WO2024026992A1 - 一种利用粗制碳酸锂制备高纯碳酸锂的方法 - Google Patents

一种利用粗制碳酸锂制备高纯碳酸锂的方法 Download PDF

Info

Publication number
WO2024026992A1
WO2024026992A1 PCT/CN2022/119464 CN2022119464W WO2024026992A1 WO 2024026992 A1 WO2024026992 A1 WO 2024026992A1 CN 2022119464 W CN2022119464 W CN 2022119464W WO 2024026992 A1 WO2024026992 A1 WO 2024026992A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium carbonate
crude
purity
lithium hydroxide
calcium
Prior art date
Application number
PCT/CN2022/119464
Other languages
English (en)
French (fr)
Inventor
余萌
刘少葵
肖久成
刘勇奇
巩勤学
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024026992A1 publication Critical patent/WO2024026992A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the invention belongs to the technical field of battery materials, and particularly relates to a method for preparing high-purity lithium carbonate by utilizing crude lithium carbonate.
  • High-purity lithium carbonate usually refers to lithium carbonate with a purity of 99.99% (national standard 4N).
  • As a high-purity basic lithium salt it is an important raw material for the production of other high-purity lithium compounds and lithium alloys.
  • high-purity lithium carbonate is highly valued at home and abroad.
  • the increase in demand for pure lithium salts will inevitably drive the expansion of the high-purity lithium carbonate market.
  • High-purity lithium carbonate is a necessity for the magnetic materials industry, atomic energy industry, electronic industry and optical instrument industry.
  • the purity of crude lithium carbonate prepared from salt lake lithium ore is only about 70%.
  • the existing preparation process of using crude lithium carbonate to prepare high-purity lithium carbonate mostly involves adding EDTA (ethylenediaminetetraacetic acid) to remove the crude
  • EDTA ethylenediaminetetraacetic acid
  • the calcium and magnesium ions used in the production of lithium carbonate have been enriched in the EDTA solution after impurity removal, resulting in the purity of the obtained lithium carbonate not meeting the standard, and the cost being high, making it unable to meet the requirements of industry development.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the present invention proposes a method for preparing high-purity lithium carbonate using crude lithium carbonate.
  • the preparation method has low process cost and the purity of the prepared lithium carbonate is high, which can reach more than 99.995% (national standard 4.5N), and the process Stable and can be used for actual continuous production.
  • a method for preparing high-purity lithium carbonate using crude lithium carbonate which is characterized in that it includes the following steps:
  • step S2 Decalcify the causticizing liquid obtained in step S1 and then evaporate and concentrate it. After the lithium hydroxide crystals are precipitated, centrifuge to obtain the lithium hydroxide mother liquor and lithium hydroxide crystals, and redissolve the lithium hydroxide crystals to obtain hydrogen. Lithium oxide heavy solution;
  • step S3 Perform primary pressure filtration on the heavy lithium hydroxide solution obtained in step S2 to obtain primary filtrate and primary filter residue, pass carbon dioxide into the primary filtrate to perform a carbonization reaction, and perform secondary pressure filtration to obtain secondary filter residue. with secondary filtrate;
  • step S4 Slurry the secondary filter residue obtained in step S3, wash and dry it to obtain high-purity lithium carbonate.
  • step S1 it also includes the following steps: slurrying the calcium slag obtained in step S1, filtering to obtain wash water, returning the wash water to step S1 to be used as pulping bottom liquid, and controlling the pulping solid-liquid ratio g/mL to 1: (3-5), for example: the solid-liquid ratio g/mL of pulping is controlled to be 1:5.
  • carbon dioxide is introduced to adjust its pH to 8-10.
  • carbon dioxide is introduced to adjust the pH to 8-9.5.
  • the pH is controlled to 9.
  • the reaction temperature of the causticization reaction is 60-100°C, and the reaction time of the causticization reaction is 1-2 h.
  • the reaction temperature of the causticization reaction is 60-70°C, for example: the reaction temperature of the causticization reaction is 65°C, and the reaction time of the causticization reaction is 1-1.5h, For example: the reaction time of the causticization reaction is 1 hour.
  • step S1 the added amount of calcium hydroxide is controlled to be 1.1-1.3 times the theoretical amount.
  • step S1 the added amount of calcium hydroxide is controlled to be 1.1-1.25 times the theoretical amount.
  • the added amount of calcium hydroxide is controlled to be 1.2 times the theoretical amount.
  • step S1 when the crude lithium carbonate and calcium hydroxide are slurried, the solid-liquid ratio g/mL is controlled to (10-14):1.
  • step S1 when the crude lithium carbonate and calcium hydroxide are pulped, the solid-liquid ratio g/mL is controlled to (10-13):1, for example: the crude lithium carbonate and calcium hydroxide are pulped.
  • the method also includes the following steps: returning part of the lithium hydroxide mother liquor obtained in step S2 to the front end to precipitate crude carbon, which is used as raw material for crude lithium carbonate in S1.
