WO2024034126A1 - 吸引器 - Google Patents

吸引器 Download PDF

Info

Publication number
WO2024034126A1
WO2024034126A1 PCT/JP2022/030757 JP2022030757W WO2024034126A1 WO 2024034126 A1 WO2024034126 A1 WO 2024034126A1 JP 2022030757 W JP2022030757 W JP 2022030757W WO 2024034126 A1 WO2024034126 A1 WO 2024034126A1
Authority
WO
WIPO (PCT)
Prior art keywords
comb
liquid
length
saw
overlapping portion
Prior art date
Application number
PCT/JP2022/030757
Other languages
English (en)
French (fr)
Inventor
行雄 飯島
智行 中野
裕樹 阿部
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2022/030757 priority Critical patent/WO2024034126A1/ja
Publication of WO2024034126A1 publication Critical patent/WO2024034126A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/05Devices without heating means

Definitions

  • the present invention relates to a suction device.
  • the suction device includes a liquid storage section for storing liquid, an IDT constituted by a pair of comb-shaped electrodes, and a piezoelectric element substrate.
  • the IDT includes a SAW chip that atomizes liquid by generated surface acoustic waves, and a liquid supply mechanism that supplies the liquid stored in the liquid storage section to a specific location on the piezoelectric element substrate. a plurality of first comb-shaped electrodes extending from the first electrode body portion toward the second electrode body portion; and a plurality of first comb-shaped electrodes extending from the second electrode body portion toward the first electrode body portion.
  • the liquid supply mechanism includes an extension of the first comb-shaped electrodes and the second comb-shaped electrodes on one side of the IDT.
  • the second feature is that, in the first feature, the device further includes a pedestal on which the piezoelectric element substrate is placed, and the liquid supply mechanism is a through hole provided in the pedestal.
  • the third feature is that in the first feature, the liquid supply mechanism is a through hole provided in the piezoelectric element substrate.
  • a fourth feature is that in the second feature or the third feature, when the length of the overlapping portion is 3.0 mm or more and 10.0 mm or less, one of the two through holes is connected to the first comb-shaped electrode. Within the overlapping range with the two comb-shaped electrodes, it is arranged so as to be parallel to the imaginary line and in contact with a line passing through one end of the overlapping part, and the other of the two through holes is arranged so as to be parallel to the imaginary line within the overlapping range.
  • the gist is that they are arranged parallel to each other and in contact with a line passing through the other end of the overlapping portion.
  • the fifth feature is that in the first feature, the liquid supply mechanism is a tube provided between the liquid storage section and a specific location on the piezoelectric element substrate.
  • a sixth feature is that in any one of the first to fifth features, the length of the overlapping portion is 3.0 mm or more and 10.0 mm or less, and the liquid storage section is arranged such that the first liquid storage section and the second It has two liquid storage parts, one of the two liquid supply mechanisms supplies the liquid stored in the first liquid storage part, and the other of the two liquid supply mechanisms supplies the liquid stored in the second liquid storage part.
  • the purpose is to provide the following.
  • the gist of the seventh feature is that in any of the first to sixth features, the liquid supply mechanism is disposed on one side or both sides of the IDT.
  • An eighth feature is that in any one of the first to seventh features, if the length of the overlapping portion is 0.5 mm or more and 1.5 mm or less, one liquid supply mechanism is arranged on the virtual line.
  • the gist is that
  • FIG. 1 is a plan view showing a SAW chip according to an embodiment.
  • FIG. 2 is an enlarged view of main parts of the IDT shown in FIG. 1.
  • FIG. 2 is a diagram showing the results of simulating the amplitude state of the SAW near the end face of the SAW chip shown in FIG. 1.
  • FIG. 2 is a diagram showing the results of measuring the amplitude state of the SAW near the end face of the SAW chip shown in FIG. 1.
  • FIG. FIG. 2 is a diagram relatively showing the peak value of the SAW amplitude in the atomization region of the SAW chip shown in FIG. 1;
  • It is a schematic diagram showing the suction device concerning a 1st example.
  • FIG. 3 is a schematic diagram showing a suction device according to a second embodiment.
  • FIG. 4 is a diagram relatively showing the results of measuring the amount of atomization using the suction device according to the first example.
  • the suction device includes a liquid storage section for storing liquid, an IDT configured by a pair of comb-shaped electrodes, and a piezoelectric element substrate, and has surface elasticity generated by applying high-frequency power to the pair of comb-shaped electrodes. It includes a SAW chip that atomizes liquid using waves, and a liquid supply mechanism that supplies liquid stored in a liquid storage section to a specific location on a piezoelectric element substrate.
  • the IDT includes a first electrode body portion and a second electrode body portion facing each other, a plurality of first comb-shaped electrodes extending from the first electrode body portion toward a second electrode body portion, and a plurality of first comb-shaped electrodes extending from the second electrode body portion.
  • the liquid supply mechanism One is placed on an imaginary line that bisects the area, and when the length of the overlapping portion is 3.0 mm or more and 10.0 mm or less, two are placed apart from each other with the imaginary line in between.
  • one or two liquid supply mechanisms are arranged depending on the length of the overlapping portion of the comb-shaped electrode pair. Therefore, the arrangement of the liquid supply mechanism can be optimized depending on the length of the overlapping portion of the comb-shaped electrode pair, and the atomization efficiency of the liquid can be improved.
  • FIG. 1 is a plan view showing a SAW chip 10 according to an embodiment.
  • FIG. 2 is an enlarged view of the main parts of the IDT 30 shown in FIG.
  • the SAW chip 10 is used, for example, in a suction device described below.
  • the SAW chip 10 includes a piezoelectric element substrate 20, an IDT 30 configured by an electrode main body portion 31 and a comb-shaped electrode pair 32.
  • the SAW chip 10 atomizes liquid that is stored in a liquid storage section that will be described later and is supplied to a specific location (end surface or surface) of the piezoelectric element substrate 20 by a liquid supply mechanism (for example, a through hole) that will be described later.
  • the SAW chip 10 atomizes the liquid by vibration of the SAW generated by applying high frequency power to the comb-shaped electrode pair 32.
  • the piezoelectric element substrate 20 has a front surface 20F on which the electrode body portion 31 and the comb-shaped electrode pair 32 are arranged, a back surface 20B provided on the opposite side of the front surface 20F, and an end surface 20E between the front surface 20F and the back surface 20B.
  • the SAW chip 10 atomizes the liquid near the end surface 20E.
