CN105906347A - 一种纳米晶氮化铝陶瓷的制备方法 - Google Patents

一种纳米晶氮化铝陶瓷的制备方法 Download PDF

Info

Publication number
CN105906347A
CN105906347A CN201610257715.4A CN201610257715A CN105906347A CN 105906347 A CN105906347 A CN 105906347A CN 201610257715 A CN201610257715 A CN 201610257715A CN 105906347 A CN105906347 A CN 105906347A
Authority
CN
China
Prior art keywords
aluminium nitride
nitride ceramics
sintering
temperature
nanocrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610257715.4A
Other languages
English (en)
Inventor
刘金铃
安立楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201610257715.4A priority Critical patent/CN105906347A/zh
Publication of CN105906347A publication Critical patent/CN105906347A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种纳米晶氮化铝陶瓷的制备方法,采用微米氮化铝粉体作为原料,在放电等离子烧结炉中,通过低温预烧和高温烧结的工艺制备具有均匀超细晶或纳米晶结构的氮化铝陶瓷。本发明方法借助放电等离子烧结炉存在脉冲直流电场的特殊条件,通过低温预烧在脉冲直流电场条件下实现微米晶氮化铝粉体的细化,高温烧结可以保证低温细化的晶粒烧结在一起。采用微米级别的粉体作为原料可以大幅降低成本。本工艺还具有优化氮化铝陶瓷显微结构的良好效果,从而可以实现更优异的热物理性能和机械性能。