  • step S2 after calcium removal from the causticizing liquid, its calcium content is lower than 0.01g/L.
  • step S2 centrifugation is performed when the solution slurry ratio in the causticizing liquid is 45%-55%.
  • step S2 centrifugation is performed when the solution slurry ratio in the causticizing liquid is 47%-52%, for example: centrifugation is performed when the solution slurry ratio in the causticizing liquid is 50%.
  • the density of the obtained heavy lithium hydroxide solution is 1.1-1.3g/cm 3 .
  • the method also includes the following steps: returning the primary filter residue obtained in step S3 to step S1 for causticization.
  • the method also includes the following step: returning the secondary filtrate obtained in step S3 to step S1 for causticization.
  • the temperature of the carbonization reaction is 60-90°C.
  • the temperature of the carbonization reaction is 70-90°C, for example: the temperature of the carbonization reaction is 80°C.
  • the carbon dioxide introduction rate is controlled to 300-500m 3 /h.
  • step S3 the carbon dioxide introduction rate is controlled to 300-400m 3 /h, for example: the carbon dioxide introduction rate is controlled to 300m 3 /h.
  • step S3 the end-point pH of the carbonization reaction is controlled to be 11.5-13.
  • step S3 the end-point pH of the carbonization reaction is controlled to be 11.5-12.5, for example: the end-point pH of the carbonization reaction is controlled to be 12.
  • the method also includes the following steps: returning the washing water obtained after washing in step S4 to step S2 to redissolve the lithium hydroxide crystal.
  • step S4 when slurrying the secondary filter residue, the solid-liquid ratio g/mL is controlled to be 1: (3-5).
  • step S4 when slurrying the secondary filter residue, the solid-liquid ratio g/mL is controlled to be 1: (3-4), for example: when the secondary filter residue is slurried, the solid-liquid ratio g/mL is controlled. mL is 1:3.
  • the washing time is 0.5-1 h.
  • the washing time is 0.5-0.7h, for example: the washing time is 0.5h.
  • the temperature of the water used for washing is 80-100°C.
  • the temperature of the water used for washing is 80-90°C.
  • the temperature of the water used for washing is 85°C.
  • the present invention uses crude lithium carbonate to prepare high-purity lithium carbonate.
  • the method is based on the causticizing reaction of crude lithium carbonate and calcium hydroxide to obtain causticizing liquid and calcium slag.
  • the reacted calcium slag can be pulped with distilled water under the premise of introducing carbon dioxide, filtered to obtain washing water with a specific pH, and returned to step S1 to be used as the pulping bottom liquid.
  • the lithium in the calcium slag can be washed.
  • the form of water is recycled back to the front-end causticization, while carbon dioxide neutralizes hydroxyl radicals, avoiding the toxic leaching of calcium slag and achieving high recovery of lithium.
  • the operation is simple and stable, and the obtained high purity
  • the purity of lithium carbonate can reach more than 99.995% (national standard 4.5N), thus meeting the needs of related high-purity lithium carbonate application industries;
  • the quality of the lithium hydroxide obtained by concentrating the caustic liquid after decalcification can be determined according to the content of impurity ions, and can also be returned to the front end through the mother liquor for sedimentation.
  • Carbon is controlled to avoid the enrichment of soluble impurities such as Na, K, S, etc. during evaporation and concentration, causing the quality of the crystallized lithium hydroxide to be unqualified, thereby causing the subsequent re-dissolution of the lithium hydroxide solution due to Na, K, S, etc. Too high soluble impurities cause high-purity lithium carbonate to fail, so it can be produced continuously;
  • the primary filter residue obtained by the method of preparing high-purity lithium carbonate from crude lithium carbonate according to the present invention can be returned to the front end for causticization after carbonization and pressure filtration, and the lithium carbonate washed liquid (secondary filtrate) is used as a heavy solution, thereby maximizing the degree of lithium recovery.
  • Figure 1 is a schematic process flow diagram of Embodiment 1 of the present invention.
  • a method for preparing high-purity lithium carbonate using crude lithium carbonate including the following steps:
  • S2 Add the calcium slag of S1 to distilled water for pulping.
  • carbon dioxide is introduced to adjust the pH to 9.
  • Filter to obtain qualified calcium slag and washing water.
  • the washing water is returned to S1 for use.
  • the pulping bottom liquid and calcium slag are transported to the back end and stored in the warehouse for processing;
  • S3 The causticizing liquid obtained in S1 is decalcified by resin and then evaporated and concentrated to precipitate lithium hydroxide crystals, control the crystal slurry ratio at 50%, and centrifuge to obtain lithium hydroxide mother liquor and lithium hydroxide crystals;
  • S5 Perform a primary press filtration of the heavy lithium hydroxide solution of S4 to obtain primary filtrate and primary filter residue, and return the primary filter residue to S1 for causticization;
  • S7 Slurry the secondary filter residue obtained in S6 and obtain high-purity lithium carbonate after washing and drying.
