WO2024032081A1 - 一种索马鲁肽的制备方法及中间体 - Google Patents

一种索马鲁肽的制备方法及中间体 Download PDF

Info

Publication number
WO2024032081A1
WO2024032081A1 PCT/CN2023/095654 CN2023095654W WO2024032081A1 WO 2024032081 A1 WO2024032081 A1 WO 2024032081A1 CN 2023095654 W CN2023095654 W CN 2023095654W WO 2024032081 A1 WO2024032081 A1 WO 2024032081A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
solvent
preparation
acid
norbornene
Prior art date
Application number
PCT/CN2023/095654
Other languages
English (en)
French (fr)
Inventor
郭万成
房杰
段永立
张富昌
王国平
于振鹏
杨英睿
Original Assignee
扬州奥锐特药业有限公司
奥锐特药业(天津)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扬州奥锐特药业有限公司, 奥锐特药业(天津)有限公司 filed Critical 扬州奥锐特药业有限公司
Publication of WO2024032081A1 publication Critical patent/WO2024032081A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/605Glucagons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/22Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/26Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids
    • C07C303/30Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids by reactions not involving the formation of esterified sulfo groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/63Esters of sulfonic acids
    • C07C309/64Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to acyclic carbon atoms
    • C07C309/65Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to acyclic carbon atoms of a saturated carbon skeleton
    • C07C309/66Methanesulfonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to the field of pharmaceutical preparation, and more specifically, to a preparation method and intermediate of semaglutide.
  • Diabetes mellitus is a common and frequently-occurring endocrine and metabolic disease characterized by the coexistence of hyperglycemia and other complications caused by absolute or relative insufficient insulin. China has the heaviest burden of diabetes, with more than 114 million people affected.
  • Glucagon-like peptide-1 (GLP-1) is an important incretin. Compared with traditional diabetes drugs, it can solve the problem of ⁇ -cell apoptosis that cannot be solved by conventional oral hypoglycemic drugs. This problem. Semaglutide is known as the best GLP-1 agonist in the world. It is 94% homologous to human GLP-1 and has excellent performance in reducing blood sugar, weight loss, cardiovascular system benefits and safety. provide greater advantages.
  • Semaglutide connects the lysine position at position 26 of the peptide chain to an 18-carbon fatty acid side chain, which can mediate and promote the strong binding of semaglutide to albumin and reduce the renal clearance rate.
  • the affinity of the side chains of liraglutide and semaglutide to albumin is increased by 5 to 6 times. Combining with albumin can increase the molecular weight of this product, which can avoid rapid elimination by the kidneys and prevent metabolic decomposition, prolonging The half-life in the body achieves the purpose of long-term effect.
  • the structure of semaglutide is as follows:
  • the current methods for preparing semaglutide mainly include chemical methods and biological methods.
  • Semaglutide is a medium-length peptide containing 31 amino acid residues. If standard chemical methods are used, the process steps are many and the cycle is long. The resin shrinks seriously during stepwise coupling, resulting in incomplete reaction and easy production of defective peptides, thus resulting in poor product quality. There are many impurities and it is difficult to purify. If the solid-phase fragment condensation method is used, a large excess of each fragment is required, there are many side reactions, and product separation is difficult. In short, chemical methods have low yields, high costs, and require a large amount of organic solvents, making them unsuitable for industrial production.
  • a typical biological method is the method disclosed in WO2009083549A1, which uses yeast production to obtain the main peptide chain of semaglutide through genetic recombination technology, then modifies the main peptide chain with side chains and then connects the remaining short peptides.
  • Aib is an unnatural amino acid.
  • Recombinant fermentation is usually used to express the main peptide Arg34GLP-1 (9-37), and then the side chain on the ⁇ -amino group of Lys20 is chemically synthesized.
  • the dipeptide His-Aib is connected to obtain semaglutide. This method has short steps and product purification is simpler and easier than chemical methods.
  • Arg34GLP-1(9-37) or Arg34GLP-1(11-37) contains multiple free carboxyl groups.
  • the side chains and the carboxyl groups of short peptides will compete with the amino groups of long peptides for condensation.
  • the selectivity of the target product is poor, resulting in extremely complex products.
  • the purpose of the present invention is to provide a method for preparing semaglutide by fragment condensation. This method can obtain high-purity semaglutide products at low cost and with high efficiency.
  • the present invention adopts the following technical solutions:
  • a preparation method of semaglutide includes the steps:
  • R 2 is p-nitrophenyl, methylsulfonyl, pentafluorophenyl or 5-norbornene-2,3-dicarboximide;
  • R2 is pentafluorophenyl.
  • the solvent is selected from N,N-dimethylformamide, N-methylpyrrolidone, N,N-dimethylacetamide, tetrahydrofuran, dichloromethane, acetone, acetonitrile and One or a combination of species in water.
  • the base is selected from one or more of carbonate, phosphate, bicarbonate, hydrogen phosphate, triethylamine, DBU, DMAP, and diisopropylethylamine. combination, more preferably diisopropylethylamine.
  • the molar ratio of compound SEM110 and compound SEM120 is 1:1.0-4.0, more preferably 1:2.0-3.0, most preferably 1:2.5.
  • the solvent used for the deprotecting reaction is selected from one or more combinations of dichloromethane, methyl tert-butyl ether, trifluoroacetic acid, TIS, acetonitrile and water.
  • step (2) deprotection is performed in the presence of acid.
  • the acid is selected from one or several combinations of TFA, acetic acid, hydrochloric acid, hydrobromic acid, phosphoric acid, and methanesulfonic acid, and more preferably TFA and acetic acid.
  • the volume to weight ratio of the acid to compound SEM130 is 1 to 10 mL/g.
  • compound SEM120 is prepared by the following steps:
  • R 2 is p-nitrophenyl, methylsulfonyl, pentafluorophenyl or 5-norbornene-2,3-dicarboximide.
  • the solvent is selected from N,N-dimethylformamide, N-methylpyrrolidone, N,N-dimethylacetamide, tetrahydrofuran, dichloromethane, acetone, One or more combinations of acetonitrile and water.
  • the dehydrating agent is selected from one or more combinations of DCC, DIC, EDCI, and T 3 P, more preferably DCC.
  • the molar ratio of compound SEM115 to compound 2 is 1:1.0-1.4, more preferably 1:1.0-1.2, most preferably 1:1.05.
  • the molar ratio of the dehydrating agent to the compound SEM115 is 1.4-1.0:1, more preferably 1.3-1.1:1, and most preferably 1.2:1.
  • compound SEM110 is prepared by the following steps:
  • R 1 is p-nitrophenyl, methylsulfonyl, pentafluorophenyl or 5-norbornene-2,3-dicarboximide.
  • R 1 is 5-norbornene-2,3-dicarboximide.
  • the solvent is selected from N,N-dimethylformamide, N-methylpyrrolidone, N,N-dimethylacetamide, tetrahydrofuran, dichloromethane, acetone, One or more combinations of acetonitrile and water.
  • the base is selected from one of carbonate, phosphate, bicarbonate, hydrogen phosphate, triethylamine, DBU, DMAP, and diisopropylethylamine. Or several combinations, more preferably diisopropylethylamine.
  • the molar ratio of compound SEM100 and compound SEM105 is 1.1-1.6:1, more preferably 1.2-1.5:1.
  • the molar ratio of the base to compound SEM105 is 5 to 25:1, more preferably 10 to 20:1.
  • compound SEM100 is prepared by the following steps:
  • R 1 is p-nitrophenyl, methylsulfonyl, pentafluorophenyl or 5-norbornene-2,3-dicarboximide;
  • R 1 is p-nitrophenyl, methylsulfonyl, pentafluorophenyl or 5-norbornene-2,3-dicarboximide.
  • the solvent in step (1-a) is selected from N,N-dimethylformamide, N-methylpyrrolidone, N,N-dimethylacetamide, tetrahydrofuran, dichloromethane, acetone, acetonitrile, One or a combination of species in water.
  • the dehydrating agent in step (1-a) is selected from one or more combinations of DCC, DIC, EDCI, and T 3 P, with DCC being more preferred.
  • the molar ratio of compound SEM80 to compound 1 is 1:1.0-1.4, more preferably 1:1.0-1.2, and most preferably 1:1.05.
  • the molar ratio of compound SEM80 to the dehydrating agent is 1:1.0-1.4, more preferably 1:1.1-1.2.
  • the solvent in step (1-b) is selected from one of methylene chloride, trifluoroacetic acid, TIS, acetonitrile, water or Various combinations.
  • the acid is selected from one or more combinations of trifluoroacetic acid, acetic acid, hydrochloric acid, hydrobromic acid, phosphoric acid, and methanesulfonic acid, more preferably trifluoroacetic acid, Acetic acid.
  • the volume to weight ratio of the acid to compound 90 is 1 to 10 mL/g, more preferably 3 to 5 mL/g.
  • Another object of the present invention is to provide a compound SEM90 or a salt thereof.
  • the structural formula of the compound is as follows:
  • R 1 is methylsulfonyl group or 5-norbornene-2,3-dicarboximide group.
  • Another object of the present invention is to provide a preparation method of compound SEM90, which preparation method includes the following steps:
  • R 1 methylsulfonyl group or 5-norbornene-2,3-dicarboximide group
  • the solvent in step (1-a) is selected from N,N-dimethylformamide, N-methylpyrrolidone, N,N-dimethylacetamide, tetrahydrofuran, dichloromethane, acetone, acetonitrile, One or a combination of species in water.
  • the dehydrating agent in step (1-a) is selected from one or more combinations of DCC, DIC, EDCI, and T 3 P, with DCC being more preferred.
  • the molar ratio of compound SEM80 to compound 1 is 1:1.0-1.4, more preferably 1:1.0-1.2, and most preferably 1:1.05.
  • the molar ratio of compound SEM80 to the dehydrating agent is 1:1.0-1.4, more preferably 1:1.1-1.2.
  • Another object of the present invention is to provide a compound SEM100 or a salt thereof.
  • the structural formula of the compound is as follows:
  • R 1 is methylsulfonyl, pentafluorophenyl or 5-norbornene-2,3-dicarboximide.
  • Another object of the present invention is to provide a preparation method of compound SEM100, which preparation method includes: Next steps:
  • R 1 is methylsulfonyl, pentafluorophenyl or 5-norbornene-2,3-dicarboximide.
  • the solvent in step (1-b) is selected from one or a combination of dichloromethane, trifluoroacetic acid, TIS, acetonitrile, and water.
  • the acid is selected from one or more combinations of trifluoroacetic acid, acetic acid, hydrochloric acid, hydrobromic acid, phosphoric acid, and methanesulfonic acid, more preferably trifluoroacetic acid, Acetic acid.
  • the volume to weight ratio of the acid to compound 90 is 1 to 10 mL/g, more preferably 3 to 5 mL/g.
  • Another object of the present invention is to provide a compound SEM120 or a salt thereof.
  • the structural formula of the compound is as follows:
  • R 2 is methylsulfonyl, pentafluorophenyl or 5-norbornene-2,3-dicarboximide.
  • Another object of the present invention is to provide a preparation method of an intermediate of a semaglutide side chain, which preparation method includes the following steps:
  • R 1 is p-nitrophenyl, methylsulfonyl, pentafluorophenyl or 5-norbornene-2,3-dicarboximide.
  • R 1 is p-5-norbornene-2,3-dicarboximide.
  • Another object of the present invention is to provide a preparation method of semaglutide side chain, which preparation method includes the following steps:
  • R 1 is p-nitrophenyl, methylsulfonyl, pentafluorophenyl or 5-norbornene-2,3-dicarboximide;
  • R 1 is p-nitrophenyl, methylsulfonyl, pentafluorophenyl or 5-norbornene-2,3-dicarboximide.
  • R 1 is p-5-norbornene-2,3-dicarboximide.
  • Another object of the present invention is to provide a preparation method of semaglutide intermediate, which preparation method includes the following steps:
  • R 1 is p-nitrophenyl, methylsulfonyl, pentafluorophenyl or 5-norbornene-2,3-dicarboximide;
  • R 1 is p-nitrophenyl, methylsulfonyl, pentafluorophenyl or 5-norbornene-2,3-dicarboximide;
  • R 1 is p-nitrophenyl, methylsulfonyl, pentafluorophenyl or 5-norbornene-2,3-dicarboximide.
  • R 1 is p-5-norbornene-2,3-dicarboximide.
  • Another object of the present invention is to provide a preparation method of semaglutide, which includes the following steps:
  • Step (1) also includes the following steps:
  • R 1 is p-nitrophenyl, methylsulfonyl, pentafluorophenyl or 5-norbornene-2,3-dicarboximide group
  • R 2 is p-nitrophenyl, methylsulfonyl , pentafluorophenyl or 5-norbornene-2,3-dicarboximide
  • step (1-d) There is no sequence between step (1-d) and steps (1-a) to (1-c), and they can be interchanged with any one of the steps.
  • R 1 is p-5-norbornene-2,3-dicarboximide group
  • R 2 is pentafluorophenyl group
  • Figure 1 is an HPLC pattern of compound SEM100A prepared in Example 1.
  • Figure 2 is an HPLC pattern of compound SEM100B prepared in Example 2.
  • Figure 3 is an HPLC pattern of compound SEM120A prepared in Example 3.
  • Figure 4 is an HPLC pattern of compound SEM120B prepared in Example 4.
  • Figure 5 is an HPLC pattern of compound SEM120C prepared in Example 5.
  • Figure 6 is a typical mass spectrum of compound SEM110.
  • Figure 7 is the HPLC pattern of compound SEM110 prepared in Example 6
  • Figure 8 is an HPLC pattern of compound SEM130 prepared in Example 6.
  • Figure 9 is a typical mass spectrum of compound SEM130.
  • Figure 10 is an HPLC pattern of compound SEM110 prepared in Example 7.
  • Figure 11 is an HPLC pattern of compound SEM130 prepared in Example 7.
  • Figure 12 is an HPLC pattern of compound SEM110 prepared in Example 8.
  • Figure 13 is an HPLC pattern of compound SEM130 prepared in Example 8.
  • Figure 14 is an HPLC pattern of compound SEM120D prepared in Example 9.
  • Figure 15 is an HPLC pattern of compound SEM110 prepared in Example 10.
  • Figure 16 is an HPLC pattern of compound SEM130 prepared in Example 10.
  • Figure 17 is the HPLC spectrum of the solid crude semaglutide prepared in Example 11 (total monitoring time is 40 minutes).
  • Figure 18 is the HPLC spectrum of the purified and separated semaglutide prepared in Example 11 (total monitoring time is 75 minutes).
  • FIG 19 is a typical mass spectrum of semaglutide (SEM).
  • Figure 20 is an HPLC spectrum of the purified and separated semaglutide prepared in Example 12.
