WO2024037120A1 - 液压冲击锤精确定位系统 - Google Patents

液压冲击锤精确定位系统 Download PDF

Info

Publication number
WO2024037120A1
WO2024037120A1 PCT/CN2023/097810 CN2023097810W WO2024037120A1 WO 2024037120 A1 WO2024037120 A1 WO 2024037120A1 CN 2023097810 W CN2023097810 W CN 2023097810W WO 2024037120 A1 WO2024037120 A1 WO 2024037120A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
impact hammer
hydraulic impact
positioning device
frame
Prior art date
Application number
PCT/CN2023/097810
Other languages
English (en)
French (fr)
Inventor
韦纪军
许向东
伍骏
汪望明
黎宇
陈熙宇
赵锦荣
Original Assignee
中交广州航道局有限公司
中交广航疏浚有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中交广州航道局有限公司, 中交广航疏浚有限公司 filed Critical 中交广州航道局有限公司
Publication of WO2024037120A1 publication Critical patent/WO2024037120A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • E02F3/966Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements of hammer-type tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/8833Floating installations
    • E02F3/885Floating installations self propelled, e.g. ship
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/907Measuring or control devices, e.g. control units, detection means or sensors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • E02F3/963Arrangements on backhoes for alternate use of different tools
    • E02F3/964Arrangements on backhoes for alternate use of different tools of several tools mounted on one machine
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2037Coordinating the movements of the implement and of the frame
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2045Guiding machines along a predetermined path
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2079Control of mechanical transmission
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool

Definitions

  • the invention relates to the technical field of dredging engineering construction, and in particular to a hydraulic impact hammer precise positioning system.
  • Dredging projects refer to earthworks and rockworks carried out to widen and deepen waters by using dredging ships or other machinery and manual underwater excavation.
  • dredging ships are the core equipment of dredging projects, and the common dredging ships are dredgers.
  • rock breaking construction needs to be carried out underwater.
  • the main equipment for rock breaking construction is the hydraulic impact hammer.
  • the dredging ship lowers the hydraulic impact hammer into the water through hard connection or soft connection to carry out rock breaking construction.
  • the actual position of the frame of the main equipment will drift due to the influence of water flow, which may cause the rock-breaking equipment to tilt, affect the position of the hydraulic impact hammer, and affect the accuracy of the construction.
  • the position change of the hydraulic impact hammer also affects the accuracy of construction data collection.
  • a precise positioning system for hydraulic impact hammers including:
  • the first positioning device installed on the dredging vessel
  • a second positioning device installed on the frame; wherein the frame is used to set the hydraulic impact hammer;
  • a third positioning device used to collect position information of the hanging points of the frame
  • a positioning calculation device is used to collect data from the first positioning device, the second positioning device, the third positioning device, the first sensing device and the second sensing device respectively, and calculate the position information of the hydraulic impact hammer.
  • the above-mentioned hydraulic impact hammer precise positioning system includes a first positioning device installed on the dredging vessel, a second positioning device installed on the frame, a third positioning device used to collect position information of the hanging point of the frame, and a third positioning device installed on the frame.
  • the first sensing device and the second sensing device installed on the frame; the positioning calculation device collects the data of the first positioning device, the second positioning device, the third positioning device, the first sensing device and the second sensing device respectively. , calculate the position information of the hydraulic impact hammer. Based on this, the influence of hanger amplitude and ship tilt on the lowering depth of the hydraulic impact hammer can be ignored to ensure the positioning accuracy and positioning stability of the hydraulic impact hammer.
  • the first positioning device and the second positioning device determine positioning data based on interaction.
  • the first positioning device includes an ultra-short baseline hydrophone; the second positioning device includes an ultra-short baseline transponder.
  • the third positioning device includes a GPS positioning device.
  • the positioning calculation device is also used to obtain the operation information of the dredging vessel and determine the position information of the second positioning device.
  • the operational information includes GPS compass, hull trim and heel angle, tide level and/or draft.
  • the first sensing device includes a depth sensor and a tilt sensor.
  • the second sensing device includes a penetration depth sensor and an inclination sensor.
  • the position information of the hydraulic impact hammer includes plane coordinate information and/or depth information.
  • the positioning computing device includes a ship-side server.
  • Figure 1 is a module structural diagram of a hydraulic impact hammer precise positioning system according to an embodiment
  • Figure 2 is a schematic structural diagram of a precise positioning system for a hydraulic impact hammer as an application example.
  • An embodiment of the present invention provides a precise positioning system for a hydraulic impact hammer.
  • Figure 1 is a module structure diagram of a hydraulic impact hammer precise positioning system in one embodiment.
  • the hydraulic impact hammer precise positioning system in one embodiment includes:
  • the first positioning device 100 installed on the dredging vessel
  • the second positioning device 101 is installed on the frame; wherein the frame is used to set the hydraulic impact hammer;
  • a first sensing device 103 mounted on the frame
  • Positioning calculation device 105 is used to collect data from the first positioning device 100, the second positioning device 101, the third positioning device 102, the first sensing device 103 and the second sensing device 104 respectively, and calculate the position information of the hydraulic impact hammer. .
  • the first positioning device is arranged on the dredging vessel, and its position is relatively fixed.
  • the first positioning device and the second positioning device interact with each other through positioning interaction to determine positioning data.
