WO2024024773A1 - 架橋重合体又はその塩の製造方法 - Google Patents

架橋重合体又はその塩の製造方法 Download PDF

Info

Publication number
WO2024024773A1
WO2024024773A1 PCT/JP2023/027157 JP2023027157W WO2024024773A1 WO 2024024773 A1 WO2024024773 A1 WO 2024024773A1 JP 2023027157 W JP2023027157 W JP 2023027157W WO 2024024773 A1 WO2024024773 A1 WO 2024024773A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
crosslinked polymer
polymerization
meth
salt
Prior art date
Application number
PCT/JP2023/027157
Other languages
English (en)
French (fr)
Inventor
健一 吉森
朋子 仲野
直彦 斎藤
剛史 長谷川
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Publication of WO2024024773A1 publication Critical patent/WO2024024773A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/62Monocarboxylic acids having ten or more carbon atoms; Derivatives thereof
    • C08F220/70Nitriles; Amides; Imides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present specification relates to a method for producing a crosslinked polymer or a salt thereof.
  • electrodes of nonaqueous electrolyte secondary batteries such as lithium ion secondary batteries are made of a composition for forming an electrode mixture layer (hereinafter referred to as an electrode mixture layer) containing an active material and a crosslinked polymer as a binder component. (also referred to as a composition) on a current collector and drying it.
  • an electrode mixture layer a composition for forming an electrode mixture layer (hereinafter referred to as an electrode mixture layer) containing an active material and a crosslinked polymer as a binder component. (also referred to as a composition) on a current collector and drying it.
  • Silicon-based active materials are increasingly being used as negative electrode active materials for the purpose of increasing the electrical capacity of lithium ion secondary batteries.
  • silicon-based active materials have a large volume change during charging and discharging, which tends to cause the negative electrode mixture layer to peel or fall off, resulting in a decrease in battery capacity and deterioration of cycle characteristics. Therefore, it has been reported that acrylic acid-based polymers with excellent binding properties are effective in suppressing such disadvantages in the negative electrode mixture layer (Patent Documents 1 and 2).
  • Patent Document 1 discloses a cross-linked acrylic acid-based polymer in which polyacrylic acid is cross-linked with a specific cross-linking agent, and even when an active material containing silicon is used, the electrode structure is not destroyed. It is disclosed that it exhibits good cycle characteristics without any problems.
  • Patent Document 2 describes a water-soluble crosslinked polymer containing a structural unit derived from an ethylenically unsaturated carboxylate monomer and a structural unit derived from a highly hydrophilic ethylenically unsaturated monomer that does not contain carboxylic acid. Disclosed.
  • the crosslinked polymers disclosed in Patent Documents 1 and 2 can suppress peeling of the active material from the current collector due to improved binding performance.
  • the degree of electrode expansion the expansion of the electrode after repeated charging and discharging
  • electrode expansion there has been a tendency for electrode expansion to be further promoted in order to increase capacity.
  • Such an increase in the degree of expansion of the electrode causes a large change in the electrode structure, which increases the number of conductive paths being cut, and thus causes a decrease in cycle characteristics.
  • the coating performance that allows the electrode slurry containing the binder to be stably and uniformly supplied to the current collector etc. has a great influence on the productivity and battery performance of the secondary battery.
  • the disclosure of the present specification has been made in view of such circumstances, and the purpose thereof is, for example, to provide a crosslinked polymer useful for a binder component that can suppress the degree of electrode expansion of nonaqueous electrolyte secondary batteries. and its salts.
  • the present inventors focused on using an ethylenically unsaturated carboxylic acid monomer and a nitrogen-containing ethylenically unsaturated monomer. Furthermore, by precipitation polymerizing these monomers and controlling the concentration of the non-crosslinkable monomer composition during the polymerization process within a certain range, we can create crosslinked polymers or their salts that can also contribute to suppressing the degree of electrode expansion. We learned that it can be manufactured. According to the present disclosure, the following means are provided based on such knowledge.
  • a method for producing a crosslinked polymer or a salt thereof comprising: a polymerization step of polymerizing a non-crosslinkable monomer composition containing an ethylenically unsaturated carboxylic acid monomer and a nitrogen-containing ethylenically unsaturated monomer by precipitation polymerization; Equipped with The manufacturing method, wherein the concentration of the non-crosslinkable monomer composition in the polymerization step is 16% by mass or more and 30% by mass or less of the polymerization reaction solution in the polymerization step.
  • the non-crosslinkable monomer composition contains 60% by mass or more and 99.9% by mass or less of the ethylenically unsaturated carboxylic acid monomer and 0.1% by mass of the nitrogen-containing ethylenically unsaturated monomer.
  • the manufacturing method according to [1], wherein the content is from % by mass to 40% by mass.
  • this manufacturing method is a useful manufacturing method that can contribute to improving the battery performance of the battery, and can also contribute to improving the productivity of secondary battery electrodes and secondary batteries.
  • FIG. 2 is a diagram showing an apparatus used for measuring the degree of water swelling of a crosslinked polymer or a salt thereof.
  • the method for producing a crosslinked polymer or a salt thereof disclosed herein uses an ethylenically unsaturated carboxylic acid monomer and a nitrogen-containing ethylenically unsaturated monomer.
  • a non-crosslinkable monomer composition containing the above is polymerized by precipitation polymerization, and the concentration of the non-crosslinkable monomer composition is 16% by mass or more and 30% by mass or less of the polymerization reaction solution in the polymerization step.
  • the obtained crosslinked polymer or its salt tends to have a water swelling degree in a preferable range, for example, in terms of particle size and pH in an acetonitrile medium of 8, and as a result, it is considered to have excellent ability to suppress electrode swelling degree.
  • the binder disclosed in this specification has an expansion suppressing ability that can suppress the degree of electrode expansion in the binder itself. Therefore, it may be possible to simplify the structure of the secondary battery case or reduce its strength.
  • the predetermined particle size and degree of water swelling can be good indicators of electrode swelling degree suppressing ability and coating performance. According to the inventors, it has been found that if the particle size and water swelling degree are each too small, the electrode swelling degree decreases, and if each of these becomes too large, the electrode swelling degree decreases.
  • active materials such as silicon-based active materials that have large expansion and contraction properties in the electrode mixture layer. Conceivable. This is thought to be able to suppress collapse of the electrode structure due to expansion and contraction of the active material during charging and discharging, thereby contributing to suppressing the degree of electrode expansion.
  • (meth)acrylic means acrylic and/or methacryl
  • (meth)acrylate means acrylate and/or methacrylate
  • (meth)acryloyl group means an acryloyl group and/or a methacryloyl group.
  • This production method produces a crosslinked polymer containing a carboxyl group or a salt thereof.
  • a non-crosslinkable monomer composition containing an ethylenically unsaturated carboxylic acid monomer and a nitrogen-containing ethylenically unsaturated monomer is subjected to precipitation polymerization. It can include a polymerization step of polymerizing.
  • the obtained crosslinked polymer or its salt has a first structural unit derived from an ethylenically unsaturated carboxylic acid monomer, which is one non-crosslinkable monomer contained in the non-crosslinkable monomer composition; A second structural unit derived from a nitrogen-containing ethylenically unsaturated monomer, which is another non-crosslinking monomer.
  • first structural unit derived from an ethylenically unsaturated carboxylic acid monomer which is one non-crosslinkable monomer contained in the non-crosslinkable monomer composition
  • a second structural unit derived from a nitrogen-containing ethylenically unsaturated monomer which is another non-crosslinking monomer.
  • the crosslinked polymer or its salt can have a first structural unit (hereinafter also referred to as "component (a)") derived from an ethylenically unsaturated carboxylic acid monomer.
  • component (a) a first structural unit derived from an ethylenically unsaturated carboxylic acid monomer.
  • the above component (a) can be introduced into a crosslinked polymer or a salt thereof, for example, by polymerizing an ethylenically unsaturated carboxylic acid monomer or a salt thereof.
  • it can also be obtained by (co)polymerizing a (meth)acrylic acid ester monomer and then hydrolyzing it.
  • it may be treated with a strong alkali, or a method may be used in which a polymer having a hydroxyl group is reacted with an acid anhydride.
  • Ethylenically unsaturated carboxylic acid monomers include (meth)acrylamide alkyls such as (meth)acrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, (meth)acrylamidohexanoic acid; (meth)acrylamide dodecanoic acid; Ethylenically unsaturated monomers having a carboxyl group such as carboxylic acid, succinic acid monohydroxyethyl (meth)acrylate, ⁇ -carboxy-caprolactone mono(meth)acrylate, ⁇ -carboxyethyl (meth)acrylate, or their (parts) ) Alkali neutralized products may be mentioned, and one type of these may be used alone or two or more types may be used in combination.
  • acrylic acid is particularly preferable because a polymer with a long primary chain length can be obtained due to a high polymerization rate, and the adhesion of the binder is good.
  • acrylic acid is used as the ethylenically unsaturated carboxylic acid monomer, a polymer with a high carboxyl group content can be obtained.
  • the content of component (a) in the crosslinked polymer or its salt is not particularly limited, but for example, 60% by mass or more based on the total structural units derived from the non-crosslinkable monomer of the crosslinked polymer, It can contain up to 99.9% by mass. By containing component (a) in this range, excellent adhesion to the current collector can be easily ensured.
  • the lower limit is, for example, 65% by mass, and also, for example, 70% by mass, and also, for example, 75% by mass, and also, for example, 80% by mass, and also, for example, 85% by mass, and for example, It is 90% by weight, for example 95% by weight, for example 98% by weight, for example 98.5% by weight, and for example 99% by weight.
  • the upper limit is, for example, 99.8% by mass, or, for example, 99.5% by mass, or, for example, 99% by mass, or, for example, 98.5% by mass, or, for example, 98% by mass.
  • Mass% The range can be a combination of these lower and upper limits, for example, from 70% by mass to 99.9% by mass, and from 70% by mass to 99% by mass, and
  • the content is 80% by mass or more and 99.9% by mass or less, for example 80% by mass or more and 99% by mass or less, and for example 85% by mass or more and 99% by mass or less.
  • component (a) above is also the content of ethylenically unsaturated carboxylic acid monomer in the non-crosslinkable monomer composition at the time of producing the crosslinked polymer.
  • the crosslinked polymer or its salt can have, in addition to component (a), a second structural unit derived from nitrogen-containing ethylenically unsaturated (hereinafter also referred to as "component (b)").
  • component (b) a second structural unit derived from nitrogen-containing ethylenically unsaturated
  • component (b) a second structural unit derived from nitrogen-containing ethylenically unsaturated
  • Component (b) may include, for example, one or more monomers selected from the group consisting of monomers represented by the following formula (1) together with the monomer from which the first structural unit is derived. It can be introduced into a crosslinked polymer or a salt thereof by polymerization.
  • CH2 C( R1 ) CONR2R3 ( 1)
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 and R 3 each represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a hydroxyalkyl group having 1 to 4 carbon atoms, or are linked represents an oxygen-containing cyclic saturated hydrocarbon group containing a nitrogen atom in formula (1) or a cyclic saturated hydrocarbon group containing the nitrogen atom.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 and R 3 each represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a hydroxyalkyl group having 1 to 4 carbon atoms, or are
  • the monomer represented by the above formula (1) is a (meth)acrylamide derivative.
  • the alkyl group having 1 to 4 carbon atoms for R 2 and R 3 may be linear or branched.
  • R 2 and R 3 include, for example, each independently a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group.
  • Examples of the hydroxyalkyl group having 1 to 4 carbon atoms for R 2 and R 3 include the aforementioned hydroxyalkyl groups in which the terminal of the alkyl group having 1 to 4 carbon atoms is a hydroxyl group, such as hydroxymethyl group, hydroxyethyl group, etc. group, hydroxypropyl group, hydroxybutyl group, etc.
  • the oxygen-containing cyclic saturated hydrocarbon group that is connected and contains a nitrogen atom in formula (1), which R 2 and R 3 represent, is a 5- to 7-membered oxygen-containing cyclic saturated hydrocarbon group that contains a nitrogen atom.
  • Examples include hydrogen groups.
  • Such a cyclic saturated hydrocarbon group includes a morpholino group and the like.
  • the cyclic saturated hydrocarbon group that is connected and contains a nitrogen atom in formula (1), which R 2 and R 3 represent is a 5- to 7-membered cyclic saturated hydrocarbon group that contains a nitrogen atom. Examples include piperidino groups.
  • R 2 and R 3 are both alkyl groups, N,N-dimethylacrylamide, N,N-diethyl(meth)acrylamide, N,N-di-n - N,N-dialkyl (meth)acrylamide such as propyl (meth)acrylamide; when one of R 2 and R 3 is a hydrogen atom and the other is an alkyl group, N-methyl (meth)acrylamide, N- Examples include N-alkyl (meth)acrylamide such as ethyl (meth)acrylamide, and when one of R 2 and R 3 is a hydrogen atom or an alkyl group and the other is a hydroxyalkyl group, N-hydroxyethyl (meth)acrylamide, N-hydroxyalkyl (meth)acrylamide, such as N-hydroxypropyl (meth)acrylamide, N-hydroxybutyl (meth)acrylamide, N-methyl-N-hydroxyethyl (meth)acrylamide, and N-
  • examples include N-hydroxyalkyl (meth)acrylamides such as meth)acrylamide and hydroxyethyl (meth)acrylamide.