  • Figure 21 is an HPLC spectrum of the purified and separated semaglutide prepared in Example 13.
  • Figure 22 is an HPLC spectrum of the purified and separated semaglutide prepared in Example 14.
  • Figure 23 is an HPLC pattern of compound SEM100C prepared in Example 15.
  • Figure 24 is a typical mass spectrum of compounds SEM100A, SEM100B, SEM100C and SEM100D after quenching with excess cyclohexylamine.
  • Figure 25 is a typical mass spectrum of compounds SEM120A, SEM120B, SEM120C and SEM120D after quenching with excess cyclohexylamine.
  • Figure 26 is an HPLC pattern of compound SEM100D prepared in Example 16.
  • Figure 27 is an HPLC pattern of compound SEM130 prepared in Example 17.
  • Figure 28 is an HPLC pattern of compound SEM130 prepared in Example 18.
  • Figure 29 is an HPLC pattern of compound SEM130 prepared in Example 19.
  • Figure 30 is the HPLC spectrum of semaglutide prepared in Example 20.
  • Figure 31 is the HPLC spectrum of semaglutide prepared in Example 21.
  • Figure 32 is the HPLC spectrum of semaglutide prepared in Example 22.
  • Figure 33 is an HPLC pattern of compound SEM100E prepared in Comparative Example 1.
  • Figure 34 is a mass spectrum of the system containing IMP1 and SEM100E prepared in Comparative Example 1 after quenching with cyclohexylamine.
  • Figure 35 is an HPLC pattern of compound SEM120E prepared in Comparative Example 2.
  • Figure 36 is a mass spectrum of the system containing IMP2 and SEM120E prepared in Comparative Example 2 after quenching with water.
  • Figure 37 is an HPLC spectrum of the purified and separated semaglutide prepared in Comparative Example 3.
  • Figure 38 is an HPLC spectrum of the purified and separated semaglutide prepared in Comparative Example 4.
  • Figure 39 is an HPLC spectrum of the purified and separated semaglutide prepared in Comparative Example 5.
  • the preparation method of semaglutide includes the steps: (1) react compound SEM110 and compound SEM120 in a solvent under alkaline conditions to obtain compound SEM130, whose reaction formula is as follows :
  • R 2 is p-nitrophenyl, methylsulfonyl, pentafluorophenyl or 5-norbornene-2,3-dicarboximide;
  • the solvent used is an excellent solvent for all raw materials (compound SEM110 and compound SEM120), and the amount of solvent used is such that all raw materials can be completely dissolved in it.
  • the solvent is preferably one or more combinations of N,N-dimethylformamide, N-methylpyrrolidone, N,N-dimethylacetamide, tetrahydrofuran, dichloromethane, acetone, acetonitrile and water.
  • the base used in step (1) is preferably one or more combinations of carbonate, phosphate, bicarbonate, hydrogen phosphate, triethylamine, DBU, DMAP, diisopropylethylamine, and more preferably It is diisopropylethylamine.
  • the molar ratio of compound SEM110 and compound SEM120 is 1:1.0-4.0, more preferably 1:2.0-3.0.
  • the amount of the base used is preferably such that the pH of the reaction solution is 8 to 10, more preferably 9 to 10.
  • the reaction temperature is preferably 0 to 25°C, and more preferably 0 to 15°C.
  • This step (1) also includes using acid to adjust the pH of the system to 4-6 after the reaction is completed.
  • the poor solvent is preferably one or more of acetonitrile, EA, MTBE, and MIBK.
  • the solvent used for beating has poor solubility for SEM130 and good solubility for impurities. It is preferably one or more of MTBE, EA, acetonitrile, and MIBK.
  • the solvent used for deprotecting the group is a good solvent for the raw material (compound SEM130), and the amount of solvent used is such that the raw material can be completely dissolved in it.
  • the solvent is preferably one or a combination of dichloromethane, methyl tert-butyl ether, trifluoroacetic acid, TIS, acetonitrile and water.
  • the reaction temperature in this step is preferably 0 to 20°C, more preferably 0 to 10°C.
  • the acid is preferably selected from one or more of TFA, acetic acid, hydrochloric acid, hydrobromic acid, phosphoric acid, and methanesulfonic acid, and is more preferably acetic acid and TFA.
  • Step (2) also includes, after the reaction is completed, pouring the reaction solution into a poor solvent of Semaglutide at 0 to 20°C, more preferably 0 to 10°C, to precipitate a solid, and centrifuge or filter.
  • the poor solvent is preferably one or more of MTBE, acetonitrile, EA, and MIBK, and more preferably MTBE.
  • the solid obtained is beaten with a solvent and filtered to obtain crude semaglutide solid product.
  • the solvent used for beating has poor solubility for Semaglutide and good solubility for impurities. It is preferably one or more of MTBE, EA, acetonitrile, and MIBK, and more preferably MTBE.
  • the solid crude semaglutide was further purified by column chromatography.
  • compound SEM120 can be prepared by the following step (1-d):
  • R 2 is p-nitrophenyl, methylsulfonyl, pentafluorophenyl or 5-norbornene-2,3-dicarboximide group.
  • the solvent used is an excellent solvent for all raw materials (compound SEM115 and compound 2), and the amount of solvent used is such that all raw materials can be completely dissolved in it.
  • the solvent is preferably one or more combinations of N,N-dimethylformamide, N-methylpyrrolidone, N,N-dimethylacetamide, tetrahydrofuran, dichloromethane, acetone, acetonitrile and water.
  • the dehydrating agent is preferably one or a combination of DCC, DIC, EDCI, and T 3 P.
  • the molar ratio of compound SEM115 to compound 2 is preferably 1:1 to 1.4, more preferably 1:1.0 to 1.2.
  • the molar ratio of the dehydrating agent to the compound SEM115 is 1.4-1.0:1, more preferably 1.3-1.1:1.
  • the reaction temperature is preferably 0 to 20°C, more preferably 0 to 10°C.
  • the process of preparing compound SEM120 also includes filtering after completion of the reaction, and concentrating the filtrate to dryness at a temperature not higher than 40°C, such as 15-30°C, to obtain compound 120.
  • the compound 120 can be directly used in the next reaction without further purification.
  • compound SEM110 can be prepared by the following step (1-c):
  • R 1 is p-nitrophenyl, methylsulfonyl, pentafluorophenyl or 5-norbornene-2,3-dicarboximide.
  • the solvent used is an excellent solvent for all raw materials (compound SEM100 and compound SEM105), and the amount of solvent used is such that all raw materials can be completely dissolved in it.
  • the solvent is preferably one or more combinations of N,N-dimethylformamide, N-methylpyrrolidone, N,N-dimethylacetamide, tetrahydrofuran, dichloromethane, acetone, acetonitrile, and water.
  • the base used is preferably one or more combinations of carbonate, phosphate, bicarbonate, hydrogen phosphate, triethylamine, DBU, DMAP, diisopropylethylamine, and more preferably diisopropyl Ethylamine.
  • the molar ratio of compound SEM100 and compound SEM105 is preferably 1.1 to 1.6:1, more preferably 1.2 to 1.5:1.
  • temperature reflex Preferably it is 0-30 degreeC, More preferably, it is 0-15 degreeC.
  • the molar ratio of compound SEM100 and compound SEM105 is preferably 1.3 to 1.5.
  • the reaction temperature is preferably 0 to 30°C, more preferably 0 to 15°C.
  • the reaction solution containing compound SEM110 does not need to be treated and is directly used in the next reaction.
  • compound SEM100 can be prepared by the following steps:
  • R 1 is p-nitrophenyl, methylsulfonyl, pentafluorophenyl or 5-norbornene-2,3-dicarboximide;
  • R 1 is p-nitrophenyl, methylsulfonyl, pentafluorophenyl or 5-norbornene-2,3-dicarboximide.
  • the solvent used is an excellent solvent for all raw materials (compound SEM80 and compound 1), and the amount of solvent used is such that all raw materials can be completely dissolved in it.
  • the solvent is preferably one or a combination of N,N-dimethylformamide, N-methylpyrrolidone, N,N-dimethylacetamide, tetrahydrofuran, dichloromethane, acetone, acetonitrile and water, and dehydrated
  • the agent is preferably one or a combination of DCC, DIC, EDCI, and T 3 P.
  • the molar ratio of compound SEM80 to compound 1 is 1:1.0-1.4, more preferably 1:1-1.2.
  • the molar ratio between compound SEM80 and dehydrating agent is 1:1.0-1.4, more preferably 1:1.1-1.2.
  • the reaction temperature in this step is preferably 0 to 20°C, more preferably 0 to 10°C.
  • This step also includes filtering the reaction solution after the reaction is completed, and concentrating the filtrate at no higher than 40°C, such as 15-30°C, to obtain a concentrated solution containing the target compound, which can be directly used in the next step of the reaction.
  • the solvent used is a good solvent for the raw material (compound SEM90), and the amount of solvent used is such that the raw material can be completely dissolved in it.
  • the solvent is preferably one or a combination of methylene chloride, trifluoroacetic acid, TIS, acetonitrile, and water.
  • the acid is selected from one or more types of trifluoroacetic acid, acetic acid, hydrochloric acid, hydrobromic acid, phosphoric acid, and methylsulfonic acid.
  • the volume to weight ratio of acid to compound 90 is preferably 1 to 10 mL/g.
  • the temperature for deprotecting the group is preferably 0 to 40°C, more preferably 10 to 20°C.
  • the preparation process of compound SEM100 also includes: after the deprotection group is completed, the poor solvent of compound SEM100 is added dropwise to the reaction solution and stirred for 1 to 3 hours to fully analyze the product. out, filter or centrifuge to obtain compound SEM100.
  • the compound SEM100 can be directly used in the next reaction without further purification.
  • the poor solvent is preferably MTBE.
  • the reaction progress of each step can be monitored by conventional monitoring methods in the field (such as TLC, HPLC or NMR).
  • the reaction time is based on whether the main raw material disappears in the reaction solution, for example, In step (1-a), when monitoring reveals that compound SEM80 disappears from the reaction solution, the reaction is deemed to be completed. In step (1-d), when monitoring reveals that compound SEM115 disappears from the reaction solution, the reaction is deemed completed.
  • multiple means two or more types.
  • hydrochloric acid is an aqueous solution of hydrogen chloride gas, and its mass concentration is a commonly used concentration, for example, 5% to 37.5%.
  • the present invention preferably uses hydrochloric acid with a saturated hydrogen chloride concentration at ambient temperature.
  • Hydrobromic acid is an aqueous solution of hydrogen bromide, and its mass concentration is a commonly used concentration, for example, 5% to 68%.
  • the present invention preferably uses hydrobromic acid with a saturated hydrobromic acid concentration at ambient temperature.
  • the preparation method of the present invention is simple to operate and has mild reaction conditions. It uses nitrophenol ester, methanesulfonate ester, pentafluorophenyl ester or HONB ester to modify the side chain and short peptide, avoiding the impurities IMP1 and IMP2 caused by the use of HOSU.
  • the final product Semaglutide is easy to purify, has high product purity and is suitable for industrial production.
  • SEM80 and SEM115 were purchased from Chengdu Pukang Biotechnology Co., Ltd.
  • the manufacturer models of high performance liquid chromatography used in the following examples are Agilent1260II and Waters. e2695+2698;
  • the manufacturer model of the mass spectrometry instrument used is Waters H-Class.
  • Example 1 Preparation of compound SEM100A using SEM80 and HONB.
  • the sample processing method is to take SEM100A, quench it with excess cyclohexylamine and then send the sample for HPLC and mass spectrometry detection. See Figure 1 for the HPLC chart. Liquid phase purity: 96.75%, molar yield: 86.60%.
  • the sample processing method is to take SEM100B, quench it with excess cyclohexylamine and then send the sample for HPLC and mass spectrometry detection.
  • the HPLC chart is shown in Figure 2. Liquid phase purity: 95.46%, molar yield: 88.96%.
  • the sample processing method is to take SEM120A, quench it with excess cyclohexylamine, and then perform HPLC and mass spectrometry detection. See Figure 3 for the HPLC chart. Liquid phase purity: 97.28%, molar yield: 90.65%.
  • the sample processing method is to take SEM120B, quench it with excess cyclohexylamine and then perform HPLC and mass spectrometry detection.
  • the HPLC chart is shown in Figure 4. Liquid phase purity: 98.46%, molar yield: 94.20%.
  • Example 6 Preparation of compound SEM130 using compound SEM100A, GLP-1(9-37) peptide and compound 120A
  • Example 7 Compound SEM130 was prepared using compound SEM100A, GLP-1 (9-37) peptide and compound 120B.
  • Example 8 Preparation of compound SEM130 using compound SEM100A, GLP-1(9-37) peptide and compound 120C
  • Example 11 Using the compound SEM130 prepared in Example 7 as a raw material to prepare Semaglutide, the preparation and separation and purification processes Same as Example 11.
  • Semaglutide was prepared using the compound SEM130 prepared in Example 8 as a raw material.
  • the preparation, separation and purification processes were the same as in Example 11.
  • Example 10 Compound SEM130 prepared in Example 10 was used as a raw material to prepare Semaglutide. The preparation, separation and purification processes were the same as in Example 11.
  • Liquid phase purity 99.55%, molar yield: 83.50%.
  • Example 17 Preparation of compound SEM130 using compound SEM100B, GLP-1(9-37) peptide and compound 120B
  • Example 18 Preparation of compound SEM130 using compound SEM100C, GLP-1 (9-37) peptide and compound 120B
  • Example 19 Preparation of compound SEM130 using compound SEM100D, GLP-1(9-37) peptide and compound 120B
  • Example 17 Compound SEM130 prepared in Example 17 was used as a raw material to prepare Semaglutide.
  • the preparation, separation and purification processes were the same as in Example 11.
  • the product obtained after separation and purification was subjected to HPLC detection.
  • the HPLC chart is shown in Figure 30. Liquid phase purity: 99.31%, molar yield: 81.50%.
  • the sample processing method is to quench the active ester system with excess water and then inject samples for detection.
  • Liquid phase purity 95.95%, molar yield: 79.15%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Endocrinology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了一种索马鲁肽的制备方法及中间体,该制备方法包括步骤:(1)使化合物SEM110和化合物SEM120在溶剂中,在碱性条件下,进行反应,得到化合物SEM130;(2)使化合物SEM130脱保护基,形成索马鲁肽,反应式如下。本发明的制备方法操作简便,反应条件温和,易于纯化,产品纯度高成本低,适合工业化生产。

