WO2024028991A1 - コークス炉の炉壁形状測定方法およびコークス炉の炉壁補修方法 - Google Patents

コークス炉の炉壁形状測定方法およびコークス炉の炉壁補修方法 Download PDF

Info

Publication number
WO2024028991A1
WO2024028991A1 PCT/JP2022/029710 JP2022029710W WO2024028991A1 WO 2024028991 A1 WO2024028991 A1 WO 2024028991A1 JP 2022029710 W JP2022029710 W JP 2022029710W WO 2024028991 A1 WO2024028991 A1 WO 2024028991A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
laser
furnace wall
carbonization chamber
coke oven
Prior art date
Application number
PCT/JP2022/029710
Other languages
English (en)
French (fr)
Inventor
征太郎 秋山
康雅 福島
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023523548A priority Critical patent/JP7306602B1/ja
Priority to PCT/JP2022/029710 priority patent/WO2024028991A1/ja
Priority to EP22953980.4A priority patent/EP4502111A1/en
Publication of WO2024028991A1 publication Critical patent/WO2024028991A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B29/00Other details of coke ovens
    • C10B29/06Preventing or repairing leakages of the brickwork

Definitions

  • the present invention relates to an oven wall shape measuring method for measuring the oven wall shape of a coking chamber in a coke oven, and a coke oven oven wall repair method.
  • a coke oven is constructed by stacking bricks glued together with a thin layer of mortar and then tightening them from the front, back, left and right to maintain their shape.
  • a coke oven has a heat storage chamber on the foundation, and above it there is a cavity called a carbonization chamber that is about 6 m high, about 400 mm wide, and about 16 m deep, and a combustion chamber about 900 mm wide that burns fuel gas. They are arranged in alternating directions, with a brick ceiling above.
  • a coke oven In a coke oven, the heat from burning fuel inside the combustion chamber is passed through the wall bricks of the combustion chamber to heat the carbonization chamber to over 1000°C. Coal is introduced through the charging hole at the top of the chamber, and the coal is carbonized to create coke. Manufacture. An extrusion ram is inserted into the coke cake after carbonization through one of the kiln ports, which are about 6 m high and about 400 mm wide, at both ends of the carbonization chamber, and the coke cake inside the carbonization chamber is discharged from the other kiln port. After construction is completed, the coke oven burns fuel internally to gradually raise the temperature of the bricks to over 1000 degrees Celsius. This brick temperature is maintained until the coke oven is shut down.
  • the wall brick that separates the combustion chamber from the carbonization chamber is called the furnace wall, and plays the role of shielding combustion gas from flowing into the carbonization chamber, transmitting combustion heat to the carbonization chamber, and supporting the ceiling.
  • a ceiling load and a furnace clamping force always act on the furnace wall, and an extrusion ram load and an extrusion friction force temporarily act on the furnace wall during extrusion.
  • the ceiling load and furnace clamping force play a role in stabilizing the furnace wall structure, but as the furnace wall ages, the following problems will occur in the furnace wall.
  • a joint break that creates a gap at the joint of the furnace wall (2) A defect in which one or more bricks come off from the furnace wall. (3) Egret, where the bricks are worn away and thinned on the wide side of the furnace wall. (4) An overhang where bricks fall down on the wide side of the furnace wall and come out on the carbonization chamber side.
  • the bricks may collapse. Furthermore, if unevenness occurs on the furnace wall due to erosion, chipping, overhang, etc., the distance between the left and right furnace wall surfaces of the carbonization chamber (the furnace width) changes from the design dimension, which deteriorates coke extrusion properties. For this reason, if an egre, a defect, or an overhang occurs on the furnace wall, it is necessary to build up the wall by spraying irregularly shaped materials or thermal spraying, replace the brick for the defect, and reload the bricks for the overhang. Repairs have been carried out to restore the furnace wall to a healthy condition.
  • Patent Documents 1 and 2 disclose that a laser three-dimensional shape measuring device is installed outside the carbonization chamber, and the furnace wall inside the carbonization chamber is irradiated with a laser.
  • a coke oven oven wall diagnostic method for measuring the oven wall shape of a coke oven is disclosed.
  • the present invention has been made in view of the problems of the prior art, and its purpose is to provide a method for measuring the shape of a coke oven wall that can prevent deformation of laser irradiation holes and detection holes due to radiant heat from a coke oven.
  • An object of the present invention is to provide a method for repairing a coke oven wall.
  • the gist of the present invention capable of solving the above problems is as follows.
  • a furnace wall of a coke oven in which a laser three-dimensional shape measuring device is installed outside the carbonization chamber from which the furnace lid has been removed, and the shape of the furnace wall of the coking chamber is measured using the laser three-dimensional shape measuring device.
  • the shape measuring method includes the time from the removal of the furnace lid to the start of measurement with the laser three-dimensional shape measuring device, and the time from the kiln opening to the laser three-dimensional shape measuring device so as to satisfy the following formula (1).
  • a coke oven oven wall shape measuring method which measures the oven wall shape by determining a distance to a shape measuring device.
  • T W is the furnace temperature (K) in the carbonization chamber
  • t is the time (min) from removing the furnace lid to starting measurement with the laser three-dimensional shape measuring device
  • L is This is the distance (m) from the kiln mouth to the laser three-dimensional shape measuring device.
  • the laser irradiation hole and detection Heat deformation of the holes can be prevented.
  • the shape of the coke oven wall can be measured using the laser three-dimensional shape measuring device, and the wall of the coke oven can be repaired based on the shape data of the coke oven obtained through the measurement.
  • FIG. 1 is a schematic perspective view showing a state in which the shape of the furnace wall of the coke oven 10 is measured by the method for measuring the shape of the furnace wall of a coke oven according to the present embodiment.