  • a compound having an acryloyl group as a polymerizable functional group is preferable because a polymer with a long primary chain length can be obtained due to a high polymerization rate, and the adhesion of the binder is good. For this reason, acryloylmorpholine, N,N-dimethylacrylamide, and N-hydroxyethylacrylamide may be suitable.
  • the content of component (b) in the crosslinked polymer or its salt is not particularly limited, but for example, 0.1% by mass based on the total structural units derived from the non-crosslinkable monomer of the crosslinked polymer. It can contain up to 40% by mass. By containing component (b) in this range, the electrode mixture layer composition can exhibit good coating properties while suppressing the degree of electrode expansion.
  • the upper limit is, for example, 35% by mass, and also, for example, 30% by mass, and also, for example, 25% by mass, and also, for example, 20% by mass, and also, for example, 15% by mass, and also, for example, 10% by mass, Also, for example, it is 5% by mass, for example 2% by mass, for example 1.5% by mass, and for example 1% by mass.
  • the lower limit is, for example, 0.2% by mass, further, for example, 0.5% by mass, further, for example, 1% by mass, and further, for example, 1.5% by mass.
  • the range can be a combination of these lower and upper limits, for example, from 0.1% by mass to 30% by mass, from 1% by mass to 30% by mass, and for example from 0.1% by mass to 30% by mass.
  • the content is 1% by mass or more and 20% by mass or less, for example 1% by mass or more and 20% by mass or less, and for example 1% by mass or more and 15% by mass or less.
  • the content of the component (b) above is also the content of the nitrogen-containing ethylenically unsaturated carboxylic acid monomer in the non-crosslinkable monomer composition during the production of the crosslinked polymer.
  • the crosslinked polymer or its salt has structural units derived from other non-crosslinkable ethylenically unsaturated monomers copolymerizable with these (hereinafter referred to as "(c ) components.
  • the component (c) for example, an ethylenically unsaturated monomer compound having an anionic group other than a carboxyl group such as a sulfonic acid group and a phosphoric acid group, or a nonionic ethylenic monomer compound other than the component (b) Examples include structural units derived from unsaturated monomers and the like.
  • component (b) is ethylenically unsaturated monomer compounds having anionic groups other than carboxyl groups such as sulfonic acid groups and phosphoric acid groups, or nonionic ethylenically unsaturated monomers other than component (b). It can be introduced by copolymerizing a monomer containing a monomer.
  • component (c) is preferably a structural unit derived from a nonionic ethylenically unsaturated monomer from the viewpoint of obtaining an electrode with good bending resistance, and from the viewpoint of excellent binder adhesion.
  • (Meth)acrylamide and its derivatives, nitrile group-containing ethylenically unsaturated monomers, and the like are preferred.
  • component (c) when a structural unit derived from a hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g/100 ml or less is introduced as component (c), it can have a strong interaction with the electrode material. It can exhibit good adhesion to the active material. This is preferable because it is possible to obtain a solid electrode mixture layer with good integrity.
  • structural units derived from ethylenically unsaturated monomers containing an alicyclic structure are preferred.
  • the proportion of component (c) can be 0% by mass or more and 49.5% by mass or less based on all structural units derived from non-crosslinkable monomers of the crosslinked polymer.
  • the proportion of the component may be 1% by mass or more and 40% by mass or less, 2% by mass or more and 40% by mass or less, and 2% by mass or more and 30% by mass or less. It may be 5% by mass or more and 30% by mass or less.
  • the crosslinked polymer contains 1% by mass or more of component (c) based on the total structural units derived from non-crosslinkable monomers, the affinity for the electrolyte improves, so lithium ion conductivity improves. You can also expect the effect of
  • component (c) above is also the content of other ethylenically unsaturated monomers in the non-crosslinkable monomer composition during production of the crosslinked polymer.
  • Examples of (meth)acrylamide derivatives include N-alkoxyalkyl (meth)acrylamide having an alkoxyalkyl group having 5 or more carbon atoms, such as N-n-butoxymethyl (meth)acrylamide and N-isobutoxymethyl (meth)acrylamide.
  • nitrile group-containing ethylenically unsaturated monomer examples include (meth)acrylic nitrile; (meth)acrylic acid cyanoalkyl ester compounds such as cyanomethyl (meth)acrylate and cyanoethyl (meth)acrylate; 4-cyanostyrene; , cyano group-containing unsaturated aromatic compounds such as 4-cyano- ⁇ -methylstyrene; vinylidene cyanide, etc.; one of these may be used alone, or two or more may be used in combination. May be used.
  • Examples of the ethylenically unsaturated monomer containing an alicyclic structure include cyclopentyl (meth)acrylate, cyclohexyl (meth)acrylate, methylcyclohexyl (meth)acrylate, t-butylcyclohexyl (meth)acrylate, and ) (meth)acrylic acid cycloalkyl esters optionally having aliphatic substituents such as cyclodecyl acrylate and cyclododecyl (meth)acrylate; (meth)isobornyl acrylate, adamantyl (meth)acrylate, (meth)acrylic acid cycloalkyl ester; ) Dicyclopentenyl acrylate, dicyclopentenyloxyethyl (meth)acrylate, dicyclopentanyl (meth)acrylate, and cyclohexanedimethanol mono(meth)acrylate and cyclodecane dimethanol
  • Examples include cycloalkyl polyalcohol mono(meth)acrylate, and one type of these may be used alone or two or more types may be used in combination.
  • compounds having an acryloyl group as a polymerizable functional group are preferable because a polymer with a long primary chain length can be obtained due to a high polymerization rate, and the adhesion of the binder is good.
  • (meth)acrylic esters may be used as other nonionic ethylenically unsaturated monomers.
  • (meth)acrylic esters include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate.
  • Meth)acrylic acid alkyl ester compounds aromatic (meth)acrylic acid ester compounds such as phenyl (meth)acrylate, phenylmethyl (meth)acrylate, phenylethyl (meth)acrylate; 2-methoxy (meth)acrylate (meth)acrylic acid alkoxyalkyl ester compounds such as ethyl and 2-ethoxyethyl (meth)acrylate; etc., and one type of these may be used alone, or two or more types may be used in combination. May be used. From the viewpoint of adhesion with the active material and cycle characteristics, aromatic (meth)acrylic acid ester compounds can be preferably used.
  • compounds having an ether bond such as (meth)acrylic acid alkoxyalkyl ester compounds are preferred, and 2-methoxyethyl (meth)acrylate is more preferred.
  • nonionic ethylenically unsaturated monomers compounds having an acryloyl group are preferred because they have a fast polymerization rate, yielding a polymer with a long primary chain length, and provide good binder adhesion.
  • a compound having a homopolymer glass transition temperature (Tg) of 0° C. or lower is preferable because the resulting electrode has good bending resistance.
  • the method of crosslinking the crosslinked polymer in this production method is not particularly limited, and examples include the following method. 1) Copolymerization with a crosslinkable monomer 2) Utilizing chain transfer to the polymer chain during radical polymerization 3) After synthesizing a polymer having a reactive functional group, adding a crosslinking agent as necessary Crosslinked The crosslinked polymer has a crosslinked structure, so that the binder containing the polymer or its salt can have excellent adhesion.
  • a method based on copolymerization of a crosslinkable monomer is preferable because the operation is simple and the degree of crosslinking can be easily controlled.
  • crosslinkable monomers include polyfunctional polymerizable monomers having two or more polymerizable unsaturated groups, and monomers having crosslinkable functional groups capable of self-crosslinking such as hydrolyzable silyl groups. Can be mentioned.
  • the above-mentioned polyfunctional polymerizable monomer is a compound having two or more polymerizable functional groups such as a (meth)acryloyl group and an alkenyl group in the molecule, and includes a polyfunctional (meth)acrylate compound, a polyfunctional alkenyl compound, ( Examples include compounds having both a meth)acryloyl group and an alkenyl group. These compounds may be used alone or in combination of two or more. Among these, polyfunctional alkenyl compounds may be preferable because they can easily obtain a uniform crosslinked structure, and polyfunctional allyl ether compounds having two or more allyl ether groups in the molecule may be particularly preferable.
  • the polyfunctional polymerizable monomer has, in addition to the alkenyl group or allyl group, a hydroxyl group such as a hydroxyl group derived from a trimethylolpropane skeleton.
  • polyfunctional (meth)acrylate compounds include ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, polyethylene glycol di(meth)acrylate, and polypropylene glycol di(meth)acrylate.
  • Di(meth)acrylates of dihydric alcohols such as meth)acrylate; trimethylolpropane tri(meth)acrylate, tri(meth)acrylate modified with trimethylolpropane ethylene oxide, glycerin tri(meth)acrylate, pentaerythritol tri( Poly(meth)acrylates such as tri(meth)acrylates and tetra(meth)acrylates of trivalent or higher polyhydric alcohols such as meth)acrylates and pentaerythritol tetra(meth)acrylates; poly(meth)acrylates such as methylenebisacrylamide and hydroxyethylenebisacrylamide; Bisamides and the like can be mentioned.
  • polyfunctional alkenyl compounds include polyfunctional allyl ether compounds such as trimethylolpropane diallyl ether, trimethylolpropane triallyl ether, pentaerythritol diallyl ether, pentaerythritol triallyl ether, tetraallyloxyethane, and polyallyl sucrose; diallyl phthalate, etc. and polyfunctional vinyl compounds such as divinylbenzene.
  • Compounds having both a (meth)acryloyl group and an alkenyl group include allyl (meth)acrylate, isopropenyl (meth)acrylate, butenyl (meth)acrylate, pentenyl (meth)acrylate, and (meth)acrylic acid. Examples include 2-(2-vinyloxyethoxy)ethyl.
  • the monomer having a crosslinkable functional group capable of self-crosslinking include hydrolyzable silyl group-containing vinyl monomers, N-methoxyalkyl (meth)acrylamide, and the like. These compounds can be used alone or in combination of two or more.
  • the hydrolyzable silyl group-containing vinyl monomer is not particularly limited as long as it is a vinyl monomer having at least one hydrolyzable silyl group.
  • vinylsilanes such as vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, and vinyldimethylmethoxysilane
  • silyls such as trimethoxysilylpropyl acrylate, triethoxysilylpropyl acrylate, and methyldimethoxysilylpropyl acrylate.
  • Group-containing acrylic esters silyl group-containing methacrylic esters such as trimethoxysilylpropyl methacrylate, triethoxysilylpropyl methacrylate, methyldimethoxysilylpropyl methacrylate, and dimethylmethoxysilylpropyl methacrylate; trimethoxysilylpropyl vinyl ether, etc.
  • Examples include silyl group-containing vinyl ethers; silyl group-containing vinyl esters such as vinyl trimethoxysilyl undecanoate.
  • the amount of the crosslinkable monomer used is, for example, based on the total amount (total molar amount) of the non-crosslinkable monomer composition.
  • the content is preferably 0.1 mol% or more and 1.0 mol% or less. Within this range, it is easy to obtain good electrode expansion and coating properties.
  • the amount used is, for example, 0.1 mol% or more and 0.8 mol% or less, further, for example, 0.2 mol% or more and 0.8 mol% or less, and, for example, 0.1 mol% or more and 0.8 mol% or less. It may be more preferable that the content is 7 mol% or less, and for example, 0.2 mol% or more and 0.7 mol% or less.
  • Acid groups such as carboxyl groups derived from ethylenically unsaturated carboxylic acid monomers possessed by the crosslinked polymer may be unneutralized and free, or they may be partially or completely neutralized with a base. There may be. That is, the crosslinked polymer is preferably used in the form of a salt in which at least some of the acid groups are neutralized.
  • the types of salts are not particularly limited, but include alkali metal salts such as lithium, sodium, and potassium; alkaline earth metal salts such as calcium salts and barium salts; other metal salts such as magnesium salts and aluminum salts; ammonium salts and organic salts. Examples include amine salts. Among these, alkali metal salts such as lithium and magnesium salts are preferable, from the viewpoint that they are less likely to adversely affect battery characteristics, alkali metal salts are more preferable, and lithium salts may be even more preferable.
  • the degree of neutralization of the salt of the crosslinked polymer is, for example, 20 mol% or more and 100 mol% or less.
  • the lower limit of the degree of neutralization is also, for example, 50 mol%, further, for example, 60 mol%, further, for example, 70 mol%, and also, for example, 80 mol%.
  • the upper limit is, for example, 99 mol%, 95 mol%, or 90 mol%.
  • the range can be a combination of these lower and upper limits, for example, 70 mol% or more and 90 mol% or less, or 80 mol% or more and 90 mol% or less, and for example, 90 mol%. It may be preferable.
  • the degree of neutralization is 20 mol % or more because the water swelling properties are good and the polymer particles are less likely to cause secondary aggregation (or are easy to disintegrate in an aqueous medium even if secondary aggregation occurs).
  • This production method includes a polymerization step of polymerizing a non-crosslinkable monomer composition by precipitation polymerization.
  • Precipitation polymerization is a method for producing a polymer by carrying out a polymerization reaction in a solvent that dissolves the raw material unsaturated monomer but does not substantially dissolve the resulting polymer.
  • the polymer particles become larger due to aggregation and growth, and a dispersion of polymer particles in which primary particles of several tens of nanometers to several hundred nanometers are secondary aggregated to several micrometers of several tens of micrometers is obtained.
  • Dispersion stabilizers can also be used to control the particle size of the polymer.
  • the above-mentioned secondary aggregation can also be suppressed by selecting a dispersion stabilizer, a polymerization solvent, etc.
  • precipitation polymerization in which secondary aggregation is suppressed is also called dispersion polymerization.