Description

一种索马鲁肽的制备方法及中间体 技术领域
本发明涉及药物制备领域,更具体地说,涉及一种索马鲁肽的制备方法及中间体。
背景技术
糖尿病(diabetes mellitus)是由胰岛素绝对或相对不足引起的以高血糖和其他并发症并存为特点的内分泌代谢常见病、多发病。中国糖尿病负担最重,患病人数已超过1.14亿人。胰高血糖素样肽-1(Glucagon-like peptide-1,GLP-1)是一种重要的肠促胰岛素,相比传统糖尿病药物,它能够解决常规口服降糖药解决不了的β细胞凋亡这一难题。索马鲁肽(Semaglutide)被誉为全球最好的GLP-1激动剂,与人GLP-1有94%同源性,在降糖、减重、心血管系统获益以及安全性等方面表现出更大的优势。索马鲁肽将肽链第26位的赖氨酸位置连接上18碳脂肪二酸侧链,其可介导和促进索马鲁肽与白蛋白的强结合,降低肾清除率,相比C16侧链的利拉鲁肽,索马鲁肽侧链对白蛋白的亲和力增强了5~6倍,与白蛋白结合可以增大本品的分子量,能够避免快速被肾脏清除并防止代谢性讲解,延长体内半衰期达到长效的目的。索马鲁肽结构如下:
目前制备索马鲁肽的方法主要有化学法和生物法。索马鲁肽是含有31个氨基酸残基的中长肽,如果采用标准化学法,则工艺步骤多、周期长,逐步偶联时树脂收缩严重,造成反应不完全、容易产生缺陷肽,从而产物杂质多,纯化难度大。如果采用固相片段缩合的方法,则需要每个片段大量过量,副反应多,产物分离困难。总之化学法收率低、成本高,还需要大量的有机溶剂,不适合工业化生产。生物法典型的方法是WO2009083549A1公开的通过基因重组技术,利用酵母生产获得索玛鲁肽主肽链,再侧链修饰主肽链后连接剩余短肽的方法。索马鲁肽肽链末端有二肽His-Aib,Aib为非天然氨基酸,通常采用重组发酵表达主肽Arg34GLP-1(9-37),再通过化学合成在Lys20的ε-氨基上侧链、连接二肽His-Aib得到索马鲁肽。此方法步骤短,产物纯化相对化学法简单容易。
WO2009083549A1公开的索马鲁肽主链进行侧链修饰和连接短肽的方法中,侧链和短肽要么均利用HOSU进行活化得到活性酯后再进行偶联,要么均不活化。本申请 发明人在实际研究中发现,使用HOSU制备侧链和短肽的-OSU活性酯时分别会生成一个多一分子的氨基丙酸杂质(IMP1,IMP2),这两个杂质的衍生杂质与产物性质相近,分离纯化很困难,从而导致溶剂用量很大,分离成本很高,且不利于生产过程质量的控制。IMP1,IMP2结构如下图:
如果用未活化的侧链以及短肽和Arg34GLP-1(9-37),或者Arg34GLP-1(11-37)缩合,需要使用高活性的缩合试剂,Arg34GLP-1(9-37)或者Arg34GLP-1(11-37)自身含有多个游离羧基,侧链和短肽的羧基会竞争性与长肽氨基缩合,目标产物选择性差,导致产物异常复杂。
因此,本领域仍然迫切需要开发一种杂质控制更好的,成本更低的制备索马鲁肽的新方法。
发明内容
针对现有索马鲁肽的合成方法具有收率低、生产成本高、产生废液多、产品纯化难等缺点,本发明一方面的目的是提供一种片段缩合制备索马鲁肽的方法,该方法可以低成本高效率地得到高纯度的索马鲁肽产品。为实现本发明的目的,本发明采用以下技术方案:
一种索马鲁肽的制备方法,该制备方法包括步骤:
(1)使化合物SEM110和化合物SEM120在溶剂中,在碱性条件下,进行反应,得到化合物SEM130,其反应式如下:
其中,R2为对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基;
(2)使化合物SEM130脱保护基,形成索马鲁肽,其反应式如下:
更优选地,R2为五氟苯基。
优选地,步骤(1)中,所述溶剂选自N,N-二甲基甲酰胺、N-甲基吡咯烷酮、N,N-二甲基乙酰胺、四氢呋喃、二氯甲烷、丙酮、乙腈和水中的一种或多种的组合。
优选地,步骤(1)中,所述碱选自碳酸盐、磷酸盐、碳酸氢盐、磷酸氢盐、三乙胺、DBU、DMAP、二异丙基乙基胺中的一种或几种组合,更优选二异丙基乙基胺。
优选地,步骤(1)中,化合物SEM110和化合物SEM120的摩尔比为1:1.0~4.0,更优选1:2.0~3.0,最优选1:2.5。
优选地,步骤(1)中,碱的用量为保持体系pH=9~10,更优选pH=8~9。
优选地,步骤(2)中,脱保护基反应所用溶剂选自二氯甲烷、甲基叔丁基醚、三氟乙酸、TIS、乙腈和水中的一种或多种的组合。
优选地,步骤(2)中,脱保护基是在酸存在下进行的。
优选地,所述酸选自TFA、乙酸、盐酸、氢溴酸、磷酸、甲基磺酸中的一种或几种组合,更优选TFA、乙酸。
优选地,所述酸与化合物SEM130的体积重量比为1~10mL/g。
优选地,化合物SEM120是通过以下步骤制备的:
(1-d)使SEM115所示化合物与化合物2在溶剂中,在脱水剂存在下,反应生成SEM120,其反应式如下:
其中R2为对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基。
优选地,步骤(1-d)中,所述溶剂选自N,N-二甲基甲酰胺、N-甲基吡咯烷酮、N,N-二甲基乙酰胺、四氢呋喃、二氯甲烷、丙酮、乙腈和水中的一种或多种的组合。
优选地,步骤(1-d)中,所述脱水剂选自DCC、DIC、EDCI、T3P中的一种或多种的组合,更优选DCC。
优选地,步骤(1-d)中,化合物SEM115与化合物2的摩尔比为1:1.0~1.4,更优选1:1.0~1.2,最优选1:1.05。
优选地,步骤(1-d)中,脱水剂与化合物SEM115的摩尔比为1.4~1.0:1,更优选1.3~1.1:1,最优选1.2:1。
优选地,化合物SEM110是通过以下步骤制备的:
(1-c)使化合物SEM100和化合物SEM105在溶剂中,在碱存在下,进行反应,得到化合物SEM110,其反应式如下:
其中R1为对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基。
更优选地,R1为5-降冰片烯-2,3-二甲酰亚胺基。
优选地,步骤(1-c)中,所述溶剂选自N,N-二甲基甲酰胺、N-甲基吡咯烷酮、N,N-二甲基乙酰胺、四氢呋喃、二氯甲烷、丙酮、乙腈、水的一种或多种组合。
优选地,步骤(1-c)中,所述碱选自碳酸盐、磷酸盐、碳酸氢盐、磷酸氢盐、三乙胺、DBU、DMAP、二异丙基乙基胺中的一种或几种组合,更优选二异丙基乙基胺。
优选地,步骤(1-c)中,化合物SEM100和化合物SEM105的摩尔比为1.1~1.6:1,更优选1.2~1.5:1。
优选地,步骤(1-c)中,碱的用量为与化合物SEM105的摩尔比为5~25:1,更优选10~20:1。
优选地,化合物SEM100是通过以下步骤制备的:
(1-a)使化合物SEM80和化合物1在溶剂中,在脱水剂存在下,进行反应,得到化合物SEM90,其反应式如下:
式中R1对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基;
(1-b)使化合物SEM90在溶剂中,在酸存在下,脱保护基,形成化合物SEM100,其反应式如下:
其中R1为对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基。
优选地,步骤(1-a)中的溶剂选自N,N-二甲基甲酰胺、N-甲基吡咯烷酮、N,N-二甲基乙酰胺、四氢呋喃、二氯甲烷、丙酮、乙腈、水中的一种或多种的组合。
优选地,步骤(1-a)中的脱水剂选自DCC、DIC、EDCI、T3P中的一种或多种的组合,更优选DCC。
优选地,步骤(1-a)中,化合物SEM80与化合物1的摩尔比为1:1.0~1.4,更优选1:1.0~1.2,最优选1:1.05。
优选地,步骤(1-a)中,化合物SEM80与所述脱水剂的摩尔为1:1.0~1.4,更优选1:1.1~1.2。
优选地,步骤(1-b)中的溶剂选自二氯甲烷、三氟乙酸、TIS、乙腈、水中的一种或 多种的组合。
优选地,步骤(1-b)中,所述酸选自三氟乙酸、乙酸、盐酸、氢溴酸、磷酸、甲基磺酸中的一种或多种的组合,更优选三氟乙酸、乙酸。
优选地,步骤(1-b)中,所述酸与化合物90的体积重量比为1~10mL/g,更优选3~5mL/g。
本发明另一方面的目的是提供一种化合物SEM90或其盐,所述化合物的结构式如下:
其中R1为甲基磺酰基或5-降冰片烯-2,3-二甲酰亚胺基。
本发明再一方面的目的是提供一种化合物SEM90的制备方法,该制备方法包括以下步骤:
(1-a)使化合物SEM80和化合物1在溶剂中,在脱水剂存在下,进行反应,得到化合物SEM90,其反应式如下:
式中R1甲基磺酰基或5-降冰片烯-2,3-二甲酰亚胺基;
优选地,步骤(1-a)中的溶剂选自N,N-二甲基甲酰胺、N-甲基吡咯烷酮、N,N-二甲基乙酰胺、四氢呋喃、二氯甲烷、丙酮、乙腈、水中的一种或多种的组合。
优选地,步骤(1-a)中的脱水剂选自DCC、DIC、EDCI、T3P中的一种或多种的组合,更优选DCC。
优选地,步骤(1-a)中,化合物SEM80与化合物1的摩尔比为1:1.0~1.4,更优选1:1.0~1.2,最优选1:1.05。
优选地,步骤(1-a)中,化合物SEM80与所述脱水剂的摩尔为1:1.0~1.4,更优选1:1.1~1.2。
本发明再一方面的目的是提供一种化合物SEM100或其盐,所述化合物的结构式如下:
其中R1为甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基。
本发明再一方面的目的是提供一种化合物SEM100的制备方法,该制备方法包括以 下步骤:
(1-b)使化合物SEM90在溶剂中,在酸存在下,脱保护基,形成化合物SEM100,其反应式如下:
其中R1为甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基。
优选地,步骤(1-b)中的溶剂选自二氯甲烷、三氟乙酸、TIS、乙腈、水中的一种或多种的组合。
优选地,步骤(1-b)中,所述酸选自三氟乙酸、乙酸、盐酸、氢溴酸、磷酸、甲基磺酸中的一种或多种的组合,更优选三氟乙酸、乙酸。
优选地,步骤(1-b)中,所述酸与化合物90的体积重量比为1~10mL/g,更优选3~5mL/g。
本发明再一方面的目的是提供一种化合物SEM120或其盐,所述化合物的结构式如下:
其中R2为甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基。
本发明再一方面的目的是提供一种索马鲁肽侧链的中间体的制备方法,该制备方法包括以下步骤:
(1-a)使化合物SEM80和化合物1在溶剂中,在脱水剂存在下,进行反应,得到化合物SEM90,其反应式如下:
式中R1对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基。
更优选地,R1为对5-降冰片烯-2,3-二甲酰亚胺基。
本发明再一方面的目的是提供一种索马鲁肽侧链的制备方法,该制备方法包括以下步骤:
(1-a)使化合物SEM80和化合物1在溶剂中,在脱水剂存在下,进行反应,得到化合物SEM90,其反应式如下:
式中R1对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基;
(1-b)使化合物SEM90在溶剂中,在酸存在下,脱保护基,形成化合物SEM100,其反应式如下:
其中R1为对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基。
更优选地,R1为对5-降冰片烯-2,3-二甲酰亚胺基。
本发明再一方面的目的是提供一种索马鲁肽中间体的制备方法,该制备方法包括以下步骤:
(1-a)使化合物SEM80和化合物1在溶剂中,在脱水剂存在下,进行反应,得到化合物SEM90,其反应式如下:
式中R1对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基;
(1-b)使化合物SEM90在溶剂中,在酸存在下,脱保护基,形成化合物SEM100,其反应式如下:
其中R1为对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基;
(1-c)使化合物SEM100和化合物SEM105在溶剂中,在碱存在下,进行反应,得到化合物SEM110,其反应式如下:
其中R1为对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基。