  • the first positioning device includes an ultra-short baseline hydrophone; the second positioning device includes an ultra-short baseline transponder. Through ultra-short baseline hydrophones and ultra-short baseline transponders, the position of one device is used to determine the positioning data of the other device.
  • Figure 2 is a schematic structural diagram of a hydraulic impact hammer precise positioning system of an application example.
  • the dredging ship is a grab dredger
  • the installation position of the first positioning device is point O
  • the first positioning device is installed at point O.
  • the installation position of the second positioning device is point B.
  • the positioning calculation device is also used to obtain the operation information of the dredging ship and determine the position information of the second positioning device.
  • operational information includes GPS compass, hull trim and heel angle, tide level and/or draft.
  • the position coordinates of point O can be calculated in real time through signals such as the GPS compass installed on the hull of the dredging vessel, the hull pitch and heel angle, tide level and draft.
  • the third positioning device is used to determine the position information of the hanging point. As shown in Figure 2, the location of the hanging point is point A.
  • the third positioning device includes a GPS positioning device. As shown in Figure 2, the position coordinates of the hanging point A (x A , y A , z A ) can be directly measured by the GPS positioning device installed on the boom.
  • the first sensing device includes a depth sensor and a tilt sensor.
  • the second sensing device includes a penetration depth sensor and an inclination sensor.
  • the position information of the hydraulic impact hammer includes plane coordinate information and/or depth information.
  • the positioning calculation device calculates the construction point position of the hydraulic impact hammer based on each positioning data and sensor data.
  • all underwater sensing equipment including depth sensors, inclination sensors, rock penetration depth sensors, etc.
  • the hydraulic impact hammer is equipped with a sensing iron block of the rock penetration depth sensor.
  • the impact hammer is mounted on the frame and can slide up and down along the slide rails on the frame.
  • the frame is lowered to the seabed through a ship's crane, and the rock penetration depth is determined by measuring the relative position of the frame and the hammer.
  • Sensors are installed on the ship to measure the ship's draft, inclination, orientation and other attitude information.
  • the positioning calculation device includes a ship-side server, which serves as a data processing center, collects data from the first positioning device, the second positioning device, the third positioning device, the first sensing device and the second sensing device respectively, and calculates the hydraulic impact hammer location information. As shown in Figure 2, the position of the hydraulic impact hammer is point C.
  • the lowering depth H 1 on the frame can be calculated by the depth sensor and tilt sensor installed on the frame (combined with the installation position of the depth sensor); at the same time, point B is relatively
  • the above-mentioned positioning calculation of the construction point can be used to determine the position information of the hydraulic impact hammer. Ignore the influence of the hanger amplitude on the lowering depth of the hydraulic impact hammer.
  • the boom amplitude will cause changes in the vertical height difference of the hydraulic impact hammer, which has a direct impact on the accuracy of precise rock breaking.
  • the effect of ship tilt on the lowering depth of the hydraulic impact hammer can be ignored.
  • various reasons may cause the hull to pitch and heel, which will also cause a difference in height change of the hydraulic impact hammer in the vertical direction.
  • the (ultra) short baseline positioning system is used to determine the position of the hydraulic impact hammer relative to a certain point on the hull (hydrophone installation point) in real time.
  • the calculation process does not involve changes in the angle of the boom, regardless of the amplitude of the hanger or the tilt of the hull. Neither will affect the positioning accuracy of the ultra-short baseline positioning system, ensuring positioning accuracy.
  • the hydraulic impact hammer precise positioning system of any of the above embodiments includes a first positioning device installed on the dredging vessel, a second positioning device installed on the frame, and a third positioning device used to collect position information of the hanging points of the frame.
  • the data of the sensing device is used to calculate the position information of the hydraulic impact hammer. Based on this, the influence of hanger amplitude and ship tilt on the lowering depth of the hydraulic impact hammer can be ignored to ensure the positioning accuracy and positioning stability of the hydraulic impact hammer.

