WO2024026907A1 - 一种氮化物led的制备与无损界面分离方法 - Google Patents

一种氮化物led的制备与无损界面分离方法 Download PDF

Info

Publication number
WO2024026907A1
WO2024026907A1 PCT/CN2022/111059 CN2022111059W WO2024026907A1 WO 2024026907 A1 WO2024026907 A1 WO 2024026907A1 CN 2022111059 W CN2022111059 W CN 2022111059W WO 2024026907 A1 WO2024026907 A1 WO 2024026907A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nitride
type
transparent substrate
atomic crystal
Prior art date
Application number
PCT/CN2022/111059
Other languages
English (en)
French (fr)
Inventor
王新强
刘放
陈兆营
郭昱成
盛博文
李铎
沈波
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学 filed Critical 北京大学
Publication of WO2024026907A1 publication Critical patent/WO2024026907A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the invention relates to the preparation technology of semiconductor light-emitting devices, and in particular to a method for preparation and lossless interface separation of nitride LEDs.
  • Wurtzite structure nitride semiconductors have a direct bandgap energy band structure, a wide range of continuously adjustable bandgap width and high carrier recombination efficiency. They are ideal for preparing ultraviolet and visible light-emitting diodes (LEDs) and micro-light-emitting diodes (Micro-LEDs).
  • the preferred material system has important applications in solid-state lighting, intelligent displays, sensory detection, biomedicine and other fields.
  • Nitride LEDs are usually heteroepitaxially prepared on a sapphire substrate. Nitride and sapphire are strongly coupled at the interface in the form of covalent bonds.
  • the industry mainly uses ultraviolet laser to ablate the underlying gallium nitride (GaN) to peel off the upper nitride epitaxial layer. Structure to prepare flexible light-emitting devices, wearable light-emitting devices and Micro-LED display chips. This technical route has two drawbacks. One is that it requires a GaN sacrificial layer with a thickness of 100nm to 1000nm.
  • the upper epitaxial structure nitride is separated by thermal decomposition after the sacrificial layer absorbs ultraviolet laser with a wavelength shorter than 365nm, which results in a waste of material. , the problem of low yield; the second is that the surface of the peeled-off surface of the nitride epitaxial structure is rough and there is gallium metal residue, which requires additional grinding, polishing, cleaning and other treatments for the peeled-off nitride epitaxial structure several microns thick, which is a complex and difficult process. big.
  • a weak coupling interface of the nitride epitaxial structure/two-dimensional material transition layer/sapphire substrate can be formed, and the weak coupling interface can be destroyed through physical separation and the sapphire substrate can be realized
  • the interface between the substrate and the nitride epitaxial structure is separated.
  • this method has problems such as limited size and interface quality of the separated nitride epitaxial structure, incompatibility with nitride LED and Micro-LED production line processes, and is not suitable for mass production.
  • the present invention proposes a method for the preparation and lossless interface separation of nitride LEDs.
  • the preparation and lossless interface separation method of nitride LEDs of the present invention includes the following steps:
  • a) Provide a transparent substrate, open an annular edge dividing groove on the back side of the transparent substrate, and form an annular edge dividing groove on the front side of the transparent substrate.
  • Two-dimensional atomic crystal layer, two-dimensional atomic crystal layer can exist stably in the nitride epitaxy temperature range, two-dimensional atomic crystal
  • the layers are connected by pure van der Waals force, forming a layered structure
  • the submicron pattern mask has multiple two-dimensional periodically arranged circular through holes.
  • the circular through holes The depth is consistent with the thickness of the sub-micron pattern mask;
  • the plasma source is used to emit irradiated atoms to bombard the two-dimensional atomic crystal layer with a sub-micron pattern mask, and the corresponding area of the two-dimensional atomic crystal layer under the circular through hole of the sub-micron pattern mask is modified to obtain the irradiation area , the layers in the irradiated area are connected by a mixture of van der Waals forces and covalent bonds.
  • the covalent bonds are formed by the participation of irradiated atoms, and the irradiated area is modified from a layered structure to a framework structure; other two-dimensional atomic crystal layers
  • the area that has not been bombarded by irradiated atoms is called the non-irradiated area.
  • the two-dimensional atomic crystal template includes a transparent substrate and a modified
  • the irradiated area of the modified two-dimensional atomic crystal layer has a framework structure
  • the non-irradiated area in the two-dimensional atomic crystal layer does not serve as a nitride nucleation site. Due to unsaturated covalent bonds, p-type nitride cannot be deposited. P-type nitride can only be deposited in the irradiation area with unsaturated covalent bonds, thereby forming p-type nitride micron columns on the two-dimensional atomic crystal template. array;
  • step 2 Change the deposition conditions. Compared with a) of step 2), the temperature becomes lower and the flow ratio of the III source and ammonia gas in the beam becomes larger.
  • step 3 Continue to deposit p-type nitride on the p-type nitride micron pillar array. , a p-type folding layer with a layered structure is formed on the p-type nitride micron pillar array, and the p-type folding layer covers the upper surface of the entire two-dimensional atomic crystal template;
  • a reflective thin layer, a bonding layer and a connection layer are formed in sequence from bottom to top.
  • the reflective thin layer, bonding layer and connection layer constitute the metal functional layer; the reflective thin layer is used to reflect visible light Visible light laser during laser directional ablation; the melting point of the metal used in the bonding layer is higher than the melting point of the metal used in the connection layer, and the bonding layer uses metal that easily absorbs nitrogen or nitrogen atoms, which is used to separate the metal functional layer in high temperature environments. Modified from metal to conductive n-type compound; the connection layer is used to melt after heating and solidify after cooling to room temperature, achieving solid connection between the upper and lower layers without forming a compound semiconductor structure;
  • the support substrate with the same lateral dimensions as the transparent substrate, place the support substrate on the connection layer, melt and solidify the connection layer, so that the support substrate is fixed on the connection layer, forming a composite structure, the composite structure includes the support substrate, metal
  • the visible light laser is incident from the back of the transparent substrate to destroy the two-dimensional atomic crystal