更优选地,R1为对5-降冰片烯-2,3-二甲酰亚胺基。
本发明再一方面的目的是提供一种索马鲁肽的制备方法,其包括以下步骤:
(1)使化合物SEM110和化合物SEM120在溶剂中,在碱性条件下,反应生成化合物SEM130;和
(2)使化合物SEM130脱保护基,形成索马鲁肽,
其中步骤(1)还包括以下步骤:
(1-a)使化合物SEM80和化合物1在溶剂中,在脱水剂存在下,进行反应,得到化合物SEM90;
(1-b)使化合物SEM90在溶剂中,在酸存在下,脱保护基,形成化合物SEM100;
(1-c)使化合物SEM100和化合物SEM105在溶剂中,在碱存在下,进行反应,得到化合物SEM110;
(1-d)使化合物SEM115与化合物2在溶剂中,在脱水剂存在下,反应生成化合物SEM120;
上述步骤的反应式如下:
其中R1为对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基,R2为对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基,以及
其中步骤(1-d)与步骤(1-a)~(1-c)之间没有先后顺序,可以与其中的任一个步骤互换。
更优选地,R1为对5-降冰片烯-2,3-二甲酰亚胺基,R2为五氟苯基。
附图说明
图1是实施例1制备的化合物SEM100A的HPLC图谱。
图2是实施例2制备的化合物SEM100B的HPLC图谱。
图3是实施例3制备的化合物SEM120A的HPLC图谱。
图4是实施例4制备的化合物SEM120B的HPLC图谱。
图5是实施例5制备的化合物SEM120C的HPLC图谱。
图6是化合物SEM110的典型质谱图。
图7是实施例6制备的化合物SEM110的HPLC图谱
图8是实施例6制备的化合物SEM130的HPLC图谱。
图9是化合物SEM130的典型质谱图。
图10是实施例7制备的化合物SEM110的HPLC图谱。
图11是实施例7制备的化合物SEM130的HPLC图谱。
图12是实施例8制备的化合物SEM110的HPLC图谱。
图13是实施例8制备的化合物SEM130的HPLC图谱。
图14是实施例9制备的化合物SEM120D的HPLC图谱。
图15是实施例10制备的化合物SEM110的HPLC图谱。
图16是实施例10制备的化合物SEM130的HPLC图谱。
图17是实施例11制备的索马鲁肽固体粗品的HPLC图谱(监控总时间为40min)。
图18是实施例11制备的经精制分离得到的索马鲁肽的HPLC图谱(监控总时间为75min)。
图19是索马鲁肽(SEM)的典型质谱图。
图20是实施例12制备的经精制分离得到的索马鲁肽的HPLC图谱。
图21是实施例13制备的经精制分离得到的索马鲁肽的HPLC图谱。
图22是实施例14制备的经精制分离得到的索马鲁肽的HPLC图谱。
图23是实施例15制备的化合物SEM100C的HPLC图谱。
图24是化合物SEM100A、SEM100B、SEM100C和SEM100D用过量的环己胺淬灭后的典型质谱图。
图25是化合物SEM120A、SEM120B、SEM120C和SEM120D用过量的环己胺淬灭后的典型质谱图。
图26是实施例16制备的化合物SEM100D的HPLC图谱。
图27是实施例17制备的化合物SEM130的HPLC图谱。
图28是实施例18制备的化合物SEM130的HPLC图谱。
图29是实施例19制备的化合物SEM130的HPLC图谱。
图30是实施例20制备的索马鲁肽HPLC图谱。
图31是实施例21制备的索马鲁肽HPLC图谱。
图32是实施例22制备的索马鲁肽HPLC图谱。
图33是对比例1制备的化合物SEM100E的HPLC图谱。
图34是对比例1制备的含有IMP1和SEM100E的体系利用环己胺淬灭后的质谱图。
图35是对比例2制备的化合物SEM120E的HPLC图谱。
图36是对比例2制备的含有IMP2和SEM120E的体系利用水淬灭后的质谱图。
图37是对比例3制备的经精制分离得到的索马鲁肽的HPLC图谱。
图38是对比例4制备的经精制分离得到的索马鲁肽的HPLC图谱。
图39是对比例5制备的经精制分离得到的索马鲁肽的HPLC图谱。
具体实施方式
针对现有技术(专利公布号WO2009083549A1)中制备索马鲁肽存在的缺陷,本申请发明人经过深入的研究,发现在侧链和短肽(二肽)修饰过程中,将现有的活性酯供体HOSU更换为硝基苯酚酯,甲基磺酸酯,五氟苯酚酯或HONB酯后,完全避免了杂质IMP1和IMP2,使得最终产品索马鲁肽纯度更高,产率更高。在此基础上完成了本发明。
在本发明的一个优选实施方式中,索马鲁肽的制备方法包括步骤:(1)使化合物SEM110和化合物SEM120在溶剂中,在碱性条件下,进行反应,得到化合物SEM130,其反应式如下:
其中,R2为对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基;
(2)使化合物SEM130脱保护基,形成索马鲁肽,其反应式如下:
步骤(1)中,所用溶剂为所有原料(化合物SEM110和化合物SEM120)的优良溶剂,溶剂的用量为可使得所有原料完全溶解在其中。该溶剂优选为N,N-二甲基甲酰胺、N-甲基吡咯烷酮、N,N-二甲基乙酰胺、四氢呋喃、二氯甲烷、丙酮、乙腈和水的一种或多种组合。步骤(1)中所用碱优选为碳酸盐、磷酸盐、碳酸氢盐、磷酸氢盐、三乙胺、DBU、DMAP、二异丙基乙基胺中的一种或几种组合,更优选为二异丙基乙基胺。化合物SEM110和化合物SEM120的摩尔比为1:1.0~4.0,更优选1:2.0~3.0。该碱的用量优选为使得反应溶液的PH=8~10,更优选为9~10。步骤(1)中,优选为反应温度为0~25℃,更优选为0~15℃。该步骤(1)中还包括,反应结束后,利用酸调节体系pH=4~6。加入化合物SEM130的不良溶剂,析出固体,过滤或离心,得到残余固体,然后用溶剂打浆,过滤,干燥得到化合物SEM130粗品,直接用于步骤(2)。所述不良溶剂优选为乙腈,EA,MTBE,MIBK中的一种或多种。打浆所用溶剂对SEM130的溶解性较差,对杂质的溶解性较好,优选为MTBE,EA,乙腈,MIBK中的一种或多种。
步骤(2)中,脱保护基所用溶剂为原料(化合物SEM130)的优良溶剂,溶剂的用量为可使得该原料完全溶解在其中。溶剂优选为二氯甲烷、甲基叔丁基醚、三氟乙酸、TIS、乙腈和水中的一种或多种的组合。该步骤的反应温度优选为0~20℃,更优选为0~10℃。所述酸选自优选为TFA、乙酸、盐酸、氢溴酸、磷酸、甲基磺酸中的一种或多种,更优选为乙酸、TFA。酸与化合物SEM130的体积重量比为1~10mL/g,更优选3~7mL/g。步骤(2)中还包括,反应结束后,将反应液倒入0~20℃的,更优选0~10℃的Semaglutide的不良溶剂中,析出固体,离心或过滤。所述不良溶剂优选为MTBE、乙腈,EA、MIBK中的一种或多种,更优选MTBE。所得固体利用溶剂打浆,过滤得到索马鲁肽固体粗品。打浆所用溶剂对Semaglutide的溶解性较差,对杂质的溶解性较好,优选为MTBE,EA,乙腈,MIBK中的一种或多种,更优选MTBE。索马鲁肽固体粗品通过柱色谱进行进一步纯化。
在本发明的一个优选实施方式中,化合物SEM120可以通过以下步骤(1-d)制备:
使化合物SEM115与化合物2在溶剂中,在脱水剂存在下,反应生成化合物SEM120,其反应式如下:
其中,R2为对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基。
制备化合物SEM120过程中,所用溶剂为所有原料(化合物SEM115和化合物2)的优良溶剂,溶剂的用量为可使得所有原料完全溶解在其中。所述溶剂优选为N,N-二甲基甲酰胺、N-甲基吡咯烷酮、N,N-二甲基乙酰胺、四氢呋喃、二氯甲烷、丙酮、乙腈和水中的一种或多种的组合。脱水剂优选为DCC、DIC、EDCI、T3P中的一种或多种的组合。化合物SEM115与化合物2的摩尔比优选为1:1~1.4,更优选为1:1.0~1.2。所述脱水剂与化合物SEM115的摩尔比为1.4~1.0:1,更优选1.3~1.1:1。反应温度优选为0~20℃,更优选为0~10℃。制备化合物SEM120过程还包括反应完毕后,过滤,滤液在不高于40℃,例如15~30℃,浓缩至干即得化合物120。该化合物120无需进一步纯化,可直接用于下一步反应。
在本发明的一个优选实施方式中,化合物SEM110可以通过以下步骤(1-c)制备:
使化合物SEM100和化合物SEM105在溶剂中,在碱存在下,进行反应,得到化合物SEM110,其反应式如下:
其中R1为对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基。
化合物SEM110的制备过程中,所用溶剂为所有原料(化合物SEM100和化合物SEM105)的优良溶剂,溶剂的用量为可使得所有原料完全溶解在其中。溶剂优选为N,N-二甲基甲酰胺、N-甲基吡咯烷酮、N,N-二甲基乙酰胺、四氢呋喃、二氯甲烷、丙酮、乙腈、水的一种或多种组合。所用碱优选为碳酸盐、磷酸盐、碳酸氢盐、磷酸氢盐、三乙胺、DBU、DMAP、二异丙基乙基胺中的一种或几种组合,更优选为二异丙基乙基胺。化合物SEM100和化合物SEM105的摩尔比优选为1.1~1.6:1,更优选为1.2~1.5:1。反应温度 优选为0~30℃,更优选为0~15℃。化合物SEM100和化合物SEM105的摩尔比优选为1.3~1.5。碱与化合物SEM105的摩尔比优选为5~25:1或碱的用量优选为保持体系PH=10~11。反应温度优选为0~30℃,更优选为0~15℃。含有化合物SEM110的反应液无需处理,直接用于下一步反应。
在本发明的一个优选实施方式中,化合物SEM100可以通过以下步骤制备:
(1-a)使化合物SEM80和化合物1在溶剂中,在脱水剂存在下,进行反应,得到化合物SEM90,其反应式如下:
其中R1对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基;
(1-b)使化合物SEM90在溶剂中,在酸存在下,脱保护基,形成化合物SEM100,其反应式如下:
其中R1对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基。
化合物SEM100的制备过程中,步骤(1-a)中,所用溶剂为所有原料(化合物SEM80和化合物1)的优良溶剂,溶剂的用量为可使得所有原料完全溶解在其中。溶剂优选为N,N-二甲基甲酰胺、N-甲基吡咯烷酮、N,N-二甲基乙酰胺、四氢呋喃、二氯甲烷、丙酮、乙腈、水中的一种或多种的组合,脱水剂优选为DCC,DIC,EDCI,T3P中的一种或多种的组合。化合物SEM80与化合物1的摩尔比为1:1.0~1.4,更优选1:1~1.2。化合物SEM80与脱水剂的摩尔为1:1.0~1.4,更优选1:1.1~1.2。该步骤中反应温度优选为0~20℃,更优选为0~10℃。该步骤还包括反应完毕后,过滤反应液,滤液在不高于40℃,例如15~30℃,浓缩得到含有目标化合物的浓缩液,直接用于下一步反应。
化合物SEM100的制备过程中,步骤(1-b)中,所用溶剂为原料(化合物SEM90)的优良溶剂,溶剂的用量为可使得该原料完全溶解在其中。溶剂优选为二氯甲烷、三氟乙酸、TIS、乙腈、水中的一种或多种的组合。酸选自三氟乙酸、乙酸、盐酸、氢溴酸、磷酸、甲基磺酸中的一种或多种。酸与化合物90的体积重量比优选为1~10mL/g。脱保护基的温度优选为0~40℃,更优选10~20℃。化合物SEM100的制备过程还包括脱保护基完成后,向反应液中滴加化合物SEM100的不良溶剂,搅拌1~3小时,使产物充分析 出,过滤或离心得到化合物SEM100。该化合物SEM100无需进一步纯化可直接用于下一步反应。该步骤中,所述不良溶剂优选为MTBE。
本发明的索马鲁肽的制备方法中,各个步骤的反应进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR),反应时间以反应液中主原料是否消失为准,例如,步骤(1-a)中,当监测发现反应液中化合物SEM80消失时,认为反应完成,步骤(1-d)中,当监测发现反应液中化合物化合物SEM115消失时,认为反应完成。
本发明的描述中,“多种”的意思是两种或两种以上。