  • the piezoelectric element substrate 20 includes a piezoelectric material that expands and contracts when electric power is applied.
  • the piezoelectric body should just constitute at least the surface 20F of the piezoelectric element substrate 20.
  • a known piezoelectric body made of ceramic such as quartz, barium titanate, lithium niobate, etc. can be used.
  • the electrode body portion 31 is electrically connected to the power source 40 of the suction device.
  • the electrode body portion 31 includes a first electrode body portion 31A that is integral with a first comb-shaped electrode 32A that is one of the comb-shaped electrode pair 32, and a second electrode body portion 31A that is integral with a second comb-shaped electrode 32B that is the other of the comb-shaped electrode pair 32. It has an electrode main body portion 31B.
  • the first electrode main body portion 31A and the second electrode main body portion 31B are arranged to face each other in a direction B orthogonal to the direction A of movement of the SAW. High frequency power output from the power source 40 is applied to the comb-shaped electrode pair 32 through the electrode body portion 31.
  • the comb-shaped electrode pair 32 has a first comb-shaped electrode 32A and a second comb-shaped electrode 32B.
  • the first comb-shaped electrodes 32A and the second comb-shaped electrodes 32B are arranged alternately in the SAW traveling direction A.
  • the first comb-shaped electrode 32A has a shape extending from the first electrode body portion 31A along the orthogonal direction B toward the second electrode body portion 31B.
  • the second comb-shaped electrode 32B has a shape extending from the second electrode body portion 31B along the orthogonal direction B toward the first electrode body portion 31A.
  • the comb-shaped electrode pair 32 is made of metal or the like formed by sputtering or vapor deposition.
  • the length of the overlapping portion of the first comb-shaped electrode 32A and the second comb-shaped electrode 32B in the extending direction (orthogonal direction B) is referred to as the overlapping portion length H.
  • FIG. 3 is a diagram showing the results of simulating the amplitude state of the SAW near the end face 20E of the SAW chip 10 shown in FIG. 1.
  • the overlapping portion lengths H are 1.5 mm and 2.5 mm.
  • the lower row shows the amplitude state of the SAW on the surface 20F of the piezoelectric element substrate 20 (the vertical direction in the figure is the traveling direction A of the SAW, and the horizontal direction in the figure is the orthogonal direction B).
  • the upper row shows a superposition of the amplitude states of a plurality of SAWs at the end surface 20E (the left-right direction in the figure is orthogonal direction B).
  • FIG. 4 is a diagram showing the results of measuring the amplitude state of the SAW near the end surface 20E of the SAW chip 10 shown in FIG. 1.
  • the overlapping portion lengths H are 1.5 mm, 2.0 mm, and 3.0 mm.
  • the column of the amplitude state of the SAW in FIG. 4 is from the end of the comb-shaped electrode pair 32 in the SAW chip 10 to the end surface 20E (the vertical direction in the figure is the SAW traveling direction A, and the horizontal direction in the figure is the orthogonal direction B). It also shows the amplitude state of the SAW at the end surface 20E.
  • the SAW amplitude reaches its peak in the region surrounded by the broken line (region with a large difference in shading). Therefore, it can be inferred that the amplitude of the atomized liquid is the largest in this region, and atomization is most likely to occur.
  • the region of the SAW chip 10 where atomization is most likely to occur for example, the region surrounded by the broken line in FIG. 4, is referred to as the atomization region.
  • the peak of the SAW amplitude spreads to the left and right. Specifically, when the SAW amplitude peak exists in two parts, the SAW amplitude peaks near both ends of the overlapping portion (see FIG. 2) of the first comb-shaped electrode 32A and the second comb-shaped electrode 32B. You can see that it is.
  • FIG. 5 is a diagram relatively showing the peak value of the SAW amplitude in the atomization region of the SAW chip 10 shown in FIG. 1.
  • the horizontal axis of FIG. 5 indicates the overlapping portion length H (1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm, and 3.5 mm), and the vertical axis indicates the relative peak value of the SAW amplitude. There is. Further, when there are two peak values of the SAW amplitude (see FIG. 4), such as when the overlapping portion length H is 3.0 mm, the higher peak value is indicated. From FIG. 5, it can be seen that when the overlapping portion length H is 1.5 mm, the peak value of the SAW amplitude becomes large because the peak of the SAW amplitude is concentrated in the center.
  • the through holes provided in the pedestal are near the end surface 20E of the SAW chip 10 and are spaced apart from each other across an imaginary line that bisects the length H of the overlapping portion in the direction of travel A of the SAW. It is desirable to have two such locations.
  • the length H of the overlapping portion is 0.5 mm or more. Further, in order to prevent the SAW chip 10 from becoming too large, the length H of the overlapping portion is desirably 10.0 mm or less.
  • the diameter of the through-hole in order to supply a sufficient amount of liquid, the diameter of the through-hole must be at least 1.0 mm, so when arranging two through-holes, the distance between the through-holes should be taken into consideration and the overlap length It is desirable that the height H is 3.0 mm or more. That is, when the length H of the overlapping portion is less than 3.0 mm, it is desirable to arrange one through hole.
  • FIG. 6 is a schematic diagram showing an aspirator 100A according to the first embodiment.
  • the suction device 100A includes the SAW chip 10 shown in FIG. 1, a liquid storage section 50 that stores liquid, and a pedestal 60 on which the SAW chip 10 (piezoelectric element substrate 20) is placed.
  • a through hole 61 (liquid supply mechanism) is provided in the pedestal 60 and supplies the liquid stored in the liquid storage section 50 to the end surface 20E or surface 20F (specific location) of the piezoelectric element substrate 20.
  • the length H of the overlapping portion is 0.5 mm or more and less than 3.0 mm, preferably 1.5 mm or less, and the through hole 61 is formed near the end surface 20E of the SAW chip 10 on one side of the IDT 30. and one is placed on a virtual line that bisects the overlapping portion length H into two along the traveling direction A of the SAW.
  • the through hole 61 is formed on an imaginary line that bisects the overlapping portion length H into two along the traveling direction A of the SAW. By arranging one, the atomization efficiency of the liquid can be improved.
  • the through holes 61 are arranged on both sides of the IDT 30 in FIG. 6, the present invention is not limited thereto, and the through holes 61 may be arranged only on one side of the IDT 30.
  • the through hole 61 is provided in the pedestal 60, but the present invention is not limited to this, and the through hole may be provided in the piezoelectric element substrate 20. Even in this case, one through hole is arranged on one side of the IDT 30 on an imaginary line that bisects the overlapping portion length H into two along the SAW traveling direction A. Furthermore, the liquid may be dropped from the top of the piezoelectric element substrate 20 onto an imaginary line that bisects the length H of the overlapping portion along the traveling direction A of the SAW.
