WO2024032073A1 - 聚乳酸/聚己内酯/植物炭黑复合材料及其制备方法 - Google Patents

聚乳酸/聚己内酯/植物炭黑复合材料及其制备方法 Download PDF

Info

Publication number
WO2024032073A1
WO2024032073A1 PCT/CN2023/094764 CN2023094764W WO2024032073A1 WO 2024032073 A1 WO2024032073 A1 WO 2024032073A1 CN 2023094764 W CN2023094764 W CN 2023094764W WO 2024032073 A1 WO2024032073 A1 WO 2024032073A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon black
polycaprolactone
polylactic acid
composite material
parts
Prior art date
Application number
PCT/CN2023/094764
Other languages
English (en)
French (fr)
Inventor
程鸿财
李凤娇
夏迎博
钱少平
Original Assignee
浙江旺林生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江旺林生物科技有限公司 filed Critical 浙江旺林生物科技有限公司
Priority to GBGB2311500.9A priority Critical patent/GB202311500D0/en
Publication of WO2024032073A1 publication Critical patent/WO2024032073A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the invention belongs to the technical field of polylactic acid composite materials and their preparation, and specifically relates to a polylactic acid/polycaprolactone/plant carbon black composite material and its preparation method.
  • Polylactic acid is a biodegradable material made through polycondensation reaction using lactic acid extracted from corn or sugar cane as the basic raw material. It has good mechanical properties, good transparency, biocompatibility and biodegradability. Degradability is involved in fields such as biomedicine, agricultural mulch film and food packaging. However, the high cost, brittleness and low heat resistance of polylactic acid are the main factors affecting its application. Usually, inorganic powder and biomass powder can be introduced as reinforcement fillers to achieve the purpose of polylactic acid modification. Among them, biomass fillers, such as starch and cellulose, have the advantages of wide sources, degradability, and low cost. Blending with polylactic acid can improve the properties of composite materials (such as mechanics and thermal properties), but most biomass fillers are biodegradable. Water-based, has poor interfacial compatibility with hydrophobic polylactic acid, and has poor water resistance and durability.
  • Plant carbon black is a carbon-like substance produced by high-temperature treatment of agricultural and forestry straw and other plants under anoxic conditions. Plant carbon black itself has many advantages, such as highly concentrated carbonized structure, strong hydrophobicity, developed pore structure and huge specific surface area. Therefore, vegetable carbon black is an ideal biomass filler for modified polylactic acid.
  • Polycaprolactone is a completely biodegradable semi-crystalline material with good biocompatibility, excellent mechanical properties, permeability and biodegradability, and has a low melting point and high elongation at break. growth rate (>300%), widely used in the field of biomedicine. Studies have shown that adding a small amount of polycaprolactone to polylactic acid can significantly improve the elongation at break of polylactic acid; thermal annealing can effectively improve the crystallization properties and mechanical properties of polylactic acid/polycaprolactone composites.
  • polycaprolactone and poly The two phases of lactic acid are incompatible. How to avoid phase separation during the preparation process and at the same time build a strong combination of the two phases is a key technical issue worthy of further exploration.
  • the patent document with application publication number CN112898750A discloses a fully biodegradable toughened polylactic acid composite material and its preparation method. Polylactic acid, polycaprolactone and epoxy vegetable oil are melt-blended and then granulated to obtain Biodegradable toughened polylactic acid composite materials. This method has complicated processes, expensive production costs, long preparation time, and unknown heat resistance of the materials.
  • the patent document with application publication number CN109486142A discloses a polylactic acid-polycaprolactone composite material for 3D printing and its preparation method.
  • the purpose of the present invention is to propose a polylactic acid/polycaprolactone/plant carbon black composite material and a preparation method thereof in view of the shortcomings of the existing technology.
  • the porous structure of the plant carbon black is utilized to pre-construct the plant carbon black and the polyethylene glycol. Lactone mechanical interlocking structure, and through two isothermal crystallizations (i.e., high and low temperature double crystallization), the polylactic acid molecules and polycaprolactone molecules are fully crystallized to build a strong two-phase combination, thereby improving the polylactic acid/polycaprolactone /Toughness and heat resistance of plant carbon black composites.
  • a polylactic acid/polycaprolactone/plant carbon black composite material the mass parts of which are: 90 parts of polylactic acid, 20 to 40 parts of polycaprolactone, and plant 1 to 10 parts of carbon black, 1 to 5 parts of compatibilizer, 5 to 7 parts of plasticizer, 0.5 to 3 parts of lubricant, 1 to 5 parts of coupling agent and 1 to 5 parts of antioxidant.
  • the plant carbon black is at least one of bamboo plant carbon black, coconut shell plant carbon black and wood plant carbon black with a mesh size of 500 to 5000.
  • the compatibilizer is cage polysilsesquioxane, styrene-acrylonitrile copolymer, methyl methacrylate, glycidyl methacrylate and styrene-glycidyl methacrylate. At least one of the copolymers.
  • the plasticizer is at least one of tributyl citrate, trioctyl citrate, epoxy soybean oil, trioctyl trimellitate and epoxy tetrahydrophthalate.
  • the lubricant is at least one of stearic acid, ethylene bisstearamide, oleic acid amide and erucic acid amide.
  • the coupling agent is at least one of a silane coupling agent, a titanate coupling agent and an aluminate coupling agent.
  • the silane coupling agent is vinyltrimethoxysilane, 3-mercaptopropyltriethoxysilane or ⁇ -(2,3-epoxypropoxy)propyltrimethoxysilane.
  • the antioxidant is at least one of 2,6 di-tert-butyl-p-cresol, diaryl secondary amine, thiodipropionate and thiodipropionic acid dilaurate.
  • the invention also provides a method for preparing the polylactic acid/polycaprolactone/vegetable carbon black composite material described in the above solution, which includes the following steps:
  • step 2) Mix the dried vegetable carbon black in step 1) and 0.03 ⁇ 0.5g/mL potassium hydroxide solution at a mass volume ratio of 1 ⁇ 3:6 ⁇ 10, stir for 1 hour, filter, and then add the vegetable carbon black Dry, then put the dried vegetable carbon black into a 1.5-2mol/L hydrochloric acid solution to obtain a solid-liquid mixture, stir thoroughly and adjust the pH value of the solid-liquid mixture to 5.5-6, and then ultrasonic treatment For 10 to 20 minutes, filter the solid-liquid mixture, rinse the plant carbon black with deionized water until it is neutral, and finally dry it to absolute dryness to obtain activated plant carbon black;
  • step 3 Add the dried polycaprolactone, coupling agent in step 1) and the activated vegetable carbon black obtained in step 2) into a ball mill for dry ball milling.
  • the grinding medium uses zirconia or ceramic balls, and the ball mill revolution speed is 110 ⁇ 140rpm, rotation speed 180 ⁇ 250rpm, ball milling time 30 ⁇ 60min, to obtain polycaprolactone/vegetable carbon black composite material;
  • step 1) Add the dried polylactic acid, compatibilizer, plasticizer, lubricant, and antioxidant obtained in step 1) and the polycaprolactone/vegetable carbon black composite material obtained in step 3) into a high-speed mixer, and set the spindle speed The speed is 1000 ⁇ 1700rpm, the mixing time is 5 ⁇ 20min, and the mixed material is obtained;
  • step 5) Add the mixed material obtained in step 4) to a twin-screw extruder for extrusion and granulation.
  • the processing temperature of the twin-screw extruder is 110 to 190°C, and the screw length-to-diameter ratio is 25 to 50 to obtain a granulated material. ;
  • step 7) Place the semi-finished product prepared in step 6) in an oven for the first isothermal crystallization.
  • the oven temperature is 100-120°C and the holding time is 0.5-30 minutes. Then the oven temperature is lowered and the second isothermal crystallization is performed.
  • the oven temperature is 20 ⁇ 40°C, the holding time is 0.5 ⁇ 10min, and the polylactic acid/polycaprolactone/vegetable carbon black composite material is obtained.
  • Plant carbon black has a porous structure, high modulus, high specific surface area, high chemical activity and adsorption properties, and is itself a three-dimensional multi-scale material.
  • its surface has molecular-scale design, the pores have micro-nano structure controllability, and the reinforced macroscopic properties are diverse, making it a high-quality reinforcement filler.
  • the plant carbon black can be modified by immersing the plant carbon black in a potassium hydroxide solution and a hydrochloric acid solution in sequence.
  • Potassium hydroxide and hydrochloric acid are commonly used plant carbon black activators. They have good catalytic activity and can significantly improve the pore structure and specific surface area of plant carbon black.
  • step 3) of the preparation method provided by the present invention polycaprolactone and plant carbon black are dry ball milled with specific grinding media under specific grinding conditions.
  • the mechanical and chemical effects of the ball milling method can be used to crush the lumps. or large particles of vegetable carbon black.
  • it improves the lubricity, dispersion and processing performance of the composite material, allowing the polycaprolactone to evenly infiltrate into the pore structure of the vegetable carbon black to form a good interfacial bonding effect.
  • polycaprolactone Since polycaprolactone has a low melting point (60-63°C), soft molecular chains, and greater ductility, the pore structure of the plant carbon black in the ball mill is conducive to the penetration of molten polycaprolactone into the porous structure to form Mechanical interlocking structure.
  • the high specific surface area of vegetable carbon black provides more contact points for polycaprolactone, thereby improving the accessibility to polycaprolactone;
  • polycaprolactone penetrates into the pore structure of vegetable carbon black and can Improve the microscopic binding force between vegetable carbon black and polycaprolactone, thereby improving the mechanical properties.
  • the ether bonds on the polycaprolactone molecular chain increase significantly, making the polycaprolactone have better wettability on the surface of vegetable carbon black, allowing it to evenly immerse into multi-scale pores to form With good interfacial bonding, the interfacial compatibility between the two phases is greatly improved.
  • step 4) of the preparation method provided by the present invention in the high-speed mixer, the mechanically linked polycaprolactone/vegetable carbon black composite material and polylactic acid are under high-speed shearing force, and the polylactic acid can interact with the mechanically linked polycaprolactone.
  • Polycaprolactone end bonding of lactone/vegetable carbon black composites, formed between polylactic acid and polycaprolactone A strong riveting network structure, which promotes effective stress transfer, and vegetable carbon black has a reinforcing effect in polylactic acid, thereby improving the tensile strength and flexural strength of polylactic acid/polycaprolactone/vegetable carbon black composite materials and impact toughness.
  • step 7) of the preparation method provided by the present invention through two isothermal crystallizations at 100-120°C and 20-40°C (i.e., high and low temperature dual crystallization), the polylactic acid molecules and the polycaprolactone molecules are fully crystallized, and finally the polylactic acid molecules and the polycaprolactone molecules are fully crystallized. Improving the crystallinity of polylactic acid/polycaprolactone/vegetable carbon black composite materials can greatly improve the thermodynamic behavior of the composite materials and further improve the crystallization properties and impact toughness of the composite materials.
  • plant carbon black nucleates heterogeneously inside polylactic acid, which helps polylactic acid to crystallize early, causing the size of polylactic acid spherulites to become smaller and the crystallinity to increase; at the same time, polycaprolactone and plant carbon black form
