WO2024029627A1 - 切削工具 - Google Patents

切削工具 Download PDF

Info

Publication number
WO2024029627A1
WO2024029627A1 PCT/JP2023/028607 JP2023028607W WO2024029627A1 WO 2024029627 A1 WO2024029627 A1 WO 2024029627A1 JP 2023028607 W JP2023028607 W JP 2023028607W WO 2024029627 A1 WO2024029627 A1 WO 2024029627A1
Authority
WO
WIPO (PCT)
Prior art keywords
convex portion
cutting
cutting tool
rake face
blade
Prior art date
Application number
PCT/JP2023/028607
Other languages
English (en)
French (fr)
Inventor
俊平 大塚
賢 熊谷
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2024029627A1 publication Critical patent/WO2024029627A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/22Cutting tools with chip-breaking equipment

Definitions

  • the present invention relates to cutting tools.
  • This application claims priority based on Japanese Patent Application No. 2022-125283 filed in Japan on August 5, 2022, the contents of which are incorporated herein.
  • Cutting tools such as cutting inserts used for cutting work materials such as metals have been known (for example, Patent Documents 1 and 2).
  • This type of cutting tool includes a rake face, a flank face, and a V-shaped cutting edge in a plan view when the rake face is viewed from the front, and is arranged at the ridgeline where the rake face and the flank face are connected.
  • a chip breaker placed on the rake face.
  • One of the objects of the present invention is to provide a cutting tool that can maintain good chip disposal properties regardless of the depth of cut, etc., and can stably improve machined surface accuracy.
  • the chip breaker has a first protrusion projecting upwardly from the rake face, and a first protrusion projecting upwardly from the rake face, and a rear side of the first protrusion protruding upward from the rake face.
  • a second protrusion that is arranged and extends toward the front as it moves away from the bisector in the left-right direction; a third protrusion that protrudes upward from the rake surface and is disposed in front of the first protrusion; The first protrusion and the second protrusion protrude above the cutting edge, and the third protrusion has a vertical height lower than that of the first protrusion.
  • chips generated by the cutting blade come into contact with the first convex portion and the second convex portion of the chip breaker. That is, the chips are supported at two points by the two protrusions arranged in the front-rear direction, and are compressed and curled so as to be sandwiched between the protrusions. Therefore, thick chips can be stably curled, and chip disposal performance is maintained well.
  • the second convex portion extends toward the front as it moves away from the bisector in the left-right direction. Since the direction in which the second convex portion extends is approximately the same as the direction in which chips generated by the cutting edge flow out on the rake face, the chips are guided in the flow direction by the second convex portion and flow between the two convex portions. This allows for stable curling. Therefore, chip disposal becomes more stable.
  • the third protrusion has a lower height in the vertical direction than the first protrusion, that is, the amount of protrusion from the rake face is smaller. Therefore, the chips that have come into contact with the third convex portion are prevented from curling excessively, and the chips are prevented from hitting the machined surface of the workpiece. Thereby, the machined surface accuracy is maintained well.
  • the chips that flow out while being supported at two points by the first convex portion and the second convex portion are curled into a spiral shape and stably curled due to the height difference between these convex portions. Chip disposability is improved more stably.
  • the chips that have climbed over the second convex portion to the rear side are stably disposed of by hitting the breaker wall.
  • the cutting blade has a corner blade having a convex curve shape, and a pair of linear blades that are connected to both ends of the corner blade and extend in a straight line, and the third convex portion is one of the cutting blades.
  • the cutting tool according to any one of aspects 1 to 3, wherein the cutting tool is located below at least the corner blade.
  • the third convex part is arranged below the corner blade, chips generated by the corner blade and in contact with the third convex part are prevented from curling excessively when cutting at a low depth of cut. Stable and suppressed. Thereby, the precision of the machined surface can be stably improved.
  • chips generated by the corner blade at low depth of cut etc. are stably brought into contact with the third convex portion.
  • the chip processing performance of the third convex portion is more stable and effective.
  • the above angle is 30° or more and 60° or less, chips due to the second convex portion will be generated regardless of the opening angle of the cutting blade (the angle formed between a pair of straight blades) in plan view or the tool posture during cutting. The processing performance is more stable and successful. If the above angle is less than 30° or more than 60°, the direction in which the chips flow and the direction in which the second convex portion extends may differ greatly depending on the opening angle of the cutting edge and the tool posture during cutting. This may affect chip disposal.
  • the cutting tool of the above aspect of the present invention it is possible to maintain good chip disposability regardless of the depth of cut, etc., and it is possible to stably improve machined surface accuracy.
  • FIG. 1 is a perspective view showing a cutting tool of this embodiment.
  • FIG. 2 is a plan view (top view) showing the cutting tool of this embodiment.
  • FIG. 3 is a side view showing the cutting tool of this embodiment.
  • FIG. 4 is an enlarged perspective view of section IV in FIG. 1.
  • FIG. 5 is a plan view (top view) showing a part of the cutting tool.
  • FIG. 6 is a sectional view taken along VI-VI in FIG.
  • FIG. 7 is a sectional view taken along VII-VII in FIG. 5.
  • FIG. FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG.
  • FIG. 9 is a sectional view taken along line IX-IX in FIG.
  • FIG. 10 is a cross-sectional view taken along the line XX in FIG. 5.
  • FIG. 5 is a plan view showing a part of the cutting tool.
  • FIG. 6 is a sectional view taken along VI-VI in FIG.
  • FIG. 7 is
  • a cutting tool 10 according to an embodiment of the present invention will be described with reference to the drawings.
  • the cutting tool 10 of this embodiment is a cutting insert used in an indexable cutting tool for turning (cutting) a workpiece material such as metal. Note that in this embodiment, the cutting tool 10 may be simply referred to as a tool or the like.
  • the indexable cutting tool includes a holder and a cutting tool (cutting insert) 10.
  • the holder is made of steel, for example.
  • the holder has a recessed insert mounting seat located at the distal end of the holder.
  • the cutting tool 10 is made of cemented carbide, for example.
  • the cutting tool 10 is integrally formed from a single member. The cutting tool 10 is removably attached to the insert mounting seat.
  • the cutting tool 10 is plate-shaped.
  • the cutting tool 10 has a polygonal plate shape, specifically, a rectangular plate shape such as a rhombus plate shape. More specifically, the cutting tool 10 of the present embodiment has, for example, a diamond-shaped insert (cutting insert) outer shape conforming to general ISO standards.
  • the cutting tool 10 is not limited to this, and may have a polygonal plate shape such as a triangular plate shape, a pentagonal plate shape, a hexagonal plate shape, or the like.
  • the cutting tool 10 has a polygonal plate shape centered on the insert central axis C, and its pair of plate surfaces (front and back surfaces) face in the direction in which the insert central axis C extends (insert axial direction).
  • the direction orthogonal to the insert center axis C may be called the insert radial direction
  • the direction going around the insert center axis C may be called the insert circumferential direction.
  • the direction approaching the insert center axis C is the inner side in the insert radial direction
  • the direction away from the insert center axis C is the outer side in the insert radial direction.
  • the cutting tool 10 has a symmetrical shape with the front and back sides reversed in the insert axial direction. That is, the cutting tool 10 is a so-called double-sided cutting insert. Further, the cutting tool 10 has a 180° rotationally symmetrical shape about the insert center axis C.
  • the cutting tool 10 includes a rake face 1, a flank face 2, a cutting edge 3 disposed at the ridgeline where the rake face 1 and the flank face 2 are connected, and a chip breaker 4 disposed on the rake face 1.
  • a mounting hole 5 is provided.
  • the rake face 1 and the chip breaker 4 are arranged on at least one of a pair of polygonal plate surfaces of the cutting tool 10 . Specifically, the rake face 1 and the chip breaker 4 are arranged at a predetermined corner (an acute corner in this embodiment) among a plurality of corners on one plate surface. Moreover, the flank surface 2 is arranged on the outer circumferential surface of the cutting tool 10. Specifically, the flank 2 is arranged at a predetermined corner (an acute corner in this embodiment) of the outer peripheral surface of the cutting tool 10. Moreover, the cutting edge 3 is arranged at the ridgeline portion where one plate surface and the outer circumferential surface of the cutting tool 10 are connected.
  • the cutting edge 3 is arranged at a predetermined corner (an acute corner in this embodiment) of the ridgeline of the cutting tool 10.
  • a predetermined corner portion of the cutting tool 10 where the rake face 1, flank face 2, cutting edge 3, and chip breaker 4 are arranged may be referred to as a “blade portion”.
  • the cutting tool 10 has a reversely symmetrical shape and a 180° rotationally symmetrical shape around the insert center axis C, so that the set of the rake face 1, flank face 2, cutting edge 3, and chip breaker 4 A total of four corners are provided at two acute-angled corners on one plate surface (front surface) side of the tool 10 and two acute-angled corners on the other plate surface (back surface) side.
  • one attachment hole 5 is provided in the cutting tool 10.
  • FIG. 2 shows a plan view (top view) of the cutting tool 10 viewed from the insert axial direction.
  • FIG. 5 shows a plan view (top view) of the vicinity of the cutting edge 3 (predetermined corner portion, blade portion) of the cutting tool 10 as viewed from the insert axial direction.
  • the cutting edge 3 has a V-shape in plan view when the rake face 1 is viewed from the front.
  • the cutting blade 3 includes a corner blade 3a having a convex curve shape, and a pair of linear blades 3b connected to both ends of the corner blade 3a and extending linearly.
  • an XYZ orthogonal coordinate system (three-dimensional orthogonal coordinate system) is appropriately set in each figure, and each configuration will be explained.
  • the direction in which the bisector B of the V-shaped cutting edge 3 extends is referred to as the front-rear direction.
  • the bisector B corresponds to the bisector of the central angle formed between the pair of straight blades 3b in this plan view.
  • the front-back direction corresponds to the Y-axis direction in each figure.
  • the bisector B is perpendicular to the insert center axis C. That is, the bisector B extends along a predetermined insert radial direction.
  • the front-back direction the direction from the insert center axis C to the corner blade 3a is called the front side (-Y side), and the direction from the corner blade 3a to the insert center axis C is called the rear side (+Y side).
  • the direction perpendicular to the bisector B is called the left-right direction.
  • the left-right direction corresponds to the X-axis direction in each figure.
  • the direction from the bisector B to the left side is called the left side (-X side)