  • a tube (liquid supply mechanism) provided between the liquid storage section 50 and the end surface 20E or surface 20F of the piezoelectric element substrate 20 may be used. Even in this case, the tube is located near the end surface 20E of the SAW chip 10 on one side of the IDT 30 and on an imaginary line that bisects the length H of the overlapped portion along the SAW traveling direction A. One is placed.
  • the through holes 61 arranged on both sides of the IDT 30 are both connected to one liquid storage section 50, but the invention is not limited to this, and the through holes 61 arranged on both sides of the IDT 30 are connected to each other. may be connected to a liquid reservoir. In this case, different liquids can be atomized through the through holes 61 arranged on both sides of the IDT 30. For example, two types of liquids that do not dissolve in each other can be atomized simultaneously and mixed at a later stage.
  • FIG. 7 is a schematic diagram showing an aspirator 100B according to the second embodiment.
  • the suction device 100B includes the SAW chip 10 shown in FIG. ) is mounted, and a through-hole 61 (liquid supply mechanism).
  • the length H of the overlapping portion is 3.0 mm or more and 10.0 mm or less
  • the through hole 61 is located near the end surface 20E of the SAW chip 10 on one side of the IDT 30 and in the traveling direction of the SAW. Two of them are spaced apart from each other across an imaginary line that bisects the length H of the overlapping portion along A.
  • the suction device 100B since the amplitude peak of the SAW is divided into two parts, the imaginary line dividing the overlapping portion length H into two along the traveling direction A of the SAW is inserted.
  • the through holes 61 are arranged on both sides of the IDT 30 in FIG. 7, the present invention is not limited thereto, and the through holes 61 may be arranged only on one side of the IDT 30.
  • one of the two through holes 61 is parallel to the virtual line within the overlapping range of the first comb-shaped electrode 32A and the second comb-shaped electrode 32B (see FIG. 2). and is arranged so as to be in contact with a line passing through one end of the overlapping portion. Further, in FIG. 7, the other of the two through holes 61 is arranged within the overlapping range so as to be parallel to the virtual line and in contact with a line passing through the other end of the overlapping portion.
  • the amplitude peak of the SAW is divided into two parts, the peak of the SAW is generated near both ends of the overlapping portion of the first comb-shaped electrode 32A and the second comb-shaped electrode 32B (see FIGS. 2 and 4). It can be seen that the amplitude has reached its peak. Therefore, by arranging the two through holes 61 so as to be in contact with the lines passing through the ends of the overlapping portions, it is possible to further improve the atomization efficiency of the liquid.
  • the through hole 61 is provided in the pedestal 60, but the present invention is not limited to this, and the through hole may be provided in the piezoelectric element substrate 20.
  • two through holes are arranged on one side of the IDT 30, spaced apart from each other across an imaginary line that bisects the length H of the overlapping portion along the traveling direction A of the SAW.
  • the liquid may be dropped from the top of the piezoelectric element substrate 20 at two locations spaced apart from each other across an imaginary line that bisects the overlapping portion length H along the SAW traveling direction A.
  • a tube (liquid supply mechanism) provided between the liquid storage section 50 and the end surface 20E or surface 20F of the piezoelectric element substrate 20 may be used.
  • the tube is located near the end surface 20E of the SAW chip 10 on one side of the IDT 30, and along the SAW traveling direction A, the tube is attached to an imaginary line that bisects the length H of the overlapping portion. Two are placed spaced apart from each other. Note that one tube may be bifurcated and the liquid may be supplied to two locations spaced apart from each other across an imaginary line that bisects the overlapping portion length H along the SAW traveling direction A.
  • one of the through holes 61 arranged on both sides of the IDT 30 is connected to the first liquid storage section 51, and the liquid stored in the first liquid storage section 51 is supplied to the piezoelectric element substrate 20, and the IDT 30
  • the other of the through holes 61 arranged on both sides of is connected to the second liquid storage section 52 , and the liquid stored in the second liquid storage section 52 is supplied to the piezoelectric element substrate 20 .
  • different liquids can be atomized through the two through holes 61 on one side of the IDT 30.
  • two types of liquids that do not dissolve in each other can be atomized simultaneously and mixed at a later stage.
  • a total of four through holes 61 arranged on both sides of the IDT 30 may be connected to different liquid storage sections.
  • a total of four through holes 61 arranged on both sides of the IDT 30 can atomize different liquids. For example, up to four types of liquids that do not dissolve in each other can be atomized simultaneously and mixed at a later stage.
  • a total of four through holes 61 arranged on both sides of the IDT 30 may all be connected to one liquid storage section, or several through holes 61 may be connected to a common liquid storage section. That is, a total of four through holes 61 arranged on both sides of the IDT 30 allow one to four types of liquid to be atomized at the same time.
  • the inventors measured the amount of atomization when the overlapping portion length H was changed in the suction device 100A according to the first example shown in FIG. This measurement was performed by supplying deionized water from the liquid storage section 50 through the through hole 61 to the end surface 20E of the piezoelectric element substrate 20, collecting the atomized water with a filter, and measuring the weight. .
  • FIG. 8 is a diagram relatively showing the results of measuring the amount of atomization using the suction device 100A according to the first example.
  • the overlapping portion lengths H are 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm, 4.0 mm, and 4.5 mm.
  • the horizontal axis in FIG. 8 indicates the applied high frequency power (W), and the vertical axis relatively indicates the amount of atomization per puff.
  • the amount of atomization is the largest when the length H of the overlapping portion is 1.5 mm. It can also be seen that the amount of atomization decreases as the overlapping portion length H increases. This is because, as shown in FIGS. 3 and 4, as the overlap length H increases, the SAW amplitude peak spreads from the center to the left and right, and the SAW amplitude peak moves away from the through hole 61. This is thought to be caused by the Therefore, in order to improve the liquid atomization efficiency, if the overlap length H is long (for example, 3.0 mm or more), two through holes should be arranged on one side of the IDT 30. This can be said to be desirable.