  • the temperature of the distilled water for washing is 85°C
  • the pulping time is 0.5h
  • the pulping solid-liquid ratio g/mL is 1:3.
  • the washing water returns to S4 for redissolution.
  • the high-purity lithium carbonate prepared in this example was detected using an inductively coupled plasma optical emission spectrometer (ICP-OES) and an atomic absorption spectrophotometer. The detection results are shown in Table 1.
  • a method for preparing high-purity lithium carbonate using crude lithium carbonate including the following steps:
  • S2 Add S1 calcium slag to distilled water for pulping.
  • the pulping solid-liquid ratio g/mL 1:5.
  • carbon dioxide is introduced to adjust the pH to 9.
  • Filter to obtain qualified calcium slag and washing water.
  • the washing water is returned to S1 for production.
  • the slurry bottom liquid and calcium slag are transported to the back end and stored in the warehouse for processing;
  • S3 The causticizing liquid obtained in S1 is decalcified by resin and then evaporated and concentrated to precipitate lithium hydroxide crystals, control the crystal slurry ratio at 50%, and centrifuge to obtain lithium hydroxide mother liquor and lithium hydroxide crystals;
  • S5 Perform a primary press filtration of the heavy lithium hydroxide solution of S4 to obtain primary filtrate and primary filter residue, and return the primary filter residue to S1 for causticization;
  • S7 Slurry the secondary filter residue obtained in S6 and obtain high-purity lithium carbonate after washing and drying.
  • the temperature of the distilled water for washing is 85°C
  • the pulping time is 0.5h
  • the pulping solid-liquid ratio g/mL is 1:3.
  • the washing water returns to S4 for redissolution.
  • the high-purity lithium carbonate prepared in this example was detected using an inductively coupled plasma optical emission spectrometer (ICP-OES) and an atomic absorption spectrophotometer. The detection results are shown in Table 2.
  • a method for preparing high-purity lithium carbonate using crude lithium carbonate including the following steps:
  • S2 Add S1 calcium slag to distilled water for pulping.
  • carbon dioxide is introduced to adjust the pH to 9.
  • Filter to obtain qualified calcium slag and washing water.
  • the washing water is returned to S1 for production.
  • the slurry bottom liquid and calcium slag are transported to the back end and stored in the warehouse for processing;
  • S3 The causticizing liquid obtained in S1 is decalcified by resin and then evaporated and concentrated to precipitate lithium hydroxide crystals.
  • the crystal slurry ratio is controlled at 50%, and centrifuged to obtain lithium hydroxide mother liquor and lithium hydroxide crystals;
  • S5 Perform a primary press filtration of the heavy lithium hydroxide solution of S4 to obtain primary filtrate and primary filter residue, and return the primary filter residue to S1 for causticization;
  • S7 Slurry the secondary filter residue obtained in S6 and obtain high-purity lithium carbonate after washing and drying.
  • the temperature of the distilled water for washing is 85°C
  • the pulping time is 0.5h
  • the pulping solid-liquid ratio g/mL is 1:3.
  • the washing water returns to S4 for redissolution.
  • the high-purity lithium carbonate prepared in this example was detected using an inductively coupled plasma optical emission spectrometer (ICP-OES) and an atomic absorption spectrophotometer. The detection results are shown in Table 3.
  • a method for preparing high-purity lithium carbonate using crude lithium carbonate including the following steps:
  • S2 Add S1 calcium slag to distilled water for pulping.
  • carbon dioxide is introduced to adjust the pH to 9.
  • Filter to obtain qualified calcium slag and washing water.
  • the washing water is returned to S1 for production.
  • the slurry bottom liquid and calcium slag are transported to the back end and stored in the warehouse for processing;
  • S3 The causticizing liquid obtained in S1 is decalcified by resin and then evaporated and concentrated to precipitate lithium hydroxide crystals.
  • the crystal slurry ratio is controlled at 50%, and centrifuged to obtain lithium hydroxide mother liquor and lithium hydroxide crystals;
  • S5 Perform a primary press filtration of the heavy lithium hydroxide solution of S4 to obtain primary filtrate and primary filter residue, and return the primary filter residue to S1 for causticization;
  • S7 Slurry the secondary filter residue obtained in S6 and obtain high-purity lithium carbonate after washing and drying.
  • the temperature of the distilled water for washing is 85°C
  • the pulping time is 0.5h
  • the pulping solid-liquid ratio g/mL is 1:3.
  • the washing water returns to S4 for redissolution.
  • the high-purity lithium carbonate prepared in this example was detected using an inductively coupled plasma optical emission spectrometer (ICP-OES) and an atomic absorption spectrophotometer. The detection results are shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种利用粗制碳酸锂制备高纯碳酸锂的方法,包括以下步骤:S1:将粗制碳酸锂与氢氧化钙制浆混合进行苛化反应,过滤得到钙渣和苛化液;S2:将步骤S1得到的所述苛化液除钙后蒸发浓缩,待氢氧化锂晶体析出后,离心得到氢氧化锂母液和氢氧化锂晶体,并将所述氢氧化锂晶体重溶得到氢氧化锂重溶液;S3:将步骤S2得到的所述氢氧化锂重溶液进行一次压滤,得到一次滤液与一次滤渣,并向所述一次滤液中通入二氧化碳进行碳化反应,经二次压滤,得到二次滤渣与二次滤液;S4:将步骤S3所得所述二次滤渣制浆经洗涤干燥后得到高纯碳酸锂。该制备方法工艺成本低,制备得到的碳酸锂的纯度高,过程稳定,可用于实际连续生产。

