WO2024037065A1 - 一种复合感应加热感受器及其制备方法和应用 - Google Patents

一种复合感应加热感受器及其制备方法和应用 Download PDF

Info

Publication number
WO2024037065A1
WO2024037065A1 PCT/CN2023/093579 CN2023093579W WO2024037065A1 WO 2024037065 A1 WO2024037065 A1 WO 2024037065A1 CN 2023093579 W CN2023093579 W CN 2023093579W WO 2024037065 A1 WO2024037065 A1 WO 2024037065A1
Authority
WO
WIPO (PCT)
Prior art keywords
susceptor
induction heating
temperature
sensor
composite induction
Prior art date
Application number
PCT/CN2023/093579
Other languages
English (en)
French (fr)
Inventor
张恒
韩达
周宏明
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Publication of WO2024037065A1 publication Critical patent/WO2024037065A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/70Manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers

Definitions

  • This application belongs to the technical field of induction heating materials, and specifically relates to a composite induction heating sensor and its preparation method and application.
  • wireless temperature control sensors used for induction heating of aerosol-forming substrates generally use a single material stainless steel bar or a double-layer metal sheet sensor.
  • the double-layer metal sheet sensor consists of a first sensor material and a second sensor material with different Curie temperatures. Prepared by discrete patches or multi-layer lamination.
  • stainless steel to control temperature through apparent ohmic resistance has the disadvantage of low temperature control accuracy.
  • stainless steel is an iron-based alloy, its Curie temperature point is very high, so when a single-layer stainless steel strip is used as a sensor, it can only heat to form aerosol, but cannot limit the maximum temperature through the characteristics of the material itself. , so a temperature threshold control program needs to be added to the microcontroller, which will make the structure of the induction heating device complex.
  • the first sensor material used in a double-layer or multi-layer metal sheet sensor is mostly made of aluminum, iron, stainless steel and other materials
  • the second sensor material is mostly made of nickel, nickel alloy and other materials.
  • the two-layer or three-layer laminated sensor prepared in this way
  • the temperature control logic is to use the sensor resistance-temperature curve to have a minimum resistance value near the Curie temperature of the second sensor material.
  • the sensor temperature can be known through this change in apparent resistance to achieve the purpose of temperature control, and determine the temperature control of the sensor.
  • the temperature point is the Curie temperature of the second susceptor material, and the types of materials that can be used for the second susceptor are limited, and there are even fewer materials whose Curie temperature exactly meets the temperature threshold requirements for protection required for aerosol formation.
  • the temperature control method has limitations in the selection of the second sensor material.
  • sensors prepared by physical bonding will have problems such as uneven temperature field, sensor deformation, and even cracking due to differences in the physical properties of the two sensor materials, which will affect the sensitivity.
  • the service life of the receptor The service life of the receptor.
  • the technical problem to be solved by this application is to overcome the limited material selection of the second susceptor that determines the temperature control temperature point of the susceptor in the double-layer or multi-layer metal sheet susceptor in the prior art, and the physical bonding preparation method will cause temperature problems. Defects such as field unevenness, sensor deformation, and even cracking are provided, thereby providing a composite induction heating sensor and its preparation method and application.
  • This application provides a composite induction heating susceptor.
  • the raw materials include: a first susceptor material and a second susceptor material. The two are mixed and sintered to obtain the composite induction heating susceptor.
  • the Curie temperature of the first susceptor material is between 400-1000°C;
  • the first sensor material is selected from at least one of stainless steel, carbon steel, iron or iron-based alloys.
  • the Curie temperature of the second susceptor material is between 200-400°C.
  • the second sensor material is selected from at least one of nickel, nickel-based alloy or invar alloy.
  • the mass ratio of the first sensor material to the second sensor material is (3-7): (7-3).
  • This application also provides a method for preparing the above-mentioned composite induction heating sensor, which is characterized in that it includes the following steps:
  • the temperature of the warm isostatic pressing treatment is 65-85°C
  • the time is 0.1-1h
  • the pressure is 5-45MPa.
  • the temperature of the degumming treatment is 250-550°C and the time is 1-10h;
  • the sintering temperature is 1100-1400°C and the sintering time is 0.5-15h.
  • This application also provides an application of the above-mentioned composite induction heating sensor or the composite induction heating sensor prepared by the above-mentioned preparation method in the field of magnetic induction heating.
  • the pulping in step S1 is a conventional pulping process in this field, which is generally obtained by mixing metal powder with an organic solvent and a dispersant and ball milling.
  • the pulping step is to mix the first susceptor material and the second susceptor material evenly, add ethyl acetate, n-butanol, and 5% PVB. Solution and OP dispersant are put into a ball mill tank for ball milling to obtain slurry.
  • the composite induction heating sensor provided by this application can be in the form of chip type, tube type, needle type, pin type, mesh type, wire type, particle type, cup type, etc.
  • the composite induction heating sensor provided by this application is suitable for use in induction heating aerosol-forming sensor materials for e-cigarettes, aerosol-forming sensor materials for medical atomization, or beauty instruments and other scenarios that require induction heating and temperature control.