  • the direction from the bisector B to the right side is called the right side (+X side).
  • the left and right sides one may be referred to as one side in the left-right direction, and the other may be referred to as the other side in the left-right direction.
  • the direction approaching the bisector B is called the inside (center side), and the direction away from the bisector B is called the outside.
  • the direction perpendicular to the front-rear direction and the left-right direction is called the up-down direction.
  • the vertical direction corresponds to the Z-axis direction in each figure.
  • the direction in which the rake face 1 faces is called the upper side (+Z side), and the opposite direction is called the lower side (-Z side).
  • the up-down direction corresponds to the insert axial direction.
  • a predetermined corner portion (blade portion) of the cutting tool 10 is formed in a bilaterally symmetrical shape with the bisector B as the axis of symmetry.
  • the front side, rear side, left side, right side, upper side, and lower side are simply names used to explain the relative positional relationship of each part, and the actual positional relationship when using a tool etc. is based on these names. An arrangement relationship other than that indicated by the name may be used.
  • the rake face 1 is arranged inside the cutting blade 3 on the plate surface of the cutting tool 10 facing the insert axis direction. Specifically, the rake face 1 is arranged adjacent to the cutting blade 3 on the inner side of the cutting blade 3 in the insert radial direction. The rake face 1 has a land 15 and an inclined surface 16.
  • the land 15 is a portion of the rake face 1 that is directly connected to the cutting edge 3.
  • the land 15 extends along the cutting edge 3, and has a V-shape as a whole in a plan view shown in FIG.
  • the land 15 extends along a virtual plane (hereinafter referred to as reference plane Pr) that passes through the cutting edge 3 and is perpendicular to the vertical direction. As it moves away from the cutting blade 3, it extends downwardly at an angle. That is, the land 15 has a rake angle of a positive angle (conformal angle).
  • the "rake angle” refers to the inclination angle of each part (each component) of the rake face 1 with respect to the reference plane Pr.
  • the inclined surface 16 is a portion of the rake surface 1 that is disposed inside the land 15. That is, the inclined surface 16 is arranged farther from the cutting edge 3 than the land 15 is.
  • the inclined surface 16 is connected to the land 15.
  • the inclined surface 16 extends along the cutting edge 3, and has a generally V-shape as a whole when viewed from above as shown in FIG. In this plan view, the inclined surface 16 slopes downward as it moves away from the cutting edge 3 in a direction perpendicular to the cutting edge 3. Therefore, the rake angle of the inclined surface 16 is a positive angle (conformal angle). As shown in FIGS. 6 to 10, the rake angle of the inclined surface 16 is larger than the rake angle of the land 15 on the regular side.
  • flank surface 2 is arranged on the outer circumferential surface of the cutting tool 10 facing outward in the insert radial direction. Specifically, the flank 2 is arranged at a predetermined corner of the outer circumferential surface of the cutting tool 10 over a portion facing the front, left side, and right side. The flank 2 extends in the circumferential direction of the insert. The flank surface 2 is arranged below the cutting edge 3 and adjacent to the cutting edge 3.
  • the cutting tool 10 is a double-sided type so-called negative insert, and the flank surface 2 is formed parallel to the insert center axis C. That is, the clearance angle of the flank surface 2 is 0°.
  • the "relief angle” refers to the clearance angle with respect to an imaginary straight line (not shown) passing through the cutting edge 3 and perpendicular to the reference plane Pr in a cross-sectional view perpendicular to the cutting edge 3 as shown in FIG. 6, for example. Refers to the angle of inclination of 2.
  • the flank 2 includes a corner flank 21 and a pair of linear flanks 22 connected to both ends of the corner flank 21 in the circumferential direction of the insert.
  • the corner flank surface 21 is a portion of the flank surface 2 that is connected to the corner blade 3a.
  • the corner flank surface 21 is arranged at a portion of the flank surface 2 that faces the front side (-Y side). Specifically, the corner flank surface 21 is arranged at the front end of the flank surface 2, and has a convex curved shape that projects toward the front side.
  • the straight flank face 22 is a portion of the flank face 2 that is connected to the straight blade 3b.
  • the straight flank surface 22 has a planar shape.
  • One of the pair of straight flank surfaces 22 is arranged at a portion of the flank 2 facing leftward (-X side).
  • One straight flank 22 is connected to one of the pair of straight blades 3b located on the left side of the bisector B.
  • One linear flank 22 extends along one linear blade 3b.
  • the other straight flank face 22 is arranged at a portion of the flank face 2 facing the right side (+X side).
  • the other linear flank 22 is connected to the other linear blade 3b located on the right side of the bisector B among the pair of linear blades 3b.
  • the other straight flank 22 extends along the other straight blade 3b.
  • the cutting blade 3 includes a corner blade 3a and a pair of straight blades 3b.
  • the corner blade 3a of the cutting blade 3 has a curved shape that is convex toward the front side (-Y side), and specifically, has a convex arc shape.
  • the corner blade 3a extends along the plane direction of the reference plane Pr perpendicular to the up-down direction.
  • the corner blade 3a is entirely included within the reference plane Pr.
  • the present invention is not limited to this, and the corner blade 3a may be formed to be inclined with respect to the reference plane Pr.
  • each linear blade 3b extends along each tangent line that touches both ends of the corner blade 3a.
  • One of the pair of straight blades 3b is connected to one end (left end) of the corner blade 3a in the blade length direction.
  • One of the straight blades 3b extends linearly toward the left (-X side) from the connection part with the corner blade 3a toward the rear side (+Y side).
  • one straight blade 3b extends downward in an inclined manner as it moves away from the connecting portion with the corner blade 3a along the blade length direction in which the one straight blade 3b extends.
  • the other straight blade 3b is connected to the other end (right end) of the corner blade 3a in the blade length direction.
  • the other straight blade 3b extends linearly toward the right side (+X side) as it goes toward the rear side (+Y side) from the connection portion with the corner blade 3a.
  • the other straight blade 3b extends downward in an inclined manner as it moves away from the connecting portion with the corner blade 3a along the blade length direction in which the other straight blade 3b extends.
  • the chip breaker 4 is arranged inside the cutting blade 3 on the plate surface of the cutting tool 10 facing the insert axis direction. At least a portion of the chip breaker 4 is arranged on the rake face 1.
  • the chip breaker 4 includes a first protrusion 41 , a second protrusion 42 , a third protrusion 43 , and a breaker wall 44 .
  • the first convex portion 41 projects upward from the rake surface 1. Specifically, the first convex portion 41 includes a portion of the rake surface 1 that is disposed on the inclined surface 16. The first convex portion 41 is formed in a protrusion shape so as to form a part of a sphere.
  • the surface (projection surface) of the first convex portion 41 has a convex curved shape, and specifically, is formed in a convex spherical shape so as to form a part of a spherical surface.
  • the first convex portion 41 is located on the bisector B. Further, in this plan view, the first convex portion 41 is arranged to overlap with the center O of the radius of curvature of the corner blade 3a. More specifically, in this embodiment, the top portion 41a located at the upper end of the first convex portion 41 overlaps with the center O of the radius of curvature of the corner blade 3a in this plan view.
  • the top portion 41a of the first convex portion 41 is arranged above the reference plane Pr that passes through the corner blade 3a located at the uppermost side of the cutting blade 3 and extends in a direction perpendicular to the up-down direction. ing. That is, the first convex portion 41 protrudes above the cutting blade 3.
  • the front end of the first convex portion 41 is located below the corner blade 3a. Further, as shown in FIG. 5 and FIG. 7 showing the VII-VII cross section of FIG. , located below the corner blade 3a.
  • the second protrusion 42 protrudes upward from the rake face 1 and is arranged on the rear side of the first protrusion 41.
  • the second convex portion 42 includes a portion of the rake surface 1 that is disposed on the inclined surface 16.
  • the second convex portion 42 extends toward the front as it moves away from the bisector B in the left-right direction.
  • the second convex portion 42 is formed into a rib shape.
  • the surface of the second convex portion 42 has a convex curved shape.
  • a pair of second convex portions 42 are provided on the left side (-X side) and the right side (+X side) of the bisector B.
  • the pair of second convex portions 42 are formed in bilaterally symmetrical shapes with the bisector B as the axis of symmetry. Therefore, below, mainly one of the pair of second convex portions 42 will be explained.
  • the inner (center side) end of the second convex portion 42 in the left-right direction is located on the bisector B.
  • the width of the inner portion of the second convex portion 42 in the left-right direction increases as it goes outward in the left-right direction from the bisector B.
  • the width of the outer portion of the second convex portion 42 in the left-right direction becomes smaller as it goes toward the outer side in the left-right direction.
  • the second convex portion 42 includes a portion located on the outer side in the left-right direction of the center O of the radius of curvature of the corner blade 3a (outer end in the left-right direction), and a rear side of the center O. (the inner end in the left-right direction).
  • the second convex portion 42 is arranged so as to surround the center O of the radius of curvature of the corner blade 3a and the first convex portion 41 from the outside and rear side in the left-right direction.
  • the symbol L shown by a dashed-dotted straight line in FIG. 5 represents the direction in which the ridgeline 42a of the second convex portion 42 extends. That is, the ridgeline 42a of the second convex portion 42 extends linearly.
  • the angle ⁇ formed between the ridgeline 42a of the second convex portion 42 and the bisector B is, for example, 30° or more and 60° or less.
  • the ridgeline 42a of the second protrusion 42 extends upward as it goes from the outer end to the inner end in the left-right direction of the second protrusion 42 along the direction in which the ridgeline 42a extends. It is extending. That is, as the second convex portion 42 approaches the bisector B along the direction in which the ridgeline 42a extends, the amount of upward protrusion increases.
  • the second convex portion 42 has a portion located above the reference plane Pr that passes through the corner blade 3a located at the uppermost side of the cutting blade 3 and extends in a direction perpendicular to the up-down direction. . That is, the second convex portion 42 protrudes above the cutting blade 3.
  • the second convex portion 42 has a portion located above the top portion 41a located at the uppermost side of the first convex portion 41. That is, the second protrusion 42 protrudes higher than the first protrusion 41 .
  • the third protrusion 43 protrudes upward from the rake face 1 and is disposed in front of the first protrusion 41. Specifically, the third convex portion 43 is arranged on the inclined surface 16 of the rake surface 1. The third convex portion 43 is formed in a protrusion shape so as to form a part of a sphere.