  • FIG. 2 is a schematic diagram illustrating radiant heat released from the carbonization chamber.
  • FIG. 1 is a schematic perspective view showing a state in which the shape of the furnace wall of the coking chamber 10 is measured by the method for measuring the shape of the furnace wall of a coke oven according to the present embodiment.
  • the shape of the oven wall of the coking chamber 10 in the coke oven 1 is measured by a laser three-dimensional shape measuring device 20 installed on a platform 30 in front of the coking chamber 10.
  • the laser three-dimensional shape measuring device 20 irradiates a laser 21 obliquely toward the furnace wall 13 from the kiln mouth 11 with the furnace cover 12 removed from the laser irradiation hole, and detects the reflected light from the furnace wall 13 through the detection hole.
  • This is a device that measures the shape of the furnace wall of the carbonization chamber 10 as a point group by receiving light.
  • the laser three-dimensional shape measuring device 20 it is preferable to measure the shape of the left and right furnace walls of the carbonization chamber 10 separately.
  • the carbonization chamber 10 has a size of about 6 m in height, about 400 mm in width, and about 16 m in depth on the upper side, and the kiln opening 11 has an elongated structure with a width of about 400 mm and a height of about 6 m.
  • the laser 21 When the laser 21 is incident at such a shallow angle, if the furnace wall 13 is protruding, the depth thereof becomes a shadow and the laser 21 cannot reach it, making it impossible to measure the shape of the furnace wall.
  • the incident angle of the laser 21 can be made large with respect to the furnace wall 13, so even if the furnace wall 13 is protruding, the shape of the furnace wall can be measured.
  • the left and right furnace wall shape data measured by the laser three-dimensional shape measuring device 20 may be evaluated separately, or these two furnace wall shape data may be combined based on the reference objects around the carbonization chamber 10. , it may be evaluated as one piece of synthesis furnace wall shape data.
  • the uneven state of the furnace wall 13 can be quantified by calculating an average plane from the measured point group and calculating the distance of each point from the average plane. The distance may be calculated by calculating the distance between each point and the average plane in the normal direction, or by calculating the distance in the width direction of the carbonization chamber 10. In this way, the uneven state of the furnace wall 13 can be confirmed using the two furnace wall shape data.
  • the distance between the left and right furnace walls is important in determining whether the extrusion ram can pass through the carbonization chamber 10 smoothly.
  • the distance between the left and right furnace walls is calculated using one composite furnace wall shape data that is obtained by combining the left and right furnace wall shape data based on the reference objects around the carbonization chamber 10. It is preferable to calculate
  • At least two dedicated reference bodies 22 are installed around the kiln mouth 11, and the positions of the reference bodies 22 are measured at the same time as the shapes of the left and right furnace walls are measured.
  • the center position of the reference body 22 in each measurement data is calculated. Since the positional relationship of the reference bodies 22 does not change, find a one-to-one correspondence of the center positions of the reference bodies 22 in the left and right furnace wall shape data, and move the furnace wall shape data of one side so that they overlap.
  • two pieces of furnace wall shape data can be combined into one composite furnace wall shape data.
  • the reference body 22 may be one used exclusively for the laser three-dimensional shape measuring device 20, or if there is one around the carbonization chamber 10 whose position can be easily specified, it may be used.
  • a member called a furnace frame is provided near the kiln mouth 11. Since the furnace frame is replaced and repaired when it becomes damaged and is attached using the furnace wall 13 as a reference, the furnace frame may be used as a reference instead of the reference body 22 described above. As a result, the relative positional relationship between the left and right furnace walls 13 becomes clear, and one composite furnace wall shape data can be created with high accuracy.
  • the width of the oven on the side where the coke cake is extruded is made approximately 30 mm wider than the width on the side where the extrusion ram is inserted. It has a tapered shape. That is, since tapers of about 30 mm are provided on both sides for a depth of 16 m, deviations may occur in the evaluation of the uneven state using the average plane calculated from individual furnace wall shape data.
  • synthetic furnace wall shape data that combines the left and right furnace wall shape data, the degree of expansion of the kiln width becomes clear, and by comparing it with the design shape data, the uneven state of the furnace wall 13 can be determined. Can be accurately grasped.
  • the furnace wall shape of the carbonization chamber 10 in the coke oven 1 can be measured. Furthermore, by comparing the furnace wall shape data obtained by measuring the furnace wall shape of the carbonization chamber 10 with the design shape data, it is possible to detect the deformation state of the furnace wall 13 (irregularities of the furnace wall and changes in the furnace width). Based on the deformed state, the furnace wall 13 can be easily repaired.
  • the laser irradiation hole and the detection hole are affected by the radiant heat from the carbonization chamber 10. In some cases, the shape of the furnace wall could not be measured due to deformation.
  • the time period from when the oven cover 12 of the coking chamber 10 is removed to when the laser three-dimensional shape measuring device 20 starts measuring the oven wall shape is determined. Then, the shape of the furnace wall of the carbonization chamber 10 is measured. When a predetermined period of time elapses after removing the furnace lid 12, the temperature inside the carbonization chamber 10 decreases, and the radiant heat from the carbonization chamber 10 decreases, thereby preventing deformation of the laser irradiation hole and the detection hole. This allows the furnace wall shape to be measured using the laser three-dimensional shape measuring device 20.