Abstract

本发明涉及一种液压冲击锤精确定位系统,包括安装在疏浚船舶上的第一定位装置、安装在框架的第二定位装置、用于采集框架的吊点的位置信息的第三定位装置、安装在框架上的第一传感装置和安装在框架的第二传感装置;定位计算装置分别采集第一定位装置、第二定位装置、第三定位装置、第一传感装置和第二传感装置的数据,计算液压冲击锤的位置信息。基于此,可以忽略吊架变幅、船倾对液压冲击锤下放深度的影响,保证液压冲击锤的定位精度和定位稳定性。

Description

液压冲击锤精确定位系统 技术领域
本发明涉及疏浚工程施工技术领域,特别是涉及一种液压冲击锤精确定位系统。
背景技术
疏浚工程,是指采用疏浚船舶或其他机具以及人工进行水下挖掘,为拓宽和加深水域而进行的土石方工程。其中,疏浚船舶作为疏浚工程的核心设备,常见的疏浚船舶即挖泥船。
在疏浚船舶执行土石方工程的过程中,需要到水下进行破岩施工。一般地,破岩施工的主要设备即液压冲击锤,疏浚船舶以硬连接或软连接方式将液压冲击锤下放至水下进行破岩施工。但在实际的施工过程中,主要设备的框架的实际位置会因水流影响而发生漂移,可能会使破岩设备发生倾斜,影响液压冲击锤的位置,影响施工的精度。同时,液压冲击锤的位置变化,也影响施工数据的采集精度。
发明内容
基于此,有必要针对框架的实际位置会因水流影响而发生漂移,可能会使破岩设备发生倾斜,影响液压冲击锤的位置,影响施工的精度这一不足,提供一种液压冲击锤精确定位系统。
一种液压冲击锤精确定位系统,包括:
安装在疏浚船舶上的第一定位装置;
安装在框架的第二定位装置;其中,框架用于设置液压冲击锤;
用于采集框架的吊点的位置信息的第三定位装置;
安装在框架上的第一传感装置;
安装在框架的第二传感装置;
定位计算装置,用于分别采集第一定位装置、第二定位装置、第三定位装置、第一传感装置和第二传感装置的数据,计算液压冲击锤的位置信息。
上述的液压冲击锤精确定位系统,包括安装在疏浚船舶上的第一定位装置、安装在框架的第二定位装置、用于采集框架的吊点的位置信息的第三定位装置、安装在框架上的第一传感装置和安装在框架的第二传感装置;定位计算装置分别采集第一定位装置、第二定位装置、第三定位装置、第一传感装置和第二传感装置的数据,计算液压冲击锤的位置信息。基于此,可以忽略吊架变幅、船倾对液压冲击锤下放深度的影响,保证液压冲击锤的定位精度和定位稳定性。
在其中一个实施例中,第一定位装置与第二定位装置根据交互确定定位数据。
在其中一个实施例中,第一定位装置包括超短基线水听器;第二定位装置包括超短基线应答器。
在其中一个实施例中,第三定位装置包括GPS定位装置。
在其中一个实施例中,定位计算装置还用于获取疏浚船舶的运行信息,确定第二定位装置的位置信息。
在其中一个实施例中,运行信息包括GPS罗经、船体纵横倾角度、潮位和/或吃水。
在其中一个实施例中,第一传感装置包括深度传感器和倾斜传感器。
在其中一个实施例中,第二传感装置包括凿入深度传感器和倾角传感器。
在其中一个实施例中,液压冲击锤的位置信息包括平面坐标信息和/或深度信息。
在其中一个实施例中,定位计算装置包括船端服务器。
附图说明
图1为一实施方式的液压冲击锤精确定位系统模块结构图;
图2为一应用示例的液压冲击锤精确定位系统结构示意图。
具体实施方式
为了更好地理解本发明的目的、技术方案以及技术效果,以下结合附图和实施例对本发明进行进一步的讲解说明。同时声明,以下所描述的实施例仅用于解释本发明,并不用于限定本发明。
本发明实施例提供了一种液压冲击锤精确定位系统。
图1为一实施方式的液压冲击锤精确定位系统模块结构图,如图1所示,一实施方式的液压冲击锤精确定位系统包括:
安装在疏浚船舶上的第一定位装置100;
安装在框架的第二定位装置101;其中,框架用于设置液压冲击锤;
用于采集框架的吊点的位置信息的第三定位装置102;
安装在框架上的第一传感装置103;
安装在框架的第二传感装置104;
定位计算装置105,用于分别采集第一定位装置100、第二定位装置101、第三定位装置102、第一传感装置103和第二传感装置104的数据,计算液压冲击锤的位置信息。
其中,第一定位装置设置在疏浚船舶上,其位置相对固定。第一定位装置与第二定位装置的构成交互,二者通过定位交互,以确定定位数据。
在其中一个实施例中,第一定位装置包括超短基线水听器;第二定位装置包括超短基线应答器。通过超短基线水听器和超短基线应答器,以其中一装置的位置,确定另一装置的定位数据。
在其中一个实施例中,图2为一应用示例的液压冲击锤精确定位系统结构示意图,如图2所示,疏浚船舶为抓斗挖泥船,第一定位装置的安装位置为O点,第二定位装置的安装位置为B点。
其中,定位计算装置还用于获取疏浚船舶的运行信息,确定第二定位装置的位置信息。
如图2所示,运行信息包括GPS罗经、船体纵横倾角度、潮位和/或吃水。O点的位置坐标可通过安装在疏浚船舶的船体的GPS罗经、船体纵横倾角度、潮位和吃水等信号实时解算得到。
其中,第三定位装置用于确定吊点的位置信息。如图2所示,吊点的位置为A点。
在其中一个实施例中,第三定位装置包括GPS定位装置。如图2所示,吊点A位置坐标(xA,yA,zA)可由安装在吊臂上的GPS定位装置直接测量得到。
在其中一个实施例中,第一传感装置包括深度传感器和倾斜传感器。