  • the mechanical interlocking structure can also be used as a nucleating agent to promote the crystallization of polylactic acid.
  • polycaprolactone is in a molten state. Driven by the crystallization of polylactic acid, the polycaprolactone molecular chains will tend to be closely arranged and oriented.
  • polylactic acid During low-temperature isothermal crystallization, the temperature is lower than the melting point of polylactic acid, polylactic acid has completed crystallization, and polycaprolactone is at the crystallization temperature. At this time, polycaprolactone crystallizes rapidly.
  • polylactic acid, polycaprolactone and plant carbon black blend systems are partially compatible or incompatible. Phase forms and crystal forms will compete or promote each other. The final crystal form not only depends on depends on the order of phase transitions and depends on intermolecular interactions.
  • the good dispersion of vegetable carbon black in polycaprolactone is conducive to the nucleation and growth process of the crystal phase, and promotes the effective crystallization of polycaprolactone and polylactic acid.
  • the high-low temperature dual crystallization method provided by the present invention can solve the problem of interface incompatibility when blending composite materials, thereby having an important impact on the mechanical properties and thermal properties of polylactic acid/polycaprolactone/plant carbon black composite materials.
  • the present invention has the following advantages:
  • the polylactic acid/polycaprolactone/plant carbon black composite material provided by the present invention uses plant carbon black and biodegradable materials to composite.
  • Plant carbon black has high modulus and high specific surface area, and is a high-quality reinforcement filler. It can not only improve the heat resistance and mechanical properties of biodegradable materials, but also replace the application of traditional petroleum-based carbon black masterbatch in biodegradable materials, showing greater potential in the food packaging industry.
  • the present invention uses a ball mill to dry ball mill plant carbon black and polycaprolactone. Under the mechanical force of the ball mill, the plant carbon black can be better dispersed in the polycaprolactone, allowing the molten polycaprolactone to penetrate In the pores of vegetable carbon black, this promotes the formation of a mechanical interlocking structure between polycaprolactone and vegetable carbon black.
  • the high specific surface area of vegetable carbon black also provides more contact points for polycaprolactone, making polycaprolactone Lactone in plant The surface of carbon black has better accessibility.
  • polylactic acid can bond with the polycaprolactone end of the mechanically linked polycaprolactone/vegetable carbon black composite material, forming a strong riveting network structure between polylactic acid and polycaprolactone.
  • the present invention utilizes high and low temperature dual crystallization isothermal kinetic regulation to increase the crystallinity of polylactic acid/polycaprolactone/vegetable carbon black composite materials, greatly improving the thermal and mechanical behavior of composite materials, thereby improving the performance of composite materials.
  • Tensile strength, flexural strength, impact toughness and heat resistance properties to achieve the purpose of toughening and heat resistance.
  • polylactic acid, polycaprolactone and plant carbon black are all important biodegradable materials, which have the characteristics of good biocompatibility, natural origin and green renewable.
  • the polylactic acid/polycaprolactone/plant carbon black composite material of the present invention has a simple preparation process, is non-toxic and harmless, and the plant carbon black in it is a natural melanin colorant and can be used in the food packaging industry.
  • Figure 1 shows the tensile properties of polylactic acid/polycaprolactone/vegetable carbon black composite materials with different amounts of polycaprolactone added
  • Figure 2 shows the bending properties of polylactic acid/polycaprolactone/vegetable carbon black composite materials with different amounts of polycaprolactone added
  • Figure 3 shows the impact properties of polylactic acid/polycaprolactone/vegetable carbon black composite materials with different amounts of polycaprolactone added
  • Figure 4 shows the heat resistance of polylactic acid/polycaprolactone/vegetable carbon black composite materials with different amounts of polycaprolactone added
  • Figure 5 shows the tensile properties of polylactic acid/polycaprolactone/vegetable carbon black composite materials with different amounts of vegetable carbon black added
  • Figure 6 shows the curves of polylactic acid/polycaprolactone/vegetable carbon black composites with different amounts of vegetable carbon black. song performance
  • Figure 7 shows the impact properties of polylactic acid/polycaprolactone/vegetable carbon black composite materials with different amounts of vegetable carbon black added
  • Figure 8 shows the heat resistance of polylactic acid/polycaprolactone/vegetable carbon black composite materials with different amounts of vegetable carbon black added
  • Figure 9 shows the tensile properties of polylactic acid/polycaprolactone/vegetable carbon black composite materials with different amounts of compatibilizer added
  • Figure 10 shows the bending properties of polylactic acid/polycaprolactone/vegetable carbon black composite materials with different amounts of compatibilizer added
  • Figure 11 shows the impact properties of polylactic acid/polycaprolactone/vegetable carbon black composite materials with different amounts of compatibilizer added
  • Figure 12 shows the heat resistance of polylactic acid/polycaprolactone/vegetable carbon black composite materials with different amounts of compatibilizer added
  • Figure 13 is a tensile cross-sectional SEM image of the polylactic acid/polycaprolactone/vegetable carbon black composite material of Example 3;
  • Figure 14 is a tensile cross-sectional SEM image of the polylactic acid/polycaprolactone/vegetable carbon black composite material of Comparative Example 2.
  • the mass parts composition of the polylactic acid/polycaprolactone/vegetable carbon black composite materials of Examples 1 to 5 is shown in Table 1, and the polylactic acid/polycaprolactone/vegetable carbon of Examples 1 to 5 is
  • the black composite materials are represented by numbers C1, C2, C3, C4 and C5 respectively, and single factor experiments were performed.
  • Examples 1 to 5 bamboo plant carbon black with a mesh size of 500 to 5000 is used as the vegetable carbon black, glycidyl methacrylate is used as the compatibilizer, tributyl citrate is used as the plasticizer, and erucamide is used as the lubricant.
  • the coupling agent is vinyltrimethoxysilane, and the antioxidant is 2,6 di-tert-butyl-p-cresol.
  • the preparation method of polylactic acid/polycaprolactone/vegetable carbon black composite material in this embodiment includes the following steps:
  • step 2) Mix the dried vegetable carbon black in step 1) and 0.1g/mL potassium hydroxide solution at a mass volume ratio of 2:7, stir for 1 hour, filter, dry the vegetable carbon black, and then dry the mixture.
  • the dried vegetable carbon black was put into a 1.5 mol/L hydrochloric acid solution to obtain a solid-liquid mixture.
  • step 3 Add the dried polycaprolactone, coupling agent in step 1) and the activated vegetable carbon black obtained in step 2) into a ball mill for dry ball milling.
  • the grinding medium is zirconia.
  • the revolution speed of the ball mill is 120 rpm and the rotation speed is 180 rpm.
  • the ball milling time is 30 minutes, and the polycaprolactone/vegetable carbon black composite material is obtained;
  • step 1) Add the dried polylactic acid, compatibilizer, plasticizer, lubricant, and antioxidant obtained in step 1) and the polycaprolactone/vegetable carbon black composite material obtained in step 3) into a high-speed mixer, and set the spindle speed is 1200rpm, the mixing time is 10min, and the mixed material is obtained;
  • step 5) Add the mixed material obtained in step 4) to a twin-screw extruder for extrusion and granulation.
  • the processing temperature of the twin-screw extruder is 175°C and the screw length-to-diameter ratio is 30 to obtain the extruded material;
  • step 6) Prepare the granulated material obtained in step 5) and injection mold it into tensile, bending and impact splines through an injection molding machine.
  • the barrel temperature is 170°C and the mold temperature is 35°C;
  • step 7) Place the semi-finished product prepared in step 6) in an oven for the first isothermal crystallization.
  • the oven temperature is 110°C and the holding time is 30 minutes.
  • the oven temperature is lowered and the second isothermal crystallization is carried out in the oven.
  • the temperature was 30°C and the holding time was 10 minutes, and a polylactic acid/polycaprolactone/vegetable carbon black composite material was obtained.
  • the preparation method of the polylactic acid/polycaprolactone/vegetable carbon black composite material of Examples 2 to 5 is basically the same as that of Example 1, except that step 1 of the preparation method of Examples 2 to 5 ), the added amounts of polycaprolactone were 25 parts, 30 parts, 35 parts and 40 parts respectively, and the polylactic acid/polycaprolactone/vegetable carbon black composite materials of Examples 2 to 5 were respectively prepared.
  • the polylactic acid/polycaprolactone composite material of this comparative example does not add vegetable carbon black, and its mass parts are: 90 parts of polylactic acid, 30 parts of polycaprolactone, 1 part of compatibilizer, 5 parts of plasticizer, lubrication 0.5 parts of agent, 2 parts of coupling agent and 3 parts of antioxidant.
  • the compatibilizer is methyl methacrylate
  • the plasticizer is epoxy soybean oil
  • the coupling agent is aluminate coupling agent
  • the antioxidant is Diaryl secondary amines.
  • the preparation method of the polylactic acid/polycaprolactone composite material of this comparative example includes the following steps:
  • step 2) Add 30 parts of polycaprolactone and 2 parts of coupling agent dried in step 1) into a ball mill for dry ball milling.
  • the grinding medium is zirconia.
  • the revolution speed of the ball mill is 110 rpm, the rotation speed is 180 rpm, and the ball milling time is 30 minutes to obtain the poly(caprolactone).
  • step 2) Combine 90 parts of dried polylactic acid in step 1), 1 part of compatibilizer, 5 parts of plasticizer, 0.5 part of lubricant, 3 parts of antioxidant and the polycaprolactone and coupling agent obtained in step 2)
  • the blended composite material is added to the high-speed mixer, the spindle speed is 1500rpm, and the mixing time is 15min to obtain a fully mixed polylactic acid/polycaprolactone composite material;
  • step 4) Add the fully mixed polylactic acid/polycaprolactone composite material obtained in step 3) into a twin-screw extruder for extrusion and granulation.
  • the processing temperature of the twin-screw extruder is 175°C, and the screw length-to-diameter ratio is 30;
  • step 5) Inject the twin-screw granulated material in step 4) into tensile, bending and impact splines through an injection molding machine.
  • the barrel temperature is 175°C and the mold temperature is 30°C;
  • step 6) Place the sample prepared in step 5) in an oven for isothermal crystallization.
  • the oven temperature is 110°C and the holding time is 30 minutes. Then lower the oven temperature and perform secondary isothermal crystallization.
  • the oven temperature is 30°C and the holding time is 30 min. After 10 minutes, the polylactic acid/polycaprolactone composite material was obtained.
  • the polylactic acid/polycaprolactone/vegetable carbon black composite material in this comparative example has the following mass parts: 90 parts of polylactic acid, 30 parts of polycaprolactone, 10 parts of vegetable carbon black, 1 part of compatibilizer, and plasticizer 5 parts of agent, 2 parts of lubricant, 2 parts of coupling agent and 3 parts of antioxidant.
  • the vegetable carbon black uses 500-4000 mesh coconut shell vegetable carbon black.
  • the compatibilizer uses cage polysilsesquioxane and plasticizer. Trioctyl trimellitate is used as the agent, titanate coupling agent is used as the coupling agent, and dilaurate thiodipropionate is used as the antioxidant.