本发明的描述中,盐酸为氯化氢气体的水溶液,其质量浓度为常用的浓度,例如,5%~37.5%,本发明优选使用环境温度下饱和氯化氢浓度的盐酸。氢溴酸是溴化氢的水溶液,其质量浓度为常用的浓度,例如,5%~68%,本发明优选使用环境温度下饱和氢溴酸浓度的氢溴酸。
与现有技术相比,本发明的优势效果在于:
本发明的制备方法操作简便,反应条件温和,利用硝基苯酚酯,甲基磺酸酯,五氟苯酚酯或HONB酯修饰侧链和短肽,避免了使用HOSU带来的杂质IMP1和IMP2,最终产品Semaglutide易于纯化,产品纯度高,适合工业化生产。
在本发明中,缩写代表的物质如表1所示:
表1
以下将结合实施例更详细地解释本发明,本发明的实施例仅用于说明本发明的技术方案,本发明的实质和范围并不局限于此。除非另外说明,否则百分比和份数是重量百分比和重量份数。
下列实施例所用试剂,如未特别说明,均市售可得。
SEM80和SEM115均采购自成都普康生物科技有限公司。
SEM105的制备方法参考中国专利申请号CN200880124022.1。
下列实施例所用高效液相色谱仪的厂家型号为Agilent1260II和Waters  e2695+2698;所用质谱仪器的厂家型号为Waters H-Class。
实施例1:利用SEM80和HONB制备化合物SEM100A。
(1)氮气保护下,控温15~30℃,依次加入化合物SEM80(10g,11.82mmol,1.0eq.),DCM(80mL,8.0vol.)和HONB(2.2g,12.41mmol,1.05eq.),搅拌溶解。冰水浴降温至0~10℃,加入DCC(2.9g,14.18mmol,1.2eq.),加完后,0~10℃保温至反应完毕。体系过滤,滤饼弃去。滤液15~30℃浓缩至1.5~2.0vol.(即15~20mL)得到化合物SEM90A的DCM溶液。
(2)SEM90A的DCM溶液降温0~10℃,控温0~10℃依次加入DCM(10mL,1.0vol.),TFA(40mL,4.0vol.),加毕体系回温10~20℃,反应至SEM90转化完全,控10~20℃滴加入MTBE(200mL,20vol.),搅拌2小时后过滤,滤饼用MTBE(50mL,5vol.)淋洗,真空干燥得到化合物SEM100A类白色固体11.2g。产品SEM100A为活性酯,样品处理方式为取SEM100A,用过量的环己胺淬灭后送样进行HPLC和质谱检测,HPLC图谱参见图1。液相纯度:96.75%,摩尔收率:86.60%。
质谱信息:m/z=815.61(M+H)+。典型质谱图参见图24。
实施例2:利用SEM80和五氟苯酚制备化合物SEM100B
(1)氮气保护下,控温15~30℃,依次加入SEM80(10g,11.82mmol,1.0eq.),DCM(80mL,8.0vol.)和五氟苯酚(2.28g,12.41mmol,1.05eq.),搅拌溶解。冰水浴降温至0~10℃,加入DCC(2.9g,14.18mmol,1.2eq.),加完后,0~10℃保温至反应完毕。体系 过滤,滤饼弃去。滤液15~30℃浓缩至1.5~2.0vol.(即15~20mL)得到化合物SEM90B的DCM溶液。
(2)化合物SEM90B的DCM溶液降温0~10℃,控温0~10℃依次加入DCM(10mL,1.0vol.),TFA(40mL,4.0vol.),加毕,体系回温10~20℃,反应至SEM90B转化完全,控10~20℃滴加入MTBE(200mL,20vol.),搅拌2小时后过滤,滤饼用MTBE(50mL,5vol.)淋洗,真空干燥得到SEM100B类白色固体12.46g。产品为活性酯,样品处理方式为取SEM100B,用过量的环己胺淬灭后送样进行HPLC和质谱检测。HPLC图谱参见图2。液相纯度:95.46%,摩尔收率:88.96%。
质谱信息:m/z=815.61(M+H)+。典型质谱图参见图24。
实施例3:利用SEM115与五氟苯酚制备化合物SEM120A
氮气保护下,控温15~30℃,依次加入SEM115(10g,17.22mmol,1.0eq.),THF(80mL,8.0vol.)和五氟苯酚(3.33g,18.08mmol,1.05eq.),搅拌溶解。冰水浴降温至0~10℃,加入DCC(4.26g,20.66mmol,1.2eq.),加完后,0~10℃保温至反应完毕。体系过滤,滤饼弃去。滤液15~30℃浓缩至干得到SEM120A,为类白色固体13.38g。产品为活性酯,样品处理方式为取SEM120A,用过量的环己胺淬灭后进行HPLC和质谱检测。HPLC图谱参见图3。液相纯度:97.28%,摩尔收率:90.65%。
质谱信息:m/z=664.44(M+H)+。典型质谱图参见图25。
实施例4:利用化合物SEM115和HONB制备化合物SEM120B
氮气保护下,控温15~30℃,依次加入SEM115(10g,17.16mmol,1.0eq.),THF(80mL,8.0vol.)和HONB(3.22g,18.02mmol,1.05eq.),搅拌溶解。冰水浴降温至0~10℃,加入DCC(4.25g,20.59mmol,1.2eq.),加完后,0~10℃保温至反应完毕。体系过滤,滤饼弃去。滤液15~30℃浓缩至干得到SEM120B,为类白色固体14.07g。产品为活性酯,样品处理方式为取SEM120B,用过量的环己胺淬灭后进行HPLC和质谱检测,HPLC图谱参见图4。液相纯度:98.46%,摩尔收率:94.20%。
质谱信息:m/z=664.44(M+H)+。典型质谱图参见图25。
实施例5:利用化合物SEM115和甲基磺酸酐制备化合物SEM120C
氮气保护下,控温15~30℃,依次加入SEM115(10g,17.16mmol,1.0eq.),THF(80mL,8.0vol.)和DIPEA(5.54g,42.90mmol,2.50eq.),搅拌溶解。冰水浴降温至0~10℃,滴加甲基磺酸酐(3.59g,20.59mmol,1.2eq.)的THF(20mL,2.0vol.)溶液。加毕,0~10℃保温至反应完毕。体系15~30℃浓缩至干得到SEM120C类白色固体12.38g。产品为活性酯,样品处理方式为取SEM120C,用过量的环己胺淬灭后进行HPLC检测,HPLC图谱参见图5。液相纯度:97.11%,摩尔收率:94.54%。
质谱信息:m/z=664.44(M+H)+。典型质谱图参见图25。
实施例6:利用化合物SEM100A、GLP-1(9-37)肽和化合物120A制备化合物SEM130
(1)氮气保护下,控温15~30℃,依次加入GLP-1(9-37)肽(即,化合物SEM105)(1.0g,0.315mmol,1.0eq.),THF(8mL,8.0vol.)和纯净水(20mL,20vol.),冰水浴降温至0~15℃,加入DIPEA(0.81g,6.30mmol,20eq.),搅拌溶解。控温0~15℃滴加入 SEM100A(0.48g,0.47mmol,1.5eq.)的THF溶液。加毕,0~15℃保温至反应完毕。得到化合物SEM110/THF/水溶液直接用于下步反应。
质谱信息:m/z=973.28(M+4H)4+。化合物SEM110的典型质谱图见图6。
HPLC检测,HPLC图谱参见图7。液相纯度:86.84%。
(2)向化合物SEM110/THF/水溶液中加入乙酸(0.38g,6.30mmol,20eq.),控温0~15℃搅拌1.0小时,加入DIPEA调节PH=8~9,冰水浴降温至0~15℃,加入化合物SEM120A(0.71g,0.945mmol,3eq.)/THF溶液,0~15℃保温至反应完毕。滴加乙酸调节PH=4~6。回温15~35℃浓缩至剩余约20~23体积,有大量固体析出,离心干燥得到SEM130粗品,用MTBE(150mL,15vol.)15~25℃打浆2~3小时,过滤,滤饼真空干燥得到化合物SEM130粗品。类白色固体1.36g。产品进行HPLC检测,HPLC图谱参见图8。液相纯度:90.68%,摩尔收率:83.52%。
质谱信息:m/z=1114.27(M+4H)4+。化合物SEM130的典型质谱图参见图9。
实施例7:利用化合物SEM100A、GLP-1(9-37)肽和化合物120B制备化合物SEM130。
(1)氮气保护下,控温15~30℃,依次加入GLP-1(9-37)肽(1.0g,0.315mmol,1.0eq.),THF(8mL,8.0vol.)和纯净水(20mL,20vol.),冰水浴降温至0~15℃,加入DIPEA(0.81g,6.30mmol,20eq.),搅拌溶解。控温0~15℃滴加入SEM100A(0.48g,0.47mmol,1.5eq.) 的THF溶液,保温至反应毕,滴加乙酸调节PH=4~6。15~35℃浓缩至余约20~23体积,有大量固体析出,离心干燥得到化合物SEM110含水粗品,用MTBE(150mL,15vol.)15~25℃打浆2~3小时,重复MTBE(150mL,15vol.)15~25℃打浆2~3小时过滤,滤饼真空干燥得到化合物SEM110无水粗品。类白色固体1.31g。产品进行HPLC检测,HPLC图谱参见图10。液相纯度:90.52%。按照理论量投料下步反应。
(2)向化合物SEM110无水粗品(1.0g,0.256mmol,1eq.)加入DMF(15mL,15vol.),加入DIPEA调节PH=8~9搅拌溶解,加入化合物SEM120B(0.48g,0.64mmol,2.5eq.),0~15℃保温至反应完毕。滴加乙酸调节PH=4~6。滴加入乙腈(45mL,35vol.),有大量固体析出,离心得到SEM130粗品,用MTBE(150mL,15vol.)15~25℃打浆2~3小时,过滤,滤饼真空干燥得到SEM130。类白色固体1.19g。产品进行HPLC检测,HPLC图谱参见图11。液相纯度:89.36%,摩尔收率:90.36%。
质谱信息:m/z=1114.27(M+4H)4+
实施例8:利用化合物SEM100A、GLP-1(9-37)肽和化合物120C制备化合物SEM130
(1)SEM110制备过程类似实施例7;产品进行HPLC检测,HPLC图谱参见图12。液相纯度:89.63%
(2)向化合物SEM110无水粗品(1.0g,0.256mmol,1eq.)加入DMF(150mL,15vol.),加入DIPEA调节PH=8~9搅拌溶解,加入化合物SEM120C(0.42g,0.64mmol,2.5eq.),0~15℃保温至反应完毕。滴加乙酸调节PH=4~6。滴加入乙腈(45mL,35vol.),有大量固体析出,离心得到化合物SEM130粗品,用MTBE(150mL,15vol.)15~25℃打浆2~3小时,过滤,滤饼真空干燥得到SEM130。类白色固体1.21g。产品进行HPLC检测,HPLC图谱参见图13。液相纯度:87.01%,摩尔收率:91.45%。
质谱信息:m/z=1114.27(M+4H)4+
实施例9:利用化合物SEM115和对硝基苯酚制备化合物SEM120D
氮气保护下,控温15~30℃,依次加入SEM115(10g,17.16mmol,1.0eq.),THF(80mL,8.0vol.),对硝基苯酚(2.86g,20.59mmol,1.2eq.)搅拌溶解。冰水浴降温至0~10℃,滴加DCC(4.25g,20.59mmol,1.2eq.)的THF(20mL,2.0vol.)溶液。加毕,0~10℃保温至反应完毕。体系15~30℃浓缩至干得到SEM120D黄色固体12.56g。产品进行HPLC检测,HPLC图谱参见图14。液相纯度:98.27%,摩尔收率:93.89%。
质谱信息:m/z=664.44(M+H)+。典型质谱图参见图25。
实施例10:利用化合物SEM100A、GLP-1(9-37)肽和化合物SEM120D制备化合物SEM130
(1)化合物SEM110的制备过程类似实施例7;产品进行HPLC检测,HPLC图谱参见图15。液相纯度:88.01%。
(2)将SEM110无水粗品(1.0g,0.257mmol,1eq.)加入DMF(150mL,15vol.)中,加入DIPEA调节PH=8~9搅拌溶解,加入SEM120D(0.72g,1.03mmol,4eq.),0~15℃保温至反应完毕。滴加乙酸调节PH=4~6。滴加入乙腈(45mL,35vol.),有大量固体析出,离心得到SEM130粗品,用MTBE(150mL,15vol.)15~25℃打浆2~3小时,过滤,滤饼真空干燥得到SEM130。类白色固体1.24g。产品进行HPLC检测,HPLC图谱参见图16。液相纯度:88.91%,摩尔收率:95.38%。
质谱信息:m/z=1114.27(M+4H)4+