  • the furnace lid 12 of the carbonization chamber 10 is If the laser three-dimensional shape measuring device 20 is installed and measured 10 minutes after removal, the laser irradiation hole and detection hole will not be deformed, and the furnace wall shape will be measured using the laser three-dimensional shape measuring device 20. can.
  • the radiant heat from the carbonization chamber 10 changes depending on the furnace temperature of the carbonization chamber 10, the time from removing the furnace lid 12 to starting measurement, and the distance from the kiln mouth 11 to the laser three-dimensional shape measuring device 20.
  • the furnace temperature of the carbonization chamber 10 is T W
  • the time from removing the furnace lid 12 to starting measurement of the furnace wall shape is t
  • the kiln opening 11 to the laser three-dimensional shape measuring device 20 is Letting L be the distance, time t and distance L are determined so as to satisfy the following equation (1).
  • starting the measurement of the furnace wall shape means installing the laser three-dimensional shape measuring device 20 and starting measuring the furnace wall shape, or starting the measurement of the furnace wall shape by installing the laser three-dimensional shape measuring device 20 This means that the heat-resistant cloth of the dimensional shape measuring device 20 is removed and the measurement of the furnace wall shape is started.
  • T W is the furnace temperature (K) of the carbonization chamber 10
  • t is the time (min) from when the furnace cover 12 is removed until the measurement is started by the laser three-dimensional shape measuring device 20
  • L is the distance (m) from the kiln mouth 11 to the laser three-dimensional shape measuring device 20.
  • the laser irradiation hole and the detection hole are not deformed, and the furnace wall 13 in the carbonization chamber 10 can be measured using the laser three-dimensional shape measuring device 20. Be able to measure the shape of.
  • FIG. 2 is a schematic diagram illustrating radiant heat released from the carbonization chamber.
  • the above equation (1) will be explained using FIG. 2.
  • the furnace lid 12 is provided at two locations: a coke side (the side where coke is pushed out) and a machine side (the side where coke is pushed out by the extrusion ram). Therefore, in order to measure the entire surface of the furnace wall 13, it is sufficient to measure from the kiln mouth 11 on each furnace lid 12 side to the center 8 m of the furnace wall 13. Therefore, after a predetermined period of time has passed since the furnace lid 12 is removed, the typical temperature position of the furnace temperature in the carbonization chamber 10 is considered to be the center position (4m position) in the depth direction of the carbonization chamber 10 at 8m. , we considered radiant heat from this position.
  • the time of the radiant effect is inversely proportional to the square of the distance, so the time of the radiant effect at the position P2 at the distance L from the kiln mouth 11 after 10 minutes has passed since the furnace cover 12 is removed is Considering the radiant heat at position P1 at a distance of 1.5 m from P11 as a reference, it can be expressed by the following equation (2).
  • the value calculated by substituting the furnace temperature T W : 1150+273K, distance L: 1.5 m, and time t: 10 minutes into the above equation (3) is "4.1 ⁇ 10 12 ".
  • the distance L was 1.5 m
  • the time t was 10 minutes
  • the above equation (1) is derived.
  • the laser three-dimensional shape measuring device 20 in order to irradiate a furnace wall with a height of 6 m with the laser 21, it is necessary to install the laser three-dimensional shape measuring device 20 at a distance of 1.5 m or more from the kiln mouth 11. Further, due to the size restriction of the platform 30, it is necessary to install the laser three-dimensional shape measuring device 20 within 3.0 m from the kiln mouth 11. Therefore, the distance L from the kiln mouth 11 to the laser three-dimensional shape measuring device 20 needs to satisfy the following formula (4). 1.5 ⁇ L ⁇ 3.0...(4)
  • Table 1 is a table showing the values on the left side of the above equation (1) under each condition when the furnace temperature of the carbonization chamber 10 is 1150°C.
  • Table 2 is a table showing the values on the left side of the above equation (1) under each condition when the furnace temperature of the carbonization chamber 10 is 1100°C.
  • Table 3 is a table showing the values on the left side of the above equation (1) under each condition when the furnace temperature of the carbonization chamber 10 is 1000°C.
  • the laser irradiation hole and detection It can be seen that deformation of the hole can be prevented.
  • the temperature inside the carbonization chamber 10 is 1150° C. when coke is produced with the operating rate of the coke oven at 135%.
  • the operation rate of 135% means that if a coke oven is equipped with 100 carbonization chambers, the coke will be extruded 135 times in one day to produce coke. Since coke is never produced at a utilization rate higher than 135%, the furnace temperature of 1150° C. can be said to be the highest temperature in the furnace of the carbonization chamber 10. Even at the highest temperature inside the furnace and at the shortest distance of 1.5 m from the kiln mouth 11, the time from removing the furnace lid 12 to starting the measurement of the furnace wall shape must be at least 10 minutes.
  • the furnace temperature at the kiln opening 11 can be increased to 600°C or higher. was maintained. From this result, in order to prevent the furnace temperature at the kiln mouth 11 from falling below 600°C, if the furnace wall shape measurement time is set to 5 minutes, the laser It is preferable to start measuring the furnace wall shape using the dimensional shape measuring device 20. Thereby, even after the measurement, the temperature inside the furnace at the kiln mouth 11 can be prevented from becoming less than 600° C., and the bricks in the carbonization chamber 10 can be prevented from cracking.
  • the temperature inside the coking chamber 10 is measured after removing the oven cover 12 so as to satisfy the above equation (1). Since the time until the start and the distance from the kiln mouth 11 to the laser three-dimensional shape measuring device are determined, thermal deformation of the laser irradiation hole and the detection hole can be prevented. This makes it possible to measure the shape of coke oven walls using a laser three-dimensional shape measuring device, and to repair coke oven walls based on the wall shape data obtained through this measurement. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