  • the polymerization solvent can be selected from water, various organic solvents, etc., taking into consideration the type of monomer used. In order to obtain a polymer with a longer primary chain length, it is preferable to use a solvent with a small chain transfer constant.
  • Precipitation polymerization or dispersion polymerization is a polymerization method in which polymer chains precipitated from the medium are stacked on the surface of the primary particles as the polymerization progresses. Therefore, those skilled in the art can appropriately control the polymer composition of particles by adding or feeding constituent monomers during the polymerization reaction. As a result, the degree of water swelling can be controlled. For example, polymerization may be started for the monomer from which the first structural unit is derived and the monomer from which the second structural unit is derived, or initially, polymerization is performed for only one of them. Then, it is possible to perform polymerization by adding the other monomer all at once or continuously or intermittently.
  • Specific polymerization solvents that can be used in precipitation polymerization and dispersion polymerization include water-soluble solvents such as methanol, t-butyl alcohol, acetone, methyl ethyl ketone, acetonitrile, and tetrahydrofuran, as well as benzene, ethyl acetate, dichloroethane, n-hexane, and cyclohexane. and n-heptane, and one type of these can be used alone or two or more types can be used in combination.
  • a water-soluble solvent refers to a solvent having a solubility in water at 20° C. greater than 10 g/100 ml.
  • the formation of coarse particles and adhesion to the reactor are small, and the polymerization stability is good, and the precipitated fine polymer particles are unlikely to cause secondary aggregation (or even if secondary aggregation occurs, they will not dissolve in the aqueous medium).
  • Acetonitrile is preferred because it is easy to use), a polymer with a small chain transfer constant and a high degree of polymerization (primary chain length) can be obtained, and it is easy to operate during the neutralization process described below.
  • a highly polar solvent is preferably water.
  • the amount of water used (moisture amount) relative to the total mass of the polymerization reaction solution is selected from the viewpoint of improving the polymerization rate and adjusting the primary chain length.
  • the polymerization rate increases when water is added, making it easier to obtain a polymer with a long primary chain length.
  • the lower limit of the water content is 3000 ppm by mass (hereinafter simply referred to as ppm), for example, 3300 ppm, for example 4000 ppm, for example 5000 ppm, and for example 6000 ppm. .
  • the upper limit of the water content is 15,000 ppm, for example, 12,000 ppm, for example, 10,000 ppm, for example, 9,600 ppm, for example, 8,000 ppm, and for example, 7,000 ppm.
  • the range of water content can be set by arbitrarily selecting the lower limit and upper limit described above, and can be set, for example, from 3000 ppm to 15000 ppm, or from 3000 ppm to 9000 ppm.
  • the ethylenically unsaturated carboxylic acid monomer from which the first structural unit is derived and the nitrogen-containing ethylenically unsaturated monomer from which the second structural unit is derived are contained in the ratio already described.
  • Non-monomeric monomer compositions can be used.
  • a crosslinkable monomer can be included in the embodiments already shown.
  • concentration of the non-crosslinkable monomer composition is preferably higher from the viewpoint of obtaining a polymer with a longer primary chain length.
  • concentration of non-crosslinking monomer composition refers to the concentration of non-crosslinking monomer composition (total mass of non-crosslinking monomers) used for polymerization in the polymerization reaction solution in the polymerization step. say. If the concentration of the monomer composition is too high, agglomeration of the polymer particles tends to proceed, and it becomes difficult to control the polymerization heat, which may cause the polymerization reaction to run out of control.
  • the lower limit is 16% by mass, and for example, 17% by mass from the viewpoint of obtaining an appropriate primary chain length and suppressing agglomeration of polymer particles to improve the ability to suppress electrode expansion. and, for example, 18% by mass, and also, for example, 20% by mass.
  • the upper limit is, for example, 40% by mass, or, for example, 34% by mass, or, for example, 30% by mass, or, for example, 25% by mass, or, for example, 24% by mass. It is.
  • the range of the same concentration can be a range that appropriately combines these lower and upper limits, but for example, it is 16% by mass or more and 30% by mass or less, and for example, 18% by mass or more and 30% by mass or less, and for example, The content is 20% by mass or more and 30% by mass or less, for example, 17% by mass or more and 25% by mass or less, and further, for example, 18% by mass or more and 24% by mass or less.
  • the crosslinked polymer or its salt may be produced by carrying out a polymerization reaction in the presence of a basic compound.
  • a polymerization reaction By carrying out the polymerization reaction in the presence of a basic compound, the polymerization reaction can be carried out stably even under conditions of high monomer concentration.
  • the base compound is a so-called alkaline compound, and either an inorganic base compound or an organic base compound may be used.
  • the polymerization reaction can be stably performed even under conditions of a high non-crosslinkable monomer composition concentration of 16% by mass or more, for example.
  • the polymer obtained by polymerization at such a high monomer concentration has a high molecular weight (because the primary chain length is long), it also has excellent adhesiveness.
  • Examples of the inorganic base compound as a basic compound include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, and alkaline earth metal hydroxides such as calcium hydroxide and magnesium hydroxide. One or more of these can be used.
  • Examples of the organic base compound include ammonia and organic amine compounds, and one or more of these can be used. Among these, organic amine compounds are preferred from the viewpoint of polymerization stability and adhesion of the binder containing the resulting crosslinked polymer or its salt.
  • organic amine compounds include monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, monobutylamine, dibutylamine, tributylamine, monohexylamine, dihexylamine, trihexylamine, trioctylamine, and tridodecylamine.
  • N-alkyl substituted amines such as monoethanolamine, diethanolamine, triethanolamine, propanolamine, dimethylethanolamine and N,N-dimethylethanolamine; (alkyl)alkanolamines such as pyridine, piperidine, piperazine, 1,8- Cyclic amines such as bis(dimethylamino)naphthalene, morpholine, and diazabicycloundecene (DBU); diethylenetriamine, N,N-dimethylbenzylamine, and one or more of these can be used. .
  • alkyl substituted amines such as monoethanolamine, diethanolamine, triethanolamine, propanolamine, dimethylethanolamine and N,N-dimethylethanolamine
  • (alkyl)alkanolamines such as pyridine, piperidine, piperazine, 1,8- Cyclic amines such as bis(dimethylamino)naphthalene, morpholine, and diazabicyclound
  • C/N the value expressed as the ratio of the number of carbon atoms to the number of nitrogen atoms present in the organic amine compound, the higher the polymerization stabilization effect due to the steric repulsion effect.
  • the above C/N value is preferably 3 or more, more preferably 5 or more, still more preferably 10 or more, and still more preferably 20 or more.
  • the amount of the basic compound used is preferably in the range of 0.001 mol% or more and 4.0 mol% or less based on the ethylenically unsaturated carboxylic acid monomer. If the amount of the basic compound used is within this range, the polymerization reaction can be carried out smoothly.
  • the amount used may be 0.05 mol% or more and 4.0 mol% or less, 0.1 mol% or more and 4.0 mol% or less, and 0.1 mol% or more and 3.0 mol%. % or less, or from 0.1 mol% to 2.0 mol%.
  • the amount of the basic compound used represents the molar concentration of the basic compound used with respect to the ethylenically unsaturated carboxylic acid monomer, and does not mean the degree of neutralization. That is, the valence of the basic compound used is not considered.
  • polymerization initiator known polymerization initiators such as azo compounds, organic peroxides, and inorganic peroxides can be used, but are not particularly limited.
  • the usage conditions can be adjusted by known methods such as thermal initiation, redox initiation using a reducing agent, UV initiation, etc. so that an appropriate amount of radicals is generated.
  • thermal initiation thermal initiation
  • redox initiation using a reducing agent
  • UV initiation etc.
  • azo compounds examples include 2,2'-azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(N-butyl-2-methylpropionamide), 2-(tert-butylazo)-2 -Cyanopropane, 2,2'-azobis(2,4,4-trimethylpentane), 2,2'-azobis(2-methylpropane), etc., and one or more of these are used. be able to.
  • organic peroxides examples include 2,2-bis(4,4-di-t-butylperoxycyclohexyl)propane (manufactured by NOF Corporation, trade name "Pertetra A”), 1,1-di(t- hexylperoxy)cyclohexane (“PerhexaHC”), 1,1-di(t-butylperoxy)cyclohexane (“PerhexaC”), n-butyl-4,4-di(t-butylperoxy) valerate (“Perhexa V”), 2,2-di(t-butylperoxy)butane ("Perhexa 22"), t-butyl hydroperoxide ("Perbutyl H”), cumene hydroperoxide ("Perhexa 22"), Manufactured by Yusha, trade name "Perocta H”), 1,1,3,3-tetramethylbutyl hydroperoxide (“Perocta H”), t-butyl
  • inorganic peroxides examples include potassium persulfate, sodium persulfate, ammonium persulfate, and the like. Further, in the case of redox initiation, sodium sulfite, sodium thiosulfate, sodium formaldehyde sulfoxylate, ascorbic acid, sulfur dioxide gas (SO 2 ), ferrous sulfate, etc. can be used as a reducing agent.
  • the preferred amount of the polymerization initiator used is, for example, 0.001 parts by mass or more and 2 parts by mass or less, and for example, 0.005 parts by mass, when the total amount of the non-crosslinkable monomer composition is 100 parts by mass. Part or more and 1 part by mass or less, and for example, 0.01 part or more and 0.5 part by mass or less. If the amount of the polymerization initiator used is 0.001 parts by mass or more, the polymerization reaction can be carried out stably, and if it is 2 parts by mass or less, it is easy to obtain a polymer with a long primary chain length.
  • the polymerization temperature depends on conditions such as the type and concentration of the monomer used, but for example, it may be preferably 0°C or more and 100°C or less, and, for example, it may be preferably 20°C or more and 80°C or less, Further, for example, the temperature may be preferably 40° C. or more and 80° C. or less, further, 40° C. or more and 70° C. or less, and, for example, 50° C. or more and 60° C. or less. When the temperature is 20° C. or higher and 80° C. or lower, it is easy to obtain a crosslinked polymer having the intended particle size and water swelling degree.
  • the polymerization temperature may be constant or may vary during the polymerization reaction. Further, the polymerization time is preferably 1 minute to 20 hours, more preferably 1 hour to 15 hours.
  • the crosslinked polymer dispersion obtained through the polymerization step is subjected to reduced pressure and/or heat treatment in the drying step to remove the solvent, thereby obtaining the desired crosslinked polymer in powder form.
  • a solid-liquid separation process such as centrifugation and filtration is carried out following the polymerization process before the drying process. It is preferable to include a washing step using methanol, the same solvent as the polymerization solvent, or the like.
  • a non-crosslinkable monomer composition containing an ethylenically unsaturated carboxylic acid monomer and a nitrogen-containing ethylenically unsaturated monomer is polymerized in the presence of a basic compound.
  • process neutralization After neutralizing the polymer (hereinafter also referred to as "process neutralization") by adding an alkali compound having a base suitable as a salt of the crosslinked polymer to the polymer dispersion obtained, the solvent is removed in a drying process. It's okay.
  • an alkali compound is added when preparing the electrode mixture layer composition to neutralize the polymer (hereinafter referred to as "post-neutralization”). (also called “neutralization”).
  • post-neutralization also called “neutralization”
  • the crosslinked polymer or its salt that can be obtained by this production method has a volume-based median particle size measured in an acetonitrile medium of, for example, 0.60 ⁇ m or more and 1.0 ⁇ m or less.
  • the degree of electrode expansion can be effectively suppressed, thereby suppressing deterioration of cycle characteristics in some cases.
  • the particle size is less than 0.60 ⁇ m, the degree of electrode expansion tends to increase, and when the particle size exceeds 1.0 ⁇ m, the degree of electrode expansion also tends to increase.
  • the lower limit of the particle size is, for example, 0.62 ⁇ m, for example, 0.65 ⁇ m, for example, 0.66 ⁇ m, for example, 0.67 ⁇ m, and for example, 0.68 ⁇ m, Also, for example, it is 0.69 ⁇ m, for example, 0.70 ⁇ m, for example, 0.71 ⁇ m, for example, 0.72 ⁇ m, for example, 0.73 ⁇ m, and for example, 0. For example, it is 74 ⁇ m, for example, 0.75 ⁇ m, for example, 0.76 ⁇ m, for example, 0.77 ⁇ m, and for example, 0.78 ⁇ m.
  • the upper limit of the particle size is, for example, 0.99 ⁇ m, for example, 0.97 ⁇ m, for example, 0.95 ⁇ m, for example, 0.93 ⁇ m, and for example, 0.91 ⁇ m, For example, it is 0.89 ⁇ m.
  • the range of the particle size can be arbitrarily selected from the above-mentioned lower and upper limits, and is, for example, 0.65 ⁇ m or more and 1.0 ⁇ m or less, and, for example, 0.75 ⁇ m or more and 1.0 ⁇ m or less, and, for example, It is 0.75 ⁇ m or more and 0.99 ⁇ m or less, for example, 0.75 ⁇ m or more and 0.95 ⁇ m or less, and for example, 0.76 ⁇ m or more and 0.95 ⁇ m or less.
  • the particle size in an acetonitrile medium is intended to be the particle size of the crosslinked polymer or its salt in a state that is not substantially swollen with water.
  • 5.0 g of acetonitrile of 99.5% by mass or more is added to 1.0 g of powder of a crosslinked polymer or its salt, and the mixture is heated using an ultrasonic homogenizer (for example, LUH150 manufactured by Yamato Scientific Co., Ltd. or an equivalent device). , irradiate with ultrasonic waves for 30 seconds at an output of 25 W to obtain a dispersion liquid.