实施例11:Semaglutide(索马鲁肽)的制备
(1)氮气保护下,控温0~10℃,依次加入实施例6制备的化合物SEM130(1.0g,0.224mmol,1.0eq.),DCM(5mL,5.0vol.),TIS(0.25mL,0.25vol.),TFA(5mL,5.0vol.)搅拌溶解。体系0~10℃保温至反应完毕。体系控温0~10℃反滴加入预冷至0~10℃MTBE(45mL,45vol.)中,析出类白色固体,离心,倾出上清液,残余固体用MTBE(15mL,15vol.)15~25℃打浆2~3小时,过滤,固体用MTBE(15mL,15vol.)淋洗,真空干燥得到类白色索马鲁肽固体粗品0.97g。产品进行HPLC检测,HPLC图谱参见图17。液相纯度:87.30%,摩尔收率:93.50%。
质谱信息:m/z=1029.71(M+4H)4+。索马鲁肽的典型质谱图参见图19。
(2)粗品精制分离
索马鲁肽粗品(0.50g,纯度:89.56%)用DMF/水1:1,稀释到50mg/mL浓度上制备柱(柱子型号RP18-OBDTM),检测波长280nm,流动相A:5mmol/L碳酸氢铵水溶液;流动相B:乙腈;流速:15mL/min。具体参见表2。
表2.
收集产品峰,加入乙酸(13mg,2.0eq.)冻干后得索马鲁肽白色固体390mg。产品进行HPLC检测,HPLC图谱参见图18。液相纯度:99.62%,摩尔收率:88.02%。
质谱信息:m/z=1029.71(M+4H)4+
实施例12:Semaglutide(索马鲁肽)的制备
利用实施例7制备的化合物SEM130为原料,制备Semaglutide,制备和分离纯化过程 同实施例11。
分离纯化后得到的产品进行HPLC检测,HPLC图谱参见图20。液相纯度:99.55%,摩尔收率:84.30%。
质谱信息:m/z=1029.71(M+4H)4+
实施例13:Semaglutide(索马鲁肽)的制备
利用实施例8制备的化合物SEM130为原料,制备Semaglutide,制备和分离纯化过程同实施例11。
分离纯化后得到的产品进行HPLC检测,HPLC图谱参见图21。液相纯度:99.58%,摩尔收率:82.58%。
质谱信息:m/z=1029.71(M+4H)4+
实施例14:Semaglutide(索马鲁肽)的制备
利用实施例10制备的化合物SEM130为原料,制备Semaglutide,制备和分离纯化过程同实施例11。
分离纯化后得到的产品进行HPLC检测,HPLC图谱参见图22。
液相纯度:99.55%,摩尔收率:83.50%。
质谱信息:m/z=1029.71(M+4H)4+
实施例15:利用SEM80和甲基磺酸酐制备化合物SEM100C
(1)氮气保护下,控温15~30℃,依次加入SEM80(10g,11.82mmol,1.0eq.),DCM(80mL,8.0vol.)和甲基磺酸酐(2.16g,12.41mmol,1.05eq.),搅拌溶解。冰水浴降温至0~10℃,加入DIPEA(1.83g,14.18mmol,1.2eq.),加完后,0~10℃保温至反应完毕。体系过滤,滤饼弃去。滤液15~30℃浓缩至1.5~2.0vol.得到化合物SEM90C的DCM溶液。
(2)化合物SEM90C的DCM溶液降温0~10℃,控温0~10℃依次加入DCM(10mL,1.0vol.),TFA(40mL,4.0vol.),加毕,体系回温10~20℃,反应至SEM90C转化完全,控10~20℃滴加入MTBE(200mL,20vol.),搅拌2小时后过滤,滤饼用MTBE(50mL,5vol.)淋洗,真空干燥得到SEM100C类白色固体12.26g。产品为活性酯,样品处理方式为取SEM100C,用过量的环己胺淬灭后送样进行HPLC和质谱检测。HPLC图谱参见图23。
质谱信息:m/z=815.61(M+H)+,典型质谱图参见图24。
实施例16:利用SEM80和对硝基苯酚制备化合物SEM100D
(1)氮气保护下,控温15~30℃,依次加入SEM80(10g,11.82mmol,1.0eq.),DCM(80mL,8.0vol.)和对硝基苯酚(1.72g,12.41mmol,1.05eq.),搅拌溶解。冰水浴降温至0~10℃,加入DCC(2.9g,14.18mmol,1.2eq.),加完后,0~10℃保温至反应完毕。体系过滤,滤饼弃去。滤液15~30℃浓缩至1.5~2.0vol.得到化合物SEM90D的DCM溶液。
(2)化合物SEM90D的DCM溶液降温0~10℃,控温0~10℃依次加入DCM(10mL,1.0vol.),TFA(40mL,4.0vol.),加毕,体系回温10~20℃,反应至SEM90D转化完全,控10~20℃滴加入MTBE(200mL,20vol.),搅拌2小时后过滤,滤饼用MTBE(50mL,5vol.)淋洗,真空干燥得到SEM100D固体13.10g。产品为活性酯,样品处理方式为取SEM100D,用过量的环己胺淬灭后送样进行HPLC和质谱检测。HPLC图谱参见图26。液相纯度:95.67%。
质谱信息:m/z=815.61(M+H)+,典型质谱图参见图24。
实施例17:利用化合物SEM100B、GLP-1(9-37)肽和化合物120B制备化合物SEM130
(1)化合物SEM110的制备过程同实施例7,除原料SEM100B不相同之外;
(2)将SEM110无水粗品(1.0g,0.257mmol,1eq.)加入DMF(150mL,15vol.)中,加入DIPEA调节PH=8~9搅拌溶解,加入SEM120B(0.72g,1.03mmol,4eq.),0~15℃保温至反应完毕。滴加乙酸调节PH=4~6。滴加入乙腈(45mL,35vol.),有大量固体析出,离心得到SEM130粗品,用MTBE(150mL,15vol.)15~25℃打浆2~3小时,过滤,滤饼真空干燥得到SEM130。类白色固体1.35g。产品进行HPLC检测,HPLC图谱参见图27,液相纯度:84.34%。
质谱信息:m/z=1114.27(M+4H)4+
实施例18:利用化合物SEM100C、GLP-1(9-37)肽和化合物120B制备化合物SEM130
(1)化合物SEM110的制备过程同实施例7,除原料SEM100C不相同之外;
(2)将SEM110无水粗品(1.0g,0.257mmol,1eq.)加入DMF(150mL,15vol.)中,加入DIPEA调节PH=8~9搅拌溶解,加入SEM120B(0.72g,1.03mmol,4eq.),0~15℃保温至反应完毕。滴加乙酸调节PH=4~6。滴加入乙腈(45mL,35vol.),有大量固体析出,离心得到SEM130粗品,用MTBE(150mL,15vol.)15~25℃打浆2~3小时,过滤,滤饼真 空干燥得到SEM130。类白色固体1.34g。产品进行HPLC检测,HPLC图谱参见图28,液相纯度:83.86%。
质谱信息:m/z=1114.27(M+4H)4+
实施例19:利用化合物SEM100D、GLP-1(9-37)肽和化合物120B制备化合物SEM130
(1)化合物SEM110的制备过程同实施例7,除原料SEM100D不相同之外;
(2)将SEM110无水粗品(1.0g,0.257mmol,1eq.)加入DMF(150mL,15vol.)中,加入DIPEA调节PH=8~9搅拌溶解,加入SEM120B(0.72g,1.03mmol,4eq.),0~15℃保温至反应完毕。滴加乙酸调节PH=4~6。滴加入乙腈(45mL,35vol.),有大量固体析出,离心得到SEM130粗品,用MTBE(150mL,15vol.)15~25℃打浆2~3小时,过滤,滤饼真空干燥得到SEM130。类白色固体1.46g。产品进行HPLC检测,HPLC图谱参见图29,液相纯度:83.78%。
质谱信息:m/z=1114.27(M+4H)4+
实施例20:Semaglutide(索马鲁肽)的制备
利用实施例17制备的化合物SEM130为原料,制备Semaglutide,制备和分离纯化过程同实施例11。
分离纯化后得到的产品进行HPLC检测,HPLC图谱参见图30,液相纯度:99.31%,摩尔收率:81.50%。
实施例21:Semaglutide(索马鲁肽)的制备
利用实施例18制备的化合物SEM130为原料,制备Semaglutide,制备和分离纯化过程同实施例11。
分离纯化后得到的产品进行HPLC检测,HPLC图谱参见图31,液相纯度:99.31%,摩尔收率:80.72%。
实施例22:Semaglutide(索马鲁肽)的制备
利用实施例19制备的化合物SEM130为原料,制备Semaglutide,制备和分离纯化过程同实施例11。
分离纯化后得到的产品进行HPLC检测,HPLC图谱参见图32,液相纯度:99.26%,摩尔收率:82.17%。
对比例1:利用化合物SEM80和HOSU制备化合物SEM100E
(1)氮气保护下,控温15~30℃,依次加入SEM80(10g,11.82mmol,1.0eq.),DCM(80mL,8.0vol.)和HOSU(1.42g,12.41mmol,1.05eq.),搅拌溶解。冰水浴降温至0~10℃,加入DCC(2.9g,14.18mmol,1.2eq.)。加完后,0~10℃保温至反应完毕。体系过滤,滤饼弃去。滤液15~30℃浓缩至1.5~2.0vol,得到化合物SEM90E的DCM溶液。
(2)化合物SEM90E的DCM溶液降温0~10℃,控温0~10℃依次加入DCM(10mL,1.0vol.),TFA(40mL,4.0vol.),加毕体系回温10~20℃,反应至SEM90E转化完全,控10~20℃滴加入MTBE(200mL,20vol.),搅拌2小时后过滤,滤饼用MTBE(50mL,5vol.)淋洗,真空干燥得到SEM100 E类白色固体11.31g。产品进行HPLC检测,HPLC图谱参见图33。液相纯度:92.62%,摩尔收率:84.60%。化合物IMP1的含量约4.96%。
化合物IMP1质谱信息HPLC:m/z=886.64(M+H)+。质谱图参见图34。
对比例2:利用化合物SEM115和HOSU制备化合物SEM120E
氮气保护下,控温15~30℃,依次加入化合物SEM115(10g,17.16mmol,1.0eq.),THF(80mL,8.0vol.)和HOSU(2.07g,18.02mmol,1.05eq.),搅拌溶解。冰水浴降温至0~10℃,加入DCC(4.25g,20.59mmol,1.2eq.)。加完后,0~10℃保温至反应完毕。体系过滤,滤饼弃去。滤液15~30℃浓缩至干得到类白色固体化合物SEM120E,12.60g。产品进行HPLC检测,HPLC图谱参见图35。液相纯度:95.64%,摩尔收率:89.83%。化合物IMP2的含量为3.51%,
样品处理方式为活性酯体系用过量的水淬灭后进样检测。
化合物IMP2的质谱信息:m/z=653.43(M+H)+。质谱图参见图36。
对比例3:Semaglutide的制备
利用化合物SEM100E和化合物SEM120A为原料,SEM130的制备同实施例10,SEM的制备分离纯化同实施例11。
分离纯化后得到的产品进行HPLC检测,HPLC图谱参见图37,液相纯度:95.35%,摩尔收率:78.02%。
对比例4:Semaglutide的制备
利用化合物SEM100A和SEM120E为原料,SEM130的制备同实施例10,
SEM的制备分离纯化同实施例11。
分离纯化后得到的产品进行HPLC检测,HPLC图谱参见图38。
液相纯度:95.95%,摩尔收率:79.15%。
对比例5:Semaglutide的制备
利用化合物SEM100E和SEM120E为原料,SEM130的制备同实施例10,SEM的制备 分离纯化同实施例11。
分离纯化后得到的产品进行HPLC检测,HPLC图谱参见图39,液相纯度:92.26%,摩尔收率:78.02%。
对比例3、对比例4和对比例5得到的索马鲁肽的HPLC图谱与实施例11-14,20-22得到的索马鲁肽的HPLC图谱对比可以看出,利用本发明所述的硝基苯酚,甲基磺酸,五氟苯酚或HONB修饰侧链和短链避免了利用HOSU修饰侧链和短链带来的难以除去的杂质。
为了更清楚的显示不同活化基团组合对最终产品的影响,数据汇总于下表3。
表3.
以上所述的仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。即凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。