炭化室からの輻射熱によるレーザー照射孔および検出孔の変形を防止できるコークス炉の炉壁形状測定方法を提供する。 炉蓋12を取り外した炭化室10の外側にレーザー式3次元形状測定装置20を設置し、レーザー式3次元形状測定装置20によって炭化室10の炉壁形状を測定する炉壁形状の測定方法であって、炭化室10の炉内温度をTWとし、炉蓋12を取り外してからレーザー式3次元形状測定装置20で測定を開始するまでの時間をtとし、窯口11からレーザー式3次元形状測定装置20までの距離をLとすると、下記(1)式を満たすように時間tおよび距離Lを定めて炭化室10の炉壁形状を測定する。 (10/t)/{(L+4)/5.5}2×TW 4≦4.1×1012・・・(1)

Description

コークス炉の炉壁形状測定方法およびコークス炉の炉壁補修方法
 本発明は、コークス炉における炭化室の炉壁形状を測定する炉壁形状測定方法およびコークス炉の炉壁補修方法に関する。
 鉄鋼業においては、石炭からコークスを製造するためにコークス炉が用いられている。近年、コークス炉は建設から40年を経過した老朽炉が多くなっている。コークス炉は、レンガを薄いモルタルの層で接着しながら積み上げて、前後左右から締め付けて形状を保つ構造になっている。コークス炉は、基礎の上に蓄熱室があり、その上側に高さ6m程度、幅400mm程度、奥行き16m程度の炭化室と呼ぶ空洞と、燃料ガスを燃焼させる幅900mm程度の燃焼室とが幅方向に交互に並び、上部にレンガの天井を配した構造になっている。
 コークス炉では、燃焼室内部で燃料を燃焼させた熱を燃焼室の壁レンガを通して、炭化室を1000℃以上にし、炭化室上部の装炭孔から石炭を投入し、その石炭を乾留させてコークスを製造する。乾留後のコークスケーキは、炭化室の両端の高さ6m程度で幅400mm程度の窯口の一方から押出しラムを挿入し、炭化室内部のコークスケーキを他の一方の窯口から排出される。コークス炉では、建設完了後、内部で燃料を燃焼させ、レンガの温度を徐々に1000℃以上まで昇温させる。このレンガの温度は、コークス炉を休止するまで保ち続けられる。
 燃焼室と炭化室を分ける壁レンガは炉壁と呼ばれ、燃焼ガスが炭化室に流入しないように遮蔽するとともに、燃焼熱を炭化室に伝え、天井を支える役割を担っている。炉壁には、常に天井荷重と炉締め力が作用し、押出し時には押出しラム荷重、押出し摩擦力が一時的に作用する。天井荷重と炉締め力は炉壁構造を安定にする役割があるが、老朽化が進むと炉壁に以下の問題が発生する。
(1)炉壁の接合部に隙間が出来る目地切れ。
(2)炉壁からレンガが1個ないし複数個外れてしまう欠損。
(3)炉壁の広い面でレンガが磨耗して減肉するエグレ。
(4)炉壁の広い面でレンガが倒れて炭化室側に出てくる張出し。
 このような問題が発生した炉壁に炉締め力、押出し力が作用すると、レンガの倒壊が起こる場合がある。また、エグレ、欠損、張出し等によって炉壁に凹凸が生じると、炭化室の左右の炉壁面同士の間隔(窯幅)が設計寸法から変化してしまうので、コークスの押出し性が悪化する。このため、炉壁にエグレ、欠損又は張出しが生じると、エグレに対しては不定形材の吹き付けや溶射による肉盛り、欠損に対してはレンガの差し替え、張出しに対してはレンガの積替えなどの補修を行い、炉壁を健全な状態に復元している。
 このような補修を行うには、炭化室の炉壁形状を測定し、炉壁の損傷や変形を検出することが必要になる。炭化室の炉壁形状を測定する方法として、特許文献1、2には、炭化室の外側にレーザー式3次元形状測定装置を設置し、レーザーを炭化室内の炉壁に照射して、炭化室の炉壁形状を測定するコークス炉の炉壁診断方法が開示されている。
特開2013-82909号公報 特開2014-218557号公報
 レーザー式3次元形状測定装置を用いる場合、炭化室からの輻射熱から保護するため、当該装置を耐熱布等で遮熱する。しかしながら、炭化室の炉壁形状を測定するにはレーザーを炭化室の炉壁に照射し、炉壁からの反射光を受光する必要があるので、炉壁形状を測定している間は、レーザー照射孔および検出孔を耐熱布で遮熱することができない。このため、特許文献1、2に開示の炉壁診断方法では、炭化室からの輻射熱によってレーザー照射孔および検出孔が変形し、炉壁の形状が測定できなくなるという課題があった。
 本発明は、このような従来技術の課題に鑑みてなされたものであり、その目的は、炭化室からの輻射熱によるレーザー照射孔および検出孔の変形を防止できるコークス炉の炉壁形状測定方法およびコークス炉の炉壁補修方法を提供することである。
 上記課題を解決できる本発明の要旨は以下の通りである。
 [1] 炉蓋を取り外した炭化室の外側にレーザー式3次元形状測定装置を設置し、前記レーザー式3次元形状測定装置を用いて前記炭化室の炉壁形状を測定するコークス炉の炉壁形状測定方法であって、下記(1)式を満たすように、前記炉蓋を取り外してから前記レーザー式3次元形状測定装置で測定を開始するまでの時間と、窯口から前記レーザー式3次元形状測定装置までの距離とを定めて前記炉壁形状を測定する、コークス炉の炉壁形状測定方法。
 (10/t)/{(L+4)/5.5}×T ≦4.1×1012・・・(1)
 ここで、Tは炭化室の炉内温度(K)であり、tは炉蓋を取り外してから前記レーザー式3次元形状測定装置で測定を開始するまでの時間(min)であり、Lは前記窯口から前記レーザー式3次元形状測定装置までの距離(m)である。
 [2] 前記炉蓋を取り外してから前記レーザー式3次元形状測定装置で測定を開始するまでの時間は10分以上である、[1]に記載のコークス炉の炉壁形状測定方法。
 [3] 前記炉蓋を取り外してから前記レーザー式3次元形状測定装置で測定を開始するまでの時間は60分以内である、[1]または[2]に記載のコークス炉の炉壁形状測定方法。