  • an ultrasonic homogenizer for example, LUH150 manufactured by Yamato Scientific Co., Ltd. or an equivalent device.
  • the particle size distribution of this dispersion liquid was measured using a laser diffraction/scattering type particle size distribution analyzer (Microtrac MT-3300EXII, manufactured by Microtrac Bell Co., Ltd.) using acetonitrile as a dispersion medium. Appropriate scattered light intensity was obtained by introducing 0.05 mL of the dispersion into a place where an excess amount of the dispersion medium was being circulated. Thereafter, as soon as it is confirmed that the particle size distribution shape is stable several minutes later, the particle size distribution is measured and the volume-based median diameter (D50) is obtained as a representative value of the particle size.
  • D50 volume-based median diameter
  • the degree of electrode expansion is the ratio (%) of the increase in the thickness of the negative electrode when it is brought into a charged state again after charging and discharging under predetermined conditions, with respect to the thickness of the negative electrode before charging and discharging.
  • the negative electrode expands during charging and contracts during discharging, but by repeating charging and discharging, the electrode expands from the initial stage and has a thickness that is maintained even during charging.
  • the degree of electrode expansion can be measured as follows. That is, charge and discharge is performed a predetermined number of times, the battery is brought to a charged state again, the battery is disassembled, the negative electrode (negative electrode mixture layer) is taken out, and after cleaning with a solvent that does not affect the original components of the negative electrode, its thickness (T 2 ) Measure.
  • the thickness (T 1 ) of the composite material layer after coating and rolling is measured for electrodes having the same configuration.
  • the number of times of charging and discharging and the charging and discharging conditions are appropriately set depending on the battery.
  • the number of times of charging and discharging can be set in the range of several times to 50 times.
  • the thickness of the negative electrode can be measured with a contact micrometer. A specific example of a method for measuring the degree of electrode expansion is disclosed in Examples.
  • the composition, structure, etc. of the crosslinked polymer or its salt based on the composition, etc. in the Examples of this specification, as well as the common general knowledge at the time of filing of this application, so that particles in an acetonitrile medium can be
  • the diameter can be adjusted.
  • the particle size may be increased by introducing a second structural unit, which will be described later.
  • the particle size can sometimes be increased by increasing the initial monomer concentration during polymerization.
  • the degree of water swelling at pH 8 of the crosslinked polymer or its salt that can be obtained by this production method is, for example, 25.0 or more and 40.0 or less. Within this range, the coating properties on the current collector and the adhesion of the binder to the current collector can be satisfied at the same time. If the degree of water swelling is less than 25.0, the above-mentioned adhesion may decrease and the cycle characteristics may deteriorate, and if the degree of water swelling exceeds 40.0, the coatability may decrease. be.
  • the degree of water swelling refers to the dry mass of the crosslinked polymer or its salt, "(WA) g", and the water absorbed when the crosslinked polymer or its salt is saturated and swollen with water at pH 8. is calculated based on the following calculation formula (2) from the amount "(WB)g".
  • Water swelling degree ⁇ (WA) + (WB) ⁇ /(WA) (2)
  • the lower limit of the water swelling degree at pH 8 is, for example, 25.5, for example, 26.0, and for example, 27.0, from the viewpoint of electrode swelling degree, coating property, etc. 27.5, for example 27.9, for example 28.0, for example 28.5, for example 28.9, for example 29.0 , and for example, 29.2.
  • the upper limit of the water swelling degree is, for example, 39.0, for example, 38.7, for example, 38.5, from the viewpoint of electrode swelling degree, coating property, adhesion, etc. , 38.0, for example 37.5, for example 37.0, for example 36.8, for example 36.5, for example 36.0 Yes, for example, 35.5, for example, 35.0, and for example, 34.6.
  • the range of water swelling degree can be arbitrarily selected from the lower limit and upper limit described above, and is, for example, 25.0 or more and 39.0 or less, and, for example, 27.5 or more and 37.4 or less, For example, it is 28.5 or more and 37.4 or less, and for example, it is 29.0 or more and 35.0 or less. Further, for example, it is 27.9 or more and 36.8 or less, for example 28.5 or more and 36.8 or less, and for example 29.2 or more and 36.8 or less.
  • the degree of water swelling at pH 8 can be obtained by measuring the degree of water swelling of the crosslinked polymer or its salt in water at pH 8.
  • the water having a pH of 8 for example, ion-exchanged water can be used, and the pH value may be adjusted using an appropriate acid or alkali, or a buffer solution, etc., as necessary.
  • the measurement is performed at 25 ⁇ 5°C. Specific examples of methods for measuring the degree of water swelling are disclosed in the Examples.
  • the degree of water swelling can be adjusted by changing the amount of the second structural unit introduced later, and in general, the degree of water swelling can be improved by introducing such a structural unit.
  • the degree of water swelling may generally be increased.
  • the degree of water swelling can sometimes be increased.
  • the degree of water swelling can be adjusted by controlling the addition timing and addition method of the monomer from which the second structural unit described below is derived. There are cases.
  • the electrode mixture layer composition disclosed herein includes a binder containing a crosslinked polymer or a salt thereof, an active material, and water.
  • the amount of the crosslinked polymer or its salt used in the electrode mixture layer composition is, for example, 0.1 parts by mass or more and 20 parts by mass or less, based on 100 parts by mass of the total solid content.
  • the amount used is, for example, 0.2 parts by mass or more and 10 parts by mass or less, for example 0.3 parts by mass or more and 8 parts by mass or less, and for example 0.4 parts by mass or more and 5 parts by mass or less. , and for example, 0.5 parts by mass or more and 2 parts by mass or less.
  • the amount of the crosslinked polymer or its salt used is less than 0.1 part by mass, sufficient electrode expansion suppressing effect, adhesion to the current collector, and good coating properties may not be obtained. Further, the dispersion stability of the active material etc. may become insufficient, and the uniformity of the formed mixture layer may deteriorate.
  • the amount of the crosslinked polymer and its salt exceeds 20 parts by mass, the electrode mixture layer composition may have a high viscosity and the coatability to the current collector may be reduced. As a result, bumps and unevenness may occur in the resulting mixture layer, which may adversely affect electrode characteristics.
  • Cross-linked polymers or their salts exhibit a sufficiently high electrode expansion suppressing effect even in small amounts (for example, 5% by mass or less) based on the solid content, and because they contain carboxy anions, they have low interfacial resistance and excellent high-rate properties. A good electrode can be obtained.
  • Examples of negative electrode active materials include carbon-based materials, lithium metal, lithium alloys, metal oxides, and the like, and one or more of these can be used in combination.
  • active materials made of carbon-based materials such as natural graphite, artificial graphite, hard carbon, and soft carbon (hereinafter also referred to as "carbon-based active materials") are preferred, and graphites such as natural graphite and artificial graphite, and Hard carbon is more preferred.
  • carbon-based active materials such as natural graphite, artificial graphite, hard carbon, and soft carbon
  • graphites such as natural graphite and artificial graphite, and Hard carbon is more preferred.
  • spheroidized graphite is preferably used from the viewpoint of battery performance, and the preferable particle size range is, for example, 1 to 20 ⁇ m, and further, for example, 5 to 15 ⁇ m.
  • metals or metal oxides capable of absorbing lithium such as silicon or tin
  • silicon has a higher capacity than graphite
  • active materials made of silicon-based materials such as silicon, silicon alloys, and silicon oxides such as silicon monoxide (SiO) (hereinafter also referred to as "silicon-based active materials”) ) can be used.
  • silicon-based active material has a high capacity, it has a large volume change due to charging and discharging. For this reason, it is preferable to use it in combination with the above carbon-based active material.
  • the amount of the silicon active material used is preferably 2% by mass or more and 80% by mass or less based on the total amount of the carbon-based active material and the silicon-based active material.
  • the amount of silicon-based active material used may be 2% by mass or more and 60% by mass or less, 2% by mass or more and 40% by mass or less, or 2% by mass or more and 10% by mass or less.
  • the carbon-based active material itself has good electrical conductivity, it is not necessarily necessary to add a conductive additive.
  • the amount used is, for example, 10% by mass or less, and, for example, 5% by mass or less, based on the total amount of active material from the viewpoint of energy density. It is.
  • a lithium salt of a transition metal oxide can be used, and for example, layered rock salt type and spinel type lithium-containing metal oxides can be used.
  • examples of spinel type positive electrode active materials include lithium manganate.
  • phosphates, silicates, sulfur, etc. are used, and examples of phosphates include olivine-type lithium iron phosphate.
  • the positive electrode active material one of the above materials may be used alone, or two or more materials may be used in combination as a mixture or a composite.
  • the amount of unneutralized or partially neutralized crosslinked polymer used should be such that the amount of unneutralized carboxyl groups in the crosslinked polymer is equal to or more than the amount of alkali eluted from the active material. is preferred.
  • conductive aids include carbon-based materials such as carbon black, carbon nanotubes, carbon fibers, graphite fine powder, and carbon fibers. Among these, carbon black, carbon nanotubes, and carbon fibers are preferred because they are easy to obtain excellent conductivity. , is preferable. Moreover, as carbon black, Ketjen black and acetylene black are preferable.
  • the conductive aids may be used alone or in combination of two or more. The amount of the conductive aid used can be, for example, 0.2 to 20 parts by mass, based on 100 parts by mass of the total amount of the active material, from the viewpoint of achieving both conductivity and energy density. The amount can be 2 to 10 parts by mass. Further, the positive electrode active material may be surface-coated with a conductive carbon material.
  • the amount of active material used is, for example, 10% by mass or more and 75% by mass or less based on the total amount of the electrode mixture layer composition. If the amount of active material used is 10% by mass or more, migration of the binder and the like can be suppressed. On the other hand, if it is 75% by mass or less, the fluidity and coatability of the electrode mixture layer composition can be ensured, and a uniform mixture layer can be formed. In addition, since it is advantageous in terms of drying cost of the medium, the amount of active material used is, for example, 30% by mass or more, for example, 40% by mass or more, and, for example, 45% by mass or more, Also, for example, it is 50% by mass or more.
  • the amount of active material used in the electrode mixture layer composition is, for example, 80 parts by mass or more, for example, 85 parts by mass or more, and for example, 90 parts by mass, based on 100 parts by mass of the total solid content. or more, and for example, 95 parts by mass or more. Also, for example, it is 99 parts by mass or less, for example, 98 parts by mass or less, and for example, 97 parts by mass or less.
  • the electrode mixture layer composition uses water as a medium.
  • lower alcohols such as methanol and ethanol
  • carbonates such as ethylene carbonate
  • ketones such as acetone, tetrahydrofuran, N-methylpyrrolidone, etc.
  • a mixed solvent with a water-soluble organic solvent may also be used.
  • the proportion of water in the mixed medium is, for example, 50% by mass or more, and for example, 70% by mass or more.
  • the content of the water-containing medium in the entire electrode mixture layer composition depends on the coatability of the slurry, the energy cost required for drying, and the production From the viewpoint of properties, the content can be, for example, in the range of 25% by mass or more and 90% by mass or less, and can be, for example, in the range of 35% by mass or more and 70% by mass or less.
  • the binder disclosed herein may consist only of the above-mentioned crosslinked polymer or its salt, but may also include styrene/butadiene latex (SBR), acrylic latex, and polyvinylidene fluoride latex.
  • other binder components such as cellulose derivatives such as carboxymethylcellulose (CMC) may be used in combination.
  • the amount used can be, for example, 0.1 to 5% by mass or less, and may be 0.1 to 2% by mass or less, based on the active material. Can be done.
  • the amount of other binder components used exceeds 5% by mass, resistance increases and high rate characteristics may become insufficient.
  • styrene/butadiene latex and/or cellulose derivatives may be preferred from the viewpoint of affinity with the crosslinked polymer or its salt and from the viewpoint of balance between adhesion and bending resistance.
  • Styrene/butadiene latex is an aqueous copolymer having structural units derived from aromatic vinyl monomers such as styrene and structural units derived from aliphatic conjugated diene monomers such as 1,3-butadiene. A dispersion is shown.
  • aromatic vinyl monomer include styrene, ⁇ -methylstyrene, vinyltoluene, divinylbenzene, etc., and one or more of these may be used.
  • the structural unit derived from the aromatic vinyl monomer in the copolymer can be in the range of, for example, 20 to 60% by mass, and may be in the range of 30 to 50% by mass, mainly from the viewpoint of adhesion. % range.
  • examples of the aliphatic conjugated diene monomers include 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, and 2-chloro-1,3-butadiene. Examples include butadiene, and one or more of these can be used.
  • the structural unit derived from the aliphatic conjugated diene monomer in the copolymer can be used in an amount of, for example, 30 to 70% by mass in order to improve the adhesion of the binder and the flexibility of the resulting electrode. For example, it can range from 40 to 60% by weight.
  • styrene/butadiene latexes also contain nitrile group-containing monomers such as (meth)acrylonitrile, (meth) Carboxyl group-containing monomers such as acrylic acid, itanconic acid, and maleic acid may be used as copolymerizable monomers.
  • nitrile group-containing monomers such as (meth)acrylonitrile, (meth) Carboxyl group-containing monomers such as acrylic acid, itanconic acid, and maleic acid may be used as copolymerizable monomers.
  • the structural units derived from the other monomers in the copolymer can be in the range of, for example, 0 to 30% by mass, and can be in the range of, for example, 0 to 20% by mass.