  • the polylactic acid/polycaprolactone/vegetable carbon black composite material of this comparative example adopts a twin-screw direct extrusion method, which includes the following steps:
  • step 2) Add 10 parts of the dried vegetable carbon black in step 1) to 0.4g/mL potassium hydroxide solution to mix at a mass volume ratio of 1:8, stir for 1 hour, then dry the vegetable carbon black, and then use 1.5 mol/L hydrochloric acid solution to adjust the pH value of the plant carbon black to 5.8, ultrasonic treatment for 20 minutes, filter the solid-liquid mixture, rinse the plant carbon black with deionized water to neutrality, and finally dry it to absolute dryness to obtain activated plant carbon black;
  • step 3 Add 30 parts of polycaprolactone dried in step 1), 2 parts of coupling agent and the activated vegetable carbon black obtained in step 2) into a ball mill for dry ball milling.
  • the grinding medium uses zirconia or ceramic balls. The revolution speed is 130rpm, the rotation speed is 200rpm, and the ball milling time is 50min to obtain the polycaprolactone/vegetable carbon black composite material;
  • step 1) Combine 90 parts of dried polylactic acid in step 1), 1 part of compatibilizer, 5 parts of plasticizer, 2 parts of lubricant, 3 parts of antioxidant and the polycaprolactone/vegetable carbon black obtained in step 3)
  • the composite material is added to the high-speed mixer, the spindle speed is 15,000 rpm, and the mixing time is 15 minutes, to obtain a fully mixed polylactic acid/polycaprolactone/vegetable carbon black composite material;
  • step 5) Add the fully mixed polylactic acid/polycaprolactone/vegetable carbon black composite material in step 4) into a twin-screw extruder for extrusion and granulation.
  • the processing temperature of the twin-screw extruder is 175°C, and the screw
  • the aspect ratio is 30;
  • step 6) Inject the twin-screw granulated material in step 5) into tensile, bending and impact splines through an injection molding machine.
  • the barrel temperature is 175°C and the mold temperature is 30°C.
  • polylactic acid/polycaprolactone/vegetable carbon black composite materials of Examples 1 to 5 were made.
  • the mechanical properties of the polylactic acid/polycaprolactone/vegetable carbon black composite materials of Examples 1 to 5 are tested in groups according to the standard methods of GB/T1040 ⁇ 92, GB/T9341 ⁇ 2008 or GB/T1843 ⁇ 2008;
  • the heat resistance properties of the polylactic acid/polycaprolactone/vegetable carbon black composite materials of Examples 1 to 5 were tested in groups according to the method of GB/T1633 ⁇ 2000 standards;
  • the tensile test sample was a dumbbell-shaped sample, with a length of is 75mm, the gauge length is 30mm, the middle width is 4mm, the thickness is 2mm, the tensile speed is 20mm/min, at least 5 samples are tested in each group, and the average tensile strength and tensile elongation at break of the sample are taken.
  • the results are shown in Figure 1; the length of the bending test sample is 80mm, the width is 10mm, and the thickness is 4mm. It is tested using the three-point bending method. The span is 48mm. At least 5 samples are tested in each group, and the average bending strength of the sample is taken. , the results are shown in Figure 2; the impact test uses notched impact specimens, the pendulum weight is 1.245kg, the angle is 150°, at least 5 samples are tested in each group, and the average impact strength of the samples is taken. The results are shown in Figure 3 As shown; the Vicat softening test is carried out with a force of 10N. The standard pressure needle is inserted into the surface of the sample strip to a depth of 1mm. Each group is tested at least 5 sample points and the average value is taken. The results are shown in Figure 4.
  • the polylactic acid/polycaprolactone composite material of Comparative Example 1 was subjected to tensile test, bending test, impact test and resistance test. Thermal testing showed that the tensile strength was 39.8MPa, the elongation at break was 15.4%, the flexural strength was 50.6MPa, the impact strength was 5.98kJ/m 2 , and the Vicat softening temperature was 118.4°C.
  • the polylactic acid/polycaprolactone/plant carbon black composite material of Comparative Example 2 was subjected to tensile test, bending test, and The impact test and heat resistance test showed that the tensile strength is 45.7MPa, the elongation at break is 14.3%, the flexural strength is 45.3MPa, the impact strength is 5.69kJ/m 2 , and the Vicat softening temperature is 58.6°C.
  • the mass parts composition of the polylactic acid/polycaprolactone/vegetable carbon black composite materials of Examples 6 to 10 is shown in Table 2, and the polylactic acid/polycaprolactone/vegetable carbon of Examples 6 to 10
  • the black composite materials are represented by numbers S1, S2, S3, S4 and S5 respectively, and single factor experiments were performed.
  • Examples 6 to 10 wood plant carbon black with a mesh size of 500 to 5000 is used as the plant carbon black, styrene-glycidyl methacrylate copolymer is used as the compatibilizer, and epoxy tetrahydrophthalate is used as the plasticizer. Acid ester, oleic acid amide is used as lubricant, titanate coupling agent is used as coupling agent, and thiodipropionate is used as antioxidant.
  • the preparation method of polylactic acid/polycaprolactone/vegetable carbon black composite material in this embodiment includes the following steps:
  • step 2) Mix the dried vegetable carbon black in step 1) and 0.05g/mL potassium hydroxide solution at a mass volume ratio of 1:6, stir for 1 hour, filter, dry the vegetable carbon black, and then dry the mixture.
  • the dried vegetable carbon black was put into a 1.7 mol/L hydrochloric acid solution to obtain a solid-liquid mixture.
  • ultrasonicate for 15 minutes filter the solid-liquid mixture, and use Rinse the plant carbon black with ionized water until it is neutral, and finally dry it to absolute dryness to obtain activated plant carbon black;
  • step 1) Add the dried polycaprolactone and coupling agent in step 1) and the activated vegetable carbon black obtained in step 2) into a ball mill for dry ball milling. Ceramic balls are used as the grinding medium.
  • the revolution speed of the ball mill is 120 rpm and the rotation speed is 200 rpm.
  • the ball milling time is 40 minutes, and the polycaprolactone/vegetable carbon black composite material is obtained;
  • step 1) Add the dried polylactic acid, compatibilizer, plasticizer, lubricant, and antioxidant obtained in step 1) and the polycaprolactone/vegetable carbon black composite material obtained in step 3) into a high-speed mixer, and set the spindle speed is 1400rpm, the mixing time is 15min, and the mixed material is obtained;
  • step 5) Add the mixed material obtained in step 4) to a twin-screw extruder for extrusion and granulation.
  • the processing temperature of the twin-screw extruder is 175°C and the screw length-to-diameter ratio is 30 to obtain granulated materials;
  • step 6) Prepare the granulated material obtained in step 5) and injection mold it into tensile, bending and impact splines through an injection molding machine.
  • the barrel temperature is 175°C and the mold temperature is 30°C;
  • step 7) Place the semi-finished product prepared in step 6) in an oven for the first isothermal crystallization.
  • the oven temperature is 110°C and the heat preservation time is 30 minutes.
  • the oven temperature is lowered and the second isothermal crystallization is carried out.
  • the oven temperature is 30°C and the heat preservation time is 30 min.
  • the time is 10 minutes, and the polylactic acid/polycaprolactone/vegetable carbon black composite material is obtained.
  • the preparation method of the polylactic acid/polycaprolactone/vegetable carbon black composite material of Examples 7 to 10 is basically the same as that of Example 6, except that step 1 of the preparation method of Examples 7 to 10 ), the added amounts of plant carbon black are 2.5 parts, 5 parts, 7.5 parts and 10 parts respectively, and the polylactic acid/polycaprolactone/plant carbon black composite materials of Examples 7 to 10 are respectively prepared.
  • the mass fraction composition of the polylactic acid/polycaprolactone/vegetable carbon black composite materials of Examples 11 to 15 is shown in Table 3, and the polylactic acid/polycaprolactone/vegetable carbon of Examples 11 to 15 is Black composite
  • the materials are represented by numbers 01, 02, 03, 04 and 05 respectively, and single-factor experiments are performed.
  • Examples 11 to 15 plant carbon black with a mesh size of 500 to 5000 is used, styrene-acrylonitrile copolymer is used as the compatibilizer, epoxy soybean oil is used as the plasticizer, stearic acid is used as the lubricant, and occasionally
  • the coupling agent is an aluminate coupling agent, and the antioxidant is 2,6 di-tert-butyl-p-cresol.
  • the preparation method of polylactic acid/polycaprolactone/vegetable carbon black composite material in this embodiment includes the following steps:
  • step 3 Add polycaprolactone, coupling agent and the activated vegetable carbon black obtained in step 2) into a ball mill for dry ball milling.
  • the grinding medium uses ceramic balls.
  • the revolution speed of the ball mill is 140rpm, the rotation speed is 210rpm, and the ball milling time is 50min.
  • step 3 Add polylactic acid, compatibilizer, plasticizer, lubricant, antioxidant and the polycaprolactone/vegetable carbon black composite material obtained in step 3) into a high-speed mixer.
  • the spindle speed is 1500rpm and the mixing time is 20min, get the mixed material;
  • step 5) Add the mixed material obtained in step 4) to a twin-screw extruder for extrusion and granulation.
  • the processing temperature of the twin-screw extruder is 175°C and the screw length-to-diameter ratio is 30 to obtain granulated materials;
  • step 6) Prepare the granulated material obtained in step 5) and injection mold it into tensile, bending and impact splines through an injection molding machine.
  • the barrel temperature is 170°C and the mold temperature is 30°C;
  • step 7) Place the semi-finished product prepared in step 6) in an oven for the first isothermal crystallization.
  • the oven temperature is 110°C and the heat preservation time is 30 minutes.
  • the oven temperature is lowered and the second isothermal crystallization is carried out.
  • the oven temperature is 30°C and the heat preservation time is 30 min.
  • the time is 5 minutes, and the polylactic acid/polycaprolactone/vegetable carbon black composite material is obtained.
  • the preparation method of the polylactic acid/polycaprolactone/vegetable carbon black composite material of Examples 12 to 15 is basically the same as that of Example 11, except that step 3 of the preparation method of Examples 12 to 15 ), the added amounts of the compatibilizer are 2 parts, 3 parts, 4 parts and 5 parts respectively, and the polylactic acid/polycaprolactone/vegetable carbon black composite materials of Examples 12 to 15 are respectively prepared.
  • Example 12 Using the same method as the polylactic acid/polycaprolactone/vegetable carbon black composite material of Example 11 above, tensile testing was performed on the polylactic acid/polycaprolactone/vegetable carbon black composite materials of Examples 12 to 15. , bending test, impact test and heat resistance test, the test results of tensile strength and tensile elongation at break are shown in Figure 9, the test results of bending strength are shown in Figure 10, and the test results of impact strength are shown in Figure 11 As shown, the test results of heat resistance are shown in Figure 12.
  • Figure 13 is a tensile cross-sectional SEM image of the polylactic acid/polycaprolactone/plant carbon black composite material of Example 3;
  • Figure 14 is a tensile cross-sectional view of the polylactic acid/polycaprolactone/plant carbon black composite material of Comparative Example 2 Cross-sectional SEM image. From the analysis of the tensile fracture microstructure, the fracture surface of Example 3 has good toughness, no plant carbon black agglomeration is seen, and the polycaprolactone molecular chain shows ductile fracture in the tensile direction, while in Comparative Example 2, due to twin-screw extrusion The processing mechanical properties are not good, and a large amount of phase separation occurs on the microscopic level, which affects the mechanical properties.