  • the surface (projection surface) of the third convex portion 43 has a convex curved shape, and specifically, is formed in a convex spherical shape so as to form a part of a spherical surface.
  • the radius of curvature of the protruding surface (convex curved surface) of the third convex portion 43 is smaller than the radius of curvature of the protruding surface (convex curved surface) of the first convex portion 41 .
  • the third convex portion 43 is located on the bisector B. Further, in this plan view, the third convex portion 43 is disposed on the front side of the center O of the radius of curvature of the corner blade 3a.
  • the third convex portion 43 is entirely located below the reference plane Pr that passes through the corner blade 3a and extends in a direction perpendicular to the up-down direction. That is, the third convex portion 43 is located at least below the corner edge 3a of the cutting edge 3.
  • the top portion 43 a of the third convex portion 43 located at the uppermost side is located lower than the top portion 41 a of the first convex portion 41 located at the uppermost side. That is, the third protrusion 43 has a lower vertical height than the first protrusion 41 .
  • the breaker wall 44 is arranged on the rear side of the second protrusion 42 and protrudes above the second protrusion 42.
  • the breaker wall 44 has a wall surface located above the second convex portion 42 and facing the front and left and right directions.
  • the breaker wall 44 includes a conical surface portion 44a disposed adjacent to the rear side of the second convex portion 42, and a wavy surface portion 44b disposed on the rear side of the conical surface portion 44a.
  • the conical surface portion 44a has a conical shape that is convex toward the front side.
  • the conical surface portion 44a has a convex curved shape facing the front side, left side, and right side, and extends in the circumferential direction of the insert.
  • the conical surface portion 44a is formed so that its diameter decreases toward the top.
  • the wavy surface portion 44b is connected to the outer end of the conical surface portion 44a in the left-right direction, and extends outward in the left-right direction toward the rear side.
  • a pair of wavy surface portions 44b are provided on the left side (-X side) and the right side (+X side) of the bisector B.
  • the pair of wavy surface portions 44b are formed in bilaterally symmetrical shapes with respect to the bisector B as an axis of symmetry. Therefore, below, mainly one of the pair of wavy surface portions 44b will be explained.
  • the wavy surface portion 44b has a wavy shape that alternately moves toward the inner side (center side) and the outer side in the left-right direction (in a meandering manner) as the wavy surface portion 44b moves away from the connecting portion with the conical surface portion 44a along the direction in which the wavy surface portion 44b extends. is formed. Further, the wavy surface portion 44b is inclined so as to approach the bisector B as it goes upward.
  • the chip breaker 4 further includes a trough portion 45 disposed between the first convex portion 41 and the second convex portion 42.
  • the trough portion 45 is located at the boundary between the first convex portion 41 and the second convex portion 42, and has a groove shape recessed downward.
  • the valley portion 45 extends toward the front side as it moves away from the bisector B in the left-right direction.
  • the direction in which the trough portion 45 extends is substantially the same as the direction in which the ridgeline 42a of the second convex portion 42 extends.
  • a pair of valley portions 45 are provided on the left side ( ⁇ X side) and the right side (+X side) of the bisector B.
  • the pair of valley portions 45 are formed in bilaterally symmetrical shapes with the bisector B as the axis of symmetry. Therefore, below, mainly one of the pair of valleys 45 will be explained.
  • the inner (center side) end of the valley portion 45 in the left-right direction is located on the bisector B.
  • the outer end of the trough portion 45 in the left-right direction is connected to the inclined surface 16 of the rake face 1 .
  • the vertical position of the valley bottom (groove bottom) of the valley part 45 becomes lower as it goes from the inner end to the outer end in the left-right direction along the direction in which the valley part 45 extends. Become.
  • the bottom of the trough 45 is wider than the reference plane Pr that passes through the cutting blade 3 and extends in a direction perpendicular to the up-down direction. , located on the upper side.
  • the bottom of the valley portion 45 is lower than the reference plane Pr (not shown) (that is, than the cutting edge 3). located on the side.
  • the attachment hole 5 passes through the cutting tool 10 in the insert axial direction and opens on a pair of plate surfaces (front and back surfaces) of the cutting tool 10.
  • the attachment hole 5 is a circular hole centered on the insert center axis C.
  • a clamp piece, a clamp screw, or the like for fixing the cutting tool 10 to the insert mounting seat of the holder is inserted into the mounting hole 5.
  • the second convex portion 42 extends toward the front as it moves away from the bisector B in the left-right direction. Since the direction in which the second convex portion 42 extends is approximately the same as the direction in which chips generated by the cutting edge 3 flow out on the rake face 1, the chips are guided by the second convex portion 42 in the flow direction.
  • the two convex portions 41 and 42 allow for stable curling. Therefore, chip disposal becomes more stable.
  • the third convex portion 43 has a lower height in the vertical direction than the first convex portion 41, that is, the amount of protrusion from the rake face 1 is smaller. Therefore, the chips that have come into contact with the third convex portion 43 are prevented from curling excessively, and the chips are prevented from hitting the machined surface of the workpiece. Thereby, the machined surface accuracy is maintained well.
  • the second protrusion 42 protrudes higher than the first protrusion 41 .
  • the chips flowing out while being supported at two points by the first convex portion 41 and the second convex portion 42 are curled into a spiral shape and stably curled due to the height difference between the convex portions 41 and 42. Chip disposability is improved more stably.
  • the chip breaker 4 has a breaker wall 44 that is disposed on the rear side of the second convex portion 42 and protrudes above the second convex portion 42 .
  • the chips that have climbed over the second convex portion 42 to the rear side are stably disposed of by hitting the breaker wall 44.
  • the chips that have climbed over the second convex portion 42 come into contact with the conical surface portion 44a, thereby being effectively disposed of.
  • the third convex portion 43 is located below at least the corner blade 3a of the cutting blade 3.
  • the third convex part 43 is arranged below the corner blade 3a, chips generated by the corner blade 3a and in contact with the third convex part 43 are excessively curled when the cutting depth is low. Such things are stably suppressed. Thereby, the precision of the machined surface can be stably improved.
  • the third convex portion 43 is located in front of the center O of the radius of curvature of the corner blade 3a in plan view. In this case, chips generated by the corner blade 3a, such as when the cutting depth is low, are stably brought into contact with the third convex portion 43. The chip processing performance of the third convex portion 43 is more stable and successful.
  • the first convex portion 41 overlaps with the center O of the radius of curvature of the corner blade 3a in plan view. In this case, during cutting, chips generated near the boundary between the corner edge 3 a and the straight edge 3 b of the cutting edge 3 and at the corner edge 3 a are stably brought into contact with the first convex portion 41 .
  • the chip processing performance of the first convex portion 41 is more stable and successful.
  • the angle ⁇ formed between the ridgeline 42a of the second convex portion 42 and the bisector B is 30° or more and 60° or less in a plan view shown in FIG. If the angle ⁇ is 30° or more and 60° or less, the second convex The chip processing performance of the section 42 is more stable and successful. If the angle ⁇ is less than 30° or more than 60°, the direction in which chips flow out and the direction in which the second convex portion 42 extends may differ greatly depending on the opening angle of the cutting blade 3, the tool posture during cutting, etc. This may affect chip disposal.
  • the bottom (groove bottom) of the trough 45 is located below the cutting blade 3 in the outer portion of the trough 45 in the left-right direction (particularly the outer end).
  • the depth of the trough 45 between the first and second protrusions 41 and 42 is ensured to be large in the outer portions of the first and second protrusions 41 and 42 in the left-right direction where chips begin to come into contact with each other.
  • the two-point support by the two convex portions 41 and 42 makes the curling function of chips more stable. Further, even if the convex portions 41 and 42 become worn, the curling function due to the two-point support can be easily maintained.
  • the rake angle of the land 15 on the rake face 1 is a positive angle (conformal angle), but the invention is not limited to this.
  • the rake angle of the land 15 may be 0° or a negative angle. Further, the land 15 may not be provided on the rake face 1.
  • the clearance angle of the flank surface 2 was 0°, but the invention is not limited to this.
  • the flank surface 2 may be inclined inward in the radial direction of the insert as it moves away from the cutting edge 3 in the axial direction of the insert.
  • the clearance surface 2 is provided with a predetermined clearance angle.
  • the cutting tool 10 is a double-sided type with a symmetrical shape, but the present invention is not limited to this.
  • the cutting tool 10 may be a single-sided type that does not have a symmetrical shape with the front and back sides reversed.
  • the cutting tool 10 is formed of a single member made of cemented carbide, but the present invention is not limited to this.
  • the cutting tool 10 may include, for example, a base metal portion in the shape of a polygonal plate, and a blade portion fixed to a recess located at a corner of the base metal portion.
  • the base metal part is made of, for example, a cemented carbide
  • the blade part is made of, for example, a cBN (cubic boron nitride) sintered body or a diamond sintered body (polycrystalline diamond, PCD).
  • a rake face 1, a flank face 2, a cutting edge 3, and a chip breaker 4 are arranged on the blade portion.
  • a mounting hole 5 is arranged in the base metal part.
  • the cutting tool 10 is a cutting insert, but the present invention is not limited to this.
  • the cutting tool of the present invention only needs to include a rake face 1, a flank face 2, a cutting edge 3, and a chip breaker 4, and may be, for example, a replaceable head member of an indexable cutting tool.
  • the cutting tool may be a solid type (integrated) cutting tool or the like.
  • the present invention may combine the configurations described in the above-described embodiments and modifications without departing from the spirit of the present invention, and addition, omission, replacement, and other changes of configurations are possible. . Further, the present invention is not limited by the embodiments described above, but is limited only by the scope of the claims.
  • the cutting tool of the present invention it is possible to maintain good chip disposability regardless of the depth of cut, etc., and it is possible to stably improve machined surface accuracy. Therefore, it has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