Description

一种利用粗制碳酸锂制备高纯碳酸锂的方法 技术领域
本发明属于电池材料技术领域,特别涉及一种利用粗制碳酸锂制备高纯碳酸锂的方法。
背景技术
三元材料需求量剧增,碳酸锂也迎来需求爆发期,碳酸锂行业存在新的机遇和巨大潜力。高纯碳酸锂通常是指纯度能达到99.99%(国标4N)的碳酸锂,其作为一种高纯的基础锂盐,是生产其它高纯锂化合物及锂合金的重要原料,现在国内外对高纯锂盐需求量的增加必然带动高纯碳酸锂市场的扩大。高纯度的碳酸锂是磁性材料行业、原子能工业、电子工业和光学仪器行业等的必需品。
从盐湖锂矿石中制备得到的粗制碳酸锂的纯度仅在70%左右,现有的利用粗制碳酸锂制备高纯碳酸锂的制备工艺,多通过添加EDTA(乙二胺四乙酸)除去粗制碳酸锂中的钙镁离子,其EDTA溶液除杂后一直在其溶液中富集,导致得到的碳酸锂的纯度不达标,同时成本也较高,无法满足行业发展的要求。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种利用粗制碳酸锂制备高纯碳酸锂的方法,该制备方法工艺成本低,制备得到的碳酸锂的纯度高,能达到99.995%(国标4.5N)以上,且过程稳定,可用于实际连续生产。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种利用粗制碳酸锂制备高纯碳酸锂的方法,其特征在于,包括以下步骤:
S1:将粗制碳酸锂与氢氧化钙制浆混合进行苛化反应,过滤得到钙渣和苛化液;
S2:将步骤S1得到的所述苛化液除钙后蒸发浓缩,待氢氧化锂晶体析出后,离心得到氢氧化锂母液和氢氧化锂晶体,并将所述氢氧化锂晶体重溶得到氢氧化锂重溶液;
S3:将步骤S2得到的所述氢氧化锂重溶液进行一次压滤,得到一次滤液与一次滤渣,并向所述一次滤液中通入二氧化碳进行碳化反应,经二次压滤,得到二次滤渣与二次滤液;
S4:将步骤S3所得所述二次滤渣制浆经洗涤干燥后得到高纯碳酸锂。
优选的,还包括如下步骤:将步骤S1得到的所述钙渣制浆,过滤得到洗水,将所述洗水返回步骤S1用作制浆底液,制浆固液比g/mL控制为1:(3-5),例如:制浆固液比g/mL控制为1:5。
优选的,所述钙渣制浆后通入二氧化碳调节其pH为8-10。
进一步优选的,所述钙渣制浆后通入二氧化碳调节其pH为8-9.5.例如:pH控制为9。
优选的,步骤S1中,所述苛化反应的反应温度为60-100℃,所述苛化反应的反应时间为1-2h。
进一步优选的,步骤S1中,所述苛化反应的反应温度为60-70℃,例如:所述苛化反应的反应温度为65℃,所述苛化反应的反应时间为1-1.5h,例如:所述苛化反应的反应时间为1h。
优选的,步骤S1中,所述氢氧化钙的加入量控制为理论的1.1-1.3倍。
进一步优选的,步骤S1中,所述氢氧化钙的加入量控制为理论的1.1-1.25倍,例如:所述氢氧化钙的加入量控制为理论的1.2倍。
优选的,步骤S1中,所述粗制碳酸锂与氢氧化钙制浆时控制固液比g/mL为(10-14):1。
进一步优选的,步骤S1中,所述粗制碳酸锂与氢氧化钙制浆时控制固液比g/mL为(10-13):1,例如:所述粗制碳酸锂与氢氧化钙制浆时控制固液比g/mL为12:1。
优选的,还包括如下步骤:将步骤S2得到的部分所述氢氧化锂母液返回到前端沉粗碳,用作S1粗制碳酸锂原料。
优选的,步骤S2中,所述苛化液除钙后,其钙含量低于0.01g/L。
优选的,步骤S2中,当所述苛化液中溶液晶浆比为45%-55%时进行离心。
进一步优选的,步骤S2中,当所述苛化液中溶液晶浆比为47%-52%时进行离心,例如:当所述苛化液中溶液晶浆比为50%时进行离心。
优选的,步骤S2中,得到的所述氢氧化锂重溶液的密度为1.1-1.3g/cm 3
进一步优选的,步骤S2中,得到的所述氢氧化锂重溶液的密度为1.1-1.2g/cm 3,例如:得到的所述氢氧化锂重溶液的密度为1.15g/cm 3。优选的,还包括如下步骤:将步骤S3得到的所述一次滤渣返回步骤S1进行苛化。
优选的,还包括如下步骤:将步骤S3得到的所述二次滤液返回步骤S1进行苛化。