  • the temperature control logic of the composite induction heating sensor provided by this application is:
  • the sensor In the initial stage of heating, the sensor is heated. At this time, the electronic control will detect an initial apparent current; as the temperature of the sensor increases, the magnetic resistance of the sensing metal sheet will increase, and the corresponding electronic control will detect that the apparent current becomes smaller;
  • the low Curie temperature point material begins to gradually lose magnetism, which will lead to the total magnetic resistance of the susceptor. becomes smaller, so the apparent current detected by the electronic control will gradually increase. At this time, there will be a minimum current inflection point (I 1 ).
  • the apparent current detected by the electronic control is related to the temperature of the sensor.
  • the heating temperature continues to rise, the current will become smaller due to the increase in magnetic resistance of materials with high Curie temperature points.
  • the high Curie temperature point material is evenly mixed with a porous skeleton (low Curie temperature point material and high Curie temperature point material). After the low Curie temperature point material completely loses magnetism, only the high Curie temperature point material remains.
  • Point materials can be heated, excluding low Curie temperature point materials, which can be equivalently regarded as porous "high Curie temperature point materials" (skeleton).
  • the heating efficiency will decrease sharply, resulting in the current unable to continue to increase significantly, and the temperature will also decrease.
  • There is a corresponding maximum temperature that is, the maximum threshold temperature, to achieve temperature control.
  • the composite induction heating sensor provided by this application can realize the adjustment of the standard curve and the maximum threshold temperature by adjusting the composition and proportion of different sensor materials.
  • a sensor with a conventional two-layer physical bonding structure The sensor is composed of a first sensor material and a second sensor material.
  • the resistance-temperature curve of the sensor component ( Figure 5, refer to Chinese patent document CN112739229A) has a minimum resistance value in a temperature range of ⁇ 5°C near the Curie temperature of the second sensor material. Through this minimum electricity The resistance value is used to calibrate the temperature at a certain point to achieve the purpose of temperature control.
  • the first susceptor material is mainly used for heating, and the second susceptor material is used as a temperature marker.
  • the magnetic properties of the second susceptor change from ferromagnetic or ferrimagnetic to paramagnetic. , accompanied by a temporary change in its resistance.
  • This temperature control logic can only calibrate the temperature point of the Curie temperature of the second sensor material, which is limited by the material and has a single temperature point, so interval temperature control cannot be performed.
  • the other is to use a single stainless steel piece for the susceptor.
  • the temperature of the susceptor is between the apparent ohmic resistance determined by the DC supply voltage of the DC power supply and the DC current drawn from the DC power supply.
  • the temperature control logic has high requirements on the change amount of the apparent ohmic resistance of the stainless steel sheet and the corresponding relationship between temperature.
  • the corresponding relationship between the common stainless steel sheets usually means that the change amount of the apparent ohmic resistance is too small when the temperature range is certain, and it cannot be accurately controlled. temperature.
  • the composite induction heating susceptor provided by this application is obtained by mixing the first susceptor material and the second susceptor material and sintering.
  • the composite induction heating sensor provided by this application can obtain sensors with different temperature control temperature ranges and Curie temperatures by adjusting and adapting the two material components and component ratios, which greatly improves the applicability of the sensor and breaks through
  • the limitation of material selection of the second susceptor, which determines the temperature control point of the susceptor, is eliminated.
  • the obtained susceptor has a stable current-temperature linear relationship.
  • This new temperature control logic can be used to realize the temperature control of the susceptor in magnetic induction heating.
  • the sintering molding method is used to obtain a single-layer composite material.
  • the overall structure of the sensor has homogeneous material properties. It will not be deformed, bent or cracked during use. Its heating temperature field is uniform, forming The aerosol is uniform and stable.
  • the composite induction heating sensor provided by this application can realize the physical properties of the sensor according to the use requirements, such as thermal expansion coefficient, strength, toughness, magnetic properties, electrical properties, etc., by further limiting the first sensor material and the second sensor material. Uniform, controllable adjustment broadens application range.
  • the preparation method of the composite induction heating susceptor provided by this application is to uniformly mix the first susceptor material and the metal powder of the second susceptor, and then prepare a slurry. According to the required susceptor shape, the slurry is finally shaped and degummed. and sintering to finally obtain a composite induction heating sensor with a simple preparation process. It is simple and mature, and in post-processing (such as rolling processing), the processing technology is simple and easy to implement, which greatly reduces manufacturing costs.