すくい面(1)と、逃げ面(2)と、すくい面(1)と逃げ面(2)とが接続される稜線部に配置され、すくい面(1)を正面に見た平面視でV字状をなす切刃(3)と、すくい面(1)に配置されるチップブレーカ(4)と、を備え、チップブレーカ(4)は、すくい面(1)から上側に突出する第1凸部(41)と、すくい面(1)から上側に突出し、第1凸部(41)の後側に配置され、左右方向において切刃(3)の2等分線から離れるに従い前側に向けて延びる第2凸部(42)と、すくい面(1)から上側に突出し、第1凸部(41)の前側に配置される第3凸部(43)と、を有し、第1凸部(41)及び第2凸部(42)は、切刃(3)よりも上側に突出しており、第3凸部(43)は、第1凸部(41)よりも上下方向の高さが低い。

Description

切削工具
 本発明は、切削工具に関する。
 本願は、2022年8月5日に、日本に出願された特願2022-125283号に基づき優先権を主張し、その内容をここに援用する。
 従来、金属などの被削材を切削加工する際に用いられる切削インサート等の切削工具が知られている(例えば特許文献1、2)。
 この種の切削工具は、すくい面と、逃げ面と、すくい面と逃げ面とが接続される稜線部に配置され、すくい面を正面に見た平面視でV字状をなす切刃と、すくい面に配置されるチップブレーカと、を備えている。
日本国特許第6413516号公報(B) 日本国特許第4967721号公報(B)
 例えば、切刃の先端部に位置するコーナ刃(ノーズR)からチップブレーカまでの距離が遠いと、切込み量が小さい低切込み時などにおいて、切屑がチップブレーカに当たりにくくなるとともに伸びやすくなって、切屑処理性が悪くなる。
 一方、コーナ刃からチップブレーカまでの距離を単純に近くすると、切屑が過剰にカールされて被削材の加工面に当たり、加工面精度が低下する。
 本発明は、切込み量等に関わらず切屑処理性を良好に維持でき、かつ、加工面精度を安定して高めることができる切削工具を提供することを目的の一つとする。
〔本発明の態様1〕
 すくい面と、逃げ面と、前記すくい面と前記逃げ面とが接続される稜線部に配置され、前記すくい面を正面に見た平面視でV字状をなす切刃と、前記すくい面に配置されるチップブレーカと、を備え、前記平面視において前記切刃の2等分線が延びる方向を前後方向とし、前記平面視において前記2等分線と直交する方向を左右方向とし、前記前後方向及び前記左右方向と直交する方向を上下方向として、前記チップブレーカは、前記すくい面から上側に突出する第1凸部と、前記すくい面から上側に突出し、前記第1凸部の後側に配置され、左右方向において前記2等分線から離れるに従い前側に向けて延びる第2凸部と、前記すくい面から上側に突出し、前記第1凸部の前側に配置される第3凸部と、を有し、前記第1凸部及び前記第2凸部は、前記切刃よりも上側に突出しており、前記第3凸部は、前記第1凸部よりも上下方向の高さが低い、切削工具。
 本発明の切削工具では、例えば、切込み量が大きい高切込み時(高送り時)などにおいては、切刃で生成された切屑が、チップブレーカの第1凸部及び第2凸部に接触する。すなわち、切屑が、前後方向に並ぶ2つの凸部によって2点支持されつつ、これらの凸部によって挟み込まれるように圧縮され、カールされる。このため、厚い切屑を安定してカールさせることができ、切屑処理性が良好に維持される。
 具体的に、第2凸部は、2等分線から左右方向へ離れるに従い前側に向けて延びている。第2凸部が延びる向きは、切刃で生成された切屑がすくい面上を流出する方向と略同じであるため、切屑は、第2凸部によって流出方向にガイドされつつ、2つの凸部により安定してカールさせられる。したがって、切屑処理性がより安定する。
 また、切込み量が小さい低切込み時などにおいては、切刃で生成された切屑が、チップブレーカのうち前側に位置する第3凸部に接触する。このため、薄い切屑が伸びてしまうようなことが抑制され、安定して分断される。
 具体的に、第3凸部は、第1凸部よりも上下方向の高さが低くされており、つまりすくい面からの突出量が小さい。このため、第3凸部に接触した切屑が、過剰にカールされるようなことは抑えられ、切屑が被削材の加工面に当たることが抑制される。これにより、加工面精度が良好に維持される。
 以上より本発明によれば、切込み量等に関わらず切屑処理性を良好に維持でき、かつ、加工面精度を安定して高めることができる。
〔本発明の態様2〕
 前記第2凸部は、前記第1凸部よりも上側に突出する、態様1に記載の切削工具。
 この場合、第1凸部と第2凸部とにより2点支持されつつ流出する切屑が、これら凸部の高低差によって、螺旋状に丸められ、安定してカールされる。切屑処理性がより安定して高められる。
〔本発明の態様3〕
 前記チップブレーカは、前記第2凸部の後側に配置され、前記第2凸部よりも上側に突出するブレーカ壁を有する、態様1または2に記載の切削工具。
 この場合、第2凸部を後側へ乗り越えた切屑が、ブレーカ壁に当たることによって安定して切屑処理される。
〔本発明の態様4〕
 前記切刃は、凸曲線状をなすコーナ刃と、前記コーナ刃の両端に接続され、それぞれ直線状に延びる一対の直線刃と、を有し、前記第3凸部は、前記切刃のうち少なくとも前記コーナ刃より下側に位置する、態様1から3のいずれか1つに記載の切削工具。
 この場合、第3凸部がコーナ刃よりも下側に配置されるので、低切込み時などにおいて、コーナ刃で生成され第3凸部に接触した切屑が、過剰にカールされるようなことが安定して抑制される。これにより、加工面精度が安定して高められる。
〔本発明の態様5〕
 前記第3凸部は、前記平面視において前記コーナ刃の曲率半径の中心よりも前側に位置する、態様4に記載の切削工具。
 この場合、低切込み時などにおいてコーナ刃で生成された切屑が、第3凸部に安定して接触させられる。第3凸部による切屑の処理性能が、より安定して奏功される。
〔本発明の態様6〕
 前記第1凸部は、前記平面視において前記コーナ刃の曲率半径の中心と重なる、態様4または5に記載の切削工具。
 この場合、切削時に、切刃のうちコーナ刃と直線刃との境界付近や、コーナ刃で生成された切屑が、第1凸部に安定して接触させられる。第1凸部による切屑の処理性能が、より安定して奏功される。
〔本発明の態様7〕
 前記平面視で、前記第2凸部の稜線と前記2等分線との間に形成される角度が、30°以上60°以下である、態様1から6のいずれか1つに記載の切削工具。
 上記角度が30°以上60°以下であると、平面視における切刃の開き角(一対の直線刃間に形成される角度)や切削時の工具姿勢などに関わらず、第2凸部による切屑の処理性能が、より安定して奏功される。
 上記角度が30°未満であったり60°を超えたりすると、切刃の開き角や切削時の工具姿勢などによって、切屑の流出方向と第2凸部が延びる方向とが大きく異なる場合があり、切屑処理性に影響することがある。
 本発明の前記態様の切削工具によれば、切込み量等に関わらず切屑処理性を良好に維持でき、かつ、加工面精度を安定して高めることができる。
図1は、本実施形態の切削工具を示す斜視図である。 図2は、本実施形態の切削工具を示す平面図(上面図)である。 図3は、本実施形態の切削工具を示す側面図である。 図4は、図1のIV部を拡大して示す斜視図である。 図5は、切削工具の一部を示す平面図(上面図)である。 図6は、図5のVI-VI断面を示す断面図である。 図7は、図5のVII-VII断面を示す断面図である。 図8は、図5のVIII-VIII断面を示す断面図である。 図9は、図5のIX-IX断面を示す断面図である。 図10は、図5のX-X断面を示す断面図である。
 本発明の一実施形態の切削工具10について、図面を参照して説明する。本実施形態の切削工具10は、例えば金属製等の被削材を旋削加工(切削加工)する刃先交換式バイトに用いられる切削インサートである。なお本実施形態では、切削工具10を単に工具などと呼ぶ場合がある。
 特に図示しないが、刃先交換式バイトは、ホルダと、切削工具(切削インサート)10と、を備える。ホルダは、例えば鋼材製である。ホルダは、ホルダの先端部に配置される凹状のインサート取付座を有する。切削工具10は、例えば超硬合金製である。切削工具10は、単一の部材により一体に形成されている。切削工具10は、インサート取付座に着脱可能に取り付けられる。
 図1~図3に示すように、切削工具10は、板状である。本実施形態では切削工具10が、多角形板状であり、具体的には、菱形板状等の四角形板状である。より詳しくは、本実施形態の切削工具10は、例えば、一般的なISO規格に準ずる菱形インサート(切削インサート)の外形形状を有する。ただしこれに限らず、切削工具10は、例えば三角形板状、五角形板状、六角形板状などの多角形板状等であってもよい。