  • the electrode mixture layer composition disclosed herein has the above-mentioned active material, water, and binder as essential components, and is obtained by mixing each component using known means.
  • the method of mixing each component is not particularly limited, and any known method can be adopted.
  • a method of mixing with a dispersion medium such as the like and dispersing and kneading is preferred.
  • When obtaining the electrode mixture layer composition in the form of a slurry it is preferable to finish the slurry without poor dispersion or agglomeration.
  • known mixers such as a planetary mixer, a thin film swirling mixer, and a revolution mixer can be used, but a thin film swirling mixer is preferred because it can obtain a good dispersion state in a short time. It is preferable to do so.
  • a thin film swirl mixer it is preferable to perform preliminary dispersion in advance using a stirrer such as a disper.
  • the electrode mixture layer composition in a wet powder state it is preferable to knead it to a uniform state with no uneven concentration using a Henschel mixer, a blender, a planetary mixer, a twin-screw kneader, or the like.
  • the electrode for a secondary battery disclosed in this specification is provided with a mixture layer formed from the above electrode mixture layer composition on the surface of a current collector made of copper, aluminum, or the like.
  • the mixture layer is formed by applying the electrode mixture layer composition disclosed herein on the surface of a current collector and then drying and removing a medium such as water.
  • the method for applying the electrode mixture layer composition is not particularly limited, and known methods such as a doctor blade method, dip method, roll coating method, comma coating method, curtain coating method, gravure coating method, and extrusion method are employed. can do.
  • the above-mentioned drying can be performed by a known method such as hot air blowing, reduced pressure, (far) infrared rays, or microwave irradiation.
  • the mixture layer obtained after drying is subjected to compression treatment using a mold press, a roll press, or the like.
  • the active material and the binder are brought into close contact with each other, and the strength of the mixture layer and the adhesion to the current collector can be improved.
  • the thickness of the mixture layer can be adjusted to, for example, about 30 to 80% of the thickness before compression, and the thickness of the mixture layer after compression is generally about 4 to 200 ⁇ m.
  • a secondary battery can be produced by providing the secondary battery electrode disclosed in this specification with a separator and an electrolytic solution using an organic solvent.
  • the electrolyte may be in liquid form or gel form.
  • the separator is placed between the positive and negative electrodes of the battery, and plays the role of preventing short circuits caused by contact between the two electrodes, and retaining the electrolyte to ensure ionic conductivity.
  • the separator is preferably a film-like insulating microporous membrane having good ion permeability and mechanical strength.
  • polyolefins such as polyethylene and polypropylene, polytetrafluoroethylene, etc. can be used.
  • the electrolytic solution commonly used and known ones can be used depending on the type of active material.
  • specific solvents include cyclic carbonates with a high dielectric constant and high ability to dissolve electrolytes, such as propylene carbonate and ethylene carbonate, and chains with low viscosity, such as ethyl methyl carbonate, dimethyl carbonate, and diethyl carbonate. carbonates, etc., and these can be used alone or as a mixed solvent.
  • the electrolytic solution is used by dissolving a lithium salt such as LiPF 6 , LiSbF 6 , LiBF 4 , LiClO 4 or LiAlO 4 in these solvents.
  • a potassium hydroxide aqueous solution can be used as the electrolyte.
  • a secondary battery is obtained by forming a positive electrode plate and a negative electrode plate separated by a separator into a spiral or laminated structure and storing them in a case or the like.
  • the binder disclosed in this specification exhibits excellent adhesion and followability with active materials and the like in the mixture layer. Therefore, a secondary battery equipped with an electrode obtained using the above binder can ensure good integrity and suppress the degree of electrode expansion even after repeated charging and discharging. As a result, it can contribute to good cycle characteristics. It is also useful for the use of active materials containing silicon, which has a high expansion and contraction rate, and is expected to contribute to increasing the capacity of batteries. In particular, it is suitable for vehicle-mounted secondary batteries and the like. Furthermore, even under conditions where the active material concentration is high, the coatability of the electrode mixture layer composition (electrode slurry) can be improved. Therefore, it is advantageous in terms of reducing drying energy and improving productivity when forming a mixture layer. Therefore, the binder disclosed herein can be particularly suitably used for nonaqueous electrolyte secondary battery electrodes, and is particularly useful for nonaqueous electrolyte lithium ion secondary batteries with high energy density.
  • the particle size distribution of the dispersion was measured using a laser diffraction/scattering particle size distribution analyzer (Microtrac MT-3300EXII, manufactured by Microtrac Bell Co., Ltd.) using acetonitrile as a dispersion medium.
  • Appropriate scattered light intensity was obtained by injecting 0.05 mL of the dispersion liquid into a place where an excess amount of the dispersion medium was being circulated. Thereafter, as soon as it was confirmed that the particle size distribution shape was stable several minutes later, the particle size distribution was measured and the volume-based median diameter (D50) was obtained as a representative value of the particle size.
  • the degree of water swelling at pH 8 is expressed as the ratio of the mass of the sample when swollen in water to the mass of the sample when dry.
  • the degree of water swelling was measured by the following method.
  • the measuring device is shown in Figure 1.
  • the measuring device is composed of ⁇ Element 1> to ⁇ Element 3> in FIG.
  • ⁇ Element 1> Consists of a burette 1 with a branch pipe for venting air, a pinch cock 2, a silicone tube 3, and a polytetrafluoroethylene tube 4.
  • ⁇ Element 3> A sample 6 (measurement sample) of a crosslinked polymer or its salt is sandwiched between two sample-fixing filter papers 7, and the sample-fixing filter papers 7 are fixed with an adhesive tape 9. All filter papers used are ADVANTEC No. 2. The inner diameter is 55 mm.
  • ⁇ Element 1> and ⁇ Element 2> are connected by a silicon tube 3. Further, the height of the funnel 5 and the support cylinder 8 relative to the burette 1 is fixed, so that the lower end of the polytetrafluoroethylene tube 4 installed inside the buret branch pipe and the bottom surface of the support cylinder 8 are at the same height. (dotted line in Figure 1).
  • the concentration of the non-crosslinkable monomer in the polymerization reaction solution was calculated to be 20%. Further, the amount of water (moisture content) relative to the total amount of the polymerization reaction solution was 3300 ppm.
  • the polymerization reaction was continued while adjusting the external temperature (water bath temperature) to maintain the internal temperature at 50°C, and when 12 hours had passed from the polymerization start point, cooling of the reaction solution was started until the internal temperature reached 25°C. After the temperature had decreased, 52.4 parts of lithium hydroxide-hydrate (hereinafter also referred to as "LiOH.H 2 O”) powder was added.
  • crosslinked polymer salt carboxyl group-containing crosslinked polymer salt (hereinafter also simply referred to as crosslinked polymer salt) R-1 (Li salt, neutralization degree 90 mol%) were added to the medium. A dispersed slurry-like polymerization reaction solution was obtained.
  • the obtained polymerization reaction solution was centrifuged to sediment the polymer, and then the supernatant was removed. Thereafter, the precipitate was redispersed in acetonitrile of the same weight as the polymerization reaction solution, and a washing operation was repeated twice in which the polymer particles were precipitated by centrifugation and the supernatant was removed.
  • the precipitate was collected and dried under reduced pressure at 80° C. for 3 hours to remove volatile components, thereby obtaining a powder of crosslinked polymer salt R-1 having a carboxyl group. Since crosslinked polymer salt R-1 has hygroscopic properties, it was stored in a sealed container with water vapor barrier properties.
  • AA Acrylic acid
  • DMAAm N,N-dimethylacrylamide
  • HEAAm 2-hydroxyethylacrylamide
  • T-20 Trimethylolpropane diallyl ether (manufactured by Osaka Soda Co., Ltd., trade name "Neoallyl T-20")
  • TMPTA Trimethylolpropane triacrylate (manufactured by Toagosei Co., Ltd., trade name "Aronix (registered trademark) M-309")
  • TOA trioctylamine AcN: acetonitrile MeOH: methanol
  • V-65 2,2'-azobis(2,4-dimethylvaleronitrile) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • LiOH ⁇ H 2 O Lithium hydroxide monohydrate
  • K 2 CO 3 Potassium carbonate
  • AAA, AA, A, B, and C mean “very good”, “excellent”, “fairly good”, “good”, and “poor”, respectively.
  • NMP N-methylpyrrolidone
  • 100 parts of LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM) as a positive electrode active material and 2 parts of acetylene black were mixed and added to form an electrode composition.
  • a positive electrode composition was prepared by mixing 4 parts of polyvinylidene fluoride (PVDF) as a binder.
  • PVDF polyvinylidene fluoride
  • the positive electrode composition was applied to an aluminum current collector (thickness: 20 ⁇ m) and dried to form a mixture layer. Thereafter, the mixture layer was rolled to have a thickness of 125 ⁇ m and a mixture density of 3.0 g/cm 3 , and then punched into 3 cm square pieces to obtain a positive electrode plate.
  • the battery has a lead terminal attached to each of the positive and negative electrodes, electrode bodies facing each other through a separator (made of polyethylene, film thickness 16 ⁇ m, porosity 47%), and an aluminum laminate used as the battery exterior body.
  • the battery was filled with liquid, sealed, and used as a test battery. Note that the design capacity of this prototype battery is 50 mAh.
  • the designed capacity of the battery was designed based on a charge end voltage of up to 4.2V.
  • CMC Sodium carboxymethyl cellulose
  • SBR Styrene butadiene rubber
  • the crosslinked polymer salts of Examples 1 to 18 were able to suppress the degree of electrode expansion, had excellent cycle characteristics, and had excellent coatability of electrode slurry.
  • the crosslinked polymer salts of Comparative Examples 1 to 4 include a crosslinked polymer salt with excellent coating properties (Comparative Example 4), a crosslinked polymer salt with excellent cycle characteristics (Comparative Examples 3 and 4), etc. Although some of them partially satisfied the electrode properties, all of them were significantly inferior to the crosslinked polymer salts of Examples 1 to 18 in terms of electrode expansion.
  • the initial concentration of the non-crosslinking monomer used in Examples 1 to 18 was 17% by mass to 25% by mass, whereas Comparative Examples 1 to 4 The same initial concentrations were 35% by weight and 10% by weight.
  • the adjustment range is as follows: Referring to the monomer concentration of the crosslinked polymer salts of Examples 1 to 18 and Comparative Examples 1 to 4, the total concentration of non-crosslinkable monomers should be 16% by mass or more and 30% by mass. % or less, it was found that it was possible to produce a crosslinked polymer salt, which is a binder component, that has excellent electrode expansion suppressing ability, coating properties, and cycle characteristics.
  • the crosslinked polymer salts of Examples 1 to 18 have a water swelling degree of 0.60 ⁇ m or more and 1.0 ⁇ m or less and a water swelling degree of 25 or more and 40 ⁇ m or more at pH 8. Although all of the following conditions were satisfied, the crosslinked polymer salts of Comparative Examples 1 to 4 did not meet any of these conditions, and therefore it was considered that the effect of suppressing the degree of electrode expansion was significantly inferior. From this, it was found that adjusting the concentration of the non-crosslinking monomer contributed to adjusting the particle size and water swelling degree in the acetonitrile medium to a predetermined range.
  • the water content in the polymerization process of the crosslinked polymer salts of Examples 1 to 18 was in a wide range of 3,000 ppm to 10,000 ppm, but the electrode expansion suppressing ability, coatability, and cycle characteristics of the crosslinked polymer salts were maintained well. was.
  • the polymerization temperature in the polymerization step of the crosslinked polymer salts in Examples 1 to 18 was 50°C to 80°C, but the electrode expansion suppressing ability, coatability, and cycle characteristics of the crosslinked polymer salts were maintained well.
  • the acetonitrile of the crosslinked polymer salts (R-2 to 4, R-6 to 7, and 9), which were excellent in electrode swelling degree, coatability, and cycle characteristics.
  • the particle size in the medium and the degree of water swelling at pH 8 are 0.75 to 0.95 ⁇ m and 27.9 to 36.8 (Examples 2 to 4, 6 to 7, and 9), and 0.76 to 0, respectively. .95 ⁇ m and 28.5 to 36.8 (Examples 2 to 4, 6 to 7), 0.76 to 0.95 ⁇ m and 29.2 to 36.8 (Examples 2 to 4) Met.
  • acryloylmorpholine (Example 2) has a greater effect on suppressing the degree of electrode expansion than other ethylenically unsaturated monomers (Examples 6 and 7).
  • the results were particularly excellent.