Abstract

一种聚乳酸/聚己内酯/植物炭黑复合材料及其制备方法。利用植物炭黑与生物降解聚酯进行复合,可以强化生物降解聚酯,提高其耐热性能和力学性能。利用高低温双结晶等温动力学调控,弥补了聚乳酸结晶能力弱的缺陷,并利用球磨机和双螺杆挤出机制备出一种牢固的聚乳酸与聚己内酯机械锁铆网络结构,可以解决聚乳酸复合材料共混时的界面不相容问题。提供的方法可以改善复合材料的热学与力学行为,提升其结晶度、拉伸强度、弯曲强度冲击韧性和耐热性能。

Description

一种聚乳酸/聚己内酯/植物炭黑复合材料及其制备方法
本申请要求于2022年08月10日提交中国专利局、申请号为CN202210954289.5、发明名称为“一种聚乳酸/聚己内酯/植物炭黑复合材料及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于聚乳酸复合材料及其制备技术领域,具体涉及一种聚乳酸/聚己内酯/植物炭黑复合材料及其制备方法。
背景技术
聚乳酸是一种以从玉米或甘蔗中提取的乳酸为基本原料,经缩聚反应制得的一种生物可降解材料,具有较好的力学性能、良好的透明性、生物相容性和生物可降解性,在生物医药、农用地膜和食品包装等领域都有涉及。然而,聚乳酸成本高、脆性大以及耐热性低是影响其应用的主要因素。通常,可引入无机粉体和生物质粉体等作为增强体填料,达到聚乳酸改性的目的。其中,生物质填料,如淀粉和纤维素,具有来源广、可降解以及低成本等优点,与聚乳酸共混可提高复合材料的性能(如力学和热学等),但生物质填料多呈亲水性,与疏水性的聚乳酸界面相容性差,且耐水性和耐久性欠佳。
植物炭黑是农林秸秆等植物在缺氧条件下经过高温处理产生的一种炭状物质。植物炭黑本身具有众多优势,如高度浓缩的炭化结构、较强的疏水性、发达的孔隙结构以及巨大的比表面积。因此,植物炭黑是改性聚乳酸的理想生物质填料。
在脆性聚乳酸体系中引入韧性材料,可大幅提升聚乳酸复合材料的韧性。聚己内酯是一种完全生物可降解的半结晶型材料,具有良好的生物相容性,优异的力学性能、渗透性和生物可降解性,并具有较低的熔点及较高的断裂伸长率(>300%),在生物医药领域应用广泛。已有研究表明,在聚乳酸中加入少量的聚己内酯可显著改善聚乳酸的断裂伸长率;通过热退火可有效改善聚乳酸/聚己内酯复合材料的结晶性能和力学性能。然而,聚己内酯与聚 乳酸两相不相容,如何避免在制备过程中发生相分离,同时构筑出牢固的两相结合,这是值得深入探究的关键技术问题。
现有技术中,申请公布号为CN112898750A的专利文献公开了一种全生物降解增韧聚乳酸复合材料及其制备方法,聚乳酸、聚己内酯和环氧植物油熔融共混后造粒,得到生物降解增韧聚乳酸复合材料,这种方法工艺复杂,生产成本昂贵,制备时间长,且材料耐热性不明。申请公布号为CN109486142A的专利文献公开了一种用于3D打印的聚乳酸-聚己内酯复合材料及其制备方法,其在聚己内酯表面接枝纳米二氧化硅时加入甲苯溶液,并在搅拌条件下重复抽真空、充氮气,这种方法制备的聚己内酯含有低毒性,并且工艺复杂,加工效率低,对工业仪器要求较高,无法满足聚乳酸材料更宽广的应用范围。此外,以上两种制备方法都不能解决聚乳酸和聚己内酯界面相容性不佳的问题。
为了提高聚乳酸复合材料的韧性和耐热性,扩大其应用范围,亟需发明一种高效制备聚乳酸复合材料的方法,以扩大聚乳酸复合材料在日常塑料中的应用。
发明内容
本发明的目的是,针对现有技术的不足,提出一种聚乳酸/聚己内酯/植物炭黑复合材料及其制备方法,利用植物炭黑的多孔结构,预先构建植物炭黑与聚己内酯机械连锁结构,并且通过两次等温结晶(即高低温双结晶),促使聚乳酸分子和聚己内酯分子充分结晶,构筑出牢固的两相结合,从而提高聚乳酸/聚己内酯/植物炭黑复合材料的韧性和耐热性。
本发明解决上述技术问题所采用的技术方案为:一种聚乳酸/聚己内酯/植物炭黑复合材料,其质量份数组成为:聚乳酸90份、聚己内酯20~40份、植物炭黑1~10份、增容剂1~5份、增塑剂5~7份、润滑剂0.5~3份、偶联剂1~5份和抗氧剂1~5份。
作为优选,所述植物炭黑为500~5000目的竹子植物炭黑、椰子壳植物炭黑和木材植物炭黑中的至少一种。
作为优选,所述增容剂为笼型聚倍半硅氧烷、苯乙烯-丙烯腈共聚物、甲基丙烯酸甲酯、甲基丙烯酸缩水甘油酯和苯乙烯-甲基丙烯酸缩水甘油酯 共聚物中的至少一种。
作为优选,所述增塑剂为柠檬酸三丁酯、柠檬酸三辛酯、环氧大豆油、偏苯三酸三辛酯和环氧四氢邻苯二甲酸酯中的至少一种。
作为优选,所述润滑剂为硬脂酸、乙撑双硬脂酸酰胺、油酸酰胺和芥酸酰胺中的至少一种。
作为优选,所述偶联剂为硅烷偶联剂、钛酸酯偶联剂和铝酸酯偶联剂中的至少一种。
作为优选,所述硅烷偶联剂为乙烯基三甲氧基硅烷、3-巯基丙基三乙氧基硅烷或γ-(2,3-环氧丙氧)丙基三甲氧基硅烷。
作为优选,所述抗氧剂为2,6二叔丁基对甲酚、二芳基仲胺、硫代二丙酸酯和硫代二丙酸二月桂酸酯中的至少一种。
本发明还提供了上述方案所述聚乳酸/聚己内酯/植物炭黑复合材料的制备方法,包括以下步骤:
1)按质量份数称取各原料后,将聚乳酸、聚己内酯、植物炭黑、增容剂、增塑剂、润滑剂、偶联剂和抗氧剂分别放入烘箱进行干燥,温度为40~105℃,绝干后,取出备用;
2)将步骤1)干燥后的植物炭黑和0.03~0.5g/mL的氢氧化钾溶液以1~3:6~10的质量体积比混合后,搅拌1小时后过滤,再将植物炭黑烘干,然后将烘干后的植物炭黑放入1.5~2mol/L的盐酸溶液中,得到固液混合物,充分搅拌并将所述固液混合物的pH值调整至5.5~6,之后超声处理10~20min,过滤固液混合物,用去离子水冲洗植物炭黑至中性,最后干燥至绝干,得到活化的植物炭黑;
3)将步骤1)干燥后的聚己内酯、偶联剂及步骤2)得到的活化的植物炭黑加入球磨机中进行干法球磨,研磨介质采用氧化锆或者陶瓷球,球磨公转速度110~140rpm,自转速度180~250rpm,球磨时间30~60min,得到聚己内酯/植物炭黑复合材料;
4)将步骤1)干燥后的聚乳酸、增容剂、增塑剂、润滑剂、抗氧剂及步骤3)得到的聚己内酯/植物炭黑复合材料加入高速混合机中,主轴转速为1000~1700rpm,混合时间为5~20min,得到混合材料;
5)将步骤4)得到的混合材料,加入双螺杆挤出机中挤出后造粒,双螺杆挤出机的加工温度为110~190℃,螺杆长径比25~50,得到造粒料;
6)将步骤5)得到的造粒料制备为半成品;
7)将步骤6)制备的半成品放在烘箱中进行第一次等温结晶,烘箱温度为100~120℃,保温时间为0.5~30min,然后降低烘箱温度,进行第二次等温结晶,烘箱温度为20~40℃,保温时间为0.5~10min,得到聚乳酸/聚己内酯/植物炭黑复合材料。