优选的,步骤S3中,所述碳化反应的温度为60-90℃。
进一步优选的,步骤S3中,所述碳化反应的温度为70-90℃,例如:所述碳化反应的温度为80℃。
优选的,步骤S3中,所述二氧化碳通入速率控制为300-500m 3/h。
进一步优选的,步骤S3中,所述二氧化碳通入速率控制为300-400m 3/h,例如:所述二氧化碳通入速率控制为300m 3/h。
优选的,步骤S3中,所述碳化反应的终点pH控制为11.5-13。
进一步优选的,步骤S3中,所述碳化反应的终点pH控制为11.5-12.5,例如:所述碳化反应的终点pH控制为12。
优选的,还包括如下步骤:将步骤S4洗涤后得到的洗水返回步骤S2中对所述氢氧化锂晶体进行重溶。
优选的,步骤S4中,将所述二次滤渣制浆时控制固液比g/mL为1:(3-5)。
进一步优选的,步骤S4中,将所述二次滤渣制浆时控制固液比g/mL为1:(3-4),例如:将所述二次滤渣制浆时控制固液比g/mL为1:3。
优选的,步骤S4中,所述洗涤的时间为0.5-1h。
进一步优选的,步骤S4中,所述洗涤的时间为0.5-0.7h,例如:所述洗涤的时间为0.5h。
优选的,步骤S4中,所述洗涤用到的水的温度为80-100℃。
进一步优选的,步骤S4中,所述洗涤用到的水的温度为80-90℃,例如:所述洗涤用到的水的温度为85℃。
本发明的有益效果是:
(1)本发明利用粗制碳酸锂制备高纯碳酸锂的方法基于粗制碳酸锂与氢氧化钙进行苛化反应,得到苛化液与钙渣。可以利用反应后的钙渣在通入二氧化碳的前提下与蒸馏水制浆,过滤得到特定pH的洗水并将洗水返回步骤S1用作制浆底液,如此可将钙渣中的锂以洗水的形式回收返回到前端苛化,同时二氧化碳中和氢氧根,避免钙渣毒性浸出不合格的同时实现对锂的高回收,对比传统多次洗水操作简单且稳定,且得到的高纯碳酸锂的纯度能达到99.995%(国标4.5N)以上,从而能满足相关高纯碳酸锂运用行业的需求;
(2)本发明利用粗制碳酸锂制备高纯碳酸锂的方法中苛化液经除钙后所浓缩得到的氢氧化锂品质可根据杂质离子含量高低,还可通过母液返回到前端进行沉粗碳进行控制,避免Na、K、S等可溶杂质在蒸发浓缩中富集,造成所结晶的氢氧化锂品质不合格,从而使得后面重溶后的氢氧化锂溶液因Na、K、S等可溶杂质过高导致高纯碳酸锂不合格,故可连续生产;
(3)本发明利用粗制碳酸锂制备高纯碳酸锂的方法得到的一次滤渣可以经过碳化压滤后返回前端苛化,碳酸锂洗涤后液(二次滤液)用作重溶液,从而能最大程度的回收锂。
附图说明
图1为本发明实施例1的工艺流程示意图。
具体实施方式
下面结合具体实施例对本发明做进一步的说明。
实施例1:
一种利用粗制碳酸锂制备高纯碳酸锂的方法,如图1所示,包括以下步骤:
S1:将粗制碳酸锂与氢氧化钙制浆混合进行苛化,其中苛化反应的温度为65℃,苛化反应的时间为1h,氢氧化钙加入量为理论的1.2倍,固液比g/mL=12:1,过滤得到钙渣和苛化液;
S2:将S1的钙渣加入蒸馏水制浆,制浆固液比g/mL=1:5,同时通入二氧化碳调节其pH为9,过滤得到合格钙渣和洗水,洗水返回S1用作制浆底液,钙渣走入后端入库处理;
S3:将S1得到的苛化液进行树脂除钙后进行蒸发浓缩,使氢氧化锂晶体析出,控制晶浆比在50%,离心得到氢氧化锂母液和氢氧化锂晶体;
S4:将S3得到的部分氢氧化锂母液返回到前端沉粗碳,用作S1粗制碳酸锂原料;氢氧化锂晶体加入水进行重溶得到氢氧化锂重溶液;氢氧化锂重溶液的密度控制为1.15g/cm 3
S5:将S4的氢氧化锂重溶液进行一次压滤得到一次滤液与一次滤渣,一次滤渣返回S1苛化;
S6:向S5所得的一次滤液中通入二氧化碳进行碳化反应,碳化温度为80℃,二氧化碳通入速率为300m 3/h,终点pH控制为12,二次压滤,得到二次滤渣与二次滤液,二次滤液返回步骤S5作为氢氧化锂重溶液;
S7:将S6所得的二次滤渣制浆经洗涤干燥后得到高纯碳酸锂,洗涤的蒸馏水温度为85℃,制浆时间为0.5h,制浆固液比g/mL为1:3,其洗水返回S4进行重溶。