 [4] [1]または[2]に記載のコークス炉の炉壁形状測定方法で測定された炉壁形状に基づいて前記炭化室の炉壁を補修する、コークス炉の炉壁補修方法。
 [5] [3]に記載のコークス炉の炉壁形状測定方法で測定された炉壁形状に基づいて前記炭化室の炉壁を補修する、コークス炉の炉壁補修方法。
 本発明によれば、上記(1)式を満足するように、コークス炉の炉蓋を取り外してから測定を開始するまでの時間と、窯口からの距離とを定めることでレーザー照射孔および検出孔の熱変形を防止できる。これにより、レーザー式3次元形状測定装置を用いてコークス炉の炉壁形状が測定できるようになり、当該測定によって得られる炉壁形状データに基づいてコークス炉の炉壁補修も実施できる。
図1は、本実施形態に係るコークス炉の炉壁形状測定方法で、炭化室10の炉壁形状を測定する状態を示す斜視模式図である。 図2は、炭化室から放出される輻射熱を説明する模式図である。
 以下、本発明の実施形態について、図面を参照して具体的に説明する。以下の実施形態は、本発明の好適な一例を示すものであり、これらの例によって何ら限定されるものではない。
 図1は、本実施形態に係るコークス炉の炉壁形状測定方法で、炭化室10の炉壁形状を測定する状態を示す斜視模式図である。図1に示すように、コークス炉1における炭化室10の炉壁形状は、炭化室10の前方のプラットフォーム30に設置されたレーザー式3次元形状測定装置20によって測定される。レーザー式3次元形状測定装置20は、レーザー照射孔から炉蓋12を外した状態の窯口11から炉壁13に向けて斜めにレーザー21を照射し、炉壁13からの反射光を検出孔で受光することで、炭化室10の炉壁形状を点群として測定する装置である。
 レーザー式3次元形状測定装置20では、炭化室10の左右の炉壁形状を別々に測定することが好ましい。炭化室10は上側に高さ6m程度、幅400mm程度、奥行き16m程度の大きさで、窯口11が幅400mm程度、高さ6m程度の細長い構造になっている。炭化室10の外側からレーザー21を照射する場合に、左右両側の炉壁形状を一度に測定しようとすると、レーザー21の入射角度が炉壁13に対して浅くなる。このように浅い角度でレーザー21が入射すると、炉壁13が張り出している場合には、その奥が陰になってレーザー21が届かなくなり、炉壁形状が測定できなくなる。一方、炉壁形状を左右別々に測定することで、レーザー21の入射角度を炉壁13に対して大きくできるので、炉壁13が張り出している場合であっても炉壁形状を測定できる。
 レーザー式3次元形状測定装置20によって測定された左右の炉壁形状データは、別々に評価してもよく、これら2つの炉壁形状データを炭化室10の周辺の基準物を元に合成して、一つの合成炉壁形状データとして評価してもよい。2つの形状データを別々に評価する場合には、測定した点群から平均平面を算出し、平均平面からの各点の距離を計算することで、炉壁13の凹凸状態を数値化できる。距離の計算は、各点と平均平面の法線方向の距離を計算してもよく、炭化室10の幅方向の距離を計算してもよい。このように2つの炉壁形状データを用いて炉壁13の凹凸状態を確認することができる。
 炭化室10からコークスを押出す際には、幅400mm程度の炭化室10に、幅350mm程度の押出しラムを挿入する。このため、押出しラムが炭化室10内を円滑に通過できるかどうかは、左右の炉壁間の距離が重要になる。左右の炉壁間の距離を計算するには、左右の炉壁形状データを炭化室10の周囲の基準物を元に合成した一つの合成炉壁形状データを用いて左右の炉壁間の距離を計算することが好ましい。
 具体的には、まず、窯口11の周辺に専用の基準体22を少なくとも2つ設置して、左右の炉壁形状の測定と同時にこの基準体22の位置も測定する。次に、それぞれの測定データの中の基準体22の中心位置を算出する。基準体22の位置関係は変わらないことから、左右それぞれの炉壁形状データ中の基準体22の中心位置の一対一の対応を見つけ、これらが重なるように一方の炉壁形状データを移動することで、2つの炉壁形状データを一つの合成炉壁形状データにまとめることができる。
 基準体22は、レーザー式3次元形状測定装置20に専用に用いられるものであってもよく、位置の特定が容易なものが炭化室10の周囲にあれば、それを用いてもよい。窯口11付近には、炉枠とよばれる部材が設けられている。炉枠は、傷みが進むと取替え補修を行うことや、炉壁13を基準として取り付けされるので、上記基準体22に代えて、炉枠を基準に用いてもよい。これにより、左右の炉壁13の相対位置関係が明確になり、高い精度で一つの合成炉壁形状データを作成できる。
 コークス炉はコークスケーキを押出す際に、コークスケーキと炉壁とがこすれにくくなるように、コークスケーキが押し出される側の窯幅を、押出しラムを挿入する側の窯幅よりも30mm程度広くするテーパー形状にしている。すなわち、奥行16mに対して30mm程度のテーパーが両側に設けられているので、個別の炉壁形状データから計算される平均平面を用いた凹凸状態の評価ではずれが生じる場合がある。これに対して、左右の炉壁形状データを合成した合成炉壁形状データを用いることで、窯幅の拡がり具合も明らかになるので、設計形状データと比較することで炉壁13の凹凸状態を正確に把握できる。
 このように、レーザー式3次元形状測定装置20を用いることで、コークス炉1における炭化室10の炉壁形状を測定できる。さらに、炭化室10の炉壁形状を測定して得られる炉壁形状データを設計形状データと比較することで炉壁13の変形状態(炉壁の凹凸や窯幅の変化)を検出できるので、当該変形状態に基づくことで炉壁13の補修も容易に行うことができる。