 切削工具10は、インサート中心軸Cを中心とする多角形板状であり、その一対の板面(表面及び裏面)が、インサート中心軸Cが延びる方向(インサート軸方向)を向く。なお、本明細書においては、インサート中心軸Cと直交する方向をインサート径方向と呼び、インサート中心軸C回りに周回する方向をインサート周方向と呼ぶ場合がある。インサート径方向のうち、インサート中心軸Cに近づく方向はインサート径方向の内側であり、インサート中心軸Cから離れる方向はインサート径方向の外側である。
 本実施形態では、切削工具10が、インサート軸方向において、表裏反転対称形状である。すなわち、切削工具10は、いわゆる両面タイプの切削インサートである。また切削工具10は、インサート中心軸Cを中心として、180°回転対称形状である。
 切削工具10は、すくい面1と、逃げ面2と、すくい面1と逃げ面2とが接続される稜線部に配置される切刃3と、すくい面1に配置されるチップブレーカ4と、取付孔5と、を備える。
 すくい面1及びチップブレーカ4は、切削工具10の多角形状をなす一対の板面のうち、少なくとも一方の板面(表面)に配置される。詳しくは、すくい面1及びチップブレーカ4は、一方の板面の複数の角部のうち、所定の角部(本実施形態では鋭角の角部)に配置される。また、逃げ面2は、切削工具10の外周面に配置される。詳しくは、逃げ面2は、切削工具10の外周面のうち、所定の角部(本実施形態では鋭角の角部)に配置される。また、切刃3は、切削工具10の一方の板面と外周面とが接続される稜線部に配置される。詳しくは、切刃3は、切削工具10の前記稜線部のうち所定の角部(本実施形態では鋭角の角部)に配置される。
 すくい面1、逃げ面2、切刃3及びチップブレーカ4が配置される切削工具10の所定の角部は、「刃部」と言い換えてもよい。
 本実施形態では切削工具10が、表裏反転対称形状、かつインサート中心軸C回りにおいて180°回転対称形状であるため、すくい面1、逃げ面2、切刃3及びチップブレーカ4の組が、切削工具10の一方の板面(表面)側の2つの鋭角の角部、及び、他方の板面(裏面)側の2つの鋭角の角部に、計4つ設けられる。また取付孔5は、切削工具10に1つ設けられる。
 図2は、切削工具10をインサート軸方向から見た平面図(上面図)を表している。また図5は、切削工具10の切刃3近傍(所定の角部であり、刃部)をインサート軸方向から見た平面図(上面図)を表している。図2及び図5に示すように、切刃3は、すくい面1を正面に見た平面視でV字状をなしている。具体的に、切刃3は、凸曲線状をなすコーナ刃3aと、コーナ刃3aの両端に接続され、それぞれ直線状に延びる一対の直線刃3bと、を有する。
〔方向の定義〕
 本実施形態では、各図に適宜XYZ直交座標系(3次元直交座標系)を設定し、各構成について説明する。
 図5に示す切削工具10の平面視において、V字状をなす切刃3の2等分線Bが延びる方向を、前後方向と呼ぶ。具体的に、2等分線Bは、この平面視において一対の直線刃3b間に形成される中心角の、角の2等分線に相当する。前後方向は、各図においてY軸方向に相当する。本実施形態において2等分線Bは、インサート中心軸Cと直交する。すなわち、2等分線Bは、所定のインサート径方向に沿って延びる。前後方向のうち、インサート中心軸Cからコーナ刃3aへ向かう方向を前側(-Y側)と呼び、コーナ刃3aからインサート中心軸Cへ向かう方向を後側(+Y側)と呼ぶ。
 また、図5に示す切削工具10の平面視において、2等分線Bと直交する方向を、左右方向と呼ぶ。左右方向は、各図においてX軸方向に相当する。左右方向のうち、図5に示すようにすくい面1を正面に見て、2等分線Bから左側へ向かう方向を左側(-X側)と呼び、2等分線Bから右側へ向かう方向を右側(+X側)と呼ぶ。なお、左側及び右側のうち、一方を左右方向の一方側、他方を左右方向の他方側と言い換えてもよい。
 また、左右方向のうち2等分線Bに近づく方向を内側(中央側)、2等分線Bから離れる方向を外側と呼ぶ。
 また、前後方向及び左右方向と直交する方向を、上下方向と呼ぶ。上下方向は、各図においてZ軸方向に相当する。上下方向のうち、すくい面1が向く方向を上側(+Z側)と呼び、これとは反対の方向を下側(-Z側)と呼ぶ。本実施形態において、上下方向は、インサート軸方向に相当する。
 図5に示すように本実施形態では、切削工具10の所定の角部(刃部)が、2等分線Bを対称軸として左右対称形状に形成されている。
 なお本実施形態において、前側、後側、左側、右側、上側及び下側とは、単に各部の相対位置関係を説明するための名称であり、工具使用時などにおける実際の配置関係等は、これらの名称で示される配置関係以外の配置関係等であってもよい。
〔すくい面〕
 図4及び図5に示すように、すくい面1は、切削工具10のインサート軸方向を向く板面において切刃3の内側に配置される。具体的に、すくい面1は、切刃3のインサート径方向の内側に、切刃3と隣接して配置される。すくい面1は、ランド15と、傾斜面16と、を有する。
 ランド15は、すくい面1のうち切刃3に直接接続される部分である。ランド15は、切刃3に沿って延びており、図5に示す平面視で、全体としてV字状をなす。図6及び図7の各断面図(縦断面図)に示すように、本実施形態ではランド15が、切刃3を通り上下方向と垂直な仮想平面(以下、基準面Prと呼ぶ)に沿って切刃3から離れるに従い、下側に向けて傾斜して延びている。すなわち、ランド15は、ポジティブ角(正角)のすくい角を有している。
 なお、本実施形態において「すくい角」とは、基準面Prに対するすくい面1の各部(各構成要素)における傾斜角を指す。
 図4及び図5に示すように、傾斜面16は、すくい面1のうちランド15の内側に配置される部分である。すなわち、傾斜面16は、ランド15よりも切刃3から離れて配置される。傾斜面16は、ランド15と接続される。傾斜面16は、切刃3に沿って延びており、図5に示す平面視で、全体として略V字状をなす。この平面視で傾斜面16は、切刃3と直交する方向において切刃3から離れるに従い、下側へ向けて傾斜する。このため、傾斜面16のすくい角は、ポジティブ角(正角)とされている。
 図6~図10に示すように、傾斜面16のすくい角は、ランド15のすくい角よりも正角側に大きくされている。
〔逃げ面〕
 図4に示すように、逃げ面2は、切削工具10のインサート径方向の外側を向く外周面に配置される。具体的に、逃げ面2は、切削工具10の外周面のうち所定の角部において、前側、左側及び右側を向く部分にわたって配置される。逃げ面2は、インサート周方向に延びる。逃げ面2は、切刃3の下側に、切刃3と隣接して配置される。
 本実施形態においては、切削工具10が両面タイプのいわゆるネガインサートであり、逃げ面2は、インサート中心軸Cと平行に形成されている。すなわち、逃げ面2の逃げ角は、0°とされている。
 なお、本実施形態において「逃げ角」とは、例えば図6に示すように切刃3と垂直な断面視において、切刃3を通り基準面Prと直交する仮想直線(図示省略)に対する逃げ面2の傾斜角を指す。
 図4及び図5に示すように、逃げ面2は、コーナ逃げ面21と、コーナ逃げ面21のインサート周方向の両端に接続される一対の直線逃げ面22と、を有する。
 コーナ逃げ面21は、逃げ面2のうち、コーナ刃3aに接続される部分である。コーナ逃げ面21は、逃げ面2のうち前側(-Y側)を向く部分に配置されている。具体的に、コーナ逃げ面21は、逃げ面2の前端部に配置されており、前側に向けて突出する凸曲面状をなしている。
 直線逃げ面22は、逃げ面2のうち、直線刃3bに接続される部分である。直線逃げ面22は、平面状をなしている。
 一対の直線逃げ面22のうち、一方の直線逃げ面22は、逃げ面2のうち左側(-X側)を向く部分に配置されている。一方の直線逃げ面22は、一対の直線刃3bのうち、2等分線Bよりも左側に位置する一方の直線刃3bに接続される。一方の直線逃げ面22は、一方の直線刃3bに沿って延びる。
 一対の直線逃げ面22のうち、他方の直線逃げ面22は、逃げ面2のうち右側(+X側)を向く部分に配置されている。他方の直線逃げ面22は、一対の直線刃3bのうち、2等分線Bよりも右側に位置する他方の直線刃3bに接続される。他方の直線逃げ面22は、他方の直線刃3bに沿って延びる。
〔切刃〕