在其中一个实施例中,第二传感装置包括凿入深度传感器和倾角传感器。
在其中一个实施例中,液压冲击锤的位置信息包括平面坐标信息和/或深度信息。
其中,定位计算装置根据各定位数据和传感数据,对液压冲击锤的施工点位置进行计算。
其中,所有水下传感设备,包括深度传感器,倾角传感器、入岩深度传感器等均安装在框架上,液压冲击锤上安装有入岩深度传感器的感应铁块。冲击锤是安装在框架上的,可以沿框架上的滑轨上下滑动。施工时通过船上吊机将框架下放至海底,通过测量框架与锤的相对位置确定入岩深度。船上安装有测量船舶吃水、倾斜、方位等姿态信息的传感器。
其中,定位计算装置包括船端服务器,作为数据处理中心,分别采集第一定位装置、第二定位装置、第三定位装置、第一传感装置和第二传感装置的数据,计算液压冲击锤的位置信息。如图2所示,液压冲击锤的位置为C点。
在其中一个实施例中,如图2所示,框架上(B点)的下放深度H1可由安装在框架上的深度传感器和倾斜传感器(结合深度传感器的安装位置)计算得到;同时B点相对于O点在水平方向上的偏移可由超短基线定位系统确定,将其命名为Δx1和Δy1,即:
xB=xO+Δx1
yB=yO+Δy1
在其中一个实施例中,如图2所示,框架长度L1可视为已知;钎杆伸出长度L2可由安装在液压冲击锤上的凿入深度传感器测出;液压冲击锤相对于YZ平面和XZ平面的角度α和β可由安装在液压锤上的倾角传感器测出;由此,可通过计算得出C点相对于B点在水平方向及垂直方向的偏移:
Δx2=(L1+L2)sinα
Δy2=(L1+L2)sinβ
ΔH=(L1+L2)cosα
基于此,可得到液压冲击锤的施工点的平面坐标及深度:
x=xAO+Δx1+Δx2
y=yAO+Δy1+Δy2
H=H1+ΔH+潮位修正
基于此,上述的施工点的定位计算,确定液压冲击锤的位置信息的方式可 忽略吊架变幅对液压冲击锤下放深度的影响。在施工过程中,如果钢丝绳收放量不变,吊臂幅度的变化将会造成液压冲击锤垂直方向的高度差变化,这对精准破岩的精度有直接影响。其次,可忽略船倾对液压冲击锤下放深度的影响。在施工过程中,由于各种原因可能导致船体发生纵倾和橫倾,这也会造成液压冲击锤垂直方向的高度变化差。最后,通过(超)短基线定位系统实时确定液压冲击锤相对于船体某点(水听器安装点)的位置,计算过程中没有涉及到吊臂角度变化,无论吊架变幅还是船体倾斜,都不会影响到超短基线定位系统的定位精度,确保了定位精度。
上述任一实施例的液压冲击锤精确定位系统,包括安装在疏浚船舶上的第一定位装置、安装在框架的第二定位装置、用于采集框架的吊点的位置信息的第三定位装置、安装在框架上的第一传感装置和安装在框架的第二传感装置;定位计算装置分别采集第一定位装置、第二定位装置、第三定位装置、第一传感装置和第二传感装置的数据,计算液压冲击锤的位置信息。基于此,可以忽略吊架变幅、船倾对液压冲击锤下放深度的影响,保证液压冲击锤的定位精度和定位稳定性。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种液压冲击锤精确定位系统,其特征在于,包括:
    安装在疏浚船舶上的第一定位装置;
    安装在框架的第二定位装置;其中,所述框架用于设置液压冲击锤;
    用于采集所述框架的吊点的位置信息的第三定位装置;
    安装在所述框架上的第一传感装置;
    安装在所述框架的第二传感装置;
    定位计算装置,用于分别采集所述第一定位装置、所述第二定位装置、所述第三定位装置、所述第一传感装置和所述第二传感装置的数据,计算所述液压冲击锤的位置信息。
  2. 根据权利要求1所述的液压冲击锤精确定位系统,其特征在于,所述第一定位装置与所述第二定位装置根据交互确定定位数据。
  3. 根据权利要求2所述的液压冲击锤精确定位系统,其特征在于,所述第一定位装置包括超短基线水听器;所述第二定位装置包括超短基线应答器。
  4. 根据权利要求1所述的液压冲击锤精确定位系统,其特征在于,所述第三定位装置包括GPS定位装置。
  5. 根据权利要求1所述的液压冲击锤精确定位系统,其特征在于,所述定位计算装置还用于获取疏浚船舶的运行信息,确定所述第二定位装置的位置信息。
  6. 根据权利要求5所述的液压冲击锤精确定位系统,其特征在于,所述运行信息包括GPS罗经、船体纵横倾角度、潮位和/或吃水。
  7. 根据权利要求1所述的液压冲击锤精确定位系统,其特征在于,所述第一传感装置包括深度传感器和倾斜传感器。
  8. 根据权利要求1所述的液压冲击锤精确定位系统,其特征在于,所述第 二传感装置包括凿入深度传感器和倾角传感器。
  9. 根据权利要求1所述的液压冲击锤精确定位系统,其特征在于,所述液压冲击锤的位置信息包括平面坐标信息和/或深度信息。
  10. 根据权利要求9所述的液压冲击锤精确定位系统,其特征在于,所述定位计算装置包括船端服务器。
PCT/CN2023/097810 2022-08-19 2023-06-01 液压冲击锤精确定位系统 WO2024037120A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211001647.7A CN115288221B (zh) 2022-08-19 2022-08-19 液压冲击锤精确定位系统
CN202211001647.7 2022-08-19