  • the irradiated area is absorbed more strongly, causing the temperature of the irradiated area with the frame structure to rise and ablation to occur, causing the upper layer to be nitrided.
  • the bottom surface of the p-type nitride micro-pillar array of the physical LED structure is separated from the transparent substrate, thereby realizing the transparent substrate and nitride
  • the overall structure of the physical LED structure, metal functional layer and supporting substrate is separated without damage, and a reusable transparent lining is obtained.
  • the transparent substrate is double-sided polished sapphire, gallium oxide or diamond, with a diameter of 50mm ⁇ 300mm, a thickness of 0.3mm ⁇ 3mm, and a visible light absorption rate of less than 1%; UV laser burning is used
  • the etching technology forms an edge dividing groove on the back of the transparent substrate.
  • the depth of the edge dividing groove is 1/3 to 2/3 of the thickness of the transparent substrate, and the width is 0.05mm to 0.2mm.
  • the distance between the outer edge of the edge dividing groove and the transparent substrate is Edge 3 ⁇ 5mm; use deposition or transfer method to form a two-dimensional atomic crystal layer on the front side of the transparent substrate.
  • the two-dimensional atomic crystal layer uses single crystal graphene or single crystal boron nitride, which can be used in nitrides at 600°C ⁇ 1050°C
  • the epitaxial temperature range exists stably, and the thickness is 1nm ⁇ 10nm.
  • the diameter of the circular through hole is n to 10n
  • n is the minimum diameter of the circular through hole, 0.5 ⁇ m ⁇ n ⁇ 50 ⁇ m
  • the period of the circular through hole is 1.5n ⁇ 15n
  • sub The material of the micron pattern mask is titanium Ti or aluminum Al
  • the thickness of the submicron pattern mask is 10nm to 50nm.
  • the ion source emits irradiated atoms as nitrogen plasma or oxygen plasma; the irradiation time and irradiation power of the ion source are controlled so that the area ratio of covalent bonds exceeds 25%, The longer the irradiation time, the greater the area proportion of covalent bonds, and the greater the irradiation power, the greater the area proportion of covalent bonds.
  • the control temperature is 800-1350°C, and the flow ratio of the Group III source and the ammonia gas in the beam is 1/4-3/4.
  • the Group III source is one or more of boron B, indium In and gallium Ga. Nitrogen N is provided by ammonia gas.
  • magnesium atom doping is used to prepare P-type materials to form p-type nitride micron pillars. It is BGaN or BInGaN, the boron B component is less than 10%, the carrier concentration is higher than 1 ⁇ 10 18 cm -3 , and the height of the p-type nitride micron pillar is 300nm to 1500nm.
  • step 2) the temperature is controlled to 750-1300°C, and the flow ratio of the Group III source to the ammonia gas in the beam is greater than 1.
  • the material of the p-type closed layer is BGaN or BInGaN, the B component is less than 10%, the carrier concentration is higher than 1 ⁇ 10 18 cm -3 , and the height is 300nm to 1500nm.
  • the multi-quantum well includes m layers of InGaN quantum dots with an In component higher than 20% and m+1 layers of AlGaN thin layers with an Al component lower than 20%, 3 ⁇ m ⁇ 20, InGaN
  • the height of the quantum dots is less than 3nm, and the height of the AlGaN thin layer is 5nm to 15nm.
  • the InGaN quantum dots serve as potential wells, and the AlGaN thin layers serve as potential barriers, and the two overlap.
  • the n-type layer adopts a composite layer composed of n-type GaN and n-type TiN.
  • the thickness of n-type GaN is 50nm ⁇ 1000nm
  • the thickness of n-type TiN is 5nm ⁇ 20nm
  • the carrier concentration of type TiN is higher than 1 ⁇ 10 18 cm -3 , and silicon atom doping is used to prepare N type during the deposition process.
  • the reflective thin layer is made of Al, with a thickness of 2 to 5 nm; the bonding layer is made of Ti, with a thickness of 20 to 80 nm; the connecting layer is made of In, which is completely melted at 180°C to 300°C and dropped to room temperature. When re-solidified, the thickness is 5 ⁇ 20nm.
  • the supporting substrate is made of corundum, quartz, stainless steel or silicon, and the thickness exceeds 0.3mm.
  • the connection layer is melted at 180°C-300°C, and the connection layer re-solidifies when it drops to room temperature to solidify.
  • an ultraviolet laser with a wavelength of no more than 325 nm is used to cut upward along the depth of the annular edge dividing groove, cutting through the entire upper structure, and realizing space division on both sides of the edge dividing groove.
  • a visible light band laser with a wavelength between 400nm and 760nm is used.
  • the separated nitride LED structure, metal functional layer and the overall structure of the supporting substrate are treated with high-temperature nitrogen.
  • the bonding layer becomes an alloy with the upper connection layer and the lower reflective layer under high temperature conditions, and is further combined with
  • the absorbed nitrogen forms a nitrogen-containing compound and has n-type conductive properties, thereby changing the metal functional layer from metal modification to a conductive n-type compound, which is connected to the support substrate and the nitride LED structure through covalent bonds respectively;
  • b) Deposit a metal mask on the bottom surface of the p-type nitride micro-pillar array of the nitride LED structure, and etch the gap area of the p-type nitride micro-pillar array until the n-type compound and p-type nitride micro-pillar array are exposed below the gap area.
  • the n-type compound exposed under the void area of the array is called the bottom platform of the p-type nitride micropillar array;
  • c) Deposit a passivation layer on the sidewall of the p-type nitride micro-pillar array of the nitride LED structure, and etch to remove the passivation layer of the bottom platform of the p-type nitride micro-pillar array and the bottom surface of the p-type nitride micro-pillar array
  • the passivation layer and metal mask are used to retain the sidewall passivation layer of the p-type nitride micron pillar array to obtain a nitride Micro-LED array.
  • the metal functional layer is treated in a high-temperature nitrogen atmosphere of 500°C to 1000°C for 30min to 100min, and is modified into an n-type compound that is covalently connected to the support substrate and the nitride LED structure.
  • the metal The functional layer becomes n - type Al points, x>0, y>0, x+y ⁇ 1.
  • the material of the metal mask is Ti, Al or Cu, and the thickness is 100 nm to 500 nm; the etching adopts reactive ion etching or plasma etching.
  • the material of the passivation layer is Al 2 O 3.
  • the preparation method of the passivation layer is pulse laser deposition or atomic layer deposition or magnetron sputtering. The thickness is 5nm to 20nm; chemical etching with hydrochloric acid solution is used. The metal mask is removed and the passivation layer on its surface is desorbed at the same time.