植物炭黑具有多孔结构、高模量、高比表面积、高化学活性和吸附特性,其本身是一种三维多尺度材料。在强化聚乳酸复合材料时,它的表面具有分子尺度设计性,孔隙具有微纳结构可控性,强化后的宏观性能具有多样性,是优质的增强体填料。
本发明提供的制备方法的步骤2)中,将植物炭黑依次浸入氢氧化钾溶液和盐酸溶液可对植物炭黑进行改性。氢氧化钾和盐酸是常用的植物炭黑活化剂,具有良好的催化活性,可以明显改善植物炭黑的孔隙结构和比表面积。
本发明提供的制备方法的步骤3)中,以特定的研磨介质在特定的研磨条件下对聚己内酯和植物炭黑进行干法球磨,利用球磨法的机械力化学效应,可以粉碎块状或大颗粒的植物炭黑,同时,提升复合材料的润滑性、分散性和加工性能,使聚己内酯均匀地浸入植物炭黑的孔隙结构,形成良好的界面黏结作用。由于聚己内酯的熔点低(60~63℃),分子链柔软,具有较大的延展性,在球磨机中植物炭黑的孔隙结构有利于熔融的聚己内酯渗入到多孔结构内部,形成机械连锁结构。一方面植物炭黑的高比表面积为聚己内酯提供了更多的接触点,从而提高与聚己内酯的可及性;另一方面聚己内酯渗入植物炭黑的孔隙结构,可提高植物炭黑与聚己内酯的微观结合力,从而提升力学性能。此外,在偶联剂的作用下,聚己内酯分子链上的醚键大量增加,使聚己内酯在植物炭黑表面具有较佳的浸润性,使其均匀地浸入多尺度孔隙,形成良好的界面黏结作用,两相间的界面相容性极大提高。
本发明提供的制备方法的步骤4)中,在高速混合机中,机械连锁的聚己内酯/植物炭黑复合材料和聚乳酸在高速剪切力下,聚乳酸能与机械连锁的聚己内酯/植物炭黑复合材料的聚己内酯端黏结,在聚乳酸和聚己内酯之间形成 一种牢固锁铆网络结构,这促进了有效的应力传递,并且植物炭黑在聚乳酸中具有增强作用,从而提高聚乳酸/聚己内酯/植物炭黑复合材料的拉伸强度、弯曲强度与冲击韧性。
本发明提供的制备方法的步骤7)中,通过100~120℃和20~40℃的两次等温结晶(即高低温双结晶),促使聚乳酸分子和聚己内酯分子充分结晶,最终大幅提高了聚乳酸/聚己内酯/植物炭黑复合材料的结晶度,可以极大地改善复合材料的热力学行为,并进一步提高复合材料的结晶性能和冲击韧性。在高温等温结晶时,植物炭黑在聚乳酸内部异相成核,有助于聚乳酸早期结晶,聚乳酸球晶尺寸变小,结晶度增大;同时,聚己内酯和植物炭黑形成的机械连锁结构也可以作为成核剂,促进聚乳酸结晶,此时聚己内酯处于熔融状态,在聚乳酸结晶的推动下,聚己内酯分子链将趋向紧密排列并取向。在低温等温结晶时,温度低于聚乳酸熔点,聚乳酸已经完成结晶,聚己内酯处于结晶温度,此时聚己内酯迅速结晶。在结晶过程中,聚乳酸、聚己内酯和植物炭黑共混体系是部分相容或者不相容的,相形态和结晶形态之间会出现相互竞争或者相互促进,最终的结晶形态不仅取决于相转变的次序,而且取决于分子间的相互作用。植物炭黑在聚己内酯中良好的分散性,有利于结晶相的成核-生长过程,促进了聚己内酯和聚乳酸有效地结晶。本发明提供的高低温双结晶方法可以解决复合材料共混时的界面不相容问题,从而对聚乳酸/聚己内酯/植物炭黑复合材料的力学性能和热学性能产生重要的影响。
与现有技术相比,本发明具有如下优点:
(1)本发明提供的聚乳酸/聚己内酯/植物炭黑复合材料利用植物炭黑与生物降解材料进行复合,植物炭黑具有高模量和高比表面积,是优质的增强体填料,不仅可以提高生物降解材料的耐热性能和力学性能,还可以代替传统石油基炭黑色母在生物降解材料中的应用,在食品包装行业展现出更大的潜力。
(2)本发明利用球磨机对植物炭黑和聚己内酯干法球磨,在球磨机的机械力下,植物炭黑能更好地分散在聚己内酯中,使熔融的聚己内酯渗入植物炭黑的孔隙中,这促进了聚己内酯和植物炭黑之间机械连锁结构的形成,植物炭黑的高比表面积也为聚己内酯提供了更多的接触点,使聚己内酯在植 物炭黑表面具有较佳可及性。在高速混合机中聚乳酸能与机械连锁的聚己内酯/植物炭黑复合材料的聚己内酯端黏结,在聚乳酸和聚己内酯之间形成一种牢固的锁铆网络结构,这促进了有效的应力传递,植物炭黑在聚乳酸中具有增强作用,从而提高聚乳酸/聚己内酯/植物炭黑复合材料的拉伸强度、弯曲强度与冲击韧性。
(3)本发明利用高低温双结晶等温动力学调控,可以提高聚乳酸/聚己内酯/植物炭黑复合材料的结晶度,极大地改善复合材料的热学与力学行为,从而提升复合材料的拉伸强度、弯曲强度、冲击韧性和耐热性能,实现增韧和增耐热的目的。
(4)本发明中聚乳酸、聚己内酯和植物炭黑都是重要的生物降解材料,具有生物相容性好、来源天然以及绿色可再生的特点。本发明的聚乳酸/聚己内酯/植物炭黑复合材料制备工艺简单,无毒无害,其中的植物炭黑是天然的黑色素着色剂,可应用于食品包装行业。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为不同聚己内酯添加量的聚乳酸/聚己内酯/植物炭黑复合材料的拉伸性能;
图2为不同聚己内酯添加量的聚乳酸/聚己内酯/植物炭黑复合材料的弯曲性能;
图3为不同聚己内酯添加量的聚乳酸/聚己内酯/植物炭黑复合材料的冲击性能;
图4为不同聚己内酯添加量的聚乳酸/聚己内酯/植物炭黑复合材料的耐热性;
图5为不同植物炭黑添加量的聚乳酸/聚己内酯/植物炭黑复合材料的拉伸性能;
图6为不同植物炭黑添加量的聚乳酸/聚己内酯/植物炭黑复合材料的弯 曲性能;
图7为不同植物炭黑添加量的聚乳酸/聚己内酯/植物炭黑复合材料的冲击性能;
图8为不同植物炭黑添加量的聚乳酸/聚己内酯/植物炭黑复合材料的耐热性;
图9为不同增容剂添加量的聚乳酸/聚己内酯/植物炭黑复合材料的拉伸性能;
图10为不同增容剂添加量的聚乳酸/聚己内酯/植物炭黑复合材料的弯曲性能;
图11为不同增容剂添加量的聚乳酸/聚己内酯/植物炭黑复合材料的冲击性能;
图12为不同增容剂添加量的聚乳酸/聚己内酯/植物炭黑复合材料的耐热性;
图13为实施例3的聚乳酸/聚己内酯/植物炭黑复合材料的拉伸断面SEM图;
图14为对比例2的聚乳酸/聚己内酯/植物炭黑复合材料的拉伸断面SEM图。
具体实施方式
为了进一步说明本发明,以下结合附图和实施例对本发明的方案作进一步详细描述,但不能将它们理解为对本发明保护范围的限定。
实施例1~实施例5的聚乳酸/聚己内酯/植物炭黑复合材料的质量份数组成见表1,并将实施例1~实施例5的聚乳酸/聚己内酯/植物炭黑复合材料分别表示以编号C1、C2、C3、C4和C5表示,进行单因素实验。
表1实施例1~5的聚乳酸/聚己内酯/植物炭黑复合材料的质量份数组成