 一方、炭化室10の炉蓋12を取り外し、プラットフォーム30に設置されたレーザー式3次元形状測定装置20によって炉壁形状を測定しようとすると、レーザー照射孔および検出孔が炭化室10からの輻射熱によって変形してしまい、炉壁の形状が測定できなくなる場合があった。
 そこで、本実施形態に係るコークス炉の炉壁形状測定方法では、炭化室10の炉蓋12を取り外してからレーザー式3次元形状測定装置20で炉壁形状の測定を開始するまでの時間を定めて、炭化室10の炉壁形状を測定する。炉蓋12を取り外してから所定時間が経過することで、炭化室10の炉内温度が下がり、炭化室10からの輻射熱が減少するのでレーザー照射孔および検出孔の変形が防止される。これにより、レーザー式3次元形状測定装置20を用いて炉壁形状が測定できるようになる。
 具体的には、炭化室10の炉内温度が1150℃であって、窯口11からレーザー式3次元形状測定装置20までの距離が1.5mである場合、炭化室10の炉蓋12を取り外してから10分経過後にレーザー式3次元形状測定装置20を設置して測定すれば、レーザー照射孔および検出孔の変形がなく、レーザー式3次元形状測定装置20を用いて炉壁形状が測定できる。
 炭化室10からの輻射熱は、炭化室10の炉内温度、炉蓋12を取り外してから測定を開始するまでの時間および窯口11からレーザー式3次元形状測定装置20までの距離によって変わる。このため、炭化室10の炉内温度をTとし、炉蓋12を取り外してから炉壁形状の測定を開始するまでの時間をtとし、窯口11からレーザー式3次元形状測定装置20までの距離をLとすると、下記(1)式を満たすように時間tおよび距離Lを定める。なお、本実施形態において炉壁形状の測定を開始するとは、レーザー式3次元形状測定装置20を設置して炉壁形状の測定を開始すること、もしくは、耐熱布で遮熱されたレーザー式3次元形状測定装置20の耐熱布を取り外し、炉壁形状の測定を開始することを意味する。
 (10/t)/{(L+4)/5.5}×T ≦4.1×1012・・・(1)
 ここで、Tは炭化室10の炉内温度(K)であり、tは炉蓋12を取り外してからレーザー式3次元形状測定装置20で測定を開始するまでの時間(min)であり、Lは窯口11からレーザー式3次元形状測定装置20までの距離(m)である。
 このように時間tおよび距離Lを定めて炉壁形状を測定することで、レーザー照射孔および検出孔の変形がなく、レーザー式3次元形状測定装置20を用いて炭化室10内の炉壁13の形状を測定できるようになる。
 図2は、炭化室から放出される輻射熱を説明する模式図である。図2を用いて上記(1)式を説明する。炉蓋12は、コークスサイド(コークスが押し出される側)とマシンサイド(押出しラムでコークスを押し出す側)の2カ所に設けられている。このため、炉壁13の全面を測定するには、各炉蓋12側の窯口11から炉壁13の中央8mまで測定すればよい。したがって、炉蓋12を取り外してから所定時間経過後において、炭化室10の炉内温度の代表的な温度位置は、炭化室10の奥行方向8mの中央位置(4mの位置)と考えられることから、この位置からの輻射熱を考えた。輻射熱のうち、輻射効果の時間は距離の2乗に反比例することから、炉蓋12を取り外してから10分経過後における窯口11からの距離Lの位置P2の輻射効果の時間は、窯口11からの距離1.5mの位置P1の輻射熱を基準に考えると下記(2)式で表すことができる。
 10/{(L+4)/(1.5+4)}・・・(2)
 また、輻射熱は温度の4乗に比例することから、炉蓋12を取り外してからレーザー式3次元形状測定装置20で測定を開始するまでの時間と炭化室10の炉内温度を考慮すると下記(3)式が導かれる。
 (10/t)/{(L+4)/(1.5+4)}×T ・・・(3)
 上記(3)式に炉内温度T:1150+273K、距離L:1.5m、時間t:10分を代入して計算した値が「4.1×1012」である。上述したように、炭化室10の炉内温度が1150℃であり、距離Lが1.5mであり、時間tが10分の条件であればレーザー照射孔および検出孔の変形がなかった。このため、上記(3)式が4.1×1012以下になるように距離Lおよび時間tを定めて炉壁形状を測定することでレーザー照射孔および検出孔の変形を防止できることがわかるので、上記(1)式が導かれる。
 なお、高さ6mの炉壁にレーザー21を照射するには、レーザー式3次元形状測定装置20を窯口11から1.5m以上離して設置することが必要である。また、プラットフォーム30の大きさの制約からレーザー式3次元形状測定装置20を窯口11から3.0m以内に設置することが必要である。したがって、窯口11からレーザー式3次元形状測定装置20までの距離Lは、下記(4)式を満たす必要がある。
 1.5≦L≦3.0・・・(4)
 次に、レーザー照射孔および検出孔の変形を防止できる炭化室の炉内温度と、窯口11からの距離と、時間の関係について確認を行った結果を説明する。表1は、炭化室10の炉内温度が1150℃である場合の各条件における上記(1)式の左辺の値を示す表である。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示すように、炭化室10の炉内温度が1150℃である場合、上記黒枠内は上記(1)式の左辺の値が4.1×1012以下となった。この結果から、炭化室10の炉内温度が1150℃である場合には、窯口11からの距離Lを1.5m以上3.0m以下とし、炉蓋12を取り外してから炉壁形状の測定を開始するまでの時間tを10分以上とすればレーザー照射孔および検出孔の変形を防止できることがわかる。
 表2は、炭化室10の炉内温度が1100℃である場合の各条件における上記(1)式の左辺の値を示す表である。
Figure JPOXMLDOC01-appb-T000002
 