Claims (18)

  1. 一种索马鲁肽的制备方法,其特征在于,所述制备方法包括以下步骤:
    (1)使化合物SEM110和化合物SEM120在溶剂中,在碱性条件下,进行反应,得到化合物SEM130,其反应式如下:
    其中,R2为对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基;
    (2)使化合物SEM130脱保护基,形成索马鲁肽,其反应式如下:
  2. 根据权利要求1所述的制备方法,其特征在于,R2为五氟苯基。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤(1)具有一个或多个选自下组的特征:
    所述溶剂选自N,N-二甲基甲酰胺、N-甲基吡咯烷酮、N,N-二甲基乙酰胺、四氢呋喃、二氯甲烷、丙酮、乙腈和水中的一种或多种的组合,
    所用碱选自碳酸盐、磷酸盐、碳酸氢盐、磷酸氢盐、三乙胺、DBU、DMAP、二异丙基乙基胺中的一种或几种组合,更优选二异丙基乙基胺,
    化合物SEM110和化合物SEM120的摩尔比为1:1.0~4.0,更优选1:2.0~3.0,和/或碱的用量为保持反应体系pH=9~10,更优选pH=8~9。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤(2)具有一个或多个选自下组的特征:
    脱保护基反应所用溶剂选自二氯甲烷、甲基叔丁基醚、三氟乙酸、TIS、乙腈和水中的一种或多种的组合,
    脱保护基是在酸存在下进行的,
    所述酸选自TFA、乙酸、盐酸、氢溴酸、磷酸、甲基磺酸中的一种或多种,更优选TFA、乙酸,和/或
    所述酸与化合物SEM130的体积重量比为1~10mL/g。
  5. 根据权利要求1所述的制备方法,其特征在于,化合物SEM120通过以下步骤制备:
    (1-d)使化合物SEM115与化合物2在溶剂中,在脱水剂存在下,反应生成化合物SEM120,其反应式如下:
    其中,R2为对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基。
  6. 根据权利要求5所述的制备方法,其特征在于,步骤(1-d)具有一个或多个选自下组的特征:
    所述溶剂选自N,N-二甲基甲酰胺、N-甲基吡咯烷酮、N,N-二甲基乙酰胺、四氢呋喃、二氯甲烷、丙酮、乙腈和水中的一种或多种的组合,
    所述脱水剂选自DCC、DIC、EDCI、T3P中的一种或多种的组合,更优选DCC、
    化合物SEM115与化合物2的摩尔比为1:1.0~1.4,更优选1:1.0~1.2,和/或
    所述脱水剂与化合物SEM115的摩尔比为1.4~1.0:1,更优选1.3~1.1:1。
  7. 根据权利要求1所述的制备方法,其特征在于,化合物SEM110通过以下步骤制备:
    (1-c)使化合物SEM100和化合物SEM105在溶剂中,在碱存在下,进行反应,得到化合物SEM110,其反应式如下:
    其中R1为对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基。
  8. 根据权利要求7所述的制备方法,其特征在于,R1为5-降冰片烯-2,3-二甲酰亚胺基。
  9. 根据权利要求7所述的制备方法,其特征在于,步骤(1-c)具有一个或多个选自下组的特征:
    所述溶剂选自N,N-二甲基甲酰胺、N-甲基吡咯烷酮、N,N-二甲基乙酰胺、四氢呋喃、二氯甲烷、丙酮、乙腈和水中的一种或多种组合,
    所述碱选自碳酸盐、磷酸盐、碳酸氢盐、磷酸氢盐、三乙胺、DBU、DMAP、二异丙基乙基胺中的一种或几种组合,更优选二异丙基乙基胺,
    化合物SEM100和化合物SEM105的摩尔比为1.1~1.6:1,更优选1.2~1.5:1,和/或
    所述碱与化合物SEM105的摩尔比为5~25:1,更优选10~20:1。
  10. 根据权利要求7所述的制备方法,其特征在于,化合物SEM100通过以下步骤制备:
    (1-a)使化合物SEM80和化合物1在溶剂中,在脱水剂存在下,进行反应,得到化合物SEM90,其反应式如下:
    式中R1对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基;
    (1-b)使化合物SEM90在溶剂中,在酸存在下,脱保护基,形成化合物SEM100,其反应式如下:
    其中R1为对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基。
  11. 根据权利要求10所述的制备方法,其特征在于,步骤(1-a)具有一个或多个选自下组的特征:
    所述溶剂选自N,N-二甲基甲酰胺、N-甲基吡咯烷酮、N,N-二甲基乙酰胺、四氢呋喃、二氯甲烷、丙酮、乙腈、水中的一种或多种的组合,
    所述脱水剂选自DCC、DIC、EDCI、T3P中的一种或多种的组合,更优选DCC,
    化合物SEM80与化合物1的摩尔比为1:1.0~1.4,更优选1:1~1.2,和/或
    化合物SEM80与所述脱水剂的摩尔为1:1.0~1.4,更优选1:1.1~1.2。
  12. 根据权利要求10所述的制备方法,其特征在于,步骤(1-b)具有一个或多个选自下组的特征:
    所述溶剂选自二氯甲烷、三氟乙酸、TIS、乙腈、水中的一种或多种的组合,
    所述酸选自三氟乙酸、乙酸、盐酸、氢溴酸、磷酸、甲基磺酸中的一种或多种的组合,更优选三氟乙酸、乙酸,和/或
    所述酸与化合物90的体积重量比为1~10mL/g。
  13. 一种化合物SEM90或其盐,其特征在于,所述化合物的结构式如下:
    其中R1为甲基磺酰基或5-降冰片烯-2,3-二甲酰亚胺基。
  14. 一种化合物SEM100或其盐,其特征在于,所述化合物的结构式如下:
    其中R1为对甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基。
  15. 一种化合物SEM120或其盐,其特征在于,所述化合物的结构式如下:
    R2为甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基。
  16. 一种索马鲁肽侧链的制备方法,其特征在于,所述制备方法包括以下步骤:
    (1-a)使化合物SEM80和化合物1在溶剂中,在脱水剂存在下,进行反应,得到化合物SEM90,其反应式如下:
    式中R1对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基;
    (1-b)使化合物SEM90在溶剂中,在酸存在下,脱保护基,形成化合物SEM100,其反应式如下:
    其中R1为对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基。
  17. 一种索马鲁肽中间体的制备方法,其特征在于,所述制备方法包括以下步骤:
    (1-a)使化合物SEM80和化合物1在溶剂中,在脱水剂存在下,进行反应,得到化合物SEM90,其反应式如下:
    式中R1为对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基;
    (1-b)使化合物SEM90在溶剂中,在酸存在下,脱保护基,形成化合物SEM100,其反应式如下:
    其中R1为对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基;
    (1-c)使化合物SEM100和化合物SEM105在溶剂中,在碱存在下,进行反应,得到 化合物SEM110,其反应式如下:
    其中R1为对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基。
  18. 一种索马鲁肽的制备方法,其特征在于,包括以下步骤:
    (1)使化合物SEM110和化合物SEM120在溶剂中,在碱性条件下,反应生成化合物SEM130;和
    (2)使化合物SEM130脱保护基,形成索马鲁肽,
    其中步骤(1)还包括以下步骤:
    (1-a)使化合物SEM80和化合物1在溶剂中,在脱水剂存在下,进行反应,得到化合物SEM90;
    (1-b)使化合物SEM90在溶剂中,在酸存在下,脱保护基,形成化合物SEM100;
    (1-c)使化合物SEM100和化合物SEM105在溶剂中,在碱存在下,进行反应,得到化合物SEM110;和
    (1-d)使化合物SEM115与化合物2在溶剂中,在脱水剂存在下,反应生成化合物SEM120;
    上述步骤的反应式如下:
    其中R1为对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基,R2为对硝基苯基,甲基磺酰基,五氟苯基或5-降冰片烯-2,3-二甲酰亚胺基,以及
    其中步骤(1-d)与步骤(1-a)~(1-c)之间没有先后顺序,可以与其中的任一个步骤互换。
PCT/CN2023/095654 2022-08-09 2023-05-23 一种索马鲁肽的制备方法及中间体 WO2024032081A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210947568.9A CN115197312B (zh) 2022-08-09 2022-08-09 一种索马鲁肽的制备方法及中间体
CN202210947568.9 2022-08-09