  • the invention can achieve lossless interface separation between nitride LEDs and Micro-LEDs, can realize the reuse of substrates, can be compatible with the epitaxy and processing technology of existing LEDs and Micro-LEDs, and can be applied to wafer-level nitride LEDs and micro-LEDs.
  • the manufacturing and separation of first-class Micro-LED arrays requires no pre-prepared nitride sacrificial layer and no additional grinding and polishing process; the invention is energy-saving and environmentally friendly, has a simple process and is suitable for mass production.
  • Figure 1 is a cross-sectional view of a two-dimensional atomic crystal template obtained by the preparation and non-destructive interface separation method of nitride LED according to the present invention
  • Figure 2 is a cross-sectional view of the nitride LED structure obtained by the preparation and non-destructive interface separation method of the nitride LED according to the present invention
  • Figure 3 is a cross-sectional view of the metal functional layer prepared by the preparation and non-destructive interface separation method of the nitride LED according to the present invention
  • Figure 4 is a cross-sectional view of the separated nitride LED structure obtained by the preparation and non-destructive interface separation method of the nitride LED according to the present invention
  • Figure 5 is a cross-sectional view of a passivation layer deposited by a non-destructive interface separation method according to the preparation of a nitride LED according to the present invention
  • Figure 6 is a cross-sectional view of a nitride Micro-LED array obtained by the preparation and non-destructive interface separation method of nitride LED according to the present invention.
  • a circular edge dividing groove 2 with a width of 0.1mm and a distance of 4mm from the edge of the transparent substrate is deposited or transferred to form a two-dimensional atomic crystal layer on the front side of the transparent substrate.
  • the two-dimensional atomic crystal layer can be epitaxially grown on the nitride The temperature range exists stably, and the layers of the two-dimensional atomic crystal layer are connected by pure van der Waals forces, forming a layered structure;
  • a submicron pattern mask on the surface of the two-dimensional atomic crystal layer.
  • the material of the submicron pattern mask is Ti.
  • the thickness of the submicron pattern mask is 20nm.
  • the submicron pattern mask is The film has multiple two-dimensional periodically arranged circular through holes. The depth of the circular through holes is consistent with the thickness of the submicron pattern mask.
  • the diameter of the circular through holes is 1 ⁇ m and the period is 1.5 ⁇ m;
  • the plasma source is used to emit oxygen atoms to irradiate atoms to bombard the two-dimensional atomic crystal layer with a sub-micron pattern mask, and modify the two-dimensional atomic crystal layer area under the circular through hole of the sub-micron pattern mask to obtain the irradiation area 3.
  • Covalent bonds are generated in some areas in the irradiation area, and van der Waals forces are retained in some areas, resulting in a mixture of van der Waals forces and covalent bonds between the layers in the irradiation area.
  • the covalent bonds are formed by irradiated atoms.
  • the area proportion of covalent bonds is about 30%, and the irradiated area is modified from a layered structure to a framework structure; other two-dimensional atomic crystal layer areas are not bombarded by irradiated atoms and are called non-irradiated areas 4. Still maintaining a layered structure connected by van der Waals forces between layers, the heights of the irradiated and non-irradiated areas are both 5nm, forming a two-dimensional atomic crystal template.
  • the two-dimensional atomic crystal template includes a transparent substrate and a modified A two-dimensional atomic crystal layer, as shown in Figure 1;
  • Group III sources are boron B and gallium Ga.
  • the carrier concentration is 1 ⁇ 10 19 cm -3 , p-type nitride cannot be deposited above the non-irradiated area in the two-dimensional atomic crystal layer, and p-type nitride can only be deposited above the irradiated area, thereby forming a p-type nitride micron column array. 5;
  • n-type GaN layer 8 Deposits a 200nm thick n-type GaN layer 8 and a 10nm thick n-type TiN thin layer 9 above the quantum structure to form an n-type layer, with a carrier concentration of 1 ⁇ 10 19 cm -3 and a p-type nitride micron pillar array.
  • p-type closed layer, multiple quantum wells and n-type layer constitute the nitride LED structure, as shown in Figure 2;
  • a reflective thin layer 10 of 3 nm thick Al, a bonding layer 11 of 50 nm thick Ti, and a connecting layer 12 of 10 nm thick In are sequentially formed on the n-type layer of the nitride LED structure.
  • the reflective thin layer, bonding layer and connecting layer It constitutes a metal functional layer; the reflective thin layer is used to reflect the visible light laser during directional visible light laser ablation; the bonding layer easily absorbs nitrogen or nitrogen atoms, and is easily modified from metal to a conductive nitrogen-containing n-type compound in a high temperature environment;
  • the connection layer melts after heating and solidifies after reaching room temperature, achieving a solid connection between the upper and lower layers without forming a compound semiconductor structure, as shown in Figure 3;
  • the visible light laser is incident from the back of the transparent substrate to destroy the irradiation area of the two-dimensional atomic crystal layer.
  • the covalent bond absorbs the visible light laser more strongly than the van der Waals force.
  • the visible light laser It is absorbed more strongly in the irradiation area with the frame structure, causing the temperature of the irradiation area with the frame structure to rise and ablation to occur, causing the bottom surface of the p-type nitride micron pillar array of the upper nitride LED structure to separate from the transparent substrate , thereby achieving damage-free separation of the overall structure of the transparent substrate from the nitride LED structure, metal functional layer and supporting substrate, and obtaining a reusable transparent substrate and the nitride LED structure and metal functional layer separated from the transparent substrate. and the overall structure of the supporting substrate, as shown in Figure 4.
  • metal functional layer and supporting substrate separated from the transparent substrate continue to prepare the nitride Micro-LED array, including the following steps:
  • n-type compound is connected to the support substrate and the nitride LED structure through covalent bonds respectively.
  • the metal functional layer is modified into an n-type compound 14.
  • the material is n-type Al 0.05 Ti 0.85 In 0.1 N, which is connected to the support substrate and nitrogen respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Abstract