Landscapes

  • Special Spraying Apparatus (AREA)

Abstract

液体の霧化効率を向上させた吸引器を得る。 吸引器であって、液体を貯蔵する液貯蔵部と、櫛形電極対によって構成されるIDTと、圧電素子基板とを有し、櫛形電極対に高周波電力を印加することで生じる表面弾性波によって液体を霧化するSAWチップと、液貯蔵部に貯蔵された液体を、圧電素子基板の特定箇所に供給する液体供給機構と、を備え、液体供給機構は、IDTの一方の側について、第1櫛形電極と第2櫛形電極との延在方向の重複部分の長さが0.5mm以上3.0mm未満である場合に、重複部分の長さを2等分する仮想線上に1つ配置され、重複部分の長さが3.0mm以上10.0mm以下である場合に、仮想線を挟んで互いに離間して2つ配置されることを要旨とする。

Description

吸引器
 本発明は、吸引器に関する。
 従来、櫛形電極対によって構成されるIDT(Interdigital Transducer)を有する圧電素子基板を用いて表面弾性波(SAW:Surface Acoustic Wave)を発生させることによって液体を霧化する技術が知られている(例えば、特許文献1参照)。また、このような技術を香味吸引器に用いることも提案されている(例えば、特許文献2参照)。
特開2012-24646号公報 国際公開第2019/198684号
 第1の特徴は、吸引器であって、液体を貯蔵する液貯蔵部と、櫛形電極対によって構成されるIDTと、圧電素子基板とを有し、櫛形電極対に高周波電力を印加することで生じる表面弾性波によって液体を霧化するSAWチップと、液貯蔵部に貯蔵された液体を、圧電素子基板の特定箇所に供給する液体供給機構と、を備え、IDTは、互いに対向する第1電極本体部分および第2電極本体部分と、第1電極本体部分から第2電極本体部分に向けて延在する複数の第1櫛形電極と、第2電極本体部分から第1電極本体部分に向けて延在し、第1櫛形電極と交互に配置される複数の第2櫛形電極と、を有し、液体供給機構は、IDTの一方の側について、第1櫛形電極と第2櫛形電極との延在方向の重複部分の長さが0.5mm以上3.0mm未満である場合に、重複部分の長さを2等分する仮想線上に1つ配置され、重複部分の長さが3.0mm以上10.0mm以下である場合に、仮想線を挟んで互いに離間して2つ配置されることを要旨とする。
 第2の特徴は、第1の特徴において、圧電素子基板が載置される台座をさらに備え、液体供給機構は、台座に設けられた貫通孔であることを要旨とする。
 第3の特徴は、第1の特徴において、液体供給機構は、圧電素子基板に設けられた貫通孔であることを要旨とする。
 第4の特徴は、第2の特徴または第3の特徴において、重複部分の長さが3.0mm以上10.0mm以下である場合に、2つの貫通孔の一方は、第1櫛形電極と第2櫛形電極との重複範囲内において、仮想線に平行で、かつ重複部分の一方の端部を通る線と接するように配置され、2つの貫通孔の他方は、重複範囲内において、仮想線に平行で、かつ重複部分の他方の端部を通る線と接するように配置されることを要旨とする。
 第5の特徴は、第1の特徴において、液体供給機構は、液貯蔵部と圧電素子基板の特定箇所との間に設けられたチューブであることを要旨とする。
 第6の特徴は、第1の特徴から第5の特徴のいずれかにおいて、重複部分の長さは、3.0mm以上10.0mm以下であり、液貯蔵部は、第1液貯蔵部および第2液貯蔵部を有し、2つの液体供給機構の一方は、第1液貯蔵部に貯蔵された液体を供給し、2つの液体供給機構の他方は、第2液貯蔵部に貯蔵された液体を供給することを要旨とする。
 第7の特徴は、第1の特徴から第6の特徴のいずれかにおいて、液体供給機構は、IDTの一方の側または両側に配置されることを要旨とする。
 第8の特徴は、第1の特徴から第7の特徴のいずれかにおいて、液体供給機構は、重複部分の長さが0.5mm以上1.5mm以下である場合に、仮想線上に1つ配置されることを要旨とする。
実施形態に係るSAWチップを示す平面図である。 図1に示したIDTの要部拡大図である。 図1に示したSAWチップの端面近傍におけるSAWの振幅状態をシミュレーションした結果を示す図である。 図1に示したSAWチップの端面近傍におけるSAWの振幅状態を測定した結果を示す図である。 図1に示したSAWチップの霧化領域におけるSAWの振幅のピーク値を相対的に示す図である。 第1実施例に係る吸引器を示す模式図である。 第2実施例に係る吸引器を示す模式図である。 第1実施例に係る吸引器を用いて霧化量を測定した結果を相対的に示す図である。
 以下において、実施形態について説明する。なお、以下の図面の記載において、同一または類似の部分には、同一または類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率等は現実のものとは異なる場合があることに留意すべきである。
 したがって、具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれる場合があることは勿論である。
 [開示の概要]
 背景技術で説明したように、香味吸引器において、櫛形電極対によって構成されるIDTを有する圧電素子基板を用いてSAWを発生させることによって液体を霧化する技術が提案されている。発明者等は、鋭意検討の結果、櫛形電極対の重複部分の長さを変化させることにより、櫛形電極対の振動状態に変化が生じ、これに伴って発生するSAWの振幅状態が変化した結果、SAWの振幅の大きい領域が変化することを見出した。
 開示の概要に係る吸引器は、液体を貯蔵する液貯蔵部と、櫛形電極対によって構成されるIDTと、圧電素子基板とを有し、櫛形電極対に高周波電力を印加することで生じる表面弾性波によって液体を霧化するSAWチップと、液貯蔵部に貯蔵された液体を、圧電素子基板の特定箇所に供給する液体供給機構と、を備える。IDTは、互いに対向する第1電極本体部分および第2電極本体部分と、第1電極本体部分から第2電極本体部分に向けて延在する複数の第1櫛形電極と、第2電極本体部分から第1電極本体部分に向けて延在し、第1櫛形電極と交互に配置される複数の第2櫛形電極と、を有する。液体供給機構は、IDTの一方の側について、第1櫛形電極と第2櫛形電極との延在方向の重複部分の長さが0.5mm以上3.0mm未満である場合に、重複部分の長さを2等分する仮想線上に1つ配置され、重複部分の長さが3.0mm以上10.0mm以下である場合に、仮想線を挟んで互いに離間して2つ配置される。
 開示の概要によれば、液体供給機構は、櫛形電極対の重複部分の長さに応じて1つまたは2つ配置される。したがって、櫛形電極対の重複部分の長さによって液体供給機構の配置を最適化し、液体の霧化効率を向上させることができる。
 [実施形態]
 (SAWチップ)
 以下において、実施形態に係るSAWチップについて説明する。図1は、実施形態に係るSAWチップ10を示す平面図である。図2は、図1に示したIDT30の要部拡大図である。SAWチップ10は、例えば後述する吸引器に用いられる。
 図1および図2に示すように、SAWチップ10は、圧電素子基板20と、電極本体部分31および櫛形電極対32によって構成されるIDT30とを有する。SAWチップ10は、後述する液貯蔵部に貯蔵されて、後述する液体供給機構(例えば貫通孔)によって圧電素子基板20の特定箇所(端面または表面)に供給される液体を霧化する。具体的には、SAWチップ10は、櫛形電極対32に高周波電力を印加することで生じるSAWの振動によって液体を霧化する。
 圧電素子基板20は、電極本体部分31および櫛形電極対32が配置される表面20Fと、表面20Fの反対側に設けられる裏面20Bと、表面20Fと裏面20Bとの間の端面20Eとを有する。SAWチップ10は、圧電素子基板20の裏面20B側から端面20Eを介して液体が供給される場合、端面20Eの近傍で液体を霧化する。
