

Also Published As

Publication number Publication date
CN115275179A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
Zhang et al. Effect of Ti ion doping on electrochemical performance of Ni-rich LiNi0. 8Co0. 1Mn0. 1O2 cathode material
CN109336193B (zh) 多元素原位共掺杂三元材料前驱体及其制备方法和应用
WO2024037625A1 (zh) 富锂锰基正极材料及其制备方法和应用
CN103715424B (zh) 一种核壳结构正极材料及其制备方法
WO2020043140A1 (zh) 三元正极材料及其制备方法、锂离子电池
JP5656012B2 (ja) 非水電解質二次電池用正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
CN103779554B (zh) 改性高能量密度锂离子电池正极材料及其制备方法
WO2020043135A1 (zh) 三元正极材料及其制备方法、锂离子电池
CN111106331B (zh) 一种层状-尖晶石相复合正极材料及其制备方法
Deng et al. Effect of synthesis condition on the structure and electrochemical properties of Li [Ni1/3Mn1/3Co1/3] O2 prepared by hydroxide co-precipitation method
JP2018502421A (ja) 正極活物質、この製造方法、及びこれを含むリチウム二次電池
CN112751006B (zh) 一种无钴锂离子电池层状正极材料及其制备方法和应用
CN113903907B (zh) 一种钨包覆及掺杂的单晶富镍三元正极材料的制备方法
CN109616627A (zh) 一种高安全、高比容量、高镍正极材料及其制备方法以及一种锂离子电池
WO2022089205A1 (zh) 一种掺杂型高镍三元材料及其制备方法
CN102832387B (zh) 富锂高锰层状结构三元材料、其制备方法及应用
WO2024046228A1 (zh) 高熵正极材料及其制备方法与应用
JP6872816B2 (ja) ニッケルマンガン系複合酸化物及びその製造方法
KR20230142684A (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
CN113809320A (zh) 一种四元多晶正极材料、其制备方法和用途
Kaddami et al. Effect of low Al3+ doping on the structural, electrochemical performances, and thermal stability of the LiNi1/3Co1/3Co1/3O2 electrode material for lithium‐ion batteries
CN111170369B (zh) 一种锰酸锂或镍锰酸锂材料及其制备方法和应用
CN116639740A (zh) 一种无钴富锂锰基正极材料及其制备方法
CN116190593A (zh) 一种混相结构的锂电池正极材料及其制备方法和应用
KR20160076037A (ko) 리튬 복합 산화물의 제조 방법, 이에 의하여 제조된 리튬 복합 산화물, 및 이를 포함하는 비수 전해질 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023854521

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854521

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023854521

Country of ref document: EP

Effective date: 20240326