  • the composite induction heating sensor will have a monotonic and stable current-temperature curve in a specific temperature range during the magnetic induction heating process.
  • the composite induction heating sensor will have a monotonic and stable current-temperature curve in a specific temperature range during the magnetic induction heating process.
  • its one-to-one corresponding temperature range It can be used as the temperature control range of the sensor.
  • the temperature control of the sensor can be achieved. achieve the purpose of temperature control.
  • Figure 1 is a current-temperature corresponding relationship curve during the electromagnetic induction heating process provided by the sensor provided in Embodiment 1 of the present application;
  • Figure 2 is a current-temperature corresponding relationship curve during the electromagnetic induction heating process provided by the sensor provided in Embodiment 2 of the present application;
  • Figure 3 is a current-temperature corresponding relationship curve during the electromagnetic induction heating process provided by the sensor provided in Embodiment 3 of the present application;
  • Figure 4 is a current-temperature corresponding relationship curve during the electromagnetic induction heating process provided by the sensor provided in Embodiment 4 of the present application;
  • Figure 5 is a resistance-temperature relationship curve during the heating process of a susceptor prepared by conventional physical bonding methods using electromagnetic induction in the prior art.
  • the two components of the sensor are a low Curie point temperature material and a high Curie point temperature material.
  • the low Curie temperature material is nickel
  • the high Curie point temperature material is stainless steel.
  • the stainless steel is 400 series stainless steel. In this embodiment, it is stainless steel 430.
  • the two-component composite induction heating sensor produced according to the above two components and processes has a monotonic and stable current-temperature corresponding relationship during the heating process through electromagnetic induction (electromagnetic heating frequency 6.78MHz) (as shown in Figure 1 , I 1 and I 2 are the current inflection points respectively, and their corresponding temperatures are T 1 and T 2 ).
  • This interval corresponds to different temperatures during the current mutation stage (the T 1 and T 2 temperature intervals corresponding to I 1 and I 2 ), can be used as the control interval for the sensor temperature.
  • the composite material sensor has the characteristic of a maximum temperature that can be heated to, as shown in Figure 1. Neither the current nor the temperature continues to increase. This characteristic can play a temperature self-protection role in the sensor component.
  • This embodiment provides a composite induction heating sensor. Compared with Embodiment 1, the difference is that the mass ratio of nickel to stainless steel 430 is 44.5:55.5.
  • the current-temperature corresponding relationship curve during the heating process of the sensor provided by this embodiment is performed by electromagnetic induction, as shown in Figure 2.
  • This embodiment provides a composite induction heating sensor. Compared with Embodiment 1, the difference is that it adopts Use stainless steel 420 instead of stainless steel 430.
  • the current-temperature corresponding relationship curve during the heating process of the sensor provided by this embodiment is performed by electromagnetic induction, as shown in Figure 3.
  • This embodiment provides a composite induction heating sensor. Compared with Embodiment 1, the difference is that nickel alloy 1J36 is used instead of nickel.
  • the current-temperature corresponding relationship curve during the heating process of the sensor provided by this embodiment is performed by electromagnetic induction, as shown in Figure 4.
  • Test Example 2 Test Example of Embodiment 2
  • Example 2 of this application The heating body provided in Example 2 of this application was tested, specifically including:
  • Step 1 Cut the prepared induction metal sheet into standard sizes with a width of 8.6mm and a length of 16mm;
  • Step 2 Attach a thermocouple to the above-mentioned standard size metal sheet, and the thermocouple is used for temperature measurement;
  • Step 3 Place the above-mentioned induction heating piece attached to the thermocouple at the center of the electromagnetic induction heating coil, and fix the heating element;
  • Step 4 Set the voltage of the electromagnetic induction heating coil to 7.8V, set the current to 2.1, 2.15, 2.2, 2.25 and 2.3A respectively, and read the stable temperature of the thermocouple in different current modes (heat for 60s, test the final stability temperature).
  • Step 5 Repeat steps 1-4, test 4 heating pads, and evaluate the consistency of the heating pads.
  • test results are as follows: As for a single heating piece, there is a one-to-one correspondence between the current and the temperature of the induction piece; as for different heating elements (4 randomly selected heating pieces are selected to test the consistency of the heating pieces), the consistency of the heating pieces is good.
  • the positive and negative deviations of the temperature control temperatures of different metal sheets under different currents are within 3°C.
  • the specific test results are shown in the table below (the positive and negative deviations of the temperature control temperatures of other embodiments are also within 3°C, and the specific test results are not shown one by one):
  • the composite induction heating sensor provided by the present application can obtain different temperature control temperature ranges and Curie temperatures by adjusting and adapting the two material components and component ratios.
  • the susceptor greatly improves the applicability of the susceptor and breaks through the limitations of material selection of the second susceptor that determines the temperature control point of the susceptor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)
  • General Induction Heating (AREA)