 上述したように切刃3は、コーナ刃3aと、一対の直線刃3bと、を有する。切刃3のうちコーナ刃3aは、前側(-Y側)に向けて凸となる曲線状をなしており、具体的には、凸円弧状をなす。本実施形態ではコーナ刃3aが、上下方向と垂直な基準面Prの面方向に沿って延びている。コーナ刃3aは、その全体が基準面Prの面内に含まれる。ただしこれに限らず、コーナ刃3aは、基準面Prに対して傾斜して形成されていてもよい。
 一対の直線刃3bは、コーナ刃3aが延びる刃長方向の両端に接続される。図5に示す平面視において、各直線刃3bは、コーナ刃3aの両端に接する各接線に沿うように延びる。
 一対の直線刃3bのうち、一方の直線刃3bは、コーナ刃3aの刃長方向の一端(左端)に接続される。一方の直線刃3bは、コーナ刃3aとの接続部分から後側(+Y側)へ向かうに従い、左側(-X側)に向けて直線状に延びる。本実施形態では、一方の直線刃3bは、一方の直線刃3bが延びる刃長方向に沿ってコーナ刃3aとの接続部分から離れるに従い、下側に向けて傾斜して延びている。
 一対の直線刃3bのうち、他方の直線刃3bは、コーナ刃3aの刃長方向の他端(右端)に接続される。他方の直線刃3bは、コーナ刃3aとの接続部分から後側(+Y側)へ向かうに従い、右側(+X側)に向けて直線状に延びる。本実施形態では、他方の直線刃3bは、他方の直線刃3bが延びる刃長方向に沿ってコーナ刃3aとの接続部分から離れるに従い、下側に向けて傾斜して延びている。
〔チップブレーカ〕
 図4及び図5に示すように、チップブレーカ4は、切削工具10のインサート軸方向を向く板面において切刃3の内側に配置される。チップブレーカ4の少なくとも一部は、すくい面1上に配置される。チップブレーカ4は、第1凸部41と、第2凸部42と、第3凸部43と、ブレーカ壁44と、を有する。
 第1凸部41は、すくい面1から上側に突出する。詳しくは、第1凸部41は、すくい面1のうち傾斜面16上に配置される部分を含む。第1凸部41は、球の一部をなすように突起状に形成されている。第1凸部41の表面(突起面)は、凸曲面状をなしており、具体的には、球面の一部をなすように凸球面状に形成されている。
 図5に示す平面視において、第1凸部41は、2等分線B上に位置している。またこの平面視で、第1凸部41は、コーナ刃3aの曲率半径の中心Oと重なって配置されている。より詳しくは、本実施形態ではこの平面視において、第1凸部41の上端部に位置する頂部41aが、コーナ刃3aの曲率半径の中心Oと重なる。
 図6に示すように、第1凸部41の頂部41aは、切刃3のうち最も上側に位置するコーナ刃3aを通り上下方向と垂直な方向に広がる基準面Prよりも、上側に配置されている。すなわち、第1凸部41は、切刃3よりも上側に突出している。
 また、図6に示すように、第1凸部41のうち前側の端部は、コーナ刃3aよりも下側に位置している。また図5、及び図5のVII-VII断面を表す図7に示すように、第1凸部41のうち左右方向の両端部(図7においては第1凸部41の左側の端部)は、コーナ刃3aよりも下側に位置している。
 図4及び図5に示すように、第2凸部42は、すくい面1から上側に突出し、第1凸部41の後側に配置される。詳しくは、第2凸部42は、すくい面1のうち傾斜面16上に配置される部分を含む。第2凸部42は、左右方向において2等分線Bから離れるに従い、前側に向けて延びる。第2凸部42は、リブ状に形成されている。第2凸部42の表面は、凸曲面状をなしている。
 第2凸部42は、2等分線Bの左側(-X側)と右側(+X側)とに、一対設けられる。一対の第2凸部42は、2等分線Bを対称軸として、互いに左右対称形状に形成されている。このため、以下では主に、一対の第2凸部42のうちいずれか一方について説明する。
 第2凸部42の左右方向の内側(中央側)の端部は、2等分線B上に位置している。図5に示す平面視で、第2凸部42のうち左右方向の内側部分は、2等分線Bから左右方向の外側へ向かうに従い、幅寸法が大きくなる。またこの平面視で、第2凸部42のうち左右方向の外側部分は、左右方向の外側へ向かうに従い、幅寸法が小さくなる。
 また、図5に示す平面視において、第2凸部42は、コーナ刃3aの曲率半径の中心Oの左右方向の外側に位置する部分(左右方向の外端部)と、中心Oの後側に位置する部分(左右方向の内端部)と、を含む。第2凸部42は、コーナ刃3aの曲率半径の中心O及び第1凸部41を、左右方向の外側及び後側から囲うように配置される。
 図5に一点鎖線の直線で示す符号Lは、第2凸部42の稜線42aが延びる方向を表している。すなわち、第2凸部42の稜線42aは、直線状に延びている。図5に示す平面視で、第2凸部42の稜線42aと2等分線Bとの間に形成される角度αは、例えば、30°以上60°以下である。
 図4に示すように、第2凸部42の稜線42aは、この稜線42aが延びる方向に沿って第2凸部42の左右方向の外端部から内端部へ向かうに従い、上側に向けて延びている。すなわち、第2凸部42は、その稜線42aが延びる方向に沿って2等分線Bに近づくに従い、上側へ向けた突出量が大きくなる。
 図6に示すように、第2凸部42は、切刃3のうち最も上側に位置するコーナ刃3aを通り上下方向と垂直な方向に広がる基準面Prよりも、上側に位置する部分を有する。すなわち、第2凸部42は、切刃3よりも上側に突出している。
 図6及び図7に示すように、第2凸部42は、第1凸部41のうち最も上側に位置する頂部41aよりも、上側に配置される部分を有する。すなわち、第2凸部42は、第1凸部41よりも上側に突出する。
 図4及び図5に示すように、第3凸部43は、すくい面1から上側に突出し、第1凸部41の前側に配置される。詳しくは、第3凸部43は、すくい面1のうち傾斜面16上に配置される。第3凸部43は、球の一部をなすように突起状に形成されている。第3凸部43の表面(突起面)は、凸曲面状をなしており、具体的には、球面の一部をなすように凸球面状に形成されている。本実施形態では、第3凸部43の突起面(凸曲面)の曲率半径が、第1凸部41の突起面(凸曲面)の曲率半径よりも小さい。
 図5に示す平面視において、第3凸部43は、2等分線B上に位置している。またこの平面視で、第3凸部43は、コーナ刃3aの曲率半径の中心Oよりも前側に配置されている。
 図6に示すように、第3凸部43はその全体が、コーナ刃3aを通り上下方向と垂直な方向に広がる基準面Prよりも、下側に配置されている。すなわち、第3凸部43は、切刃3のうち少なくともコーナ刃3aより下側に位置する。
 また、第3凸部43のうち最も上側に位置する頂部43aは、第1凸部41のうち最も上側に位置する頂部41aよりも、下側に位置する。すなわち、第3凸部43は、第1凸部41よりも上下方向の高さが低い。
 図4~図6に示すように、ブレーカ壁44は、第2凸部42の後側に配置され、第2凸部42よりも上側に突出する。ブレーカ壁44は、第2凸部42よりも上側に位置して前側及び左右方向を向く壁面を有する。本実施形態ではブレーカ壁44が、第2凸部42の後側に隣接して配置される円錐面部44aと、円錐面部44aよりも後側に配置される波状面部44bと、を有する。
 円錐面部44aは、前側へ向けて凸となる円錐面状をなしている。円錐面部44aは、前側、左側及び右側を向く凸曲面状をなしており、インサート周方向に延びている。円錐面部44aは、上側へ向かうに従い縮径するように形成されている。
 図5に示すように、波状面部44bは、円錐面部44aの左右方向の外側の端部に接続され、後側へ向かうに従い左右方向の外側に向けて延びている。波状面部44bは、2等分線Bの左側(-X側)と右側(+X側)とに、一対設けられる。一対の波状面部44bは、2等分線Bを対称軸として、互いに左右対称形状に形成されている。このため、以下では主に、一対の波状面部44bのうちいずれか一方について説明する。
 波状面部44bは、波状面部44bが延びる方向に沿って円錐面部44aとの接続部分から離れるに従い、左右方向の内側(中央側)と外側とに交互に向かうように(蛇行するように)、波形に形成されている。また、波状面部44bは、上側へ向かうに従い2等分線Bに近づくように傾斜している。
 図4及び図5に示すように、チップブレーカ4は、さらに、第1凸部41と第2凸部42との間に配置される谷部45を有する。谷部45は、第1凸部41と第2凸部42との境界部分に位置し、下側に窪む溝状をなしている。図5に示すように、谷部45は、左右方向において2等分線Bから離れるに従い、前側に向けて延びている。谷部45が延びる方向は、第2凸部42の稜線42aが延びる方向と、略同じである。