一种氮化物LED的制备与无损界面分离方法,采用原子辐照技术,改性在透明衬底上的二维原子晶体层,得到辐照区;在改性后的二维原子晶体层制备氮化物LED结构,再通过金属功能层固化支撑基板;从透明衬底背面入射可见光激光,定向破坏二维原子晶体层的辐照区,得到从透明衬底上分离出来的氮化物LED结构、金属功能层和支撑基板的整体结构。本发明能够实现界面无损分离,透明衬底的重复使用,与氮化物LED和Micro-LED的外延与加工工艺兼容,应用于晶圆级氮化物LED和微米级Micro-LED阵列的制造与分离,无需预置氮化物牺牲层,无需额外磨抛工艺;本发明节能环保、工艺简单并适于批量生产。

Description

一种氮化物LED的制备与无损界面分离方法 技术领域
本发明涉及半导体发光器件的制备技术,具体涉及一种氮化物LED的制备与无损界面分离方法。
背景技术
纤锌矿结构氮化物半导体具有直接带隙能带结构,禁带宽度大范围连续可调且载流子复合效率高,是制备紫外及可见光发光二极管(LED)、微型发光二极管(Micro-LED)的优选材料体系,在固态照明、智能显示、感知探测、生物医学等领域具有重要应用。
氮化物LED通常异质外延制备于蓝宝石衬底上,氮化物和蓝宝石在界面处采用共价键形式强耦合,业界主要采用紫外激光烧蚀底层氮化镓(GaN)的形式剥离上层氮化物外延结构以制备柔性发光器件、可穿戴发光器件及Micro-LED显示芯片。该技术路线存在两方面的弊端,其一是需要预置100nm~1000nm厚的GaN牺牲层,通过牺牲层吸收波长短于365nm的紫外激光后热分解的形式分离上层外延结构氮化物,存在材料浪费、成品率低的问题;其二是氮化物外延结构剥离面表面粗糙且存在镓金属残余,需要对几微米厚的剥离氮化物外延结构进行额外的磨抛、清洗等处理,工序复杂、工艺难度大。如果在氮化物外延结构和蓝宝石衬底间引入二维材料过渡层,则可以形成氮化物外延结构/二维材料过渡层/蓝宝石衬底弱耦合界面,通过物理分离法破坏弱耦合界面并实现蓝宝石衬底和氮化物外延结构的界面分离,但是该方法存在分离氮化物外延结构尺寸和界面质量受限、与氮化物LED及Micro-LED产线工艺不兼容、不适于批量生产等问题。
发明内容
为了克服以上现有技术的不足,本发明提出了一种氮化物LED的制备与无损界面分离方法。
本发明的氮化物LED的制备与无损界面分离方法,包括以下步骤:
1)制备二维原子晶体模板:
a)提供透明衬底,在透明衬底的背面开设圆环形的边缘分割槽,在透明衬底的正面形成
二维原子晶体层,二维原子晶体层能够在氮化物外延温度区间稳定存在,二维原子晶体
层的层与层之间采用纯范德华力连接,为层状结构;
b)采用电子束曝光与电子束蒸发技术在二维原子晶体层的表面形成亚微米图形掩膜,亚微米图形掩膜上具有多个二维周期性排列的圆形通孔,圆形通孔的深度与亚微米图形掩膜的厚度一致;
c)采用原子辐照技术,改性二维原子晶体层:
利用等离子体源发射出辐照原子轰击具有亚微米图形掩膜的二维原子晶体层,改性亚微米图形掩膜的圆形通孔下方的二维原子晶体层相应的区域,得到辐照区,辐照区的层与层之间为范德华力与共价键混合的形式连接,共价键由辐照原子参与形成,辐照区从层状结构改性为框架结构;其他二维原子晶体层区域没有被辐照原子轰击,称为非辐照区,依旧保持层与层之间为范德华力连接的层状结构,形成二维原子晶体模板,二维原子晶体模板包括透明衬底和改性后的二维原子晶体层,改性后的二维原子晶体层的辐照区具有框架结构;
2)制备氮化物LED结构:
a)控制温度和束流中III族源与氨气的流量比,在二维原子晶体模板上沉积p型氮化物,二维原子晶体层中的非辐照区不具有作为氮化物成核位点的不饱和的共价键,不能沉积p型氮化物,只在具有不饱和的共价键的辐照区能够沉积p型氮化物,从而在二维原子晶体模板上形成p型氮化物微米柱阵列;
b)改变沉积条件,与步骤2)的a)相比,温度变低且束流中III族源与氨气的流量比变大,在p型氮化物微米柱阵列上继续沉积p型氮化物,在p型氮化物微米柱阵列形成一整片层状结构的p型合拢层,p型合拢层覆盖整个二维原子晶体模板的上表面;
c)在p型合拢层上方沉积多量子阱;
d)在多量子阱上方沉积n型层,p型氮化物微米柱阵列、p型合拢层、多量子阱和n型层构成氮化物LED结构;
3)设置支撑基板:
a)在氮化物LED结构的n型层上从下至上依次形成反射薄层、键合层和连接层,反射薄层、键合层和连接层构成金属功能层;反射薄层用于反射可见光激光定向烧蚀时的可见光激光;键合层采用的金属的熔点高于连接层采用的金属的熔点,并且键合层采用易吸收氮气或氮原子的金属,用于高温环境下将金属功能层从金属改性为导电的n型化合物;连接层用于在加热后熔化并在降至室温后固化,在不形成化合物半导体结构的前提下实现上下两层的固化连接;
b)提供与透明衬底相同横向尺寸的支撑基板,将支撑基板放置于连接层上,熔化并固化连接层,使得支撑基板固定在连接层上,形成复合结构,复合结构包括支撑基板、金属
功能层、氮化物LED结构和二维原子晶体模板;
4)分离氮化物LED结构:
a)采用紫外激光烧蚀技术沿着透明衬底背面圆环形的边缘分割槽切除边缘分割槽外侧区
域,切割从透明基板直至支撑基板,只保留边缘分割槽内侧相对应区域,以防止边缘粘
连;
b)采用可见光激光定向烧蚀技术,从透明衬底背面入射可见光激光,破坏二维原子晶体
层的辐照区,共价键比范德华力对可见光激光的吸收更强,可见光激光在具有框架结构
的辐照区被更强吸收,导致具有框架结构的辐照区温度升高并发生烧蚀,使得上层氮化
物LED结构的p型氮化物微米柱阵列的底面与透明衬底分离,从而实现透明衬底与氮化
物LED结构、金属功能层和支撑基板的整体结构无损伤分离,得到可重复使用的透明衬
底以及从透明衬底上分离出来的氮化物LED结构、金属功能层和支撑基板的整体结构。