Publications (1)

Publication Number Publication Date
WO2024037120A1 true WO2024037120A1 (zh) 2024-02-22

Family

ID=83829467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097810 WO2024037120A1 (zh) 2022-08-19 2023-06-01 液压冲击锤精确定位系统

Country Status (2)

Country Link
CN (1) CN115288221B (zh)
WO (1) WO2024037120A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115288221B (zh) * 2022-08-19 2023-12-15 中交广州航道局有限公司 液压冲击锤精确定位系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152839A (ja) * 1996-09-30 1998-06-09 Honmagumi:Kk 水中捨石均し装置
JP2010248719A (ja) * 2009-04-13 2010-11-04 S K K:Kk グラブ浚渫船による浚渫システム
CN102073057A (zh) * 2010-11-15 2011-05-25 中交一航局第二工程有限公司 水下整平机测量定位系统
CN203929077U (zh) * 2014-04-01 2014-11-05 中船重工(武汉)船舶与海洋工程装备设计有限公司 一种挖泥船定位装置
CN204753674U (zh) * 2015-04-17 2015-11-11 中交四航局第五工程有限公司 适用于水下礁石清除的破碎系统
CN106546211A (zh) * 2016-12-29 2017-03-29 中交天津港航勘察设计研究院有限公司 一种抓斗挖泥船抓斗姿态测量系统
CN112081167A (zh) * 2020-09-08 2020-12-15 镇江市亿华系统集成有限公司 高平整度抓斗船基槽精挖作业控制方法
CN113153153A (zh) * 2021-03-12 2021-07-23 中交广州航道局有限公司 一种深水硬岩破碎装置及其使用方法
CN115288221A (zh) * 2022-08-19 2022-11-04 中交广州航道局有限公司 液压冲击锤精确定位系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307785A (en) * 1977-02-07 1981-12-29 Ortemund Leon D Pile driving rig having angulating knuckle lead therefor
CN104818740B (zh) * 2015-03-16 2017-04-19 天津港航工程有限公司 绞吸式挖泥船铰刀无验潮精确下放方法及其精确下放定位系统
CN105544641B (zh) * 2015-12-10 2017-10-24 同济大学 一种深海双向推进液压抓斗监控系统
CN106948330A (zh) * 2017-03-16 2017-07-14 中交第三航务工程勘察设计院有限公司 用于海上标准贯入试验的落锤控制装置及方法
CN112227296A (zh) * 2020-08-18 2021-01-15 中交广州航道局有限公司 水下深基槽破岩施工方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152839A (ja) * 1996-09-30 1998-06-09 Honmagumi:Kk 水中捨石均し装置
JP2010248719A (ja) * 2009-04-13 2010-11-04 S K K:Kk グラブ浚渫船による浚渫システム
CN102073057A (zh) * 2010-11-15 2011-05-25 中交一航局第二工程有限公司 水下整平机测量定位系统
CN203929077U (zh) * 2014-04-01 2014-11-05 中船重工(武汉)船舶与海洋工程装备设计有限公司 一种挖泥船定位装置
CN204753674U (zh) * 2015-04-17 2015-11-11 中交四航局第五工程有限公司 适用于水下礁石清除的破碎系统
CN106546211A (zh) * 2016-12-29 2017-03-29 中交天津港航勘察设计研究院有限公司 一种抓斗挖泥船抓斗姿态测量系统
CN112081167A (zh) * 2020-09-08 2020-12-15 镇江市亿华系统集成有限公司 高平整度抓斗船基槽精挖作业控制方法
CN113153153A (zh) * 2021-03-12 2021-07-23 中交广州航道局有限公司 一种深水硬岩破碎装置及其使用方法
CN115288221A (zh) * 2022-08-19 2022-11-04 中交广州航道局有限公司 液压冲击锤精确定位系统

Also Published As

Publication number Publication date
CN115288221B (zh) 2023-12-15
CN115288221A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
JP5565957B2 (ja) 3次元ソナーによる施工管理方法とその施工管理装置
JP4960402B2 (ja) グラブ浚渫船による浚渫方法
WO2024037120A1 (zh) 液压冲击锤精确定位系统
EP2201183B1 (en) A system and method for optimizing dredging
CN212772503U (zh) 一种沉箱安装双gps测量定位装置
JP2004150015A (ja) 浚渫施工管理方法と装置
JP7017948B2 (ja) ポンプ浚渫船及びポンプ浚渫方法
JP5510648B2 (ja) 浚渫船
JP2003278158A (ja) バックホウ台船の施工管理方法
JP4751539B2 (ja) 杭打船による杭打設位置の管理方法
JP2019203297A (ja) 管理システム
JP6797613B2 (ja) 高度算出システム
JPS6378921A (ja) 水中捨石均し工法
JPH0324538B2 (zh)
JP2632942B2 (ja) 浚渫船の施工援助システム
JP3989624B2 (ja) 海底または水底の土木機械の位置測定装置またはケーブル埋設機の位置測定装置
KR200191599Y1 (ko) 디지피에스를 이용한 준설 시스템
CN209241264U (zh) 水下地形精确测量体系
JP2012026190A (ja) 既設構造物付近における水中作業方法と水中作業用装置
KR101755383B1 (ko) 수중 고르기 장비의 버킷을 이용한 지형 인식 장치 및 방법
JPH1060943A (ja) 浚渫船の施工管理システム
CN114960535A (zh) 一种高频破碎锤加长臂定位清礁装置及定位清礁方法
Huang et al. Technology research and application of immersed tunnel underwater detection
JPH034696B2 (zh)
JPS58131238A (ja) 水底掘削作業船

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854026

Country of ref document: EP

Kind code of ref document: A1