Publications (1)

Publication Number Publication Date
WO2024032081A1 true WO2024032081A1 (zh) 2024-02-15

Family

ID=83585196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095654 WO2024032081A1 (zh) 2022-08-09 2023-05-23 一种索马鲁肽的制备方法及中间体

Country Status (2)

Country Link
CN (1) CN115197312B (zh)
WO (1) WO2024032081A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115197312B (zh) * 2022-08-09 2023-06-09 奥锐特药业(天津)有限公司 一种索马鲁肽的制备方法及中间体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110423251A (zh) * 2019-08-15 2019-11-08 南京迪维奥医药科技有限公司 一种索玛鲁肽侧链的制备方法
CN111253287A (zh) * 2020-01-16 2020-06-09 浙江工业大学 液相汇聚式合成索马鲁肽侧链的方法
CN111378028A (zh) * 2018-12-30 2020-07-07 万新医药科技(苏州)有限公司 酰化glp-1化合物及其修饰基团的合成
CN113461801A (zh) * 2020-12-31 2021-10-01 苏州天马医药集团天吉生物制药有限公司 一种索马鲁肽侧链中间体的固相合成方法
CN113667006A (zh) * 2020-05-14 2021-11-19 鲁南制药集团股份有限公司 一种索马鲁肽二肽侧链的制备方法
CN115197312A (zh) * 2022-08-09 2022-10-18 奥锐特药业(天津)有限公司 一种索马鲁肽的制备方法及中间体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018032521A1 (zh) * 2016-08-19 2018-02-22 深圳市健元医药科技有限公司 一种利拉鲁肽的合成方法
CN111944037B (zh) * 2019-04-30 2023-06-13 深圳市健元医药科技有限公司 一种索玛鲁肽的合成方法
CN115315438A (zh) * 2020-04-10 2022-11-08 费森尤斯卡比肿瘤学有限公司 索玛鲁肽侧链的改进制备方法
CN112625087A (zh) * 2020-11-30 2021-04-09 济南康和医药科技有限公司 用于合成司美鲁肽的二肽片段衍生物及其制备方法
CN114262358B (zh) * 2021-12-08 2023-07-21 苏州天马医药集团天吉生物制药有限公司 一种谷甘二肽的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111378028A (zh) * 2018-12-30 2020-07-07 万新医药科技(苏州)有限公司 酰化glp-1化合物及其修饰基团的合成
CN110423251A (zh) * 2019-08-15 2019-11-08 南京迪维奥医药科技有限公司 一种索玛鲁肽侧链的制备方法
CN111253287A (zh) * 2020-01-16 2020-06-09 浙江工业大学 液相汇聚式合成索马鲁肽侧链的方法
CN113667006A (zh) * 2020-05-14 2021-11-19 鲁南制药集团股份有限公司 一种索马鲁肽二肽侧链的制备方法
CN113461801A (zh) * 2020-12-31 2021-10-01 苏州天马医药集团天吉生物制药有限公司 一种索马鲁肽侧链中间体的固相合成方法
CN115197312A (zh) * 2022-08-09 2022-10-18 奥锐特药业(天津)有限公司 一种索马鲁肽的制备方法及中间体

Also Published As

Publication number Publication date
CN115197312B (zh) 2023-06-09
CN115197312A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
CN110041219B (zh) 一种索马鲁肽侧链的液相合成方法
WO2024032081A1 (zh) 一种索马鲁肽的制备方法及中间体
WO2015100876A1 (zh) 一种制备利拉鲁肽的方法
EP3156413A1 (en) Ganirelix precursor and method for preparing ganirelix acetate by using anirelix precursor
CN113880935B (zh) 一种索马鲁肽全保护肽树脂的制备方法、一种索马鲁肽制备方法
CN112625087A (zh) 用于合成司美鲁肽的二肽片段衍生物及其制备方法
CN114315538B (zh) 一种作为多肽液相合成载体的苄醇酚醚类化合物及其制备方法与应用
WO2020199461A1 (zh) 一种多肽衍生化合物的合成方法
WO2020237709A1 (zh) 长效化艾塞那肽衍生物及其盐与制备方法和用途
CN113651874A (zh) 一种具有抑制念珠菌生长繁殖作用的订书肽及其制备方法和应用
CN109988213B (zh) 一种用于多肽液相合成载体的化合物及其制备方法和用途
CN110642936B (zh) 一种制备特立帕肽的方法
CN106749611B (zh) 一种艾塞那肽的制备方法及其产品
CN115322250A (zh) 一种司美格鲁肽的合成方法
WO2021103458A1 (zh) 一种地加瑞克的固相合成方法
CN109988062B (zh) 一种液相球形载体及其制备方法和应用
EP3233899B1 (en) A process for the preparation of pasireotide
CN117486976B (zh) 一种自组装多肽raka 16的合成方法
CN114805543B (zh) 一种索马鲁肽侧链的合成方法
WO2020259714A1 (zh) 一种地加瑞克的制备方法
CN115160430B (zh) 一种索马鲁肽主链片段的合成方法
CN116573992B (zh) 一种非经典固相合成载体及其制备方法与应用
CN109438363B (zh) 一种环(亮氨酰-精氨酰)二肽盐的液相高纯度规模化合成方法
US8124756B2 (en) Method of preparing 5′-amino-linker oligonucleotides derivatives and analogous 5′-labeled-linker oligonucleotides therefrom
CN108864252B (zh) 制备nrx-1074的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851311

Country of ref document: EP

Kind code of ref document: A1