对本实施例制得的高纯碳酸锂,采用电感耦合等离子体发射光谱仪(ICP-OES)和原子吸收分光光度计进行检测,检测结果如表1所示。
表1:实施例1粗制碳酸锂及高纯碳酸锂组成
Figure PCTCN2022119464-appb-000001
实施例2:
一种利用粗制碳酸锂制备高纯碳酸锂的方法,包括以下步骤:
S1:将粗制碳酸锂与氢氧化钙制浆混合进行苛化,其中苛化反应的温度为75℃,苛化反应的时间为1h,氢氧化钙加入量为理论的1.3倍,固液比g/mL=12:1,过滤得到钙渣和苛化液;
S2:将S1钙渣加入蒸馏水制浆,制浆固液比g/mL=1:5,同时通入二氧化碳调节其pH 为9,过滤得到合格钙渣和洗水,洗水返回S1用作制浆底液,钙渣走入后端入库处理;
S3:将S1得到的苛化液进行树脂除钙后进行蒸发浓缩,使氢氧化锂晶体析出,控制晶浆比在50%,离心得到氢氧化锂母液和氢氧化锂晶体;
S4:将S3得到的部分氢氧化锂母液返回到前端沉粗碳,;用作S1粗制碳酸锂原料;氢氧化锂晶体加入水进行重溶得到氢氧化锂重溶液;氢氧化锂重溶液的密度控制为1.15g/cm 3
S5:将S4的氢氧化锂重溶液进行一次压滤得到一次滤液与一次滤渣,一次滤渣返回S1苛化;
S6:向S5所得的一次滤液中通入二氧化碳进行碳化反应,碳化温度为80℃,二氧化碳通入速率为300m 3/h,终点pH控制为12,二次压滤,得到二次滤渣与二次滤液,二次滤液返回步骤S5作为氢氧化锂重溶液;
S7:将S6所得的二次滤渣制浆经洗涤干燥后得到高纯碳酸锂,洗涤的蒸馏水温度为85℃,制浆时间为0.5h,制浆固液比g/mL为1:3,其洗水返回S4进行重溶。
对本实施例制得的高纯碳酸锂,采用电感耦合等离子体发射光谱仪(ICP-OES)和原子吸收分光光度计进行检测,检测结果如表2所示。
表2:实施例2粗制碳酸锂及高纯碳酸锂组成
Figure PCTCN2022119464-appb-000002
实施例3:
一种利用粗制碳酸锂制备高纯碳酸锂的方法,包括以下步骤:
S1:将粗制碳酸锂与氢氧化钙制浆混合进行苛化,其中苛化反应的温度为75℃,苛化反应的时间为1h,氢氧化钙加入量为理论的1.3倍,固液比g/mL=12:1,过滤得到钙渣和苛化液;
S2:将S1钙渣加入蒸馏水制浆,制浆固液比g/mL=1:5,同时通入二氧化碳调节其pH为9,过滤得到合格钙渣和洗水,洗水返回S1用作制浆底液,钙渣走入后端入库处理;
S3:将S1得到的苛化液进行树脂除钙后进行蒸发浓缩,使氢氧化锂晶体析出,晶浆比控制在50%,离心得到氢氧化锂母液和氢氧化锂晶体;
S4:将S3得到的部分氢氧化锂母液返回到前端沉粗碳,用作S1粗制碳酸锂原料;氢氧化锂晶体加入水进行重溶得到氢氧化锂重溶液;氢氧化锂重溶液的密度控制为1.15g/cm 3
S5:将S4的氢氧化锂重溶液进行一次压滤得到一次滤液与一次滤渣,一次滤渣返回S1苛化;
S6:向S5所得的一次滤液中通入二氧化碳进行碳化反应,碳化温度为70℃,二氧化碳通入速率为300m 3/h,终点pH控制为13,二次压滤,得到二次滤渣与二次滤液,二次滤液返回步骤S5作为氢氧化锂重溶液;
S7:将S6所得的二次滤渣制浆经洗涤干燥后得到高纯碳酸锂,洗涤的蒸馏水温度为85℃,制浆时间为0.5h,制浆固液比g/mL为1:3,其洗水返回S4进行重溶。
对本实施例制得的高纯碳酸锂,采用电感耦合等离子体发射光谱仪(ICP-OES)和原子吸收分光光度计进行检测,检测结果如表3所示。
表3:实施例3粗制碳酸锂及高纯碳酸锂组成
Figure PCTCN2022119464-appb-000003
实施例4:
一种利用粗制碳酸锂制备高纯碳酸锂的方法,包括以下步骤:
S1:将粗制碳酸锂与氢氧化钙制浆混合进行苛化,其中苛化反应的温度为75℃,苛化反应的时间为1h,氢氧化钙加入量为理论的1.3倍,固液比g/mL=12:1,过滤得到钙渣和苛化液;
S2:将S1钙渣加入蒸馏水制浆,制浆固液比g/mL=1:5,同时通入二氧化碳调节其pH为9,过滤得到合格钙渣和洗水,洗水返回S1用作制浆底液,钙渣走入后端入库处理;
S3:将S1得到的苛化液进行树脂除钙后进行蒸发浓缩,使氢氧化锂晶体析出,晶浆比控制在50%,离心得到氢氧化锂母液和氢氧化锂晶体;