  • lithium salt has a better ability to suppress electrode expansion than potassium salt (Examples 2 and 16), and lithium salt has a neutralization degree of 90 mol% rather than 70 mol%. It was also found that the performance was excellent (Examples 2 and 15).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

非水電解質二次電池の電極膨張度を抑制することが可能なバインダー成分に有用な架橋重合体又はその塩を提供する。このための架橋重合体又はその塩の製造方法として、エチレン性不飽和カルボン酸単量体と窒素含有エチレン性不飽和単量体を含む非架橋性単量体組成物を沈殿重合により重合する重合工程、を備える方法が提供される。重合工程における非架橋性単量体組成物の濃度は、重合反応液の16質量%以上30質量%以下である。

Description

架橋重合体又はその塩の製造方法
 本明細書は、架橋重合体又はその塩の製造方法に関する。
(関連出願の相互参照)
 本出願は、2022年7月27日付けで出願された日本国特許出願である特願2022-119851に基づく優先権を主張するものであり、ここに、当該日本国特許出願の内容を本明細書の一部を構成するものとして援用する。
 例えば、リチウムイオン二次電池などの非水電解質二次電池の電極は、活物質及びバインダー成分としての架橋重合体等を含む電極合剤層を形成するための組成物(以下、電極合剤層組成物ともいう。)を集電体上に塗布・乾燥等することにより作製される。
 リチウムイオン二次電池の電気容量を高める目的で、負極用活物質としてシリコン系活物質を用いることが増えてきている。一方で、シリコン系活物質は充放電時の体積変化が大きく、それによる負極合剤層の剥離又は脱落等が生じやすく、結果として電池容量の低下やサイクル特性が悪化する場合があった。そこで、こうした負極合剤層における不都合を抑制するために、結着性に優れるアクリル酸系重合体が有効であることが報告されている(特許文献1、2)。
 特許文献1には、特定の架橋剤によりポリアクリル酸を架橋した、架橋型アクリル酸系重合体が開示されており、シリコンを含む活物質を用いた場合であっても、電極構造が破壊されることなく良好なサイクル特性を示すことが開示されている。特許文献2には、エチレン性不飽和カルボン酸塩単量体由来の構造単位及びカルボン酸を含まない親水性の高いエチレン性不飽和単量体由来の構造単位を含む水溶性の架橋重合体が開示されている。
国際公開第2014/065407号 国際公開第2016/067633号
 特許文献1及び2に開示される架橋重合体は、結着性能の向上により、集電体からの活物質の剥がれなどを抑制できる。しかしながら、充放電の繰り返し後の電極の膨張(以下、電極膨張度ともいう。)を抑制できていない場合があることがわかった。また、近年、高容量化のために一層電極膨張が促進される傾向にある。かかる電極膨張度の増大は、電極構造の大きな変化による導電パスの切断増加ひいてはサイクル特性の低下を引き起こすことになる。また、バインダーを含む電極スラリーを安定して均一に集電体などに供給できる塗工性能は、二次電池の生産性と電池性能に大きな影響を及ぼす。
 本明細書の開示は、このような事情に鑑みてなされたものであり、その目的は、例えば、非水電解質二次電池の電極膨張度を抑制することが可能なバインダー成分に有用な架橋重合体又はその塩を提供することである。
 本発明者らは、上記課題を解決するために鋭意検討した結果、エチレン性不飽和カルボン酸単量体及び窒素含有エチレン性不飽和単量体を用いることに着目した。さらに、これら単量体を沈殿重合すること及び重合工程時の非架橋性単量体組成物の濃度を一定範囲とすることで、電極膨張度の抑制にも貢献できる架橋重合体又はその塩を製造できるという知見を得た。本開示によれば、こうした知見に基づき以下の手段が提供される。
[1]架橋重合体又はその塩の製造方法であって、
 エチレン性不飽和カルボン酸単量体と窒素含有エチレン性不飽和単量体を含む非架橋性単量体組成物を沈殿重合により重合する重合工程、
を備え、
 前記重合工程における前記非架橋性単量体組成物の濃度が、前記重合工程における重合反応液の16質量%以上30質量%以下である、製造方法。
[2]前記非架橋性単量体組成物は、前記エチレン性不飽和カルボン酸単量体を60質量%以上99.9質量%以下、前記窒素含有エチレン性不飽和単量体を0.1質量%以上40質量%以下含有する、[1]に記載の製造方法。
[3]前記窒素含有エチレン性不飽和単量体は、アクリロイルモルホリンを含有する、[1]又は[2]に記載の製造方法。
[4]前記重合工程における重合温度が、40℃以上80℃以下である、[1]~[3]のいずれか1項に記載の製造方法。
[5]前記重合工程における水分量は、前記重合反応液の総量の15000質量ppm以下である、[1]~[4]のいずれか1項に記載の製造方法。
[6]前記重合工程は、架橋性単量体を用いて前記非架橋性単量体組成物を沈殿重合により重合する工程である、[1]~[5]のいずれか1項に記載の製造方法。
[7]前記架橋性単量体の使用量は、前記非架橋性単量体組成物の総量に対して0.1モル%以上1.0モル%以下である、[6]に記載の製造方法。
[8]前記架橋性単量体は、1分子中に(メタ)アクリロイル基を2個以上有し、かつ、水酸基を有する架橋性単量体を含む、[6]又は[7]に記載の製造方法。
 本明細書に開示される架橋重合体又はその塩の製造方法によれば、非水電解質二次電池の電極膨張度を抑制可能な架橋重合体を容易に得ることができる。架橋重合体は、電極膨張度抑制能のほかに、電極合剤層組成物に優れた塗工性及びサイクル特性にも貢献する。このため、この製造方法は、電池の電池性能の向上に貢献できるとともに、二次電池用電極及び二次電池の生産性の向上に貢献できる有用な製造方法である。
架橋重合体又はその塩の水膨潤度の測定に用いる装置を示す図である。
 本明細書に開示される架橋重合体又はその塩の製造方法(以下、単に、本製造方法ともいう。)は、エチレン性不飽和カルボン酸単量体と窒素含有エチレン性不飽和単量体とを含む非架橋性単量体組成物を沈殿重合により重合するが、非架橋性単量体組成物の濃度を、重合工程の重合反応液の16質量%以上30質量%以下とする。非架橋性単量体組成物の濃度を上記範囲とすることにより、電極膨張度抑制能に優れる架橋重合体を得ることができる。非架橋性単量体組成物の濃度を調整することで、一次鎖長及び重合体粒子の凝集の進行が調整され、その結果、電極膨張抑制能に優れる架橋重合体を得ることができると考えられる。
 得られる架橋重合体又はその塩は、例えば、アセトニトリル媒体中での粒子径及びpHは8における水膨潤度が好ましい範囲となりやすく、この結果、電極膨張度抑制能にも優れるようになると考えられる。
 なお、推論であって本明細書の開示を拘束するものではないが、粒子径及び水膨潤度が一定以上であると、活物質間を結着する確率が上り、結着性は向上していくが、粒子径が大きくなりすぎると単位質量当たりの架橋重合体塩の個数が減ることによる結着点が減少し、水膨潤度が大きくなりすぎると架橋重合体塩の力学特性が低下して単位個数当たりの結着力が低下することにより、電極膨張抑制能に関して粒子径と水膨潤度には最適点が存在していると考えられる。
 従来、二次電池を収容する筐体(ケース)などを用いて二次電池に荷重をかけることで、充放電を繰り返した二次電池の電極膨張を抑制することが行われる場合があった。しかしながら、本明細書に開示されるバインダーは、バインダー自体に、電極膨張度を抑制できる膨張抑制能を備えている。このため、二次電池のケースの構造を簡素化したり、その強度を低下したりできる場合もある。
 架橋重合体又はその塩に関し、所定の粒子径及び水膨潤度は、電極膨張度抑制能及び塗工性能の良好な指標となりえる。発明者らによれば、粒子径及び水膨潤度がそれぞれ小さすぎると電極膨張度が低下し、これらがそれぞれ大きくなりすぎると電極膨張度は低下することがわかっている。これらの指標を充足する架橋重合体又はその塩を用いることで、電極合剤層において膨張収縮性の大きいシリコン系活物質などの活物質と良好な密着性と追従性とを示すことができると考えられる。これにより、充放電時における活物質の膨張収縮に伴う電極構造の崩壊などを抑制できるため、電極膨張度の抑制に貢献できるものと考えられる。
 以下では、本明細書の開示の代表的かつ非限定的な具体例について、適宜図面を参照して詳細に説明する。この詳細な説明は、本発明の好ましい例を実施するための詳細を当業者に示すことを単純に意図しており、本明細書の開示の範囲を限定することを意図したものではない。また、以下に開示される追加的な特徴ならびに発明は、さらに改善された架橋重合体又はその塩の製造方法を提供するために、他の特徴や発明とは別に、又は共に用いることができる。
 また、以下の詳細な説明で開示される特徴や工程の組み合わせは、最も広い意味において本発明を実施する際に必須のものではなく、特に本明細書の開示の代表的な具体例を説明するためにのみ記載されるものである。さらに、上記及び下記の代表的な具体例の様々な特徴、ならびに、独立及び従属クレームに記載されるものの様々な特徴は、本明細書の開示の追加的かつ有用な実施形態を提供するにあたって、ここに記載される具体例のとおりに、あるいは列挙された順番のとおりに組合せなければならないものではない。
 本明細書及び/又はクレームに記載された全ての特徴は、実施例及び/又はクレームに記載された特徴の構成とは別に、出願当初の開示ならびにクレームされた特定事項に対する限定として、個別に、かつ互いに独立して開示されることを意図するものである。さらに、全ての数値範囲及びグループ又は集団に関する記載は、出願当初の開示ならびにクレームされた特定事項に対する限定として、それらの中間の構成を開示する意図を持ってなされている。
 また、本発明者らによれば、これらの指標を充足することにより、同時に、塗工性向上にも優れることがわかっている。このことは、これらの指標が、電極合剤層組成物における活物質や他成分の分散性にも優れるものと考えられる。
 以下に、こうした架橋重合体又はその塩及びその製造方法について詳細に説明する。
 尚、本明細書において、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。また、「(メタ)アクリロイル基」とは、アクリロイル基及び/又はメタクリロイル基を意味する。
 本製造方法は、カルボキシル基を含有する架橋重合体又はその塩を製造する。本製造方法は、架橋重合体又はその塩を得るために、エチレン性不飽和カルボン酸単量体と窒素含有エチレン性不飽和単量体とを含む非架橋性単量体組成物を沈殿重合により重合する重合工程を備えることができる。得られる架橋重合体又はその塩は、非架橋性単量体組成物に含まれる一つの非架橋性単量体であるエチレン性不飽和カルボン酸単量体に由来する第一の構造単位と、他の1つの非架橋性単量体である窒素含有エチレン性不飽和単量体に由来する第二の構造単位と、を含むことができる。説明の都合上、これらの構造単位及び単量体について説明し、その後、重合工程について説明する。
<第一の構造単位>
 架橋重合体又はその塩は、エチレン性不飽和カルボン酸単量体に由来する第一の構造単位(以下、「(a)成分」ともいう)を有することができる。架橋重合体又はその塩が、係る構造単位を有することによりカルボキシル基を有する場合、集電体への密着性が向上するとともに、リチウムイオンの脱溶媒和効果及びイオン伝導性に優れるため、抵抗が小さく、ハイレート特性に優れた電極が得られる。また、当該構造単位により水膨潤性が付与されるため、電極合剤層組成物中における活物質等の分散安定性を高めることができる。
 上記(a)成分は、例えば、エチレン性不飽和カルボン酸単量体又はその塩を重合することにより架橋重合体又はその塩に導入することができる。その他にも、(メタ)アクリル酸エステル単量体を(共)重合した後、加水分解することによっても得られる。また、(メタ)アクリルアミド及び(メタ)アクリロニトリル等を重合した後、強アルカリで処理してもよいし、水酸基を有する重合体に酸無水物を反応させる方法であってもよい。
 エチレン性不飽和カルボン酸単量体としては、(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、(メタ)アクリルアミドヘキサン酸;(メタ)アクリルアミドドデカン酸等の(メタ)アクリルアミドアルキルカルボン酸、コハク酸モノヒドロキシエチル(メタ)アクリレート、ω-カルボキシ-カプロラクトンモノ(メタ)アクリレート、β-カルボキシエチル(メタ)アクリレート等のカルボキシル基を有するエチレン性不飽和単量体またはそれらの(部分)アルカリ中和物が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。上記の中でも、重合速度が大きいために一次鎖長の長い重合体が得られ、バインダーの密着力が良好となる点で重合性官能基としてアクリロイル基を有する化合物が好ましく、特に好ましくはアクリル酸である。エチレン性不飽和カルボン酸単量体としてアクリル酸を用いた場合、カルボキシル基含有量の高い重合体を得ることができる。
 架橋重合体又はその塩における(a)成分の含有量は、特に限定するものではないが、例えば、架橋重合体の非架橋性単量体に由来する全構造単位に対して60質量%以上、99.9質量%以下含むことができる。かかる範囲で(a)成分を含有することで、集電体に対する優れた密着性を容易に確保することができる。下限は、例えば、65質量%であり、また例えば、70質量%であり、また例えば、75質量%であり、また例えば、80質量%であり、また例えば、85質量%であり、また例えば、90質量%であり、また例えば、95質量%であり、また例えば、98質量%であり、また例えば、98.5質量%であり、また例えば、99質量%である。また、上限は、例えば、99.8質量%であり、また例えば、99.5質量%であり、また例えば、99質量%であり、また例えば、98.5質量%であり、また例えば、98質量%である。範囲としては、こうした下限及び上限を適宜組み合わせた範囲とすることができるが、例えば、70質量%以上99.9質量%以下であり、また例えば、70質量%以上99質量%以下であり、また例えば、80質量%以上99.9質量%以下であり、また例えば、80質量%以上99質量%以下であり、また例えば、85質量%以上99質量%以下である。