 圧電素子基板20は、電力の印加によって伸縮する圧電体を含む。圧電体は、少なくとも圧電素子基板20の表面20Fを構成していればよい。圧電体としては、石英、チタン酸バリウム、ニオブ酸リチウム等のセラミック等によって構成される既知の圧電体を用いることができる。
 電極本体部分31は、吸引器の電源40と電気的に接続される。電極本体部分31は、櫛形電極対32の一方である第1櫛形電極32Aと一体である第1電極本体部分31Aと、櫛形電極対32の他方である第2櫛形電極32Bと一体である第2電極本体部分31Bとを有する。第1電極本体部分31Aおよび第2電極本体部分31Bは、SAWの進行方向Aに対する直交方向Bにおいて互いに対向するように配置される。電源40から出力される高周波電力は、電極本体部分31を通じて櫛形電極対32に印加される。
 櫛形電極対32は、第1櫛形電極32Aおよび第2櫛形電極32Bを有する。第1櫛形電極32Aおよび第2櫛形電極32Bは、SAWの進行方向Aにおいて交互に配置される。第1櫛形電極32Aは、第1電極本体部分31Aから直交方向Bに沿って第2電極本体部分31Bに向けて延在する形状を有する。第2櫛形電極32Bは、第2電極本体部分31Bから直交方向Bに沿って第1電極本体部分31Aに向けて延在する形状を有する。
 例えば、櫛形電極対32は、スパッタ法や蒸着法で形成された金属等によって構成される。ここで、第1櫛形電極32Aと第2櫛形電極32Bとの延在方向(直交方向B)の重複部分の長さを重複部分長さHと称する。
 (液体供給機構の配置の最適化に係る検討)
 以下、図1に示したSAWチップ10を後述する台座に載置し、台座に設けられた貫通孔(液体供給機構)からSAWチップ10の端面20Eに液体を供給することを想定し、この場合における最適な貫通孔の配置について検討する。
 (シミュレーションによるSAWの振幅状態の解析)
 まず、発明者等は、図1に示したSAWチップ10において、重複部分長さHを変化させた場合の、端面20E近傍におけるSAWの振幅状態をシミュレーションした。このシミュレーションは、市販のソフトウェアを用いた有限要素法により行った。
 図3は、図1に示したSAWチップ10の端面20E近傍におけるSAWの振幅状態をシミュレーションした結果を示す図である。図3において、重複部分長さHは1.5mmおよび2.5mmである。また、図3におけるSAWの振幅状態の欄のうち、下段は圧電素子基板20の表面20FにおけるSAWの振幅状態(図の上下方向がSAWの進行方向A、図の左右方向が直交方向B)を示し、上段は、端面20Eにおける複数のSAWの振幅状態(図の左右方向が直交方向B)を重ね合わせたものを示している。
 図3より、破線で示すように、重複部分長さHが1.5mmである場合に、中央付近にあったSAWの振幅のピークが、重複部分長さHが2.5mmである場合には、左右に広がっていることが分かる。すなわち、重複部分長さHが長くなると、SAWの振幅のピークが広くなっていくことが分かる。
 (レーザードップラー振動計を用いたSAWの振幅状態の解析)
 続いて、発明者等は、図1に示したSAWチップ10において、重複部分長さHを変化させた場合の、端面20E近傍におけるSAWの振幅状態を測定した。この測定は、圧電素子基板20の表面20Fにおける凹凸の動きを計測可能なレーザードップラー振動計を用いて行った。
 図4は、図1に示したSAWチップ10の端面20E近傍におけるSAWの振幅状態を測定した結果を示す図である。図4において、重複部分長さHは1.5mm、2.0mmおよび3.0mmである。また、図4におけるSAWの振幅状態の欄は、SAWチップ10における櫛形電極対32の端部から端面20Eまで(図の上下方向がSAWの進行方向A、図の左右方向が直交方向B)と併せて、端面20EにおけるSAWの振幅状態を示している。
 図4より、破線で囲まれた領域(濃淡の差の大きい領域)において、SAWの振幅がピークになっていることが分かる。そのため、この領域において霧化する液体の振幅が最も大きくなり、最も霧化が起こりやすいと推測することができる。ここで、SAWチップ10の最も霧化が起こりやすい領域、例えば図4の破線で囲まれた領域を霧化領域と称する。
 また、図4の破線で示すように、重複部分長さHが1.5mm、2.0mm、3.0mmと長くなるにつれて、SAWの振幅のピークが左右に広がっていくことが分かる。具体的には、SAWの振幅のピークが2つに分かれて存在する場合、第1櫛形電極32Aと第2櫛形電極32Bとの重複部分(図2参照)の両端近傍で、SAWの振幅がピークになっていることが分かる。
 (SAWの振幅のピーク値の解析)
 次に、発明者等は、図1に示したSAWチップ10において、重複部分長さHを変化させた場合の、霧化領域におけるSAWの振幅のピーク値を測定した。この測定は、上述したレーザードップラー振動計を用いて行った。
 図5は、図1に示したSAWチップ10の霧化領域におけるSAWの振幅のピーク値を相対的に示す図である。図5の横軸は重複部分長さH(1.5mm、2.0mm、2.5mm、3.0mmおよび3.5mm)を示し、縦軸はSAWの振幅のピーク値を相対的に示している。また、SAWの振幅のピーク値は、例えば重複部分長さHが3.0mmである場合のように、ピーク値が2つあるとき(図4参照)には、ピーク値が高い方を示す。図5より、重複部分長さHが1.5mmである場合には、SAWの振幅のピークが中央に集中しているため、ピーク値が大きくなることが分かる。
 (検討結果)
 図3から図5に示した結果から、重複部分長さHが2.0mm以下、好ましくは1.5mm以下の場合、SAWの振幅のピークが中央付近となる。そのため、この場合、台座に設けられる貫通孔は、SAWチップ10の端面20E近傍であって、かつSAWの進行方向Aに沿って重複部分長さHを2等分する仮想線上に1つ配置されることが望ましい。
 また、図3から図5に示した結果から、重複部分長さHが3.0mm以上の場合、SAWの振幅のピークが2つに分かれて存在する。そのため、この場合、台座に設けられる貫通孔は、SAWチップ10の端面20E近傍であって、かつSAWの進行方向Aに沿って重複部分長さHを2等分する仮想線を挟んで互いに離間して2つ配置されることが望ましい。
 なお、SAWを発生させるためには、重複部分長さHが0.5mm以上であることが望ましい。また、SAWチップ10が大きくなりすぎないよう、重複部分長さHは、10.0mm以下であることが望ましい。また、液体を充分に供給するために、貫通孔の直径が最低でも1.0mm必要であることから、貫通孔を2つ配置する場合には、貫通孔同士の間隔も考慮して重複部分長さHを3.0mm以上とすることが望ましい。すなわち、重複部分長さHが3.0mm未満である場合には、貫通孔を1つ配置することが望ましい。
 これらのことを考慮して、重複部分長さHが0.5mm以上3.0mm未満、好ましくは1.5mm以下である場合に、貫通孔を1つ配置することが望ましく、重複部分長さHが3.0mm以上10.0mm以下である場合に、貫通孔を2つ配置することが望ましい。そこで、以下に示す2種類の吸引器を提案する。
 (第1実施例に係る吸引器)
 図6は、第1実施例に係る吸引器100Aを示す模式図である。図6に示すように、吸引器100Aは、図1に示したSAWチップ10と、液体を貯蔵する液貯蔵部50と、SAWチップ10(圧電素子基板20)が載置される台座60と、台座60に設けられ、液貯蔵部50に貯蔵された液体を、圧電素子基板20の端面20Eまたは表面20F(特定箇所)に供給する貫通孔61(液体供給機構)とを備える。
 図6において、重複部分長さHは、0.5mm以上3.0mm未満、好ましくは1.5mm以下であり、貫通孔61は、IDT30の一方の側について、SAWチップ10の端面20E近傍であって、かつSAWの進行方向Aに沿って重複部分長さHを2等分する仮想線上に1つ配置されている。
 第1実施例に係る吸引器100Aにおいては、SAWの振幅のピークが中央付近となることから、SAWの進行方向Aに沿って重複部分長さHを2等分する仮想線上に貫通孔61を1つ配置することで、液体の霧化効率を向上させることができる。なお、図6では、貫通孔61がIDT30の両側に配置されているが、これに限定されず、貫通孔61は、IDT30の一方の側のみに配置されてもよい。