Abstract

一种复合感应加热感受器及其制备方法。通过将第一感受器材料和第二感受器材料进行混合,烧结得到复合感应加热感受器。复合感应加热感受器,通过对两种材料组分、组分配比进行调整适配,可获得不同温度区间和居里温度的感受器,极大提高了感受器的可适用性,突破了决定感受器控温温度点的第二感受器的材料选择的局限性。采用烧结成型方式,得到的是一种单层的复合材料,感受器的整体结构具有均质的材料特性,在使用过程中,其发热温场均匀,形成的气溶胶均匀稳定。

Description

一种复合感应加热感受器及其制备方法和应用
相关申请的交叉引用
本申请要求在2022年8月19日提交中国专利局、申请号为202210999605.0、发明名称为“一种复合感应加热感受器及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用的方式并入本文中。
技术领域
本申请属于感应加热材料技术领域,具体涉及一种复合感应加热感受器及其制备方法和应用。
背景技术
目前,用于感应加热气溶胶形成基质的无线控温感受器一般采用单一材料不锈钢条或采用双层金属片感受器,双层金属片感受器由不同居里温度的第一感受器材料和第二感受器材料通过离散补片或多层贴合的方式制备得到。
采用单一材料不锈钢通过视在欧姆电阻控温,存在控温精度低的缺点。此外,因为不锈钢属于铁基合金,其居里温度点非常高,所以采用单层不锈钢条作为感受器使用时其只能起到加热形成气溶胶的作用,而不能通过材料本身的特性进行最高温度限制,因此需在微控制器中增加温度阈值控制程序,这会使得感应加热装置结构复杂。
双层或多层金属片感受器采用的第一感受器材料多采用铝、铁、不锈钢等材料,第二感受器材料多采用镍、镍合金等材料,这种方式制备的两层或三层贴合感受器的控温逻辑是通过感受器电阻-温度曲线在该第二感受器材料的居里温度附近具有最小电阻值,通过这一表观电阻的变化来得知感受器温度从而达到控温目的,而决定感受器控温温度点的是第二感受器材料的居里温度,而可用于第二感受器的材料种类有限,且居里温度恰好符合气溶胶形成所需保护的温度阈值要求的材料则更少,因此,这种控温方式在第二感受器材料的选择上具有局限性。另外,物理贴合的方式制备得到的感受器会因两种感受器材料物理特性差异而出现温场不均匀、感受器变形、甚至开裂等问题,进而影响感 受器的使用寿命。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中的双层或多层金属片感受器中决定感受器控温温度点的第二感受器的材料选择受限、物理贴合的制备方式会出现温场不均匀、感受器变形、甚至开裂等问题的缺陷,从而提供一种复合感应加热感受器及其制备方法和应用。
为此,本申请提供如下技术方案:
本申请提供一种复合感应加热感受器,原料包括:第一感受器材料和第二感受器材料,将二者进行混合,烧结得到所述复合感应加热感受器。
可选的,所述第一感受器材料的居里温度在400-1000℃之间;
可选的,所述第一感受器材料选自不锈钢,碳钢,铁或铁基合金中的至少一种。
可选的,所述第二感受器材料的居里温度在200-400℃之间。
优选地,在380℃以上。
可选的,所述第二感受器材料选自镍,镍基合金或因瓦合金中的至少一种。
可选的,所述第一感受器材料与第二感受器材料的质量比为(3-7):(7-3)。
本申请还提供一种上述的复合感应加热感受器的制备方法,其特征在于,包括以下步骤:
S1,将第一感受器材料与第二感受器材料混合,制浆,得混合浆料;
S2,将所述混合浆料流延,得到素坯,叠层,温等静压处理,得到待烧坯;
S3,将所得待烧坯进行排胶,烧结。
可选的,所述温等静压处理的温度为65-85℃,时间为0.1-1h,压力为5-45MPa。
可选的,所述排胶处理的温度为250-550℃,时间为1-10h;
和/或,所述烧结温度为1100-1400℃,时间为0.5-15h。
本申请还提供一种上述的复合感应加热感受器或上述的制备方法制备得到的复合感应加热感受器在磁感应加热领域中的应用。
具体地,步骤S1中的制浆为本领域常规的制浆工艺,一般是将金属粉体与有机溶剂、分散剂混合、球磨得到。典型非限定性的,所述制浆步骤为将第一感受器材料与第二感受器材料混合均匀,加入乙酸乙酯、正丁醇、5%的PVB 溶液、OP分散剂,放入球磨罐中进行球磨,即得浆料。
本申请提供的复合感应加热感受器,其形式可为片式、管式、针式、销式、网式、丝式、颗粒式、杯式等。