实施例1~实施例5中:植物炭黑采用500~5000目的竹子植物炭黑,增容剂采用甲基丙烯酸缩水甘油酯,增塑剂采用柠檬酸三丁酯,润滑剂采用芥酸酰胺,偶联剂采用乙烯基三甲氧基硅烷,抗氧剂采用2,6二叔丁基对甲酚。
实施例1
本实施例聚乳酸/聚己内酯/植物炭黑复合材料的制备方法,包括以下步骤:
1)按质量份数称取各原料后,将聚乳酸、聚己内酯、植物炭黑、增容剂、增塑剂、润滑剂、偶联剂和抗氧剂分别放入烘箱进行干燥,温度为55℃,绝干后,取出备用;
2)将步骤1)干燥后的植物炭黑和0.1g/mL的氢氧化钾溶液以2:7的质量体积比混合后,搅拌1小时后过滤,再将植物炭黑烘干,然后将烘干后的植物炭黑放入1.5mol/L的盐酸溶液中,得到固液混合物,充分搅拌并将所述固液混合物的pH值调整至5.8,之后超声处理10min,过滤固液混合物,用去离子水冲洗植物炭黑至中性,最后干燥至绝干,得到活化的植物炭黑;
3)将步骤1)干燥后的聚己内酯、偶联剂及步骤2)得到的活化的植物炭黑加入球磨机中进行干法球磨,研磨介质采用氧化锆,球磨公转速度120rpm,自转速度180rpm,球磨时间30min,得到聚己内酯/植物炭黑复合材料;
4)将步骤1)干燥后的聚乳酸、增容剂、增塑剂、润滑剂、抗氧剂及步骤3)得到的聚己内酯/植物炭黑复合材料加入高速混合机中,主轴转速为1200rpm,混合时间为10min,得到混合材料;
5)将步骤4)得到的混合材料,加入双螺杆挤出机中挤出后造粒,双螺杆挤出机的加工温度为175℃,螺杆长径比30,得到挤出料;
6)将步骤5)得到的造粒料制备通过注塑机注塑做成拉伸、弯曲和冲击样条,料筒温度为170℃,模具温度为35℃;
7)将步骤6)制备的半成品放在烘箱中进行第一次等温结晶,烘箱温度为110℃,保温时间为30min,然后降低烘箱温度,进行第二次等温结晶,烘箱 温度为30℃,保温时间为10min,得到聚乳酸/聚己内酯/植物炭黑复合材料。
实施例2~实施例5的聚乳酸/聚己内酯/植物炭黑复合材料的制备方法,与实施例1基本相同,不同之处在于,实施例2~实施例5的制备方法的步骤1)中,聚己内酯的添加量分别为25份、30份、35份和40份,分别制备得到实施例2~实施例5的聚乳酸/聚己内酯/植物炭黑复合材料。
作为对比,制备了以下对比例1和对比例2的聚乳酸复合材料:
对比例1
本对比例的聚乳酸/聚己内酯复合材料不添加植物炭黑,其质量份数组成为:聚乳酸90份、聚己内酯30份、增容剂1份、增塑剂5份、润滑剂0.5份,偶联剂2份和抗氧剂3份,增容剂采用甲基丙烯酸甲酯,增塑剂采用环氧大豆油,偶联剂采用铝酸脂偶联剂,抗氧剂采用二芳基仲胺。
本对比例的聚乳酸/聚己内酯复合材料的制备方法,包括以下步骤:
1)按质量份数称取各原料后,将聚乳酸、聚己内酯、增容剂、增塑剂、润滑剂、偶联剂和抗氧剂分别放入烘箱进行干燥,温度为55℃,绝干后,取出备用;
2)将步骤1)干燥后的聚己内酯30份和偶联剂2份加入球磨机中进行干法球磨,研磨介质采用氧化锆,球磨公转速度110rpm,自转速度180rpm,球磨时间30min,得到聚己内酯和偶联剂共混的复合材料;
3)将步骤1)干燥后的聚乳酸90份、增容剂1份、增塑剂5份、润滑剂0.5份、抗氧剂3份及步骤2)得到的聚己内酯和偶联剂共混的复合材料加入高速混合机中,主轴转速为1500rpm,混合时间为15min,得到充分混合的聚乳酸/聚己内酯复合材料;
4)将步骤3)得到的充分混合的聚乳酸/聚己内酯复合材料,加入双螺杆挤出机中挤出后造粒,双螺杆挤出机的加工温度为175℃,螺杆长径比为30;
5)将步骤4)双螺杆造粒料通过注塑机注塑做成拉伸、弯曲和冲击样条,料筒温度为175℃,模具温度为30℃;
6)将步骤5)制备好的样条放在烘箱中进行等温结晶,烘箱温度为110℃,保温时间为30min,然后降低烘箱温度,进行二次等温结晶,烘箱温度为30℃,保温时间为10min,得到聚乳酸/聚己内酯复合材料。
对比例2
本对比例的聚乳酸/聚己内酯/植物炭黑复合材料,其质量份数组成为:聚乳酸90份、聚己内酯30份、植物炭黑10份、增容剂1份、增塑剂5份、润滑剂2份、偶联剂2份和抗氧剂3份,植物炭黑采用500~4000目的椰子壳植物炭黑,增容剂采用笼型聚倍半硅氧烷,增塑剂采用偏苯三酸三辛酯,偶联剂钛酸酯偶联剂,抗氧剂采用硫代二丙酸二月桂酸酯。
本对比例的聚乳酸/聚己内酯/植物炭黑复合材料采用双螺杆直接挤出的方法,包括以下步骤:
1)按质量份数称取各原料后,将聚乳酸、聚己内酯、植物炭黑、增容剂、增塑剂、润滑剂、偶联剂和抗氧剂分别放入烘箱进行干燥,温度为45℃,绝干后,取出备用;
2)将步骤1)干燥后的植物炭黑10份加入0.4g/mL的氢氧化钾溶液以1:8的质量体积比混合后,搅拌1小时,再将植物炭黑烘干,然后用1.5mol/L盐酸溶液将植物炭黑的pH值调整到5.8,超声处理20min,过滤固液混合物,用去离子水冲洗植物炭黑至中性,最后干燥至绝干,得到活化的植物炭黑;
3)将步骤1)干燥后的聚己内酯30份、偶联剂2份及步骤2)得到的活化的植物炭黑加入球磨机中进行干法球磨,研磨介质采用氧化锆或者陶瓷球,球磨公转速度130rpm,自转速度200rpm,球磨时间50min,得到聚己内酯/植物炭黑复合材料;
4)将步骤1)干燥后的聚乳酸90份、增容剂1份、增塑剂5份、润滑剂2份、抗氧剂3份及步骤3)得到的聚己内酯/植物炭黑复合材料加入高速混合机中,主轴转速为15000rpm,混合时间为15min,得到充分混合的聚乳酸/聚己内酯/植物炭黑复合材料;
5)将步骤4)的充分混合的聚乳酸/聚己内酯/植物炭黑复合材料,加入双螺杆挤出机中挤出后造粒,双螺杆挤出机的加工温度为175℃,螺杆长径比为30;
6)将步骤5)双螺杆造粒料通过注塑机注塑做成拉伸、弯曲和冲击样条,料筒温度为175℃,模具温度为30℃。
对于实施例1~实施例5的聚乳酸/聚己内酯/植物炭黑复合材料,分别 制成拉伸、弯曲和冲击样条测试样品。按照GB/T1040~92、GB/T9341~2008或GB/T1843~2008标准的方法对实施例1~实施例5的聚乳酸/聚己内酯/植物炭黑复合材料的力学性能进行分组检测;按照GB/T1633~2000标准的方法对实施例1~实施例5的聚乳酸/聚己内酯/植物炭黑复合材料的耐热性能进行分组检测;拉伸测试样品为哑铃型试样,长度为75mm,标距为30mm,中部宽度为4mm,厚度为2mm,拉伸速度为20mm/min,每组至少测试5个试样,取样品拉伸强度、拉伸断裂伸长率的平均值,结果如图1所示;弯曲测试样品长度为80mm,宽度为10mm,厚度为4mm,采用三点弯曲的方法测试,跨度为48mm,每组至少测试5个试样,取样品弯曲强度的平均值,结果如图2所示;冲击测试采用有缺口冲击样条,摆锤重量为1.245kg,角度为150°,每组至少测试5个试样,取样品冲击强度的平均值,结果如图3所示;维卡软化测试在10N的力中进行测试,标准压针刺入样条表面1mm深,每组至少测试5个试样点并取平均值,结果如图4所示。
采用与上述实施例1的聚乳酸/聚己内酯/植物炭黑复合材料相同的方法,对对比例1的聚乳酸/聚己内酯复合材料进行拉伸测试、弯曲测试、冲击测试和耐热测试,测得其拉伸强度为39.8MPa,断裂伸长率为15.4%,弯曲强度为50.6MPa,冲击强度为5.98kJ/m2,维卡软化温度为118.4℃。
采用与上述实施例1的聚乳酸/聚己内酯/植物炭黑复合材料相同的方法,对对比例2的聚乳酸/聚己内酯/植物炭黑复合材料进行拉伸测试、弯曲测试、冲击测试和耐热测试,测得其拉伸强度为45.7MPa,断裂伸长率为14.3%,弯曲强度为45.3MPa,冲击强度为5.69kJ/m2,维卡软化温度为58.6℃。
从图1、图2、图3和图4可见,随聚己内酯的添加量增大,实施例1~实施例5的聚乳酸/聚己内酯/植物炭黑复合材料的拉伸强度减小,断裂伸长率增加,弯曲强度减小,冲击强度和维卡软化温度都增加。在这些性能数值中,即使是最小值也比对比例1和对比例2具有优势。其中,拉伸强度、拉伸断裂伸长率、弯曲强度、冲击强度和维卡软化温度相较于未添加植物炭黑的对比例1分别提高了约33.8%、27.5%、30.4%、24.6%和9.3%;相较于双螺杆挤出加工的聚乳酸/聚己内酯/植物炭黑复合材料对比例2分别提高了约16.5%、37.3%、45.6%、30.9%和120.8%。