 表2に示すように、炭化室10の炉内温度が1100℃の場合、上記黒枠内は上記(1)式の左辺の値が4.1×1012以下となった。この結果から、炭化室10の炉内温度Tが1100℃である場合には、窯口11からの距離Lを1.5m以上3.0m以下とし、炉蓋12を取り外してから炉壁形状の測定を開始するまでの時間tを10分以上とすればレーザー照射孔および検出孔の変形を防止できることがわかる。
 表3は、炭化室10の炉内温度が1000℃である場合の各条件における上記(1)式の左辺の値を示す表である。
Figure JPOXMLDOC01-appb-T000003
 
 表3に示すように、炭化室10の炉内温度が1000℃の場合、上記黒枠内は上記(1)式の左辺の値が4.1×1012以下となった。この結果から、炭化室10の炉内温度が1100℃である場合には、窯口11からの距離を1.5m以上2.5m未満とし、炉蓋12を取り外してから炉壁形状の測定を開始するまでの時間を10分以上とすればレーザー照射孔および検出孔の変形を防止できることがわかる。同様に、窯口11からの距離を2.5m以上3.0m以下とし、炉蓋12を取り外してから炉壁形状の測定を開始するまでの時間を5分以上とすればレーザー照射孔および検出孔の変形を防止できることがわかる。
 また、コークスの製造において、炭化室10の炉内温度が1150℃となるのはコークス炉の稼働率を135%にしてコークスを製造する場合である。ここで、稼働率135%とは、100の炭化室を備えるコークス炉であれば1日のうちに135回押し出してコークスを製造する操業を意味する。稼働率135%より高めてコークスを製造することはないことから、炉内温度1150℃は、炭化室10の炉内温度として最も高い温度であるといえる。この最も高い炉内温度で、且つ、窯口11からの距離が最も短い1.5mであっても炉蓋12を取り外してから炉壁形状の測定を開始するまでの時間を10分以上にすればレーザー照射孔および検出孔の変形を防止できる。このため、炉蓋12を取り外してから炉壁形状の測定を開始するまでの時間を10分以上にすることで、確実にレーザー照射孔および検出孔の変形を防止できることがわかる。
 また、1000℃以上にして稼働していた炭化室10の炉内温度が600℃未満になると、炭化室10内のレンガが収縮して割れが発生する。このため、窯口11における炉内温度が600℃未満になる前に、炉壁形状の測定を終了することが好ましい。そこで、炉内温度が1000~1150℃における炉蓋12を取り外してからの時間と、窯口11における炉内温度との関係を確認した。その結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000004
 
 表4に示すように、炉内温度が1000℃(稼働率100%)の場合であっても炉蓋12を取り外してから60分以内であれば、窯口11における炉内温度を600℃以上に維持された。この結果から、窯口11における炉内温度が600℃未満になるのを防止するには、炉壁形状の測定時間を5分とすると、炉蓋12を取り外してから60分以内にレーザー式3次元形状測定装置20で炉壁形状の測定を開始することが好ましい。これにより、測定後においても窯口11における炉内温度が600℃未満になることを防止でき、炭化室10内のレンガの割れを防止できる。
 以上、説明したように、本実施形態に係るコークス炉の炉壁形状の測定方法では、上記(1)式を満足するように炭化室10の炉内温度、炉蓋12を取り外してから測定を開始するまでの時間および窯口11からレーザー式3次元形状測定装置までの距離を定めるので、レーザー照射孔および検出孔の熱変形を防止できる。これにより、レーザー式3次元形状測定装置を用いてコークス炉の炉壁形状が測定できるようになり、当該測定によって得られる炉壁形状データに基づいてコークス炉の炉壁補修も実施できるようになる。
 次に、稼働率120%(炉内温度:1100℃)で操業されているコークス炉の炭化室を、レーザー式3次元形状測定装置を用いて炉壁形状を測定した実施例を説明する。レーザー式3次元形状測定装置を窯口から1.5mの位置に設置し、炉蓋を取り外してから炉壁形状の測定を開始するまでの時間を変えて、コークス炉の炉壁形状を測定した。炉蓋を取り外してからの時間、測定結果、装置の損傷の有無を確認した結果および上記(1)式の左辺の値を下記表5に示す。
Figure JPOXMLDOC01-appb-T000005
 
 表5に示すように、上記(1)式の左辺が4.1×1012以下となった発明例1~6ではレーザー式3次元形状測定装置の破損がなく、炉壁形状の測定が完了できた。また、コークス炉の炭化室内のレンガの割れの発生も確認されなかった。一方、上記(1)式の左辺が4.1×1012以下を超える比較例1、2ではレーザー照射孔および検出孔に変形が生じ、炉壁形状の測定ができなかった。これらの結果から、上記(1)式を満足するように炉内温度、炉蓋12を取り外しから測定までの時間および窯口からの距離を定めることで、装置の破損を防止でき、レーザー式3次元形状測定装置で炉壁形状を測定できることが確認された。
 1 コークス炉
 10 炭化室
 11 窯口
 12 炉蓋
 13 炉壁
 20 レーザー式3次元形状測定装置
 21 レーザー
 22 基準体
 30 プラットフォーム

Claims (5)

  1.  炉蓋を取り外した炭化室の外側にレーザー式3次元形状測定装置を設置し、前記レーザー式3次元形状測定装置を用いて前記炭化室の炉壁形状を測定するコークス炉の炉壁形状測定方法であって、
     下記(1)式を満たすように、前記炉蓋を取り外してから前記レーザー式3次元形状測定装置で測定を開始するまでの時間と、窯口から前記レーザー式3次元形状測定装置までの距離とを定めて前記炉壁形状を測定する、コークス炉の炉壁形状測定方法。
     (10/t)/{(L+4)/5.5}×T ≦4.1×1012・・・(1)
     ここで、Tは炭化室の炉内温度(K)であり、tは炉蓋を取り外してから前記レーザー式3次元形状測定装置で測定を開始するまでの時間(min)であり、Lは前記窯口から前記レーザー式3次元形状測定装置までの距離(m)である。
  2.  前記炉蓋を取り外してから前記レーザー式3次元形状測定装置で測定を開始するまでの時間は10分以上である、請求項1に記載のコークス炉の炉壁形状測定方法。
  3.  前記炉蓋を取り外してから前記レーザー式3次元形状測定装置で測定を開始するまでの時間は60分以内である、請求項1または請求項2に記載のコークス炉の炉壁形状測定方法。
  4.  請求項1または請求項2に記載のコークス炉の炉壁形状測定方法で測定された炉壁形状に基づいて前記炭化室の炉壁を補修する、コークス炉の炉壁補修方法。
  5.  請求項3に記載のコークス炉の炉壁形状測定方法で測定された炉壁形状に基づいて前記炭化室の炉壁を補修する、コークス炉の炉壁補修方法。
PCT/JP2022/029710 2022-08-02 2022-08-02 コークス炉の炉壁形状測定方法およびコークス炉の炉壁補修方法 WO2024028991A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023523548A JP7306602B1 (ja) 2022-08-02 2022-08-02 コークス炉の炉壁形状測定方法およびコークス炉の炉壁補修方法
PCT/JP2022/029710 WO2024028991A1 (ja) 2022-08-02 2022-08-02 コークス炉の炉壁形状測定方法およびコークス炉の炉壁補修方法
EP22953980.4A EP4502111A1 (en) 2022-08-02 2022-08-02 Furnace wall shape measurement method for coke oven and furnace wall repair method for coke oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029710 WO2024028991A1 (ja) 2022-08-02 2022-08-02 コークス炉の炉壁形状測定方法およびコークス炉の炉壁補修方法