其中,在步骤1)的a)中,透明衬底为双面抛光的蓝宝石、氧化镓或者金刚石,直径为50mm~300mm,厚度为0.3mm~3mm,可见光吸收率小于1%;采用紫外激光烧蚀技术在透明衬底背面形成边缘分割槽,边缘分割槽的深度为透明衬底厚度的1/3~2/3,宽度为0.05mm~0.2mm,边缘分割槽的外边缘距离透明衬底的边缘3~5mm;采用沉积或转移方法在透明衬底的正面形成二维原子晶体层,二维原子晶体层采用单晶石墨烯或单晶氮化硼,能够在600℃~1050℃的氮化物外延温度区间稳定存在,厚度为1nm~10nm。
在步骤1)的b)中,圆形通孔的直径为n至10n,n为圆形通孔的最小直径,0.5μm≤n≤50μm,圆形通孔的周期为1.5n~15n,亚微米图形掩膜的材料为钛Ti或铝Al,亚微米图形掩膜的厚度为10nm~50nm。
在步骤1)的c)中,离子体源发射出辐照原子为氮等离子体或氧等离子体;控制离子源的辐照时间和辐照功率,使得共价键的面积占比超过25%,辐照时间越长共价键的面积占比越大,并且辐照功率越大共价键的面积占比越大。
在步骤2)的a)中,控制温度为800~1350℃,束流中III族源与氨气的流量比值为1/4~3/4。III族源为硼B、铟In和镓Ga中的一种或多种,由氨气提供氮N,沉积过程中采用镁原子掺杂的方式制备P型,形成p型氮化物微米柱的材料为BGaN或BInGaN,硼B组分小于10%,载流子浓度均高于1×10 18cm -3,p型氮化物微米柱的高度为300nm~1500nm。
在步骤2)的b)中,控制温度为750~1300℃,束流中III族源与氨气的流量比值大于1。p型合拢层的材料为BGaN或BInGaN,B组分小于10%,载流子浓度均高于1×10 18cm -3,高度为300nm~1500nm。
在步骤2)的c)中,多量子阱包括m层In组分高于20%的InGaN量子点和m+1层Al组分低于20%的AlGaN薄层,3≤m≤20,InGaN量子点的高度小于3nm,AlGaN薄层的高度为5nm~15nm,InGaN量子点作为势阱,AlGaN薄层作为势垒,二者交叠。
在步骤2)的d)中,n型层采用n型GaN和n型TiN组成的复合层,n型GaN的厚度为50nm~1000nm,n型TiN的厚度为5nm~20nm,n型GaN和n型TiN的载流子浓度均高于1×10 18cm -3,沉积过程中采用硅原子掺杂的方式制备N型。
在步骤3)的a)中,反射薄层采用Al,厚度为2~5nm;键合层采用Ti,厚度为20~80nm;连接层采用In,在180℃~300℃完全熔化,降至室温时重新凝固,厚度为5~20nm。
在步骤3)的b)中,支撑基板采用刚玉、石英、不锈钢或硅,厚度超过0.3mm。180℃-300℃熔化连接层,降至室温时连接层重新凝固从而固化。
在步骤4)的a)中,采用波长不大于325nm的紫外激光沿着圆环形的边缘分割槽的纵深向上切割,切穿上层全部结构,实现边缘分割槽内外两侧的空间分割。
在步骤4)的b)中,采用波长在400nm~760nm之间的可见光波段激光。
进一步,在得到氮化物LED后,继续制备氮化物Micro-LED阵列,包括以下步骤:
a)对分离出来的氮化物LED结构、金属功能层和支撑基板的整体结构进行高温氮气处理,键合层在高温条件下与上层的连接层和下层的反射薄层变成合金,并进一步与吸收的氮气形成含氮的化合物,并具有n型导电的性质,从而将金属功能层从金属改性变成导电的n型化合物,分别与支撑基板和氮化物LED结构通过共价键连接;
b)在氮化物LED结构的p型氮化物微米柱阵列的底面沉积金属掩膜,刻蚀p型氮化物微米柱阵列的空隙区域,直至空隙区域下方露出n型化合物,p型氮化物微米柱阵列的空隙区域下方露出的n型化合物称为p型氮化物微米柱阵列的底面平台;
c)在氮化物LED结构的p型氮化物微米柱阵列的侧壁沉积钝化层,刻蚀除去p型氮化物微米柱阵列的底面平台的钝化层以及p型氮化物微米柱阵列的底面的钝化层和金属掩膜,保留p型氮化物微米柱阵列的侧壁钝化层,得到氮化物Micro-LED阵列。
其中,在步骤a)中,金属功能层在500℃~1000℃的高温氮气氛围下处理30min~100min,改性成与支撑基板与氮化物LED结构通过共价键形式连接的n型化合物,金属功能层变成n型Al xTi yIn 1-x-yN,以与后续工艺兼容,其中载流子浓度大于5×10 19cm -3,x为Al的原子组分,y为Ti的原子组分,x>0,y>0,x+y≤1。
在步骤b)中,金属掩膜的材料为Ti、Al或Cu,厚度为100nm~500nm;刻蚀采用反应离子刻蚀或等离子体刻蚀。
在步骤c)中,钝化层的材料采用Al 2O 3,钝化层的制备方法为脉冲激光沉积或原子层沉积或者磁控溅射,厚度为5nm~20nm;采用盐酸溶液化学腐蚀的方式除去金属掩膜,同时使其表面的钝化层脱附。
本发明的优点:
本发明能够实现氮化物LED和Micro-LED的界面无损分离,能够实现衬底的重复使用,能够与现有LED和Micro-LED的外延与加工工艺兼容,应用于晶圆级氮化物LED和微米级Micro-LED阵列的制造与分离,无需预置氮化物牺牲层,无需额外磨抛工艺;本发明节能环保、工艺简单并适于批量生产。
附图说明
图1为根据本发明的氮化物LED的制备与无损界面分离方法得到的二维原子晶体模板的剖面图;
图2为根据本发明的氮化物LED的制备与无损界面分离方法得到的氮化物LED结构的剖面图;
图3为根据本发明的氮化物LED的制备与无损界面分离方法制备金属功能层的剖面图;
图4为根据本发明的氮化物LED的制备与无损界面分离方法得到分离的氮化物LED结构的剖面图;
图5为根据本发明的氮化物LED的制备与无损界面分离方法沉积得到钝化层的剖面图;
图6为根据本发明的氮化物LED的制备与无损界面分离方法得到的氮化物Micro-LED阵列的剖面图。
具体实施方式
下面结合附图,通过具体实施例,进一步阐述本发明。
本实施例的氮化物LED的制备与无损界面分离方法,包括以下步骤:
1)制备二维原子晶体模板:
a)提供直径为200mm、厚度为1.5mm、可见光吸收率小于0.5%的双面抛光蓝宝石作为透明衬底1,采用紫外激光烧蚀技术在透明衬底的背面开设深度为透明衬底厚度1/2、宽度为0.1mm、距离透明衬底边缘4mm的圆环形的边缘分割槽2,在透明衬底的正面通过沉积或转移形成二维原子晶体层,二维原子晶体层能够在氮化物外延温度区间稳定存在,二维原子晶体层的层与层之间采用纯范德华力连接,为层状结构;
b)采用电子束曝光和电子束沉积技术在二维原子晶体层的表面形成亚微米图形掩膜,亚微米图形掩膜的材料为Ti,亚微米图形掩膜的厚度为20nm,亚微米图形掩膜具有多个二维周期性排列的圆形通孔,圆形通孔的深度与亚微米图形掩膜的厚度一致,圆形通孔的直径为1μm,周期为1.5μm;
c)采用原子辐照技术,改性二维原子晶体层:
利用等离子体源发射出氧原子辐照原子轰击具有亚微米图形掩膜的二维原子晶体层,改性亚微米图形掩膜的圆形通孔下方的二维原子晶体层区域,得到辐照区3,辐照区内的部分区域产生了共价键、部分区域保留了范德华力,导致辐照区的层与层之间为范德华力与共价键混合的形式连接,共价键由辐照原子参与形成,共价键的面积占比约为30%,辐照区从层状结构改性为框架结构;其他二维原子晶体层区域没有被辐照原子轰击,称为非辐照区4,依旧保持层与层之间为范德华力连接的层状结构,辐照区和非辐照区的高度均为5nm,形成二维原子晶体模板,二维原子晶体模板包括透明衬底和改性后的二维原子晶体层,如图1所示;
2)制备氮化物LED结构:
a)控制温度1100℃和III族源与氨气的流量比值为1/2,III族源为硼B和镓Ga,在二维原子晶体模板上沉积500nm厚的p型BGaN,载流子浓度为1×10 19cm -3,二维原子晶体层中的非辐照区上方不能沉积p型氮化物,只在辐照区上方能够沉积p型氮化物,从而形成p型氮化物微米柱阵列5;
b)改变沉积条件,温度变低为1050℃且III族源与氨气的流量比值变大为5/4,在p型氮化物微米柱阵列上继续沉积p型BGaN,形成一整片层状结构的p型合拢层6,p型合拢层覆盖整个二维原子晶体模板的上表面,厚度为300nm,载流子浓度为3×10 19cm -3
c)在p型合拢层上方沉积多量子阱7,五层In组分25%的InGaN量子点和六层Al组分Al组分为15%的AlGaN薄层,分别作为势阱层和势垒层;
d)在量子结构上方沉积200nm厚的n型GaN层8和10nm厚的n型TiN薄层9形成n型层,载流子浓度为1×10 19cm -3,p型氮化物微米柱阵列、p型合拢层、多量子阱和n型层构成氮化物LED结构,如图2所示;
3)设置支撑基板:
a)在氮化物LED结构的n型层上方依次形成3nm厚Al的反射薄层10、50nm厚Ti的键合层11和10nm厚In的连接层12,反射薄层、键合层和连接层构成金属功能层;反射薄层用于反射可见光激光定向烧蚀时的可见光激光;键合层易吸收氮气或氮原子,易于在高温环境下从金属改性为导电的含氮的n型化合物;连接层在加热后熔化并在将至室温后固化, 在不形成化合物半导体结构的前提下实现上下两层的固化连接,如图3所示;
b)提供直径为200mm且厚度为1mm的石英基板作为支撑基板13,将支撑基板放置于连接层上,250℃熔化后放置10min后降至室温并固化连接层,使得支撑基板固定在连接层上,形成复合结构,复合结构包括支撑基板、金属功能层、氮化物LED结构和二维原子晶体模板;
4)分离氮化物LED结构:
a)采用波长266nm的紫外激光烧蚀技术沿着透明衬底背面圆环形的边缘分割槽切除边缘分割槽外侧区域,切割从透明基板直至支撑基板,只保留边缘分割槽内侧相对应区域,以防止边缘粘连;
b)采用波长为532nm的可见光激光定向烧蚀技术,从透明衬底背面入射可见光激光,破坏二维原子晶体层的辐照区,共价键比范德华力对可见光激光的吸收更强,可见光激光在具有框架结构的辐照区被吸收更强,导致具有框架结构的辐照区温度升高并发生烧蚀,使得上层氮化物LED结构的p型氮化物微米柱阵列的底面与透明衬底分离,从而实现透明衬底与氮化物LED结构、金属功能层和支撑基板的整体结构无损伤分离,得到可重复使用的透明衬底以及从透明衬底上分离出来的氮化物LED结构、金属功能层和支撑基板的整体结构,如图4所示。
在得到从透明衬底上分离出来的氮化物LED结构、金属功能层和支撑基板的整体结构后,继续制备氮化物Micro-LED阵列,包括以下步骤:
a)对分离出来的氮化物LED结构、金属功能层和支撑基板的整体结构进行600℃、氮气氛围处理50min,键合层的Ti在高温条件下与上层的连接层和下层的反射薄层的In和Al变成合金,并进一步与吸收的氮气形成含氮的化合物,并且由于金属和氮的化学计量比不平衡导致具有n型导电的性质,从而将金属功能层从金属改性变成导电的n型化合物,分别与支撑基板和氮化物LED结构通过共价键连接,金属功能层改性变成n型化合物14,材料为n型Al 0.05Ti 0.85In 0.1N,分别与支撑基板和氮化物LED结构通过共价键连接;
b)在氮化物LED结构中的p型氮化物微米柱阵列的底面沉积200nm厚Al作为金属掩膜15,刻蚀p型氮化物微米柱阵列的空隙区域,直至空隙区域下方露出n型化合物;
c)氮化物LED结构的p型氮化物微米柱阵列的侧壁沉积10nm厚Al 2O 3作为钝化层16,如图5所示,采用盐酸溶液化学刻蚀除去p型氮化物微米柱阵列的底面平台的钝化层,以及p型氮化物微米柱阵列的底面的金属掩膜,同时使其表面的钝化层脱附,保留p型氮化物微米柱阵列的侧壁钝化层,得到氮化物Micro-LED阵列,如图6所示。
最后需要注意的是,公布实施例的目的在于帮助进一步理解本发明,但是本领域的技术人员可以理解:在不脱离本发明及所附的权利要求的精神和范围内,各种替换和修改都是可能的。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权利要求书界定的范围为准。