本申请提供的复合感应加热感受器,适用于电子烟用感应加热气溶胶形成感受器材料、医疗雾化用气溶胶形成感受器材料或美容仪等其他需要感应加热控温的场景。
本申请提供的复合感应加热感受器的控温逻辑为:
在加热起初阶段感受器被加热,此时电控会检测一个初始视在电流;随着感受器温度升高,感应金属片的磁阻会增大,相对应电控会检测到视在电流变小;当感受器的温度继续升高,温度升高到接近复合感应加热感受器中低居里温度点材料的居里温度点时,低居里温度点材料开始逐渐失磁,这会导致感受器总的磁阻变小,因此电控检测到视在电流会逐渐增大,此时会出现一最低电流拐点(I1),在接下来一段升温过程中,电控检测到的视在电流与感受器的温度有一一对应关系;通过这一一对应可以建立起标准曲线,从而可以实现无线控温;随着温度的进一步升高,感受器中低居里温度点材料继续失磁,导致低居里温度点材料加热效率的急剧降低,同时高居里温度点材料磁阻也会随温度升高而增大。低居里温度点材料和高居里温度点材料磁阻随温度变化特性叠加会导致电流拐点(I2)出现。电流I1和I2为发热体特征属性。随着电流继续升高,电磁感应加热以高居里温度点材料主导,随着加热温度继续升高,由于高居里温度点材料磁阻增加,电流会变小。可以理解的是,在加热后期,高居里温度点材料以多孔骨架(低居里温度点材料和高居里温度点材料均匀混合,低居里温度点材料完全失磁后,只剩下高居里温度点材料可以加热,剔除低居里温度点材料,可以等效看成多孔的“高居里温度点材料”骨架)的形式加热,其加热效率会急剧降低,导致电流无法继续显著升高,温度也对应有一个最高温度,即最高阈值温度,实现控温。本申请提供的复合感应加热感受器可通过调控不同感受器材料的成分和比例,实现对标准曲线和最高阈值温度的可调。
现有技术中的控温逻辑分为两种:
一种为常规的两层物理贴合结构的感受器,该感受器由第一感受器材料和该第二感受器材料组成,在该感受器组件从室温开始的预热期间,该感受器组件的电阻-温度曲线(图5,参考中国专利文献CN112739229A)在该第二感受器材料的居里温度附近的±5℃的温度范围内具有最小电阻值。通过这一最小电 阻值来对一定点温度进行标定而达到控温目的。同时在这种感受器中,第一感受器材料做主要的加热用,第二感受器材料作为温度标记物,在其居里温度下,第二感受器的磁性性质从铁磁性或亚铁磁性变为顺磁性,伴随着其电阻的临时变化。通过监测由感应源吸收的电流的对应改变,可检测到第二感受器材料何时达到其居里作温度,因此可以知道何时达到预定的工作温度。该控温逻辑中仅能标定第二感受器材料居里温度的温度点,受材料限制,且温度点单一,不能进行区间控温。
另一种为感受器采用单一的不锈钢片,该材料在感应加热装置中的加热过程中,感受器的温度和通过DC电源的DC供电电压及通过从DC电源汲取的DC电流确定的视在欧姆电阻之间存在严格单调的关系。由于视在欧姆电阻的每个单一值代表的温度唯一,这种严格的单调关系可以就通过在不接触感应加热装置的前提下通过视在欧姆电阻的大小确定感受器的相应温度。该控温逻辑中对不锈钢片的视在欧姆电阻和温度对应关系的变化量要求高,目前常见不锈钢片的该对应关系中通常是温度区间一定时视在欧姆电阻变化量过小,不能精准控温。
本申请技术方案,具有如下优点:
本申请提供的复合感应加热感受器,通过将第一感受器材料和第二感受器材料进行混合,烧结得到所述复合感应加热感受器。本申请提供的复合感应加热感受器,通过对两种材料组分、组分配比进行调整适配,可获得不同控温温度区间和居里温度的感受器,极大提高了感受器的可适用性,突破了决定感受器控温温度点的第二感受器的材料选择的局限性,所得感受器具有稳定的电流-温度线性关系,可通过这种新的控温逻辑实现磁感应加热中感受器的温度控制。同时,采用烧结成型方式,得到的是一种单层的复合材料,感受器的整体结构具有均质的材料特性,在使用过程中不会发生变形弯曲、开裂的现象,其发热温场均匀,形成的气溶胶均匀稳定。
本申请提供的复合感应加热感受器,通过对第一感受器材料和第二感受器材料的进一步限定,能够根据使用需求对感受器的物理特性,如热胀系数、强度、韧性、磁性能、电性能等实现均一、可控的调节,拓宽应用范围。
本申请提供的复合感应加热感受器的制备方法,将第一感受器材料和第二感受器的金属粉体进行均匀混合,然后制备成浆料,根据所需感受器形状,最后将浆料进行成型、排胶和烧结,最终得到复合感应加热感受器,制备工艺简 单成熟,而且在后加工(如辊压处理)中,加工工艺简单易实现,极大的降低了制造成本。