 なお、上記(a)成分の含有量は、架橋重合体の製造時における非架橋性単量体組成物におけるエチレン性不飽和カルボン酸単量体の含有量でもある。
<第二の構造単位>
 架橋重合体又はその塩は、(a)成分以外に、窒素含有エチレン性不飽和に由来する第二の構造単位(以下、「(b)成分」ともいう)を有することができる。架橋重合体又はその塩が(b)成分を有する場合、当該架橋重合体又はその塩を含む用いて得られる電極合剤層組成物の塗工性の向上及び電極膨張度の低下に貢献することができる。
 (b)成分は、例えば、以下の式(1)で表される単量体からなる群より選ばれる1種又は2種以上の単量体を第一の構造単位が由来する単量体とともに重合することにより架橋重合体又はその塩に導入することができる。
 CH=C(R)CONR   (1)
[式中、Rは水素原子又はメチル基を表し、R2及びR3は、それぞれ、水素原子、炭素数1~4のアルキル基若しくは炭素数1~4のヒドロキシアルキル基を表すか又は連結して式(1)中の窒素原子を含む含酸素環式飽和炭化水素基若しくは前記窒素原子を含む環式飽和炭化水素基を表す。]
 上記式(1)で表される単量体は、(メタ)アクリルアミド誘導体である。式(1)において、R及びRの炭素数1~4のアルキル基としては、直鎖状でも分岐状であってもよい。R及びRは、例えば、それぞれ独立して、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基が挙げられる。R及びRの炭素数1~4のヒドロキシアルキル基としては、既述の炭素数1~4のアルキル基の末端が水酸基であるヒドロキシアルキル基が挙げられ、例えば、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシブチル基等が挙げられる。
 R及びRが表す、連結して式(1)中の窒素原子を含む含酸素環式飽和炭化水素基としては、窒素原子を含む5員環~7員環の含酸素環式飽和炭化水素基が挙げられる。かかる環式飽和炭化水素基としては、モルホリノ基などが挙げられる。また、R及びRが表す、連結して式(1)中の窒素原子を含む環式飽和炭化水素基としては、窒素原子を含む5員環~7員環の環式飽和炭化水素基が挙げられ、例えばピペリジノ基が挙げられる。
 式(1)で表される単量体として、R及びRがいずれもアルキル基のとき、N,N-ジメチルアクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジ-n-プロピル(メタ)アクリルアミド等のN,N-ジアルキル(メタ)アクリルアミドが挙げられ、R及びRのうち一方が水素原子で他方がアルキル基のとき、N―メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド等のN-アルキル(メタ)アクリルアミドが挙げられ、R及びRのうち一方が水素原子又はアルキル基で他方がヒドロキシアルキル基のとき、N-ヒドロキシエチル(メタ)アクリルアミド、N-ヒドロキシプロピル(メタ)アクリルアミド、N-ヒドロキシブチル(メタ)アクリルアミド、N-メチル-N-ヒドロキシエチル(メタ)アクリルアミド及びN-エチル-N-ヒドロキシエチル(メタ)アクリルアミド等のN-ヒドロキシアルキル(メタ)アクリルアミドが挙げられ、R及びRがヒドロキシアルキル基のとき、N,N-ジヒドロキシメチル(メタ)アクリルアミド及びN,N-ジヒドロキシエチル(メタ)アクリルアミド等のN,N-ジヒドロキシアルキル(メタ)アクリルアミドが挙げられ、R及びRが連結して式(1)中の窒素原子を含む含酸素環式飽和炭化水素基又は前記窒素原子を含む環式飽和炭化水素基のとき、(メタ)アクリロイルモルホリン、(メタ)アクリロイルピペリジン等のN-環式飽和炭化水素基が挙げられる。上記式(1)で表される単量体は、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 第二の構造単位としては、電極膨張度の抑制及び電極合剤層組成物の塗工性向上に優れる点で、(メタ)アクリロイルモルホリン、N,N-ジメチルアクリルアミドなどのN,N-ジアルキル(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリルアミドなどの、N-ヒドロキシアルキル(メタ)アクリルアミドが挙げられる。さらに、重合速度が大きいために一次鎖長の長い重合体が得られ、バインダーの密着力が良好となる点で重合性官能基としてアクリロイル基を有する化合物が好ましい。このため、アクリロイルモルホリン、N,N-ジメチルアクリルアミド、N-ヒドロキシエチルアクリルアミドが好適な場合がある。
 架橋重合体又はその塩における(b)成分の含有量は、特に限定するものではないが、例えば、架橋重合体の非架橋性単量体に由来する全構造単位に対して0.1質量%以上、40質量%以下含むことができる。かかる範囲で(b)成分を含有することで、電極膨張度を抑制しつつ電極合剤層組成物に良好な塗工性を発揮させることができる。上限は、例えば35質量%であり、また例えば30質量%であり、また例えば25質量%であり、また例えば20質量%であり、また例えば15質量%であり、また例えば10質量%であり、また例えば5質量%であり、また例えば2質量%であり、また例えば1.5質量%であり、また例えば1質量%である。また、下限は、例えば0.2質量%であり、また例えば0.5質量%であり、また例えば1質量%であり、また例えば、1.5質量%である。範囲としては、こうした下限及び上限を適宜組み合わせた範囲とすることができるが、例えば、0.1質量%以上30質量%以下、また例えば、1質量%以上30質量%以下、また例えば、0.1質量%以上20質量%以下、また例えば、1質量%以上20質量%以下、また例えば、1質量%以上15質量%以下である。
 なお、上記(b)成分の含有量は、架橋重合体の製造時における非架橋性単量体組成物における窒素含有エチレン性不飽和カルボン酸単量体の含有量でもある。
<その他の構造単位>
 架橋重合体又はその塩は、(a)成分及び(b)成分以外に、これらと共重合可能な非架橋性の他のエチレン性不飽和単量体に由来する構造単位(以下、「(c)成分」ともいう。)を含むことができる。(c)成分としては、例えば、スルホン酸基及びリン酸基等のカルボキシル基以外のアニオン性基を有するエチレン性不飽和単量体化合物、または、(b)成分以外の非イオン性のエチレン性不飽和単量体等に由来する構造単位が挙げられる。これらの構造単位は、スルホン酸基及びリン酸基等のカルボキシル基以外のアニオン性基を有するエチレン性不飽和単量体化合物、または(b)成分以外の非イオン性のエチレン性不飽和単量体を含む単量体を共重合することにより導入することができる。これらの内でも、(c)成分としては、耐屈曲性良好な電極が得られる観点から非イオン性のエチレン性不飽和単量体に由来する構造単位が好ましく、バインダーの密着性が優れる点で(メタ)アクリルアミド及びその誘導体、並びに、ニトリル基含有エチレン性不飽和単量体等が好ましい。また、(c)成分として水中への溶解性が1g/100ml以下の疎水性のエチレン性不飽和単量体に由来する構造単位を導入した場合、電極材料と強い相互作用を奏することができ、活物質に対して良好な密着性を発揮することができる。これにより、堅固で一体性の良好な電極合剤層を得ることができるため好ましい。特に脂環構造含有エチレン性不飽和単量体に由来する構造単位が好ましい。
 (c)成分の割合は、架橋重合体の非架橋性単量体に由来する全構造単位に対し、0質量%以上、49.5質量%以下とすることができる。(c)成分の割合は、1質量%以上、40質量%以下であってもよく、2質量%以上、40質量%以下であってもよく、2質量%以上、30質量%以下であってもよく、5質量%以上、30質量%以下であってもよい。また、架橋重合体の非架橋性単量体に由来する全構造単位に対して(c)成分を1質量%以上含む場合、電解液への親和性が向上するため、リチウムイオン伝導性が向上する効果も期待できる。
 なお、上記(c)成分の上記含有量は、架橋重合体の製造時における非架橋性単量体組成物における他のエチレン性不飽和単量体の含有量でもある。
 (メタ)アクリルアミド誘導体としては、例えば、N-n-ブトキシメチル(メタ)アクリルアミド、N-イソブトキシメチル(メタ)アクリルアミド等の炭素数5以上のアルコキシアルキル基を備えるN-アルコキシアルキル(メタ)アクリルアミド化合物;ジペンチル(メタ)アクリルアミド、ジヘキシル(メタ)アクリルアミド等の炭素数5以上のアルキル基を備えるN,N-ジアルキル(メタ)アクリルアミド化合物が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 ニトリル基含有エチレン性不飽和単量体としては、例えば、(メタ)アクロリニトリル;(メタ)アクリル酸シアノメチル、(メタ)アクリル酸シアノエチル等の(メタ)アクリル酸シアノアルキルエステル化合物;4-シアノスチレン、4-シアノ-α-メチルスチレン等のシアノ基含有不飽和芳香族化合物;シアン化ビニリデン等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 脂環構造含有エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸t-ブチルシクロヘキシル、(メタ)アクリル酸シクロデシル及び(メタ)アクリル酸シクロドデシル等の脂肪族置換基を有していてもよい(メタ)アクリル酸シクロアルキルエステル;(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル、(メタ)アクリル酸ジシクロペンタニル、並びに、シクロヘキサンジメタノールモノ(メタ)アクリレート及びシクロデカンジメタノールモノ(メタ)アクリレート等のシクロアルキルポリアルコールモノ(メタ)アクリレート等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。上記の中でも、重合速度が大きいために一次鎖長の長い重合体が得られ、バインダーの密着力が良好となる点で重合性官能基としてアクリロイル基を有する化合物が好ましい。
 その他の非イオン性のエチレン性不飽和単量体としては、例えば(メタ)アクリル酸エステルを用いてもよい。(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル及び(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸アルキルエステル化合物;(メタ)アクリル酸フェニル、(メタ)アクリル酸フェニルメチル、(メタ)アクリル酸フェニルエチル等の芳香族(メタ)アクリル酸エステル化合物;(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル等の(メタ)アクリル酸アルコキシアルキルエステル化合物;等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。活物質との密着性及びサイクル特性の観点からは、芳香族(メタ)アクリル酸エステル化合物を好ましく用いることができる。また、リチウムイオン伝導性及びハイレート特性がより向上する観点からは、(メタ)アクリル酸アルコキシアルキルエステル化合物等のエーテル結合を有する化合物が好ましく、(メタ)アクリル酸2-メトキシエチルがより好ましい。
 非イオン性のエチレン性不飽和単量体の中でも、重合速度が速いために一次鎖長の長い重合体が得られ、バインダーの密着力が良好となる点でアクリロイル基を有する化合物が好ましい。また、非イオン性のエチレン性不飽和単量体としては、得られる電極の耐屈曲性が良好となる点でホモポリマーのガラス転移温度(Tg)が0℃以下の化合物が好ましい。
<架橋重合体の態様>
 本製造方法における架橋重合体の架橋方法は、特に制限されるものではなく、例えば以下の方法による態様が例示される。
1)架橋性単量体との共重合
2)ラジカル重合時のポリマー鎖への連鎖移動を利用
3)反応性官能基を有する重合体を合成後、必要に応じて架橋剤を添加して後架橋
 重合体が架橋構造を有することにより、当該重合体又はその塩を含むバインダーは、優れた密着力を有することができる。上記の内でも、操作が簡便であり、架橋の程度を制御し易い点から架橋性単量体の共重合による方法が好ましい。
<架橋性単量体>
 架橋性単量体としては、2個以上の重合性不飽和基を有する多官能重合性単量体、及び加水分解性シリル基等の自己架橋可能な架橋性官能基を有する単量体等が挙げられる。
 上記多官能重合性単量体は、(メタ)アクリロイル基、アルケニル基等の重合性官能基を分子内に2つ以上有する化合物であり、多官能(メタ)アクリレート化合物、多官能アルケニル化合物、(メタ)アクリロイル基及びアルケニル基の両方を有する化合物等が挙げられる。これらの化合物は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの内でも、均一な架橋構造を得やすい点で多官能アルケニル化合物が好ましい場合があり、分子内に2個以上のアリルエーテル基を有する多官能アリルエーテル化合物が特に好ましい場合がある。また、上記多官能重合性単量体としては、上記アルケニル基又はアリル基に加え、例えば、トリメチロールプロパン骨格由来の水酸基などの水酸基を備えていることが好ましい場合がある。
 多官能(メタ)アクリレート化合物としては、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等の2価アルコールのジ(メタ)アクリレート類;トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性体のトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の3価以上の多価アルコールのトリ(メタ)アクリレート、テトラ(メタ)アクリレート等のポリ(メタ)アクリレート;メチレンビスアクリルアミド、ヒドロキシエチレンビスアクリルアミド等のビスアミド類等を挙げることができる。
 多官能アルケニル化合物としては、トリメチロールプロパンジアリルエーテル、トリメチロールプロパントリアリルエーテル、ペンタエリスリトールジアリルエーテル、ペンタエリスリトールトリアリルエーテル、テトラアリルオキシエタン、ポリアリルサッカロース等の多官能アリルエーテル化合物;ジアリルフタレート等の多官能アリル化合物;ジビニルベンゼン等の多官能ビニル化合物等を挙げることができる。
 (メタ)アクリロイル基及びアルケニル基の両方を有する化合物としては、(メタ)アクリル酸アリル、(メタ)アクリル酸イソプロペニル、(メタ)アクリル酸ブテニル、(メタ)アクリル酸ペンテニル、(メタ)アクリル酸2-(2-ビニロキシエトキシ)エチル等を挙げることができる。