Claims (10)

  1. 一种氮化物LED的制备与无损界面分离方法,其特征在于,所述氮化物LED的制备与无损界面分离方法包括以下步骤:
    1)制备二维原子晶体模板:
    a)提供透明衬底,在透明衬底的背面开设圆环形的边缘分割槽,在透明衬底的正面形成二维原子晶体层,二维原子晶体层能够在氮化物外延温度区间稳定存在,二维原子晶体层的层与层之间采用纯范德华力连接,为层状结构;
    b)采用电子束曝光与电子束蒸发技术在二维原子晶体层的表面形成亚微米图形掩膜,亚微米图形掩膜上具有多个二维周期性排列的圆形通孔,圆形通孔的深度与亚微米图形掩膜的厚度一致;
    c)采用原子辐照技术,改性二维原子晶体层:
    利用等离子体源发射出辐照原子轰击具有亚微米图形掩膜的二维原子晶体层,改性亚微米图形掩膜的圆形通孔下方的二维原子晶体层相应的区域,得到辐照区,辐照区的层与层之间为范德华力与共价键混合的形式连接,共价键由辐照原子参与形成,辐照区从层状结构改性为框架结构;其他二维原子晶体层区域没有被辐照原子轰击,称为非辐照区,依旧保持层与层之间为范德华力连接的层状结构,形成二维原子晶体模板,二维原子晶体模板包括透明衬底和改性后的二维原子晶体层,改性后的二维原子晶体层的辐照区具有框架结构;
    2)制备氮化物LED结构:
    a)控制温度和束流中III族源与氨气的流量比,在二维原子晶体模板上沉积p型氮化物,在二维原子晶体模板上形成p型氮化物微米柱阵列;
    b)改变沉积条件,与步骤2)的a)相比,温度变低且束流中III族源与氨气的流量比变大,在p型氮化物微米柱阵列上继续沉积p型氮化物,在p型氮化物微米柱阵列形成一整片层状结构的p型合拢层,p型合拢层覆盖整个二维原子晶体模板的上表面;
    c)在p型合拢层上方沉积多量子阱;
    d)在多量子阱上方沉积n型层,p型氮化物微米柱阵列、p型合拢层、多量子阱和n型层构成氮化物LED结构;
    3)设置支撑基板:
    a)在氮化物LED结构的n型层上从下至上依次形成反射薄层、键合层和连接层,反射薄层、键合层和连接层构成金属功能层;反射薄层用于反射可见光激光定向烧蚀时的可见光激光;键合层采用的金属的熔点高于连接层采用的金属的熔点,并且键合层采用易吸 收氮气或氮原子的金属,用于高温环境下将金属功能层从金属改性为导电的n型化合物;连接层用于在加热后熔化并在降至室温后固化,在不形成化合物半导体结构的前提下实现上下两层的固化连接;
    b)提供与透明衬底相同横向尺寸的支撑基板,将支撑基板放置于连接层上,熔化并固化连接层,使得支撑基板固定在连接层上,形成复合结构,复合结构包括支撑基板、金属功能层、氮化物LED结构和二维原子晶体模板;
    4)分离氮化物LED结构:
    a)采用紫外激光烧蚀技术沿着透明衬底背面圆环形的边缘分割槽切除边缘分割槽外侧区域,切割从透明基板直至支撑基板,只保留边缘分割槽内侧相对应区域,以防止边缘粘连;
    b)采用可见光激光定向烧蚀技术,从透明衬底背面入射可见光激光,破坏二维原子晶体层的辐照区,透明衬底与氮化物LED结构、金属功能层和支撑基板的整体结构无损伤分离,得到可重复使用的透明衬底以及从透明衬底上分离出来的氮化物LED结构、金属功能层和支撑基板的整体结构。
  2. 如权利要求1所述的氮化物LED的制备与无损界面分离方法,其特征在于,在步骤1)的a)中,透明衬底为双面抛光的蓝宝石、氧化镓或者金刚石,直径为50mm~300mm,厚度为0.3mm~3mm,可见光吸收率小于1%;采用紫外激光烧蚀技术在透明衬底背面形成边缘分割槽,边缘分割槽的深度为透明衬底厚度的1/3~2/3,宽度为0.05mm~0.2mm,边缘分割槽的外边缘距离透明衬底的边缘3~5mm;采用沉积或转移方法在透明衬底的正面形成二维原子晶体层,二维原子晶体层采用单晶石墨烯或单晶氮化硼,能够在600℃~1050℃的氮化物外延温度区间稳定存在,厚度为1nm~10nm。
  3. 如权利要求1所述的氮化物LED的制备与无损界面分离方法,其特征在于,在步骤1)的b)中,圆形通孔的直径为n至10n,n为圆形通孔的最小直径,0.5μm≤n≤50μm,圆形通孔的周期为1.5n~15n,亚微米图形掩膜的材料为钛Ti或铝Al,亚微米图形掩膜的厚度为10nm~50nm。
  4. 如权利要求1所述的氮化物LED的制备与无损界面分离方法,其特征在于,在步骤2)的a)中,控制温度为800~1350℃,束流中III族源与氨气的流量比值为1/4~3/4。
  5. 如权利要求1所述的氮化物LED的制备与无损界面分离方法,其特征在于,在步骤2)的b)中,控制温度为750~1300℃,束流中III族源与氨气的流量比值大于1。
  6. 如权利要求1所述的氮化物LED的制备与无损界面分离方法,其特征在于,在步骤3) 的a)中,反射薄层采用Al,厚度为2~5nm;键合层采用Ti,厚度为20~80nm;连接层采用In,厚度为5~20nm。
  7. 如权利要求1所述的氮化物LED的制备与无损界面分离方法,其特征在于,在步骤3)的b)中,支撑基板采用刚玉、石英、不锈钢或硅,厚度超过0.3mm。
  8. 如权利要求1所述的氮化物LED的制备与无损界面分离方法,其特征在于,在步骤4)的b)中,采用波长在400nm~760nm之间的可见光波段激光。
  9. 如权利要求1所述的氮化物LED的制备与无损界面分离方法,其特征在于,进一步得到氮化物Micro-LED阵列,包括以下步骤:
    a)对分离出来的氮化物LED结构、金属功能层和支撑基板的整体结构进行高温氮气处理,键合层在高温条件下与上层的连接层和下层的反射薄层变成合金,并进一步与吸收的氮气形成含氮的化合物,并具有n型导电的性质,从而将金属功能层从金属改性变成导电的n型化合物,分别与支撑基板和氮化物LED结构通过共价键连接;
    b)在氮化物LED结构的p型氮化物微米柱阵列的底面沉积金属掩膜,刻蚀p型氮化物微米柱阵列的空隙区域,直至空隙区域下方露出n型化合物,p型氮化物微米柱阵列的空隙区域下方露出的n型化合物称为p型氮化物微米柱阵列的底面平台;
    c)在氮化物LED结构的p型氮化物微米柱阵列的侧壁沉积钝化层,刻蚀除去p型氮化物微米柱阵列的底面平台的钝化层以及p型氮化物微米柱阵列的底面的钝化层和金属掩膜,保留p型氮化物微米柱阵列的侧壁钝化层,得到氮化物Micro-LED阵列。
  10. 如权利要求9所述的氮化物LED的制备与无损界面分离方法,其特征在于,在步骤a)中,金属功能层在500℃~1000℃的高温氮气氛围下处理30min~100min,改性成与支撑基板与氮化物LED结构通过共价键形式连接的n型化合物,金属功能层变成n型Al xTi yIn 1-x-yN,,x为Al的原子组分,y为Ti的原子组分,x>0,y>0,x+y≤1。
PCT/CN2022/111059 2022-08-01 2022-08-09 一种氮化物led的制备与无损界面分离方法 WO2024026907A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210914235.6 2022-08-01
CN202210914235.6A CN114975700B (zh) 2022-08-01 2022-08-01 一种氮化物led的制备与无损界面分离方法