实施例6~实施例10的聚乳酸/聚己内酯/植物炭黑复合材料的质量份数组成见表2,并将实施例6~实施例10的聚乳酸/聚己内酯/植物炭黑复合材料分别表示以编号S1、S2、S3、S4和S5表示,进行单因素实验。
表2实施例6~10的聚乳酸/聚己内酯/植物炭黑复合材料的质量份数组成
实施例6~实施例10中:植物炭黑采用500~5000目的木材植物炭黑,增容剂采用苯乙烯-甲基丙烯酸缩水甘油酯共聚物,增塑剂采用环氧四氢邻苯二甲酸酯,润滑剂采用油酸酰胺,偶联剂采用钛酸酯偶联剂,抗氧剂采用硫代二丙酸酯。
实施例6
本实施例的聚乳酸/聚己内酯/植物炭黑复合材料的制备方法,包括以下步骤:
1)按质量份数称取各原料后,将聚乳酸、聚己内酯、植物炭黑、增容剂、增塑剂、润滑剂、偶联剂和抗氧剂分别放入烘箱进行干燥,温度为50℃,绝干后,取出备用;
2)将步骤1)干燥后的植物炭黑和0.05g/mL的氢氧化钾溶液以1:6的质量体积比混合后,搅拌1小时后过滤,再将植物炭黑烘干,然后将烘干后的植物炭黑放入1.7mol/L的盐酸溶液中,得到固液混合物,充分搅拌并将所述固液混合物的pH值调整至5.6,之后超声处理15min,过滤固液混合物,用去离子水冲洗植物炭黑至中性,最后干燥至绝干,得到活化的植物炭黑;
3)将步骤1)干燥后的聚己内酯、偶联剂及步骤2)得到的活化的植物炭黑加入球磨机中进行干法球磨,研磨介质采用陶瓷球,球磨公转速度120rpm,自转速度200rpm,球磨时间40min,得到聚己内酯/植物炭黑复合材料;
4)将步骤1)干燥后的聚乳酸、增容剂、增塑剂、润滑剂、抗氧剂及步骤3)得到的聚己内酯/植物炭黑复合材料加入高速混合机中,主轴转速为1400rpm,混合时间为15min,得到混合材料;
5)将步骤4)得到的混合材料,加入双螺杆挤出机中挤出后造粒,双螺杆挤出机的加工温度为175℃,螺杆长径比30,得到造粒料;
6)将步骤5)得到的造粒料制备通过注塑机注塑做成拉伸、弯曲和冲击样条,料筒温度为175℃,模具温度为30℃;
7)将步骤6)制备的半成品放在烘箱中进行第一次等温结晶,烘箱温度为110℃,保温时间为30min,然后降低烘箱温度,进行第二次等温结晶,烘箱温度为30℃,保温时间为10min,得到聚乳酸/聚己内酯/植物炭黑复合材料。
实施例7~实施例10的聚乳酸/聚己内酯/植物炭黑复合材料的制备方法,与实施例6基本相同,不同之处在于,实施例7~实施例10的制备方法的步骤1)中,植物炭黑的添加量分别为2.5份、5份、7.5份和10份,分别制备得到实施例7~实施例10的聚乳酸/聚己内酯/植物炭黑复合材料。
采用与上述实施例1的聚乳酸/聚己内酯/植物炭黑复合材料相同的方法,对实施例6~实施例10的聚乳酸/聚己内酯/植物炭黑复合材料进行拉伸测试、弯曲测试、冲击测试和耐热性测试,拉伸强度、拉伸断裂伸长率的测试结果如图5所示,弯曲强度的测试结果如图6所示,冲击强度的测试结果如图7所示,耐热性的测试结果如图8所示
从图5、图6、图7和图8可见,随植物炭黑的添加量增大,实施例6~实施例10的聚乳酸/聚己内酯/植物炭黑复合材料的拉伸强度增加,断裂伸长率先增加后减小,弯曲强度增加,冲击强度先增大后减小,维卡软化温度增加。在这些性能数值中,即使是最小值也比对比例1和对比例2具有优势。其中,拉伸强度、拉伸断裂伸长率、弯曲强度、冲击强度和维卡软化温度相较于未添加植物炭黑的对比例1分别提高了约30.0%、12.5%、24.4%、34.7%和7.7%;相较于双螺杆挤出加工的聚乳酸/聚己内酯/植物炭黑复合材料对比例2分别提高了约13.3%、21.2%、38.9%、43.9%和117.3%。
实施例11~实施例15的聚乳酸/聚己内酯/植物炭黑复合材料的质量份数组成见表3,并将实施例11~实施例15的聚乳酸/聚己内酯/植物炭黑复合 材料分别表示以编号01、02、03、04和05表示,进行单因素实验。
表3实施例11~15的聚乳酸/聚己内酯/植物炭黑复合材料的质量份数组成
实施例11~实施例15中:植物炭黑采用500~5000目的植物炭黑,增容剂采用苯乙烯-丙烯腈共聚物,增塑剂采用环氧大豆油,润滑剂采用硬脂酸,偶联剂采用铝酸酯偶联剂,抗氧剂采用2,6二叔丁基对甲酚。
实施例11
本实施例的聚乳酸/聚己内酯/植物炭黑复合材料的制备方法,包括以下步骤:
1)按质量份数称取各原料后,将聚乳酸、聚己内酯、植物炭黑、增容剂、增塑剂、润滑剂、偶联剂和抗氧剂分别放入烘箱进行干燥,温度为60℃,绝干后,取出备用;
2)将植物炭黑和0.35g/mL的氢氧化钾溶液以2:9的质量体积比混合后,搅拌1小时后过滤,再将植物炭黑烘干,然后将烘干后的植物炭黑放入2mol/L的盐酸溶液中,得到固液混合物,充分搅拌并将所述固液混合物的pH值调整至5.8,之后超声处理20min,过滤固液混合物,用去离子水冲洗植物炭黑至中性,最后干燥至绝干,得到活化的植物炭黑;
3)将聚己内酯、偶联剂及步骤2)得到的活化的植物炭黑加入球磨机中进行干法球磨,研磨介质采用陶瓷球,球磨公转速度140rpm,自转速度210rpm,球磨时间50min,得到聚己内酯/植物炭黑复合材料;
4)将聚乳酸、增容剂、增塑剂、润滑剂、抗氧剂及步骤3)得到的聚己内酯/植物炭黑复合材料加入高速混合机中,主轴转速为1500rpm,混合时间为20min,得到混合材料;
5)将步骤4)得到的混合材料,加入双螺杆挤出机中挤出后造粒,双螺杆挤出机的加工温度为175℃,螺杆长径比30,得到造粒料;
6)将步骤5)得到的造粒料制备通过注塑机注塑做成拉伸、弯曲和冲击样条,料筒温度为170℃,模具温度为30℃;
7)将步骤6)制备的半成品放在烘箱中进行第一次等温结晶,烘箱温度为110℃,保温时间为30min,然后降低烘箱温度,进行第二次等温结晶,烘箱温度为30℃,保温时间为5min,得到聚乳酸/聚己内酯/植物炭黑复合材料。
实施例12~实施例15的聚乳酸/聚己内酯/植物炭黑复合材料的制备方法,与实施例11基本相同,不同之处在于,实施例12~实施例15的制备方法的步骤3)中,增容剂的添加量分别为2份、3份、4份和5份,分别制备得到实施例12~实施例15的聚乳酸/聚己内酯/植物炭黑复合材料。
采用与上述实施例11的聚乳酸/聚己内酯/植物炭黑复合材料相同的方法,对实施例12~实施例15的聚乳酸/聚己内酯/植物炭黑复合材料进行拉伸测试、弯曲测试、冲击测试和耐热性测试,拉伸强度和拉伸断裂伸长率的测试结果如图9所示,弯曲强度的测试结果如图10所示,冲击强度的测试结果如图11所示,耐热性的测试结果如图12所示。
从图9、图10、图11和图12可见,随增容剂的添加量增大,实施例11~实施例15的聚乳酸/聚己内酯/植物炭黑复合材料的拉伸强度减小,断裂伸长率增加,弯曲强度减小,冲击强度和维卡软化温度也增加。在这些性能数值中,即使是最小值也比对比例1和对比例2具有优势。其中,拉伸强度、拉伸断裂伸长率、弯曲强度、冲击强度和维卡软化温度相较于未添加植物炭黑的对比例1分别提高了约37.7%、11.9%、28.2%、30.1%和10.2%;相较于双螺杆挤出加工的聚乳酸/聚己内酯/植物炭黑复合材料对比例2分别提高了约20.1%、20.5%、43.2%、36.6%和122.7%。
图13为实施例3的聚乳酸/聚己内酯/植物炭黑复合材料的拉伸断面SEM图;图14为对比例2的聚乳酸/聚己内酯/植物炭黑复合材料的拉伸断面SEM图。从拉伸断裂微观结构分析,实施例3的断裂面韧性较好,未见植物炭黑团聚,聚己内酯分子链在拉伸方向呈现韧性断裂,而对比例2中,由于双螺杆挤出加工力学性能效果不佳,微观上出现大量相分离,影响力学性能。
尽管上述实施例对本发明做出了详尽的描述,但它仅仅是本发明一部分实施例,而不是全部实施例,还可以根据本实施例在不经创造性前提下获得其他实施例,这些实施例都属于本发明保护范围。