Description

一种纳米晶氮化铝陶瓷的制备方法
技术领域
本发明涉及一种纳米晶氮化铝陶瓷的制备方法,是一种以微米氮化铝粉体为原料,利用放电等离子烧结炉,通过低温预烧和高温烧结工艺制备具有均匀超细晶或纳米晶结构的氮化铝陶瓷的工艺。
背景技术
氮化铝陶瓷具有高热导率、与硅片相匹配的热膨胀系数、低介电常数、绝缘性能好,以及良好的力学性能等特点,在高新技术领域得到了广泛的应用。它所展现的优异的热物理性能和机械性能,尤其在微电子工业倍受瞩目,其使用范围也不断拓展。与传统的氮化铝陶瓷相比,具有均匀超细晶或纳米晶结构的氮化铝陶瓷展现出更优异的性能,例如更高的透光率和更高的强度。
烧结过程中晶粒的快速长大是制备致密的超细晶和纳米结构氮化铝陶瓷面临的一大难题。目前制备超细晶和纳米结构氮化铝陶瓷一般是通过抑制晶粒生长的方法来实现的,常用的制备方法包括高压烧结法、两步烧结法、微波烧结法、放电等离子烧结法等。例如:XueliDu等用合成的100nm氮化铝粉体为原料,通过放电等离子烧结,在1500和1600℃下制备了纳米晶氮化铝陶瓷。上面涉及的纳米陶瓷的制备方法,都要求使用纳米粉体为原料,纳米粉体制备比较困难,而且由于活性较高易于污染,提高了工厂化生产成本。通过借助放电等离子烧结技术,采用低温预烧和高温烧结的方法,可以实现利用微米粉体为原料制备超细晶和纳米结构氮化铝陶瓷。
本发明涉及到一种纳米氮化铝陶瓷的制备方法,能够适用于纳米氮化铝陶瓷材料,能够有效的用于制备具有均匀超细晶或纳米晶结构的氮化铝陶瓷。
发明内容
鉴于现有技术的以上不足,本发明的目的是提出一种纳米晶氮化铝陶瓷的制备方法,使之克服现有技术的以上缺点,能够有效地实现纳米晶氮化铝陶瓷的制备。
本发明的技术方案包括以下技术手段:一种纳米晶氮化铝陶瓷的制备方法,采用微米氮化铝粉体作为原料,在放电等离子烧结的条件下,通过低温预烧和高温烧结的工艺,在放电等离子烧结炉中制备纳米晶氮化铝陶瓷,具体步骤包含:
1)陶瓷粉体的预压:
将粒度为1-10μm氮化铝粉体倒入石墨模具中,在5-20MPa压强下模压60s;
2)陶瓷粉体的烧结:
将模压好的试样置入放电等离子烧结炉中,以150℃/min的升温速率加热到1000-1400℃,并在此温度下保温5-60min;保温结束后,继续以150℃/min的升温速率加热到1500-2000℃,并在此温度下保温5-60min;随后自然冷却到室温;烧结过程中,压力先预加载到5kN,低温预烧时再缓慢加压到30-100MPa;加热方式为脉冲电流加热,循环脉冲过程设置为单个脉冲时间3-5ms,连续脉冲12次后停歇6-10ms;最终获得具有均匀超细晶或纳米晶的氮化铝陶瓷。
本发明氮化铝纳米晶陶瓷的制备方法,借助放电等离子烧结的方法,采用低温预烧和高温烧结的工艺,实现纳米晶氮化铝陶瓷的制备,有效地减少了能耗和降低了原料的要求。借助放电等离子烧结炉存在脉冲直流电场这一特殊条件,通过低温预烧实现微米晶氮化铝的细化,高温条件可以保证低温细化的晶粒烧结在一起。采用微米级别的粉体作为原料可以大幅降低成本。本工艺还具有优化氮化铝陶瓷显微结构的良好效果,从而可以实现更优异的热物理性能和机械性能。
附图说明
图1:本发明所采用的5微米氮化铝粉体的图片。
图2:本发明所制备的纳米晶氮化铝陶瓷的图片(预烧1100℃/10min,烧结温度1750℃/5min)。
图3:本发明所制备的纳米晶氮化铝陶瓷的图片(预烧1100℃/15min,烧结温度1750℃/5min)。
图4:本发明所制备的纳米晶氮化铝陶瓷的图片(预烧1250℃/10min,烧结温度1750℃/5min)。
图5:本发明所制备的纳米晶氮化铝陶瓷的图片(预烧1250℃/15min,烧结温度1750℃/5min)。
具体实施方式
实施例1:采用低温预烧、高温烧结的工艺制备氮化铝纳米晶陶瓷具体制备步骤如下:
1.陶瓷粉体的预压:
将2.5g粒度为5μm氮化铝粉体倒入Φ20mm石墨模具中,在5MPa压强下模压60s;
2.陶瓷粉体的烧结:
将模压好的试样置入放电等离子烧结炉中,以150℃/min的升温速率加热到1100℃,并在此温度下保温10min;保温结束后,继续以150℃/min的升温速率加热到1750℃,并在此温度下保温5min;以100℃/min的降温速率到600℃,随后自然冷却到室温。烧结过程中,压力先预加载到5kN,低温预烧时再缓慢加压到50MPa。加热方式为脉冲电流加热,循环脉冲过程设置为单个脉冲时间3.3ms,连续脉冲12次后停歇6.6ms。最终获得具有均匀纳米晶的氧化铝陶瓷。
实施例2:采用低温预烧、高温烧结的工艺制备氮化铝纳米晶陶瓷具体制备步骤如下:
1.陶瓷粉体的预压:
将2.5g粒度为5μm氮化铝粉体倒入Φ20mm石墨模具中,在5MPa压强下模压60s;
2.陶瓷粉体的烧结:
将模压好的试样置入放电等离子烧结炉中,以150℃/min的升温速率加热到1100℃,并在此温度下保温15min;保温结束后,继续以150℃/min的升温速率加热到1750℃,并在此温度下保温5min;以100℃/min的降温速率到600℃,随后自然冷却到室温。烧结过程中,压力先预加载到5kN,低温预烧时再缓慢加压到50MPa。加热方式为脉冲电流加热,循环脉冲过程设置为单个脉冲时间3.3ms,连续脉冲12次后停歇6.6ms。最终获得具有均匀纳米晶的氧化铝陶瓷。
实施例3:采用低温预烧、高温烧结的工艺制备氮化铝纳米晶陶瓷具体制备步骤如下:
1.陶瓷粉体的预压:
将2.5g粒度为5μm氮化铝粉体倒入Φ20mm石墨模具中,在5MPa压强下模压60s;
2.陶瓷粉体的烧结:
将模压好的试样置入放电等离子烧结炉中,以150℃/min的升温速率加热到1250℃,并在此温度下保温10min;保温结束后,继续以150℃/min的升温速率加热到1750℃,并在此温度下保温5min;以100℃/min的降温速率到600℃,随后自然冷却到室温。烧结过程中,压力先预加载到5kN,低温预烧时再缓慢加压到50MPa。加热方式为脉冲电流加热,循环脉冲过程设置为单个脉冲时间3.3ms,连续脉冲12次后停歇6.6ms。最终获得具有均匀纳米晶的氧化铝陶瓷。
实施例4:采用低温预烧、高温烧结的工艺制备氮化铝纳米晶陶瓷具体制备步骤如下:
1.陶瓷粉体的预压:
将2.5g粒度为5μm氮化铝粉体倒入Φ20mm石墨模具中,在5MPa压强下模压60s;
2.陶瓷粉体的烧结:
将模压好的试样置入放电等离子烧结炉中,以150℃/min的升温速率加热到1250℃,并在此温度下保温15min;保温结束后,继续以150℃/min的升温速率加热到1750℃,并在此温度下保温5min;以100℃/min的降温速率到600℃,随后自然冷却到室温。烧结过程中,压力先预加载到5kN,低温预烧时再缓慢加压到50MPa。加热方式为脉冲电流加热,循环脉冲过程设置为单个脉冲时间3.3ms,连续脉冲12次后停歇6.6ms。最终获得具有均匀纳米晶的氧化铝陶瓷。