Publications (1)

Publication Number Publication Date
WO2024028991A1 true WO2024028991A1 (ja) 2024-02-08

Family

ID=87072455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029710 WO2024028991A1 (ja) 2022-08-02 2022-08-02 コークス炉の炉壁形状測定方法およびコークス炉の炉壁補修方法

Country Status (3)

Country Link
EP (1) EP4502111A1 (ja)
JP (1) JP7306602B1 (ja)
WO (1) WO2024028991A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082909A (ja) 2011-09-28 2013-05-09 Jfe Steel Corp コークス炉の炉壁診断方法およびコークス炉の炉壁補修方法
JP2014218557A (ja) 2013-05-07 2014-11-20 Jfeスチール株式会社 コークス炉の炉壁診断方法およびコークス炉の炉壁補修方法
JP2016038386A (ja) * 2014-08-08 2016-03-22 Jfeスチール株式会社 コークス炉炉長測定方法およびコークス炉炉体劣化評価方法
JP2019522089A (ja) * 2016-06-30 2019-08-08 サントル・ドゥ・ピロリーズ・デュ・シャルボン・ドゥ・マリエノ コークス炉の壁部分の形状を測定するための装置
JP2020002320A (ja) * 2018-06-29 2020-01-09 鎬榮 李 コークス炉とコークス炉のドアフレームの診断装置および診断システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082909A (ja) 2011-09-28 2013-05-09 Jfe Steel Corp コークス炉の炉壁診断方法およびコークス炉の炉壁補修方法
JP2014218557A (ja) 2013-05-07 2014-11-20 Jfeスチール株式会社 コークス炉の炉壁診断方法およびコークス炉の炉壁補修方法
JP2016038386A (ja) * 2014-08-08 2016-03-22 Jfeスチール株式会社 コークス炉炉長測定方法およびコークス炉炉体劣化評価方法
JP2019522089A (ja) * 2016-06-30 2019-08-08 サントル・ドゥ・ピロリーズ・デュ・シャルボン・ドゥ・マリエノ コークス炉の壁部分の形状を測定するための装置
JP2020002320A (ja) * 2018-06-29 2020-01-09 鎬榮 李 コークス炉とコークス炉のドアフレームの診断装置および診断システム

Also Published As

Publication number Publication date
EP4502111A1 (en) 2025-02-05
JPWO2024028991A1 (ja) 2024-02-08
JP7306602B1 (ja) 2023-07-11

Similar Documents

Publication Publication Date Title
JP6502435B2 (ja) コークス炉補修用のモジュールブロックの水平配列方法
JP5987605B2 (ja) コークス炉の炉壁診断方法およびコークス炉の炉壁補修方法
JP5867449B2 (ja) コークス炉の炉壁診断方法およびコークス炉の炉壁補修方法
JP6819703B2 (ja) 築炉方法
JP6197837B2 (ja) コークス炉炉長測定方法およびコークス炉炉体劣化評価方法
CN101605870B (zh) 炼焦炉壁面评价装置、炼焦炉的壁面修补辅助装置、炼焦炉壁面评价方法、炼焦炉的壁面修补辅助方法
WO2024028991A1 (ja) コークス炉の炉壁形状測定方法およびコークス炉の炉壁補修方法
JP4975479B2 (ja) コークス炉炭化室炉壁の破孔補修方法及び破孔補修装置
CN119403900A (zh) 焦炉的炉壁形状测量方法和焦炉的炉壁修补方法
JP5182006B2 (ja) 室式コークス炉におけるコークス押出し時の側面荷重の推定方法及び推定された側面荷重に基づく室式コークス炉の操業方法
JP2017160315A (ja) コークス炉の炉体設備における火入れ時の炉体乾燥方法
JP5991478B2 (ja) コークス炉の部分積替え補修方法
JP6387715B2 (ja) コークス炉の操業方法
JP5182005B2 (ja) 室式コークス炉におけるコークス押出し力の推定方法及び推定された押出し力に基づく室式コークス炉の操業方法
WO2024189804A1 (ja) 炭化室の使用可能期間予測方法および炭化室の補修方法
JP6502436B2 (ja) コークス炉の天井の補修方法
BR112024001364B1 (pt) Método de medição de formato de forro de forno de coque e método de reparo de parede de forno de coque
JP2019123839A (ja) コークス炉の溶射補修方法
JP7127551B2 (ja) コークス炉の炉壁補修方法
JP5920579B2 (ja) コークス炉炉体の管理方法
JP5432586B2 (ja) コークス炉炭化室炉壁状態評価方法
JP6502434B2 (ja) コークス炉の炉床煉瓦の補修方法
JP5093254B2 (ja) コークス炉の補修方法
JP5983921B2 (ja) コークスケーキ押出し時の突き上がり量測定方法およびその装置
JP6543310B2 (ja) コークス炉のピニオンウォールに隣接する燃焼室の構築方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023523548

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953980

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024001364

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112024001364

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240123

WWE Wipo information: entry into national phase

Ref document number: 2022953980

Country of ref document: EP

Ref document number: 22953980.4

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022953980

Country of ref document: EP

Effective date: 20241030

WWE Wipo information: entry into national phase

Ref document number: 202417088278

Country of ref document: IN