本申请提供的复合感应加热感受器的应用,复合感应加热感受器在磁感应加热过程中在某段特定温度区间内会有单调稳定的电流-温度曲线,在电流发生变化阶段,其一一对应的温度区间可作为感受器控温区间,同时当感受器达到一定温度,即使有持续电流供应,其温度不再继续升高,存在一最高保护温度,通过对加热器电流的监测,可以实现对感受器的温度控制,达到控温目的。在磁感应加热过程中存在电流与温度的一一对应关系,可通过电流-温度对应关系进行区间控温,控温精度高。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例1提供的感受器进行电磁感应进行加热过程中电流-温度对应关系曲线;
图2是本申请实施例2提供的感受器进行电磁感应进行加热过程中电流-温度对应关系曲线;
图3是本申请实施例3提供的感受器进行电磁感应进行加热过程中电流-温度对应关系曲线;
图4是本申请实施例4提供的感受器进行电磁感应进行加热过程中电流-温度对应关系曲线;
图5是现有技术中采用常规物理贴合方式制备的感受器采用电磁感应进行加热过程中电阻-温度关系曲线。
具体实施方式
提供下述实施例是为了更好地进一步理解本申请,并不局限于所述最佳实施方式,不对本申请的内容和保护范围构成限制,任何人在本申请的启示下或是将本申请与其他现有技术的特征进行组合而得出的任何与本申请相同或相近似的产品,均落在本申请的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例1
本实施例提供一种复合感应加热感受器,其原料组成包括:
感受器两组分分别为低居里点温度材料和高居里点温度材料,低居里温度材料为镍,高居里点温度材料为不锈钢,不锈钢为400系不锈钢,本实施例中为不锈钢430。
1)将50g镍和50g不锈钢430粉末混合,加入30g乙酸乙酯、20g正丁醇、3g 5%的PVB溶液、1g OP分散剂,放入球磨罐中进行球磨,球磨3小时后取出即得浆料;
2)通过流延的方法制备得到素坯,将所得素坯叠层后进行温等静压得到单层待烧坯;其中,温等静压处理的温度为75℃,时间为0.5h,压力为40MPa;
3)将上述成型的待烧胚体放入真空炉中进行排胶烧结,升温速度为3℃/min,升温至450℃后进行保温,保温时间为60min,随后以5℃/min速度升温至1250℃,保温30min,保温结束后随炉冷却;
4)上述烧结体出炉后进行裁剪即得所需感受器成品。
按上述两种组分及工艺制得的双组分复合感应加热感受器,在通过电磁感应进行加热(电磁加热频率6.78MHz)的过程中存在单调稳定的电流-温度对应关系(如图1所示,I1和I2分别是电流拐点,其对应温度为T1和T2),在电流突变阶段所对应的不同温度的这一区间(I1和I2对应的T1和T2温度区间),可以作为感受器温度的控制区间。此外,该复合材料感受器具有一个能被加热到的最高温度的特性,如图1所示,电流和温度都不继续增加,这一特性可在感受器组件中起到温度自保护作用。
实施例2
本实施例提供一种复合感应加热感受器,与实施例1相比,区别在于,镍与不锈钢430的质量比为44.5:55.5。
本实施例提供的感受器进行电磁感应进行加热过程中电流-温度对应关系曲线如图2所示。
实施例3
本实施例提供一种复合感应加热感受器,与实施例1相比,区别在于,采 用不锈钢420代替不锈钢430。
本实施例提供的感受器进行电磁感应进行加热过程中电流-温度对应关系曲线如图3所示。
实施例4
本实施例提供一种复合感应加热感受器,与实施例1相比,区别在于,采用镍合金1J36代替镍。
本实施例提供的感受器进行电磁感应进行加热过程中电流-温度对应关系曲线如图4所示。
测试例(实施例2的测试例)
对本申请实施例2提供的加热体进行测试,具体包括
第一步:将所制备感应金属片切割成宽度8.6mm和长度16mm的标准尺寸;
第二步:在上述标准尺寸金属片上贴合热电偶,热电偶用于测温;
第三步:将上述贴合热电偶的感应加热片置于电磁感应加热线圈正中心内部位置,并将发热体固定;
第四步:设置电磁感应加热线圈电压为7.8V,设置电流分别为2.1,2.15,2.2,2.25和2.3A,分别读取热电偶在不同电流模式下的稳定温度(加热60s,测试最终的稳定温度)。
第五步:重复步骤1-4,测试4个发热片,评估发热片一致性。
测试结果如下:就单个发热片而言,电流与感应片温度有一一对应关系;就不同发热体(随机选取4个发热片测试发热片一致性)而言,发热片一致性较好,在不同电流下不同金属片的控温温度正负偏差在3℃以内,具体测试结果见下表(其它实施例的控温温度正负偏差也在3℃以内,不在一一展示具体测试结果):
表1