Claims (17)

  1. 一种聚乳酸/聚己内酯/植物炭黑复合材料,其特征在于,其质量份数组成为:聚乳酸90份、聚己内酯20~40份、植物炭黑1~10份、增容剂1~5份、增塑剂5~7份、润滑剂0.5~3份、偶联剂1~5份和抗氧剂1~5份。
  2. 根据权利要求1所述的聚乳酸/聚己内酯/植物炭黑复合材料,其特征在于,所述植物炭黑为500~5000目的竹子植物炭黑、椰子壳植物炭黑和木材植物炭黑中的至少一种。
  3. 根据权利要求1所述的聚乳酸/聚己内酯/植物炭黑复合材料,其特征在于,所述增容剂为笼型聚倍半硅氧烷、苯乙烯-丙烯腈共聚物、甲基丙烯酸甲酯、甲基丙烯酸缩水甘油酯和苯乙烯-甲基丙烯酸缩水甘油酯共聚物中的至少一种。
  4. 根据权利要求1所述的聚乳酸/聚己内酯/植物炭黑复合材料,其特征在于,所述增塑剂为柠檬酸三丁酯、柠檬酸三辛酯、环氧大豆油、偏苯三酸三辛酯和环氧四氢邻苯二甲酸酯中的至少一种。
  5. 根据权利要求1所述的聚乳酸/聚己内酯/植物炭黑复合材料,其特征在于,所述润滑剂为硬脂酸、乙撑双硬脂酸酰胺、油酸酰胺和芥酸酰胺中的至少一种。
  6. 根据权利要求1所述的聚乳酸/聚己内酯/植物炭黑复合材料,其特征在于,所述偶联剂为硅烷偶联剂、钛酸酯偶联剂和铝酸酯偶联剂中的至少一种。
  7. 根据权利要求6所述的聚乳酸/聚己内酯/植物炭黑复合材料,其特征在于,所述硅烷偶联剂为乙烯基三甲氧基硅烷、3-巯基丙基三乙氧基硅烷或γ-(2,3-环氧丙氧)丙基三甲氧基硅烷。
  8. 根据权利要求1所述的聚乳酸/聚己内酯/植物炭黑复合材料,其特征在于,所述抗氧剂为2,6二叔丁基对甲酚、二芳基仲胺、硫代二丙酸酯和硫代二丙酸二月桂酸酯中的至少一种。
  9. 根据权利要求1所述的聚乳酸/聚己内酯/植物炭黑复合材料,其特征在于,其质量份数组成为:聚乳酸90份、聚己内酯25份、植物炭黑5份、增容剂1份、增塑剂5份、润滑剂0.5份、偶联剂2份和抗氧剂3份。
  10. 权利要求1~9中任一项所述的聚乳酸/聚己内酯/植物炭黑复合材料 的制备方法,其特征在于,包括以下步骤:
    1)按质量份数称取各原料后,将聚乳酸、聚己内酯、植物炭黑、增容剂、增塑剂、润滑剂、偶联剂和抗氧剂分别放入烘箱进行干燥,温度为40~105℃,绝干后,取出备用;
    2)将步骤1)干燥后的植物炭黑和0.03~0.5g/mL的氢氧化钾溶液以1~3:6~10的质量体积比混合后,搅拌1小时后过滤,再将植物炭黑烘干,然后将烘干后的植物炭黑放入1.5~2mol/L的盐酸溶液中,得到固液混合物,充分搅拌并将所述固液混合物的pH值调整至5.5~6,之后超声处理10~20min,过滤固液混合物,用去离子水冲洗植物炭黑至中性,最后干燥至绝干,得到活化的植物炭黑;
    3)将步骤1)干燥后的聚己内酯、偶联剂及步骤2)得到的活化的植物炭黑加入球磨机中进行干法球磨,研磨介质采用氧化锆或者陶瓷球,球磨公转速度110~140rpm,自转速度180~250rpm,球磨时间30~60min,得到聚己内酯/植物炭黑复合材料;
    4)将步骤1)干燥后的聚乳酸、增容剂、增塑剂、润滑剂、抗氧剂及步骤3)得到的聚己内酯/植物炭黑复合材料加入高速混合机中,主轴转速为1000~1700rpm,混合时间为5~20min,得到混合材料;
    5)将步骤4)得到的混合材料,加入双螺杆挤出机中挤出后造粒,双螺杆挤出机的加工温度为110~190℃,螺杆长径比25~50,得到造粒料;
    6)将步骤5)得到的造粒料制备为半成品;
    7)将步骤6)制备的半成品放在烘箱中进行第一次等温结晶,烘箱温度为100~120℃,保温时间为0.5~30min,然后降低烘箱温度,进行第二次等温结晶,烘箱温度为20~40℃,保温时间为0.5~10min,得到聚乳酸/聚己内酯/植物炭黑复合材料。
  11. 根据权利要求10所述的制备方法,其特征在于,步骤5)中所述双螺杆挤出机的加工温度为175℃,螺杆长径比30。
  12. 根据权利要求10所述的制备方法,其特征在于,步骤7)中所述第一次等温结晶的烘箱温度为110℃,保温时间为30min;
    所述第二次等温结晶的烘箱温度为30℃,保温时间为10min。
  13. 根据权利要求10所述的制备方法,其特征在于,步骤3)中所述球磨的公转速度为120rpm,自转速度为180rpm,球磨时间为30min。
  14. 根据权利要求10所述的制备方法,其特征在于,步骤4)中所述高速混合机的主轴转速为1200rpm,混合时间为10min。
  15. 根据权利要求10所述的制备方法,其特征在于,步骤2)中所述植物炭黑和氢氧化钾溶液的质量体积比为2:7;
    所述氢氧化钾溶液的浓度为0.1mol/L。
  16. 根据权利要求10所述的制备方法,其特征在于,步骤1)中所述干燥的温度为55℃。
  17. 根据权利要求10所述的制备方法,其特征在于,步骤2)中所述固液混合物的pH值调整至5.8。
PCT/CN2023/094764 2022-08-10 2023-05-17 聚乳酸/聚己内酯/植物炭黑复合材料及其制备方法 WO2024032073A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GBGB2311500.9A GB202311500D0 (en) 2023-05-17 2023-05-17 No details

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210954289.5A CN115322543A (zh) 2022-08-10 2022-08-10 一种聚乳酸/聚己内酯/植物炭黑复合材料及其制备方法
CN202210954289.5 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024032073A1 true WO2024032073A1 (zh) 2024-02-15

Family

ID=83921873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094764 WO2024032073A1 (zh) 2022-08-10 2023-05-17 聚乳酸/聚己内酯/植物炭黑复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN115322543A (zh)
WO (1) WO2024032073A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322543A (zh) * 2022-08-10 2022-11-11 浙江旺林生物科技有限公司 一种聚乳酸/聚己内酯/植物炭黑复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001031853A (ja) * 1999-05-19 2001-02-06 Shimadzu Corp ポリ乳酸系重合体組成物
CN103113730A (zh) * 2013-02-20 2013-05-22 合肥杰事杰新材料股份有限公司 一种聚乳酸复合材料及其制备方法
CN106380804A (zh) * 2016-09-18 2017-02-08 扬州大学 一种高性能的聚己内酯/聚乳酸共混材料的制备方法
CN109777057A (zh) * 2018-12-12 2019-05-21 宁波大学 一种聚乳酸/竹炭复合材料的制备方法
CN115322543A (zh) * 2022-08-10 2022-11-11 浙江旺林生物科技有限公司 一种聚乳酸/聚己内酯/植物炭黑复合材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103421286A (zh) * 2013-08-08 2013-12-04 华南理工大学 一种耐高温和可降解的聚乳酸木塑材料及其制备方法
WO2015135080A1 (en) * 2014-03-14 2015-09-17 University Of Guelph Renewable replacements for carbon black in composites and methods of making and using thereof
DE102016201801A1 (de) * 2015-11-21 2017-05-24 Suncoal Industries Gmbh Partikelförmiges Kohlenstoffmaterial herstellbar aus nachwachsenden Rohstoffen und Verfahren zu dessen Herstellung
CN106221161B (zh) * 2016-08-23 2018-06-05 唐山师范学院 一种聚乳酸/聚己内酯/田菁胶复合材料及其制备方法
CN113549311A (zh) * 2021-08-20 2021-10-26 国际竹藤中心 一种竹炭增强复合材料及其制备方法和应用、可控降解吸管、多功能壁层吸管
CN113845764A (zh) * 2021-09-28 2021-12-28 昌亚新材料科技有限公司 一种耐热型改性聚乳酸材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001031853A (ja) * 1999-05-19 2001-02-06 Shimadzu Corp ポリ乳酸系重合体組成物
CN103113730A (zh) * 2013-02-20 2013-05-22 合肥杰事杰新材料股份有限公司 一种聚乳酸复合材料及其制备方法
CN106380804A (zh) * 2016-09-18 2017-02-08 扬州大学 一种高性能的聚己内酯/聚乳酸共混材料的制备方法
CN109777057A (zh) * 2018-12-12 2019-05-21 宁波大学 一种聚乳酸/竹炭复合材料的制备方法
CN115322543A (zh) * 2022-08-10 2022-11-11 浙江旺林生物科技有限公司 一种聚乳酸/聚己内酯/植物炭黑复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIAN SHAOPING, YAN WEI, ZHU SUSU, FONTANILLO LOPEZ CESAR A., SHENG KUICHUAN: "Surface modification of bamboo‐char and its reinforcement in PLA biocomposites", POLYMER COMPOSITES, SOCIETY OF PLASTICS ENGINEERS, INC., US, vol. 39, no. S1, 1 April 2018 (2018-04-01), US , XP093137184, ISSN: 0272-8397, DOI: 10.1002/pc.24800 *

Also Published As

Publication number Publication date
CN115322543A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
CN103540111B (zh) 一种高强度、耐高温的全降解聚乳酸片材及其制造方法
CN102532837B (zh) 高分子量聚乳酸立构复合物的制备方法
CN101798457B (zh) 一种尼龙6/聚碳酸酯/弹性体/hdi超韧性工程塑料的制造方法
CN109337312B (zh) 一种聚乳酸复合材料及其制备方法
WO2024032073A1 (zh) 聚乳酸/聚己内酯/植物炭黑复合材料及其制备方法
CN103275472B (zh) 一种全生物基硬质聚乳酸复合材料及其制备方法
CN110157170B (zh) 一种聚乳酸/纳米纤维素/羟基磷灰石复合材料及其制备
CN110483968B (zh) 一种聚乳酸/成核剂改性的纤维素纳米晶复合材料及方法
CN111849139A (zh) 一种高强度和高韧性的全生物降解材料及其制备方法
CN106189131A (zh) 超韧耐热导电的聚乳酸/弹性体/碳纳米粒子复合材料或制品及其制备方法
CN112961472B (zh) 一种改性聚呋喃二甲酸乙二醇酯及其制备方法及应用
Wang et al. High-performance thermoplastic starch/poly (butylene adipate-co-terephthalate) blends through synergistic plasticization of epoxidized soybean oil and glycerol
Qu et al. Effect of compatibilizer and nucleation agent on the properties of poly (lactic acid)/polycarbonate (PLA/PC) blends
KR101124989B1 (ko) 폴리유산 복합재료 조성물
CN111704790A (zh) 一种3d打印用聚乳酸基复合线材的制备方法
CN112812513A (zh) 一种耐温可降解餐具用材料及其制备方法
CN111675854A (zh) 一种聚氨酯增韧聚丙烯复合材料及其制备与检测方法
CN111187495A (zh) 一种高韧高耐热透明聚乳酸复合材料的制备方法
CN113088057B (zh) 一种增强增韧的聚乳酸共混材料及其制备方法
CN109825048A (zh) 一种pla/pbat复合材料及其制备方法
CN114350128B (zh) 一种增强增韧的聚乳酸材料及其制备方法
CN111393817B (zh) 一种完全立构化高韧性聚乳酸立构复合物及其制备方法
CN113683875B (zh) 一种可降解高韧性耐热型聚乳酸-淀粉复合材料及制备方法
CN113652008A (zh) 一种可降解淀粉塑料组合物及其制备方法和应用
CN113402868A (zh) 一种超支化聚酯改性聚乳酸/聚碳酸亚丙酯复合材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851303

Country of ref document: EP

Kind code of ref document: A1