S4:将S3得到的部分氢氧化锂母液返回到前端沉粗碳,用作S1粗制碳酸锂原料;氢氧 化锂晶体加入水进行重溶得到氢氧化锂重溶液;氢氧化锂重溶液的密度控制为1.25g/cm 3
S5:将S4的氢氧化锂重溶液进行一次压滤得到一次滤液与一次滤渣,一次滤渣返回S1苛化;
S6:向S5所得的一次滤液中通入二氧化碳进行碳化反应,碳化温度为70℃,二氧化碳通入速率为300m 3/h,终点pH控制为12,二次压滤,得到二次滤渣与二次滤液,二次滤液返回步骤S5作为氢氧化锂重溶液;
S7:将S6所得的二次滤渣制浆经洗涤干燥后得到高纯碳酸锂,洗涤的蒸馏水温度为85℃,制浆时间为0.5h,制浆固液比g/mL为1:3,其洗水返回S4进行重溶。
对本实施例制得的高纯碳酸锂,采用电感耦合等离子体发射光谱仪(ICP-OES)和原子吸收分光光度计进行检测,检测结果如表4所示。
表4:实施例4粗制碳酸锂及高纯碳酸锂组成
Figure PCTCN2022119464-appb-000004
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种利用粗制碳酸锂制备高纯碳酸锂的方法,其特征在于,包括以下步骤:
    S1:将粗制碳酸锂与氢氧化钙制浆混合进行苛化反应,过滤得到钙渣和苛化液;
    S2:将步骤S1得到的所述苛化液除钙后蒸发浓缩,待氢氧化锂晶体析出后,离心得到氢氧化锂母液和氢氧化锂晶体,并将所述氢氧化锂晶体重溶得到氢氧化锂重溶液;
    S3:将步骤S2得到的所述氢氧化锂重溶液进行一次压滤,得到一次滤液与一次滤渣,并向所述一次滤液中通入二氧化碳进行碳化反应,经二次压滤,得到二次滤渣与二次滤液;
    S4:将步骤S3所得所述二次滤渣制浆经洗涤干燥后得到高纯碳酸锂。
  2. 根据权利要求1所述的一种利用粗制碳酸锂制备高纯碳酸锂的方法,其特征在于,还包括如下步骤:将步骤S1得到的所述钙渣制浆,过滤得到洗水,将所述洗水返回步骤S1用作制浆底液。
  3. 根据权利要求2所述的一种利用粗制碳酸锂制备高纯碳酸锂的方法,其特征在于,所述钙渣制浆后通入二氧化碳调节其pH为8-10。
  4. 根据权利要求1所述的一种利用粗制碳酸锂制备高纯碳酸锂的方法,其特征在于,步骤S1中,所述粗制碳酸锂与氢氧化钙制浆时控制固液比g/mL为(10-14):1。
  5. 根据权利要求1所述的一种利用粗制碳酸锂制备高纯碳酸锂的方法,其特征在于,还包括如下步骤:将步骤S2得到的部分所述氢氧化锂母液返回到前端沉粗碳,用作S1粗制碳酸锂原料。
  6. 根据权利要求1所述的一种利用粗制碳酸锂制备高纯碳酸锂的方法,其特征在于,步骤S2中,所述苛化液除钙后,其钙含量低于0.01g/L。
  7. 根据权利要求1所述的一种利用粗制碳酸锂制备高纯碳酸锂的方法,其特征在于,还包括如下步骤:将步骤S3得到的所述一次滤渣返回步骤S1进行苛化。
  8. 根据权利要求1所述的一种利用粗制碳酸锂制备高纯碳酸锂的方法,其特征在于,还包括如下步骤:将步骤S3得到的所述二次滤液返回步骤S3作为氢氧化锂重溶液。
  9. 根据权利要求1所述的一种利用粗制碳酸锂制备高纯碳酸锂的方法,其特征在于,还包括如下步骤:将步骤S4洗涤后得到的洗水返回步骤S2中对所述氢氧化锂晶体进行重溶。
  10. 根据权利要求1所述的一种利用粗制碳酸锂制备高纯碳酸锂的方法,其特征在于,步骤S1中,所述苛化反应的反应温度为60-100℃,所述苛化反应的反应时间为1-2h。
PCT/CN2022/119464 2022-08-01 2022-09-16 一种利用粗制碳酸锂制备高纯碳酸锂的方法 WO2024026992A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210915192.3 2022-08-01
CN202210915192.3A CN115340109A (zh) 2022-08-01 2022-08-01 一种利用粗制碳酸锂制备高纯碳酸锂的方法