 また、図6では、貫通孔61が台座60に設けられているが、これに限定されず、貫通孔は、圧電素子基板20に設けられてもよい。この場合であっても、貫通孔は、IDT30の一方の側について、SAWの進行方向Aに沿って重複部分長さHを2等分する仮想線上に1つ配置される。さらに、圧電素子基板20の上部から、SAWの進行方向Aに沿って重複部分長さHを2等分する仮想線上に液体を滴下してもよい。
 また、図6に示した貫通孔61に代えて、液貯蔵部50と圧電素子基板20の端面20Eまたは表面20Fとの間に設けられたチューブ(液体供給機構)を用いてもよい。この場合であっても、チューブは、IDT30の一方の側について、SAWチップ10の端面20E近傍であって、かつSAWの進行方向Aに沿って重複部分長さHを2等分する仮想線上に1つ配置される。
 また、図6では、IDT30の両側に配置された貫通孔61がともに1つの液貯蔵部50に接続されているが、これに限定されず、IDT30の両側に配置された貫通孔61がそれぞれ別の液貯蔵部に接続されてもよい。この場合には、IDT30の両側に配置された貫通孔61によりそれぞれ別の液体を霧化することができる。例えば、互いに溶解しない2種類の液体を同時に霧化して、後段で混合させることができる。
 (第2実施例に係る吸引器)
 図7は、第2実施例に係る吸引器100Bを示す模式図である。図7に示すように、吸引器100Bは、図1に示したSAWチップ10と、それぞれ液体を貯蔵する第1液貯蔵部51および第2液貯蔵部52と、SAWチップ10(圧電素子基板20)が載置される台座60と、台座60に設けられ、液貯蔵部50に貯蔵された液体を、圧電素子基板20の端面20Eまたは表面20F(特定箇所)に供給する貫通孔61(液体供給機構)とを備える。
 図7において、重複部分長さHは、3.0mm以上10.0mm以下であり、貫通孔61は、IDT30の一方の側について、SAWチップ10の端面20E近傍であって、かつSAWの進行方向Aに沿って重複部分長さHを2等分する仮想線を挟んで互いに離間して2つ配置されている。
 第2実施例に係る吸引器100Bにおいては、SAWの振幅のピークが2つに分かれて存在することから、SAWの進行方向Aに沿って重複部分長さHを2等分する仮想線を挟んで互いに離間して貫通孔61を2つ配置することで、液体の霧化効率を向上させることができる。なお、図7では、貫通孔61がIDT30の両側に配置されているが、これに限定されず、貫通孔61は、IDT30の一方の側のみに配置されてもよい。
 また、図7において、IDT30の一方の側について、2つの貫通孔61の一方は、第1櫛形電極32Aと第2櫛形電極32Bとの重複範囲(図2参照)内において、上記仮想線に平行で、かつ重複部分の一方の端部を通る線と接するように配置されている。また、図7において、2つの貫通孔61の他方は、上記重複範囲内において、上記仮想線に平行で、かつ重複部分の他方の端部を通る線と接するように配置されている。
 上述したように、SAWの振幅のピークが2つに分かれて存在する場合、第1櫛形電極32Aと第2櫛形電極32Bとの重複部分(図2、図4参照)の両端近傍で、SAWの振幅がピークになっていることが分かる。そのため、2つの貫通孔61を、それぞれ重複部分の端部を通る線と接するように配置することで、液体の霧化効率をより向上させることができる。
 また、図7では、貫通孔61が台座60に設けられているが、これに限定されず、貫通孔は、圧電素子基板20に設けられてもよい。この場合であっても、貫通孔は、IDT30の一方の側について、SAWの進行方向Aに沿って重複部分長さHを2等分する仮想線を挟んで互いに離間して2つ配置される。さらに、圧電素子基板20の上部から、SAWの進行方向Aに沿って重複部分長さHを2等分する仮想線を挟んで互いに離間した2箇所に液体を滴下してもよい。
 また、図7に示した貫通孔61に代えて、液貯蔵部50と圧電素子基板20の端面20Eまたは表面20Fとの間に設けられたチューブ(液体供給機構)を用いてもよい。この場合であっても、チューブは、IDT30の一方の側について、SAWチップ10の端面20E近傍であって、かつSAWの進行方向Aに沿って重複部分長さHを2等分する仮想線を挟んで互いに離間して2つ配置される。なお、1つのチューブが二股に分かれて、SAWの進行方向Aに沿って重複部分長さHを2等分する仮想線を挟んで互いに離間した2箇所に液体を供給してもよい。
 また、図7では、IDT30の両側に配置された貫通孔61の一方が第1液貯蔵部51に接続され、第1液貯蔵部51に貯蔵された液体を圧電素子基板20に供給し、IDT30の両側に配置された貫通孔61の他方が第2液貯蔵部52に接続され、第2液貯蔵部52に貯蔵された液体を圧電素子基板20に供給する。これにより、IDT30の一方の側について、2つの貫通孔61によりそれぞれ別の液体を霧化することができる。例えば、互いに溶解しない2種類の液体を同時に霧化して、後段で混合させることができる。
 なお、これに限定されず、IDT30の両側に配置された合計4つの貫通孔61がそれぞれ別の液貯蔵部に接続されてもよい。この場合には、IDT30の両側に配置された合計4つの貫通孔61により、それぞれ別の液体を霧化することができる。例えば、互いに溶解しない最大4種類の液体を同時に霧化して、後段で混合させることができる。
 また、IDT30の両側に配置された合計4つの貫通孔61がともに1つの液貯蔵部に接続されてもよいし、いくつかの貫通孔61が共通の液貯蔵部に接続されてもよい。すなわち、IDT30の両側に配置された合計4つの貫通孔61により、1~4種類の液体を同時に霧化することができる。
 (第1実施例に係る吸引器を用いた霧化量の測定)
 発明者等は、図6に示した第1実施例に係る吸引器100Aにおいて、重複部分長さHを変化させた場合の霧化量を測定した。この測定は、液貯蔵部50から貫通孔61を介して圧電素子基板20の端面20Eに脱イオン水を供給し、霧化したものをフィルタで捕集して重さを計測することにより行った。
 図8は、第1実施例に係る吸引器100Aを用いて霧化量を測定した結果を相対的に示す図である。図8において、重複部分長さHは1.5mm、2.0mm、2.5mm、3.0mm、4.0mmおよび4.5mmである。また、図8の横軸は印加される高周波電力(W)を示し、縦軸は1パフあたりの霧化量を相対的に示している。
 図8より、重複部分長さHが1.5mmである場合に、最も霧化量が多くなることが分かる。また、重複部分長さHが長くなるにつれて霧化量が低下していることが分かる。これは、図3、図4等で示したように、重複部分長さHが長くなるにつれて、SAWの振幅のピークが中央から左右に広がっていき、貫通孔61からSAWの振幅のピークが離れていくことが原因であると考えられる。したがって、液体の霧化効率を向上させるためには、重複部分長さHが長い場合(例えば、3.0mm以上である場合)には、IDT30の一方の側について、貫通孔を2つ配置することが望ましいといえる。
 以上、本発明の一実施形態について説明してきたが、上記した発明の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその均等物が含まれる。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の組み合わせ、または、省略が可能である。
  10…SAWチップ
  20…圧電素子基板
  30…IDT
  31…電極本体部分
  31A…第1電極本体部分
  31B…第2電極本体部分
  32…櫛形電極対
  32A…第1櫛形電極
  32B…第2櫛形電極
  40…電源
  50…液貯蔵部
  51…第1液貯蔵部
  52…第2液貯蔵部
  60…台座
  61…貫通孔
  20B…裏面
  20E…端面
  20F…表面
  100A…吸引器
  100B…吸引器