Claims (6)

1.一种纳米晶氮化铝陶瓷的制备方法,利用放电等离子烧结设备,首先通过脉冲直流电场的持续作用对微米氮化铝粉体在低温下进行预处理,然后加热至高温进行烧结的工艺,采用微米氮化铝粉体作为原料,在放电等离子烧结炉中经过低温预烧和高温烧结两个步骤就可以实现均匀超细晶或纳米晶氮化铝陶瓷的制备,从而获得更优异的热物理性能和机械性能;具体步骤包含:
1)陶瓷粉体的预压:
将粒度为1-10μm氮化铝粉体倒入石墨模具中,在5-20MPa压强下模压60s;
2)陶瓷粉体的烧结:
将模压好的试样置入放电等离子烧结炉中,以150℃/min的升温速率加热到1000-1400℃,并在此温度下保温5-60min;保温结束后,继续以150℃/min的升温速率加热到1500-2000℃,并在此温度下保温5-60min;随后自然冷却到室温;烧结过程中,压力先预加载到5kN,低温预烧时再缓慢加压到30-100MPa;加热方式为脉冲电流加热,循环脉冲过程设置为单个脉冲时间3-5ms,连续脉冲12次后停歇6-10ms;最终获得具有均匀超细晶或纳米晶的氮化铝陶瓷。
2.根据权利要求1所述的纳米晶氮化铝陶瓷的制备方法,其特征在于,所述步骤1)中,氮化铝粉体的粒度为1-10μm。
3.根据权利要求1所述的纳米晶氮化铝陶瓷的制备方法,其特征在于,所述步骤2)中,试样以150℃/min的升温速率到1000-1400℃时,在此温度下保温5-60min。
4.根据权利要求1所述的纳米晶氮化铝陶瓷的制备方法,其特征在于,所述步骤2)中,试样继续以150℃/min的升温速率到1500-2000℃时,在此温度下保温5-60min。
5.根据权利要求1所述的纳米晶氮化铝陶瓷的制备方法,其特征在于,所述步骤2)中,加热方式为脉冲电流加热。
6.根据权利要求1所述的纳米晶氮化铝陶瓷的制备方法,其特征在于,所述步骤2)中,循环脉冲过程设置为单个脉冲时间3-5ms,连续脉冲12次后停歇6-10ms。
CN201610257715.4A 2016-04-22 2016-04-22 一种纳米晶氮化铝陶瓷的制备方法 Pending CN105906347A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610257715.4A CN105906347A (zh) 2016-04-22 2016-04-22 一种纳米晶氮化铝陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610257715.4A CN105906347A (zh) 2016-04-22 2016-04-22 一种纳米晶氮化铝陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN105906347A true CN105906347A (zh) 2016-08-31