 谷部45は、2等分線Bの左側(-X側)と右側(+X側)とに、一対設けられる。一対の谷部45は、2等分線Bを対称軸として、互いに左右対称形状に形成されている。このため、以下では主に、一対の谷部45のうちいずれか一方について説明する。
 谷部45の左右方向の内側(中央側)の端部は、2等分線B上に位置している。谷部45の左右方向の外側の端部は、すくい面1の傾斜面16に接続される。図6~図8に示すように、谷部45は、谷部45が延びる方向に沿って左右方向の内端部から外端部へ向かうに従い、谷底(溝底)の上下方向の位置が低くなる。
 詳しくは、図6及び図7に示すように、谷部45のうち左右方向の内側部分では、谷部45の谷底は、切刃3を通り上下方向と垂直な方向に広がる基準面Prよりも、上側に位置する。また図8に示すように、谷部45のうち左右方向の外側部分(特に外端部)では、谷部45の谷底は、図示しない基準面Prよりも(すなわち切刃3よりも)、下側に位置する。
〔取付孔〕
 図1及び図2に示すように、取付孔5は、切削工具10をインサート軸方向に貫通し、切削工具10の一対の板面(表面及び裏面)に開口する。取付孔5は、インサート中心軸Cを中心とする円孔状である。特に図示しないが、取付孔5には、切削工具10をホルダのインサート取付座に固定するためのクランプ駒やクランプネジ等が挿入される。
〔本実施形態による作用効果〕
 以上説明した本実施形態の切削工具10では、例えば、切込み量が大きい高切込み時(高送り時)などにおいては、切刃3で生成された切屑が、チップブレーカ4の第1凸部41及び第2凸部42に接触する。すなわち、切屑が、前後方向に並ぶ2つの凸部41,42によって2点支持されつつ、これらの凸部41,42によって挟み込まれるように圧縮され、カールされる。このため、厚い切屑を安定してカールさせることができ、切屑処理性が良好に維持される。
 具体的に、第2凸部42は、2等分線Bから左右方向へ離れるに従い前側に向けて延びている。第2凸部42が延びる向きは、切刃3で生成された切屑がすくい面1上を流出する方向と略同じであるため、切屑は、第2凸部42によって流出方向にガイドされつつ、2つの凸部41,42により安定してカールさせられる。したがって、切屑処理性がより安定する。
 また、切込み量が小さい低切込み時などにおいては、切刃3で生成された切屑が、チップブレーカ4のうち前側に位置する第3凸部43に接触する。このため、薄い切屑が伸びてしまうようなことが抑制され、安定して分断される。
 具体的に、第3凸部43は、第1凸部41よりも上下方向の高さが低くされており、つまりすくい面1からの突出量が小さい。このため、第3凸部43に接触した切屑が、過剰にカールされるようなことは抑えられ、切屑が被削材の加工面に当たることが抑制される。これにより、加工面精度が良好に維持される。
 以上より本実施形態によれば、切込み量等に関わらず切屑処理性を良好に維持でき、かつ、加工面精度を安定して高めることができる。
 また本実施形態では、第2凸部42が、第1凸部41よりも上側に突出する。
 この場合、第1凸部41と第2凸部42とにより2点支持されつつ流出する切屑が、これら凸部41,42の高低差によって、螺旋状に丸められ、安定してカールされる。切屑処理性がより安定して高められる。
 また本実施形態では、チップブレーカ4が、第2凸部42の後側に配置され、第2凸部42よりも上側に突出するブレーカ壁44を有する。
 この場合、第2凸部42を後側へ乗り越えた切屑が、ブレーカ壁44に当たることによって安定して切屑処理される。本実施形態では、第2凸部42を乗り越えた切屑が、円錐面部44aに接触することで良好に切屑処理される。
 また本実施形態では、第3凸部43が、切刃3のうち少なくともコーナ刃3aより下側に位置する。
 この場合、第3凸部43がコーナ刃3aよりも下側に配置されるので、低切込み時などにおいて、コーナ刃3aで生成され第3凸部43に接触した切屑が、過剰にカールされるようなことが安定して抑制される。これにより、加工面精度が安定して高められる。
 また本実施形態では、第3凸部43が、平面視においてコーナ刃3aの曲率半径の中心Oよりも前側に位置する。
 この場合、低切込み時などにおいてコーナ刃3aで生成された切屑が、第3凸部43に安定して接触させられる。第3凸部43による切屑の処理性能が、より安定して奏功される。
 また本実施形態では、第1凸部41が、平面視においてコーナ刃3aの曲率半径の中心Oと重なる。
 この場合、切削時に、切刃3のうちコーナ刃3aと直線刃3bとの境界付近や、コーナ刃3aで生成された切屑が、第1凸部41に安定して接触させられる。第1凸部41による切屑の処理性能が、より安定して奏功される。
 また本実施形態では、図5に示す平面視で、第2凸部42の稜線42aと2等分線Bとの間に形成される角度αが、30°以上60°以下である。
 上記角度αが30°以上60°以下であると、平面視における切刃3の開き角(一対の直線刃3b間に形成される角度)や切削時の工具姿勢などに関わらず、第2凸部42による切屑の処理性能が、より安定して奏功される。
 上記角度αが30°未満であったり60°を超えたりすると、切刃3の開き角や切削時の工具姿勢などによって、切屑の流出方向と第2凸部42が延びる方向とが大きく異なる場合があり、切屑処理性に影響することがある。
 また本実施形態では、谷部45のうち左右方向の外側部分(特に外端部)において、谷部45の谷底(溝底)が、切刃3よりも下側に位置する。
 この場合、第1凸部41及び第2凸部42のうち切屑が接触し始める左右方向の外側部分において、これら凸部41,42間の谷部45の深さが大きく確保されるため、2つの凸部41,42による2点支持での切屑のカール機能がより安定する。また、凸部41,42の摩耗が進行した場合でも、2点支持によるカール機能が良好に維持されやすくなる。
〔本発明に含まれるその他の構成〕
 なお、本発明は前述の実施形態に限定されず、例えば下記に説明するように、本発明の趣旨を逸脱しない範囲において構成の変更等が可能である。
 前述の実施形態では、すくい面1のランド15のすくい角が、ポジティブ角(正角)とされている例を挙げたが、これに限らない。ランド15のすくい角は、0°やネガティブ角(負角)とされていてもよい。また、すくい面1にランド15が設けられなくてもよい。
 前述の実施形態では、逃げ面2の逃げ角が0°とされている例を挙げたが、これに限らない。特に図示しないが、逃げ面2は、切刃3からインサート軸方向に離れるに従い、インサート径方向の内側に向けて傾斜していてもよい。この場合、逃げ面2には所定の逃げ角が付与される。
 前述の実施形態では、切削工具10が、表裏反転対称形状の両面タイプである例を挙げたが、これに限らない。切削工具10は、表裏反転対称形状ではない片面タイプであってもよい。
 前述の実施形態では、切削工具10が、超硬合金製の単一の部材により形成される例を挙げたが、これに限らない。特に図示しないが、切削工具10は、例えば、多角形板状をなす台金部と、台金部の角部に位置する凹部に固定される刃部と、を備えていてもよい。この場合、台金部は、例えば超硬合金製であり、刃部は、例えばcBN(cubic boron nitride)焼結体製やダイヤモンド焼結体(Polycrystalline diamond,PCD)製などである。刃部には、すくい面1、逃げ面2、切刃3及びチップブレーカ4が配置される。台金部には、取付孔5が配置される。
 前述の実施形態では、切削工具10が切削インサートである例を挙げたが、これに限らない。本発明の切削工具は、すくい面1、逃げ面2、切刃3及びチップブレーカ4を備えていればよく、例えば、刃先交換式バイトの交換可能なヘッド部材等であってもよい。あるいは、切削工具は、ソリッドタイプ(一体型)のバイト等であってもよい。
 本発明は、本発明の趣旨から逸脱しない範囲において、前述の実施形態及び変形例等で説明した各構成を組み合わせてもよく、また、構成の付加、省略、置換、その他の変更が可能である。また本発明は、前述した実施形態等によって限定されず、特許請求の範囲によってのみ限定される。
 本発明の切削工具によれば、切込み量等に関わらず切屑処理性を良好に維持でき、かつ、加工面精度を安定して高めることができる。したがって、産業上の利用可能性を有する。
 1  すくい面
 2  逃げ面
 3  切刃
 3a  コーナ刃
 3b  直線刃
 4  チップブレーカ
 10  切削工具
 41  第1凸部
 42  第2凸部
 42a(L)  稜線
 43  第3凸部
 44  ブレーカ壁
 B  2等分線
 O  コーナ刃の曲率半径の中心
 α  角度