Publications (1)

Publication Number Publication Date
WO2024026992A1 true WO2024026992A1 (zh) 2024-02-08

Family

ID=83949985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119464 WO2024026992A1 (zh) 2022-08-01 2022-09-16 一种利用粗制碳酸锂制备高纯碳酸锂的方法

Country Status (2)

Country Link
CN (1) CN115340109A (zh)
WO (1) WO2024026992A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207297A (en) * 1978-03-27 1980-06-10 Foote Mineral Company Process for producing high purity lithium carbonate
CN104326495A (zh) * 2014-07-15 2015-02-04 多氟多化工股份有限公司 一种利用粗碳酸锂制备高纯碳酸锂联产氟化锂的方法
CN106673022A (zh) * 2016-12-23 2017-05-17 江西合纵锂业科技有限公司 一种从电池级碳酸锂生产电池级一水氢氧化锂的方法
CN110950363A (zh) * 2019-12-25 2020-04-03 广西天源新能源材料有限公司 一种应用新型联合除钙的电池级单水氢氧化锂生产工艺
CN112777615A (zh) * 2021-01-28 2021-05-11 江西云威新材料有限公司 一种低碳型电池级氢氧化锂制备方法
CN114105172A (zh) * 2021-12-20 2022-03-01 福州大学 一种粗制碳酸锂石灰苛化碳化生产高纯碳酸锂的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106517256A (zh) * 2016-12-23 2017-03-22 江西合纵锂业科技有限公司 一种以碳酸锂为原料生产一水氢氧化锂的方法
CN110330041B (zh) * 2019-07-22 2022-06-14 重庆锦弘新材料技术工程有限公司 一种低品级碳酸锂的高值化利用方法
CN110395748A (zh) * 2019-08-27 2019-11-01 福建常青新能源科技有限公司 碳酸锂苛化法制备氢氧化锂的方法
CN112939034B (zh) * 2021-03-19 2023-08-15 江西云威新材料有限公司 一种工业级碳酸锂制备电池级无水氢氧化锂的方法
CN113651343A (zh) * 2021-08-27 2021-11-16 中国船舶重工集团公司第七一八研究所 一种回收空气净化用氢氧化锂制备高纯碳酸锂的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207297A (en) * 1978-03-27 1980-06-10 Foote Mineral Company Process for producing high purity lithium carbonate
CN104326495A (zh) * 2014-07-15 2015-02-04 多氟多化工股份有限公司 一种利用粗碳酸锂制备高纯碳酸锂联产氟化锂的方法
CN106673022A (zh) * 2016-12-23 2017-05-17 江西合纵锂业科技有限公司 一种从电池级碳酸锂生产电池级一水氢氧化锂的方法
CN110950363A (zh) * 2019-12-25 2020-04-03 广西天源新能源材料有限公司 一种应用新型联合除钙的电池级单水氢氧化锂生产工艺
CN112777615A (zh) * 2021-01-28 2021-05-11 江西云威新材料有限公司 一种低碳型电池级氢氧化锂制备方法
CN114105172A (zh) * 2021-12-20 2022-03-01 福州大学 一种粗制碳酸锂石灰苛化碳化生产高纯碳酸锂的方法

Also Published As

Publication number Publication date
CN115340109A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
CN109850927B (zh) 一种制取高纯氢氧化锂的方法
CN110550643A (zh) 从析钠母液中回收制备电池级锂盐的工艺
CN114105172B (zh) 一种粗制碳酸锂石灰苛化碳化生产高纯碳酸锂的方法
CN101224908A (zh) 用高温结晶法生产硫酸锰的方法
CN111960445A (zh) 一种采用硫酸锂粗矿制备电池级碳酸锂并回收副产物的方法
CN109110788A (zh) 一种盐湖卤水中锂镁资源综合利用的方法
CN115321563A (zh) 一种硝酸有压浸出锂辉矿生产电池级碳酸锂的方法
CN112645365A (zh) 一种用盐湖矿石生产碳酸锂的工艺
CN114804158A (zh) 飞灰水洗副产氯化钾生产高纯度碳酸钾的方法
US3533742A (en) Production of titanium dioxide
CN113880149B (zh) 铜电解厂含铵盐粗制硫酸镍为主原料制备高纯硫酸镍工艺
CN112777615B (zh) 一种低碳型电池级氢氧化锂制备方法
CN102676809B (zh) 一种锑冶炼纯碱型砷碱渣脱锑后的浸出液砷碱分离方法
WO2024026992A1 (zh) 一种利用粗制碳酸锂制备高纯碳酸锂的方法
WO2024055520A1 (zh) 硫酸锂料液回收制备氢氧化锂的方法
CN113462906A (zh) 锂辉石矿石中锂的高效多功能浸出工艺
CN112758964A (zh) 一种用锂辉石和盐湖矿石混合生产碳酸锂的工艺
WO2023226551A1 (zh) 一种mvr系统渣样回收锂及硅的方法
WO2024045531A1 (zh) 一种含镁废液的处理方法
WO2023169432A1 (zh) 一种制备电池级氢氧化锂和碳酸锂的方法和系统
CN111592017A (zh) 一种锂辉石压浸制备电池级氯化锂的方法
CN211920886U (zh) 一种利用膜分离技术制备电池级碳酸锂的装置
CN109748310A (zh) 一种硫酸钡和碳酸钾混合溶液的分离方法
CN113387338A (zh) 一种基于硫酸锂生产锂离子电池原料的方法以及硫酸锂资源化利用工艺
CN111268702A (zh) 一种利用膜分离技术制备电池级碳酸锂的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953785

Country of ref document: EP

Kind code of ref document: A1