Claims (8)

  1.  吸引器であって、
     液体を貯蔵する液貯蔵部と、
     櫛形電極対によって構成されるIDTと、圧電素子基板とを有し、前記櫛形電極対に高周波電力を印加することで生じる表面弾性波によって液体を霧化するSAWチップと、
     前記液貯蔵部に貯蔵された液体を、前記圧電素子基板の特定箇所に供給する液体供給機構と、を備え、
     前記IDTは、互いに対向する第1電極本体部分および第2電極本体部分と、前記第1電極本体部分から前記第2電極本体部分に向けて延在する複数の第1櫛形電極と、前記第2電極本体部分から前記第1電極本体部分に向けて延在し、前記第1櫛形電極と交互に配置される複数の第2櫛形電極と、を有し、
     前記液体供給機構は、前記IDTの一方の側について、
      前記第1櫛形電極と前記第2櫛形電極との延在方向の重複部分の長さが0.5mm以上3.0mm未満である場合に、前記重複部分の長さを2等分する仮想線上に1つ配置され、
      前記重複部分の長さが3.0mm以上10.0mm以下である場合に、前記仮想線を挟んで互いに離間して2つ配置される、
     吸引器。
  2.  請求項1に記載の吸引器であって、
     前記圧電素子基板が載置される台座をさらに備え、
     前記液体供給機構は、前記台座に設けられた貫通孔である、
     吸引器。
  3.  請求項1に記載の吸引器であって、
     前記液体供給機構は、前記圧電素子基板に設けられた貫通孔である、
     吸引器。
  4.  請求項2または請求項3に記載の吸引器であって、
     前記重複部分の長さが3.0mm以上10.0mm以下である場合に、
      2つの前記貫通孔の一方は、前記第1櫛形電極と前記第2櫛形電極との重複範囲内において、前記仮想線に平行で、かつ前記重複部分の一方の端部を通る線と接するように配置され、
      2つの前記貫通孔の他方は、前記重複範囲内において、前記仮想線に平行で、かつ前記重複部分の他方の端部を通る線と接するように配置される、
     吸引器。
  5.  請求項1に記載の吸引器であって、
     前記液体供給機構は、前記液貯蔵部と前記圧電素子基板の特定箇所との間に設けられたチューブである、
     吸引器。
  6.  請求項1から請求項5までのいずれか一項に記載の吸引器であって、
     前記重複部分の長さは、3.0mm以上10.0mm以下であり、
     前記液貯蔵部は、第1液貯蔵部および第2液貯蔵部を有し、
     2つの前記液体供給機構の一方は、前記第1液貯蔵部に貯蔵された液体を供給し、2つの前記液体供給機構の他方は、前記第2液貯蔵部に貯蔵された液体を供給する、
     吸引器。
  7.  請求項1から請求項6までのいずれか一項に記載の吸引器であって、
     前記液体供給機構は、前記IDTの一方の側または両側に配置される、
     吸引器。
  8.  請求項1から請求項7までのいずれか一項に記載の吸引器であって、
     前記液体供給機構は、前記重複部分の長さが0.5mm以上1.5mm以下である場合に、前記仮想線上に1つ配置される、
     吸引器。
PCT/JP2022/030757 2022-08-12 2022-08-12 吸引器 WO2024034126A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030757 WO2024034126A1 (ja) 2022-08-12 2022-08-12 吸引器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030757 WO2024034126A1 (ja) 2022-08-12 2022-08-12 吸引器