Family

ID=56751728

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610257715.4A Pending CN105906347A (zh) 2016-04-22 2016-04-22 一种纳米晶氮化铝陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN105906347A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108147821A (zh) * 2017-12-21 2018-06-12 北京华进创威电子有限公司 一种高纯多孔氮化铝雏晶料源制备方法
CN108675795A (zh) * 2018-07-03 2018-10-19 北京科技大学 一种sps烧结制备高导热和高强度氮化铝陶瓷的方法
CN109553414A (zh) * 2018-12-28 2019-04-02 西南交通大学 一种直流电场辅助的氧化锆陶瓷塑性加工方法
CN111675533A (zh) * 2020-05-29 2020-09-18 北方民族大学 高电导率β"-Al 2O 3陶瓷电解质的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1793008A (zh) * 2005-11-23 2006-06-28 中国科学院上海硅酸盐研究所 一种导电氧化铝基纳米陶瓷材料的制备方法
CN101255056A (zh) * 2008-04-03 2008-09-03 燕山大学 一种超塑性纳米a1n陶瓷材料的制备方法
CN102071348A (zh) * 2010-12-18 2011-05-25 东北大学 一种超细晶粒纳米结构氧化物弥散强化钢的制备方法
CN102137826A (zh) * 2008-08-29 2011-07-27 Skf股份公司 陶瓷部件的制造方法
CN104313380A (zh) * 2014-10-27 2015-01-28 北京工业大学 一种分步烧结制备高致密度纳米晶硬质合金的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1793008A (zh) * 2005-11-23 2006-06-28 中国科学院上海硅酸盐研究所 一种导电氧化铝基纳米陶瓷材料的制备方法
CN101255056A (zh) * 2008-04-03 2008-09-03 燕山大学 一种超塑性纳米a1n陶瓷材料的制备方法
CN102137826A (zh) * 2008-08-29 2011-07-27 Skf股份公司 陶瓷部件的制造方法
CN102071348A (zh) * 2010-12-18 2011-05-25 东北大学 一种超细晶粒纳米结构氧化物弥散强化钢的制备方法
CN104313380A (zh) * 2014-10-27 2015-01-28 北京工业大学 一种分步烧结制备高致密度纳米晶硬质合金的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU, JINLING: "Grain refining in spark plasma sintering Al2O3 ceramics", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
刘军芳: "放电等离子烧结(SPS)技术烧结致密AlN陶瓷", 《陶瓷学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108147821A (zh) * 2017-12-21 2018-06-12 北京华进创威电子有限公司 一种高纯多孔氮化铝雏晶料源制备方法
CN108147821B (zh) * 2017-12-21 2021-04-27 北京华进创威电子有限公司 一种高纯多孔氮化铝雏晶料源制备方法
CN108675795A (zh) * 2018-07-03 2018-10-19 北京科技大学 一种sps烧结制备高导热和高强度氮化铝陶瓷的方法
CN109553414A (zh) * 2018-12-28 2019-04-02 西南交通大学 一种直流电场辅助的氧化锆陶瓷塑性加工方法
CN111675533A (zh) * 2020-05-29 2020-09-18 北方民族大学 高电导率β"-Al 2O 3陶瓷电解质的制备方法
CN111675533B (zh) * 2020-05-29 2022-06-17 北方民族大学 高电导率β"-Al 2O 3陶瓷电解质的制备方法

Similar Documents

Publication Publication Date Title
CN107182139B (zh) 一种金属膜多孔陶瓷发热体及其应用
Niu et al. Ultra-fast densification of boron carbide by flash spark plasma sintering
CN105906347A (zh) 一种纳米晶氮化铝陶瓷的制备方法
CN110577399B (zh) 基于感应加热的多场耦合闪速烧结系统
CN104058772B (zh) 一种陶瓷复合材料基板及其制备工艺
CN105948726A (zh) 一种纳米晶氧化铝陶瓷的制备方法
CN106630974A (zh) 一种低温快速烧结陶瓷的闪光烧结方法和制得的陶瓷及其装置
CN104529421B (zh) 一种细晶莫来石陶瓷的制备方法
CN108558398A (zh) 一种脉冲放电室温闪速烧结纳米陶瓷材料的方法
CN105236982B (zh) 氮化铝增强的石墨基复合材料及制备工艺
Garcia et al. Advanced ceramics with dense and fine-grained microstructures through fast firing
CN102170716B (zh) 氮化硅发热体的制作方法
CN108409333B (zh) 一种AlMgB14-TiB2/Ti梯度功能复合材料及其制备方法
CN106376107B (zh) 大功率氮化硅陶瓷加热片及其内软外硬的制作方法
CN109400164A (zh) 一种max相/氮化物陶瓷层状梯度复合材料及其快速制备方法和应用
CN102173819A (zh) 一种电真空陶瓷管壳的制备方法
WO2022089379A1 (zh) 一种基于放电等离子烧结的氮化硅/碳化钛陶瓷材料制备方法
Su et al. Flash sintering of lead zirconate titanate ceramics under an alternating current electrical field
CN105645987A (zh) 一种电场辅助低温快速烧结多孔陶瓷的方法
CN103626501A (zh) 一种SiC陶瓷辊棒的微波烧结方法
Chen et al. Fabrication of YAG transparent ceramics by two-step sintering
CN107164803A (zh) 一种简单控制相变制备β‑氮化硅晶须的方法
CN112174645B (zh) 一种制备致密纳米晶粒陶瓷的方法
CN102964125B (zh) 一种超高温氧化环境下的电致热陶瓷发热体的制备方法
CN105314971B (zh) 一种脉冲放电等离子体辅助熔凝处理制备氧化铝基三元共晶自生复合陶瓷的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160831

RJ01 Rejection of invention patent application after publication