Claims (7)

  1.  すくい面と、
     逃げ面と、
     前記すくい面と前記逃げ面とが接続される稜線部に配置され、前記すくい面を正面に見た平面視でV字状をなす切刃と、
     前記すくい面に配置されるチップブレーカと、を備え、
     前記平面視において前記切刃の2等分線が延びる方向を前後方向とし、前記平面視において前記2等分線と直交する方向を左右方向とし、前記前後方向及び前記左右方向と直交する方向を上下方向として、
     前記チップブレーカは、
     前記すくい面から上側に突出する第1凸部と、
     前記すくい面から上側に突出し、前記第1凸部の後側に配置され、左右方向において前記2等分線から離れるに従い前側に向けて延びる第2凸部と、
     前記すくい面から上側に突出し、前記第1凸部の前側に配置される第3凸部と、を有し、
     前記第1凸部及び前記第2凸部は、前記切刃よりも上側に突出しており、
     前記第3凸部は、前記第1凸部よりも上下方向の高さが低い、
     切削工具。
  2.  前記第2凸部は、前記第1凸部よりも上側に突出する、
     請求項1に記載の切削工具。
  3.  前記チップブレーカは、前記第2凸部の後側に配置され、前記第2凸部よりも上側に突出するブレーカ壁を有する、
     請求項1または2に記載の切削工具。
  4.  前記切刃は、
     凸曲線状をなすコーナ刃と、
     前記コーナ刃の両端に接続され、それぞれ直線状に延びる一対の直線刃と、を有し、
     前記第3凸部は、前記切刃のうち少なくとも前記コーナ刃より下側に位置する、
     請求項1または2に記載の切削工具。
  5.  前記第3凸部は、前記平面視において前記コーナ刃の曲率半径の中心よりも前側に位置する、
     請求項4に記載の切削工具。
  6.  前記第1凸部は、前記平面視において前記コーナ刃の曲率半径の中心と重なる、
     請求項4に記載の切削工具。
  7.  前記平面視で、前記第2凸部の稜線と前記2等分線との間に形成される角度が、30°以上60°以下である、
     請求項1または2に記載の切削工具。
PCT/JP2023/028607 2022-08-05 2023-08-04 切削工具 WO2024029627A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022125283A JP2024022011A (ja) 2022-08-05 2022-08-05 切削工具
JP2022-125283 2022-08-05

Publications (1)

Publication Number Publication Date
WO2024029627A1 true WO2024029627A1 (ja) 2024-02-08

Family

ID=89849510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028607 WO2024029627A1 (ja) 2022-08-05 2023-08-04 切削工具

Country Status (2)

Country Link
JP (1) JP2024022011A (ja)
WO (1) WO2024029627A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131929A (ja) * 2007-11-30 2009-06-18 Tungaloy Corp スローアウェイチップ
JP2010069614A (ja) * 2008-08-22 2010-04-02 Mitsubishi Materials Corp 切削インサート
WO2013129016A1 (ja) * 2012-02-29 2013-09-06 京セラ株式会社 切削インサート、切削工具および切削加工物の製造方法
WO2014192798A1 (ja) * 2013-05-28 2014-12-04 京セラ株式会社 切削インサートおよび切削工具ならびにそれを用いた切削加工物の製造方法
WO2018042957A1 (ja) * 2016-08-31 2018-03-08 住友電工ハードメタル株式会社 切削インサート
JP2022135489A (ja) * 2021-03-05 2022-09-15 三菱マテリアル株式会社 切削インサート

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131929A (ja) * 2007-11-30 2009-06-18 Tungaloy Corp スローアウェイチップ
JP2010069614A (ja) * 2008-08-22 2010-04-02 Mitsubishi Materials Corp 切削インサート
WO2013129016A1 (ja) * 2012-02-29 2013-09-06 京セラ株式会社 切削インサート、切削工具および切削加工物の製造方法
WO2014192798A1 (ja) * 2013-05-28 2014-12-04 京セラ株式会社 切削インサートおよび切削工具ならびにそれを用いた切削加工物の製造方法
WO2018042957A1 (ja) * 2016-08-31 2018-03-08 住友電工ハードメタル株式会社 切削インサート
JP2022135489A (ja) * 2021-03-05 2022-09-15 三菱マテリアル株式会社 切削インサート

Also Published As

Publication number Publication date
JP2024022011A (ja) 2024-02-16

Similar Documents

Publication Publication Date Title
JP4797526B2 (ja) スローアウェイチップ
US9446460B2 (en) Cutting insert for high feed face milling
KR100650099B1 (ko) 접선 절삭 삽입체 및 삽입체 홀더
US5810520A (en) Tool for material-removing machining
JPWO2010035831A1 (ja) 切削インサート、切削工具、およびそれらを用いる切削方法
US10252342B2 (en) Cutting insert
JP6052455B1 (ja) 切削インサートおよび切削工具
IL268580B2 (en) Putting a blade-shaped cut and a matching cutting tool for it
JP6066005B1 (ja) 切削インサートおよび切削工具
JP2002066811A (ja) スローアウェイチップ
TW201936299A (zh) 具有含間隔開的向上凸起刃帶部之刃帶的切削嵌件、及設有該切削嵌件的非旋轉式切削刀具
JP6799285B2 (ja) 切削インサートおよび内径切削用工具
WO2024029627A1 (ja) 切削工具
JP2007098506A (ja) スローアウェイチップ及びスローアウェイ式エンドミル
US11731203B2 (en) Insert and cutting tool assembly comprising same
JP2022135489A (ja) 切削インサート
WO2019026698A1 (ja) 切削インサート、切削工具及び切削加工物の製造方法
JP6432556B2 (ja) 切削インサートおよび切削工具
JP2007290057A (ja) 超高圧焼結体切削工具
CN110997204B (zh) 切削刀片、切削工具以及切削加工物的制造方法
JP2024015617A (ja) 切削工具
JP2005052911A (ja) スローアウェイチップ
JP2022157945A (ja) スローアウェイチップ
JPH11197909A (ja) スローアウェイチップ
JPWO2017090770A1 (ja) 切削インサート、切削工具及び切削加工物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23850180

Country of ref document: EP

Kind code of ref document: A1