Publications (1)

Publication Number Publication Date
WO2024034126A1 true WO2024034126A1 (ja) 2024-02-15

Family

ID=89851335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030757 WO2024034126A1 (ja) 2022-08-12 2022-08-12 吸引器

Country Status (1)

Country Link
WO (1) WO2024034126A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11207224A (ja) * 1998-01-21 1999-08-03 Sharp Corp 粒子径可変生成装置及び粒子径可変生成方法
JP2008104966A (ja) * 2006-10-26 2008-05-08 Seiko Epson Corp 霧化装置、吸引装置
WO2012011517A1 (ja) * 2010-07-22 2012-01-26 パナソニック株式会社 弾性表面波霧化装置
JP2012024646A (ja) * 2010-07-20 2012-02-09 Murata Mfg Co Ltd 液体霧化装置
JP2012143726A (ja) * 2011-01-13 2012-08-02 Panasonic Corp 弾性表面波霧化装置
WO2020209113A1 (ja) * 2019-04-09 2020-10-15 日本たばこ産業株式会社 エアロゾル供給デバイス
JP2021010878A (ja) * 2019-07-05 2021-02-04 パナソニックIpマネジメント株式会社 液体霧化システム及びミスト発生システム
WO2021039343A1 (ja) * 2019-08-30 2021-03-04 日本たばこ産業株式会社 非加熱型香味吸引器
WO2021130220A1 (en) * 2019-12-23 2021-07-01 Philip Morris Products S.A. An aerosol-generator comprising multiple supply elements

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11207224A (ja) * 1998-01-21 1999-08-03 Sharp Corp 粒子径可変生成装置及び粒子径可変生成方法
JP2008104966A (ja) * 2006-10-26 2008-05-08 Seiko Epson Corp 霧化装置、吸引装置
JP2012024646A (ja) * 2010-07-20 2012-02-09 Murata Mfg Co Ltd 液体霧化装置
WO2012011517A1 (ja) * 2010-07-22 2012-01-26 パナソニック株式会社 弾性表面波霧化装置
JP2012143726A (ja) * 2011-01-13 2012-08-02 Panasonic Corp 弾性表面波霧化装置
WO2020209113A1 (ja) * 2019-04-09 2020-10-15 日本たばこ産業株式会社 エアロゾル供給デバイス
JP2021010878A (ja) * 2019-07-05 2021-02-04 パナソニックIpマネジメント株式会社 液体霧化システム及びミスト発生システム
WO2021039343A1 (ja) * 2019-08-30 2021-03-04 日本たばこ産業株式会社 非加熱型香味吸引器
WO2021130220A1 (en) * 2019-12-23 2021-07-01 Philip Morris Products S.A. An aerosol-generator comprising multiple supply elements

Similar Documents

Publication Publication Date Title
JP4915567B2 (ja) 弾性表面波霧化装置
JP5154658B2 (ja) 弾性表面波霧化装置
JP5365690B2 (ja) 霧化ユニット及びそれを備えた霧化器
EP1154570A1 (en) Saw device
JP4319657B2 (ja) 圧電振動子
JP2011160250A5 (ja)
RU2006144872A (ru) Процесс создания нановибрационного покрытия для медицинских устройств с использованием нескольких видов колебаний тонкого пьезоэлемента
JP3626222B2 (ja) 弾性表面波を用いた超音波霧化器
WO2012096378A1 (ja) 弾性表面波霧化装置
WO2006078001A1 (ja) 弾性表面波装置
WO2024034126A1 (ja) 吸引器
JP5861121B2 (ja) 弾性表面波霧化装置
JP2012148256A (ja) 弾性表面波霧化装置
JP2010253347A (ja) 弾性表面波霧化装置
JP2000233158A (ja) 噴霧装置
CN104137569B (zh) 超声波产生装置
JP2018517937A (ja) 層状構造を有する音響光学偏向器およびその偏向器を用いて光ビームを偏向させる方法
JP5906455B2 (ja) 霧化装置
JP7336663B2 (ja) 液体霧化システム及びミスト発生システム
JP2718567B2 (ja) 超音波霧化装置
WO2002066267A3 (de) Piezoelektrischer transducer zur ultraschallerzeugung
JP4048313B2 (ja) 物体浮揚装置
JP7300662B2 (ja) 液体霧化システム
JP2011011102A (ja) 弾性表面波霧化装置
JPS58143620A (ja) 弾性表面波共振器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955041

Country of ref document: EP

Kind code of ref document: A1