从上述实施例所得电流-温度对应关系曲线可知,本申请提供的复合感应加热感受器,通过对两种材料组分、组分配比进行调整适配,可获得不同控温温度区间和居里温度的感受器,极大提高了感受器的可适用性,突破了决定感受器控温温度点的第二感受器的材料选择的局限性。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种复合感应加热感受器,其特征在于,原料包括:第一感受器材料和第二感受器材料,将二者进行混合,烧结得到所述复合感应加热感受器。
  2. 根据权利要求1所述的复合感应加热感受器,其特征在于,所述第一感受器材料的居里温度在400-1000℃之间。
  3. 根据权利要求2所述的复合感应加热感受器,其特征在于,所述第一感受器材料选自不锈钢,碳钢,铁或铁基合金中的至少一种。
  4. 根据权利要求1所述的复合感应加热感受器,其特征在于,所述第二感受器材料的居里温度在200-400℃之间;
    优选地,在380℃以上。
  5. 根据权利要求4所述的复合感应加热感受器,其特征在于,所述第二感受器材料选自镍,镍基合金或因瓦合金中的至少一种。
  6. 根据权利要求1-5任一项所述的复合感应加热感受器,其特征在于,所述第一感受器材料与第二感受器材料的质量比为(3-7):(7-3)。
  7. 一种权利要求1-6任一项所述的复合感应加热感受器的制备方法,其特征在于,包括以下步骤:
    S1,将第一感受器材料与第二感受器材料混合,制浆,得混合浆料;
    S2,将所述混合浆料流延,得到素坯,叠层,温等静压处理,得到待烧坯;
    S3,将所得待烧坯进行排胶,烧结。
  8. 根据权利要求7所述的复合感应加热感受器的制备方法,其特征在于,所述温等静压处理的温度为65-85℃,时间为0.1-1h,压力为5-45MPa。
  9. 根据权利要求7所述的复合感应加热感受器的制备方法,其特征在于,所述排胶处理的温度为250-550℃,时间为1-10h;
    和/或,所述烧结温度为1100-1400℃,时间为0.5-15h。
  10. 一种权利要求1-6任一项所述的复合感应加热感受器或权利要求7-9任一项所述的制备方法制备得到的复合感应加热感受器在磁感应加热领域中的应用。
PCT/CN2023/093579 2022-08-19 2023-05-11 一种复合感应加热感受器及其制备方法和应用 WO2024037065A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210999605.0 2022-08-19
CN202210999605.0A CN115191670A (zh) 2022-08-19 2022-08-19 一种复合感应加热感受器及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2024037065A1 true WO2024037065A1 (zh) 2024-02-22