Publications (1)

Publication Number Publication Date
WO2024026907A1 true WO2024026907A1 (zh) 2024-02-08

Family

ID=82970278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111059 WO2024026907A1 (zh) 2022-08-01 2022-08-09 一种氮化物led的制备与无损界面分离方法

Country Status (2)

Country Link
CN (1) CN114975700B (zh)
WO (1) WO2024026907A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193371A (ja) * 2002-12-11 2004-07-08 Nec Corp Iii族窒化物自立基板およびそれを用いた半導体素子ならびにそれらの製造方法
CN102201332A (zh) * 2011-05-08 2011-09-28 北京燕园中镓半导体工程研发中心有限公司 一种GaN衬底的制备方法
CN108922948A (zh) * 2018-08-24 2018-11-30 广东省半导体产业技术研究院 一种发光二极管结构及其制作方法
CN112993103A (zh) * 2021-02-08 2021-06-18 广东省科学院半导体研究所 可剥离氮化物结构及其剥离方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106374023B (zh) * 2016-10-31 2018-10-30 华南理工大学 生长在镓酸锂衬底上的非极性纳米柱led及其制备方法
CN110416372B (zh) * 2019-07-08 2020-07-28 北京大学 一种面向micro-LED应用的无损微纳结构的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193371A (ja) * 2002-12-11 2004-07-08 Nec Corp Iii族窒化物自立基板およびそれを用いた半導体素子ならびにそれらの製造方法
CN102201332A (zh) * 2011-05-08 2011-09-28 北京燕园中镓半导体工程研发中心有限公司 一种GaN衬底的制备方法
CN108922948A (zh) * 2018-08-24 2018-11-30 广东省半导体产业技术研究院 一种发光二极管结构及其制作方法
CN112993103A (zh) * 2021-02-08 2021-06-18 广东省科学院半导体研究所 可剥离氮化物结构及其剥离方法

Also Published As

Publication number Publication date
CN114975700A (zh) 2022-08-30
CN114975700B (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
JP6681133B2 (ja) Iii族金属窒化物結晶およびその形成方法
TWI566433B (zh) 形成微發光二極體陣列的方法
TWI385816B (zh) 垂直結構的半導體裝置
TWI455345B (zh) 具有垂直結構之發光二極體及其製造方法
CN101673792B (zh) 一种基于无掩模转移光子晶体结构的GaN基薄膜LED的制造方法
TWI442462B (zh) Semiconductor light - emitting chip and substrate processing methods
TWI520206B (zh) 至少部分分離磊晶層的方法
TWI527099B (zh) 用於回收基材之方法
JP5847083B2 (ja) 発光素子の製造方法
KR20090104931A (ko) 집적화된 대면적 수직구조 그룹 3족 질화물계 반도체발광다이오드 소자 및 제조 방법
TWI469185B (zh) 分離基板的半導體結構及其製造方法
TWI424588B (zh) Semiconductor light emitting device manufacturing method
CN109301042B (zh) 一种垂直结构led芯片及其制作方法
CN103137814A (zh) 改善出光效率的发光二极管及其制造方法
TW201025681A (en) Method for manufacturing semiconductor light emitting element
Voronenkov et al. Laser slicing: A thin film lift-off method for GaN-on-GaN technology
JP2009267412A (ja) Iii族窒素化合物半導体発光素子の製造方法およびその構造
JP5343225B2 (ja) Ii−vi族またはiii−v族化合物系半導体発光素子用エピタキシャルウエハ、および、その製造方法
TWI405354B (zh) 半導體結構及發光二極體
TW201445768A (zh) 半導體裝置之製造方法
KR20170128777A (ko) 사전 패터닝된 메사들을 통한 스트레인 경감 에피택셜 리프트-오프
CN208781881U (zh) 一种用于制作垂直结构led芯片的复合衬底
WO2024026907A1 (zh) 一种氮化物led的制备与无损界面分离方法
JP2010258351A (ja) 立方晶炭化ケイ素単結晶薄膜の製造方法及び半導体装置
KR20090105462A (ko) 수직구조 그룹 3족 질화물계 반도체 발광다이오드 소자 및이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953706

Country of ref document: EP

Kind code of ref document: A1