Family

ID=83572126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093579 WO2024037065A1 (zh) 2022-08-19 2023-05-11 一种复合感应加热感受器及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115191670A (zh)
WO (1) WO2024037065A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115191670A (zh) * 2022-08-19 2022-10-18 深圳麦克韦尔科技有限公司 一种复合感应加热感受器及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105307525A (zh) * 2014-05-21 2016-02-03 菲利普莫里斯生产公司 气雾形成基质和气雾递送系统
CN210726703U (zh) * 2019-08-14 2020-06-12 湖南中烟工业有限责任公司 具有多孔隔热层的发热体及低温烟具
CN112261881A (zh) * 2018-06-14 2021-01-22 尼科创业贸易有限公司 感应加热系统和加热器
WO2021245190A1 (en) * 2020-06-05 2021-12-09 Philip Morris Products S.A. Susceptor assembly comprising one or more composite susceptor particles
CN113967738A (zh) * 2020-07-24 2022-01-25 四川三联新材料有限公司 气雾生成装置、感受器及制备方法
CN115191670A (zh) * 2022-08-19 2022-10-18 深圳麦克韦尔科技有限公司 一种复合感应加热感受器及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105307525A (zh) * 2014-05-21 2016-02-03 菲利普莫里斯生产公司 气雾形成基质和气雾递送系统
CN112261881A (zh) * 2018-06-14 2021-01-22 尼科创业贸易有限公司 感应加热系统和加热器
CN210726703U (zh) * 2019-08-14 2020-06-12 湖南中烟工业有限责任公司 具有多孔隔热层的发热体及低温烟具
WO2021245190A1 (en) * 2020-06-05 2021-12-09 Philip Morris Products S.A. Susceptor assembly comprising one or more composite susceptor particles
CN113967738A (zh) * 2020-07-24 2022-01-25 四川三联新材料有限公司 气雾生成装置、感受器及制备方法
CN115191670A (zh) * 2022-08-19 2022-10-18 深圳麦克韦尔科技有限公司 一种复合感应加热感受器及其制备方法和应用

Also Published As

Publication number Publication date
CN115191670A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
WO2020151597A1 (zh) 烟支加热组件及电加热吸烟装置
WO2024037065A1 (zh) 一种复合感应加热感受器及其制备方法和应用
CN106376107B (zh) 大功率氮化硅陶瓷加热片及其内软外硬的制作方法
KR101470046B1 (ko) 세라믹스 히터 및 그 제조 방법
CN102693793A (zh) 一种发热电阻材料、含有其的陶瓷加热元件、制备及应用
CN105788786B (zh) Ntc热敏电阻元件的制造方法
CN105330277B (zh) 负温度系数热敏电阻生料组合物及应用
WO2023029660A1 (zh) 电磁感应发热层及其制备方法、雾化芯及其制备方法
WO2019119981A1 (zh) 一种复合热敏电阻芯片及其制备方法
WO2024037088A1 (zh) 一种多层感应加热体及其制备方法和应用
WO2021052233A1 (zh) 烟具
WO2023083016A1 (zh) 发热组件、发热组件的制备方法及电子雾化装置
WO2021204282A1 (zh) 一种金属硅化物基发热材料及其制备方法
CN105645987A (zh) 一种电场辅助低温快速烧结多孔陶瓷的方法
CN105948726A (zh) 一种纳米晶氧化铝陶瓷的制备方法
JP5485275B2 (ja) セラミックス材料、このセラミックス材料の製造方法、およびこのセラミックス材料からなる電子セラミックス素子
WO2023029465A1 (zh) 一种发热元件及其制备方法
KR102543746B1 (ko) 세라믹 발열체, 및 이의 제조 방법 및 용도
CN105428035B (zh) 一种电子元件及其制造方法
CN104310984B (zh) 一种热敏陶瓷材料及其制备方法
Li et al. Densification evolution of TiO2 ceramics during sintering based on the master sintering curve theory
CN105906347A (zh) 一种纳米晶氮化铝陶瓷的制备方法
CN108033774B (zh) 纳米ntc热敏材料的制备方法
CN109485402A (zh) 一种改善锰钴铁基热敏陶瓷烧结性的方法
CN109293343B (zh) 负温度系数热磁复合敏感电阻材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853972

Country of ref document: EP

Kind code of ref document: A1