 上記自己架橋可能な架橋性官能基を有する単量体の具体的な例としては、加水分解性シリル基含有ビニル単量体、N-メトキシアルキル(メタ)アクリルアミド等が挙げられる。これらの化合物は、1種単独であるいは2種以上を組み合わせて用いることができる。
 加水分解性シリル基含有ビニル単量体としては、加水分解性シリル基を少なくとも1個有するビニル単量体であれば、特に限定されない。例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシランン等のビニルシラン類;アクリル酸トリメトキシシリルプロピル、アクリル酸トリエトキシシリルプロピル、アクリル酸メチルジメトキシシリルプロピル等のシリル基含有アクリル酸エステル類;メタクリル酸トリメトキシシリルプロピル、メタクリル酸トリエトキシシリルプロピル、メタクリル酸メチルジメトキシシリルプロピル、メタクリル酸ジメチルメトキシシリルプロピル等のシリル基含有メタクリル酸エステル類;トリメトキシシリルプロピルビニルエーテル等のシリル基含有ビニルエーテル類;トリメトキシシリルウンデカン酸ビニル等のシリル基含有ビニルエステル類等を挙げることができる。
 架橋重合体が架橋性単量体により架橋されたものである場合、上記架橋性単量体の使用量は、非架橋性単量体組成物の総量(総モル量)に対して、例えば、0.1モル%以上1.0モル%以下であることが好ましい場合がある。この範囲であると、良好な電極膨張度及び塗工性を得られ易い。上記使用量は、また例えば、0.1モル%以上0.8モル%以下、また例えば、0.2モル%以上0.8モル%以下であり、また例えば、0.1モル%以上0.7モル%以下、また例えば、0.2モル%以上0.7モル%以下であることがより好ましい場合がある。
<架橋重合体の塩>
 架橋重合体が有するエチレン性不飽和カルボン酸単量体由来のカルボキシル基等の酸基は、未中和で遊離であってもよいほか、その一部又は全部が塩基で中和された塩であってもよい。すなわち、架橋重合体は、酸基の少なくとも一部が中和された塩の態様として用いることが好ましい。塩の種類としては特に限定しないが、リチウム、ナトリウム、カリウム等のアルカリ金属塩;カルシウム塩及びバリウム塩等のアルカリ土類金属塩;マグネシウム塩、アルミニウム塩等のその他の金属塩;アンモニウム塩及び有機アミン塩等が挙げられる。これらの中でも電池特性への悪影響が生じにくい点からリチウムなどのアルカリ金属塩及びマグネシウム塩が好ましく、アルカリ金属塩がより好ましく、リチウム塩がさらに好ましい場合がある。
 架橋重合体の塩の中和度は、例えば、20モル%以上100モル%以下である。中和度の下限は、また例えば、50モル%であり、また例えば、60モル%であり、また例えば、70モル%であり、また例えば、80モル%である。同上限は、例えば、99モル%であり、また例えば、95モル%であり、また例えば、90モル%である。範囲としては、こうした下限及び上限を適宜組み合わせた範囲とすることができるが、例えば、70モル%以上90モル%以下、また例えば、80モル%以上90モル%以下、また例えば、90モル%が好ましい場合がある。中和度が20モル%以上の場合、水膨潤性が良好となり重合体粒子が二次凝集しにくい(若しくは二次凝集が生じても水媒体中で解れやすい)という点で好ましい。本明細書では、中和度は、カルボキシル基等の酸基を有する単量体及び中和に用いる中和剤の仕込み値から計算により算出することができる。なお、中和度は架橋重合体又はその塩を、減圧条件下、80℃で3時間乾燥処理後の粉末をIR測定し、カルボン酸のC=O基由来のピークとカルボン酸塩のC=O基由来のピークの強度比より確認することができる。
<重合工程>
 本製造方法は、非架橋性単量体組成物を沈殿重合により重合する重合工程を備えている。沈殿重合は、原料である不飽和単量体を溶解するが、生成する重合体を実質溶解しない溶媒中で重合反応を行うことにより重合体を製造する方法である。重合の進行とともにポリマー粒子は凝集及び成長により大きくなり、数十nm~数百nmの一次粒子が数μm~数十μmに二次凝集したポリマー粒子の分散液が得られる。ポリマーの粒子サイズを制御するために分散安定剤を使用することもできる。尚、分散安定剤や重合溶剤等を選定することにより上記二次凝集を抑制することもできる。一般に、二次凝集を抑制した沈殿重合は、分散重合とも呼ばれる。
 沈殿重合の場合、重合溶媒は、使用する単量体の種類等を考慮して水及び各種有機溶剤等から選択される溶媒を使用することができる。より一次鎖長の長い重合体を得るためには、連鎖移動定数の小さい溶媒を使用することが好ましい。
 沈殿重合又は分散重合は、重合の進行に伴い媒体から析出した重合鎖が一次粒子表面に積層する重合方法である。そのため、当業者であれば、適宜、重合反応において、重合反応途中に構成単量体を添加することや構成単量体をフィードすることで、粒子のポリマー組成を制御することが可能であり、この結果、水膨潤度の制御が可能である。例えば、第一の構造単位が由来する単量体と第二の構造単位が由来する単量体とを一括して重合を開始してもよいし、初期においてはいずれか一方のみにつき重合を行い、その後、他方の単量体を一括して又は連続的若しくは断続的に分割して投入して重合を行うことなどが可能である。
 沈殿重合及び分散重合において用いうる具体的な重合溶媒としては、メタノール、t-ブチルアルコール、アセトン、メチルエチルケトン、アセトニトリル及びテトラヒドロフラン等の水溶性溶剤の他、ベンゼン、酢酸エチル、ジクロロエタン、n-ヘキサン、シクロヘキサン及びn-ヘプタン等が挙げられ、これらの1種を単独であるいは2種以上を組み合わせて用いることができる。本明細書において水溶性溶剤とは、20℃における水への溶解度が10g/100mlより大きいものを指す。上記の内、粗大粒子の生成や反応器への付着が小さく重合安定性が良好であること、析出した重合体微粒子が二次凝集しにくい(若しくは二次凝集が生じても水媒体中で解れやすい)こと、連鎖移動定数が小さく重合度(一次鎖長)の大きい重合体が得られること、及び後述する工程中和の際に操作が容易であること等の点で、アセトニトリルが好ましい。
 また、同じく工程中和において中和反応を安定かつ速やかに進行させること、及び、重合速度ないし一次鎖長の調整ため、重合溶媒中に高極性溶媒を少量加えておくことが好ましい。係る高極性溶媒としては、好ましくは水である。
 ここで、高極性溶媒と水とした場合には、重合速度の向上や一次鎖長を調整の観点から、重合反応液の総質量に対する水の使用量(水分量)が選択される。アクリル酸等の親水性の高いエチレン性不飽和カルボン酸単量体の重合では、水を加えた場合には重合速度が向上し、一次鎖長の長い重合体を得やすくなる。例えば、水分量の下限は、3000質量ppm(以下、単に、ppmという。)であり、また例えば、3300ppmであり、また例えば、4000ppmであり、また例えば、5000ppmであり、また例えば、6000ppmである。また例えば、水分量の上限は、15000ppmであり、また例えば、12000ppmであり、また例えば、10000ppmであり、また例えば、9600ppmであり、また例えば、8000ppmであり、また例えば、7000ppmである。水分量の範囲は、既述の下限値及び上限値を任意に選択して設定することができるが、例えば、3000ppm以上15000ppm以下、また例えば、3000ppm以上9000ppm以下などとすることができる。
 重合工程においては、既述の第一の構造単位が由来するエチレン性不飽和カルボン酸単量体及び第二の構造単位が由来する窒素含有エチレン性不飽和単量体を既に説明した比率で含有する非単量体単量体組成物を用いることができる。また、非架橋性単量体組成物のほかに、架橋性単量体を既に示した態様で含むことができる。
 非架橋性単量体組成物(全ての非架橋性単量体)の濃度は、より一次鎖長の長い重合体を得る観点から高い方が好ましい。本明細書において「非架橋性単量体組成物の濃度」とは、重合工程の重合反応液に対する重合に用いる非架橋性単量体組成物(非架橋単量体の総質量)の濃度をいう。かかる単量体組成物濃度が高すぎると、重合体粒子の凝集が進行し易い他、重合熱の制御が困難となり重合反応が暴走する虞がある。本製造方法においては、適切な一次鎖長を得るとともに重合体粒子の凝集を抑制して、電極膨張度抑制能を向上させる観点から、下限は、16質量%であり、また例えば、17質量%であり、また例えば、18質量%であり、また例えば、20質量%である。また、同様に、同上限は、例えば、40質量%であり、また例えば、34質量%であり、また例えば、30質量%であり、また例えば、25質量%であり、また例えば、24質量%である。同濃度の範囲は、こうした下限及び上限を適宜組み合わせた範囲とすることができるが、例えば、16質量%以上30質量%以下であり、また例えば、18質量%以上30質量%以下、また例えば、20質量%以上30質量%以下であり、また例えば、17質量%以上25質量%以下、また例えば、18質量%以上24質量%以下である。
 架橋重合体又はその塩は、塩基化合物の存在下に重合反応を行うことにより製造してもよい。塩基化合物存在下において重合反応を行うことにより、高い単量体濃度条件下であっても、重合反応を安定に実施することができる。塩基化合物は、いわゆるアルカリ性化合物であり、無機塩基化合物及び有機塩基化合物の何れを用いてもよい。塩基化合物存在下において重合反応を行うことにより、例えば16質量%以上の高い非架橋性単量体組成物濃度条件下であっても、重合反応を安定に実施することができる。また、このような高い単量体濃度で重合して得られた重合体は、分子量が高いため(一次鎖長が長いため)密着性にも優れる。
 塩基化合物としての無機塩基化合物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、水酸化カルシウム、水酸化マグネシウム等のアルカリ土類金属水酸化物等が挙げられ、これらの内の1種又は2種以上を用いることができる。有機塩基化合物としては、アンモニア及び有機アミン化合物が挙げられ、これらの内の1種又は2種以上を用いることができる。中でも、重合安定性及び得られる架橋重合体又はその塩を含むバインダーの密着性の観点から、有機アミン化合物が好ましい。
 有機アミン化合物としては、例えば、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、モノブチルアミン、ジブチルアミン、トリブチルアミン、モノヘキシルアミン、ジヘキシルアミン、トリヘキシルアミン、トリオクチルアミン及びトリドデシルアミン等のN-アルキル置換アミン;モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、プロパノールアミン、ジメチルエタノールアミン及びN,N-ジメチルエタノールアミン等の(アルキル)アルカノールアミン;ピリジン、ピペリジン、ピペラジン、1,8-ビス(ジメチルアミノ)ナフタレン、モルホリン及びジアザビシクロウンデセン(DBU)等の環状アミン;ジエチレントリアミン、N、N-ジメチルベンジルアミンが挙げられ、これらの内の1種又は2種以上を用いることができる。これらの内でも、トリオクチルアミンなどの長鎖アルキル基(炭素数6以上10以下)を有する疎水性アミンを用いた場合、より大きな静電反発及び立体反発が得られることから、単量体濃度の高い場合であっても重合安定性を確保しやすい点で好ましい。具体的には、有機アミン化合物に存在する窒素原子数に対する炭素原子数の比で表される値(C/N)が高い程、立体反発効果による重合安定化効果が高い。上記C/Nの値は、好ましくは3以上であり、より好ましくは5以上であり、さらに好ましくは10以上であり、一層好ましくは20以上である。
 塩基化合物の使用量は、エチレン性不飽和カルボン酸単量体に対し、0.001モル%以上4.0モル%以下の範囲とすることが好ましい。塩基化合物の使用量がこの範囲であれば、重合反応を円滑に行うことができる。使用量は、0.05モル%以上4.0モル%以下であってもよく、0.1モル%以上4.0モル%以下であってもよく、0.1モル%以上3.0モル%以下であってもよく、0.1モル%以上2.0モル%以下であってもよい。尚、本明細書では、塩基化合物の使用量は、エチレン性不飽和カルボン酸単量体に対して用いた塩基化合物のモル濃度を表したものであり、中和度を意味するものではない。すなわち、用いる塩基化合物の価数は考慮しない。
 重合開始剤は、アゾ系化合物、有機過酸化物、無機過酸化物等の公知の重合開始剤を用いることができるが、特に限定されるものではない。熱開始、還元剤を併用したレドックス開始、UV開始等、公知の方法で適切なラジカル発生量となるように使用条件を調整することができる。一次鎖長の長い架橋重合体を得るためには、製造時間が許容される範囲内で、ラジカル発生量がより少なくなるように条件を設定することが好ましい。
 上記アゾ系化合物としては、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2-(tert-ブチルアゾ)-2-シアノプロパン、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2,2’-アゾビス(2-メチルプロパン)等が挙げられ、これらの内の1種又は2種以上を用いることができる。
 上記有機過酸化物としては、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン(日油社製、商品名「パーテトラA」)、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン(同「パーヘキサHC」)、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン(同「パーヘキサC」)、n-ブチル-4,4-ジ(t-ブチルパーオキシ)バレレート(同「パーヘキサV」)、2,2-ジ(t-ブチルパーオキシ)ブタン(同「パーヘキサ22」)、t-ブチルハイドロパーオキサイド(同「パーブチルH」)、クメンハイドロパーオキサイド(日油社製、商品名「パークミルH」)、1,1,3,3-テトラメチルブチルハイドロパーオキサイド(同「パーオクタH」)、t-ブチルクミルパーオキサイド(同「パーブチルC」)、ジ-t-ブチルパーオキサイド(同「パーブチルD」)、ジ-t-ヘキシルパーオキサイド(同「パーヘキシルD」)、ジ(3,5,5-トリメチルヘキサノイル)パーオキサイド(同「パーロイル355」)、ジラウロイルパーオキサイド(同「パーロイルL」)、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート(同「パーロイルTCP」)、ジ-2-エチルヘキシルパーオキシジカーボネート(同「パーロイルOPP」)、ジ-sec-ブチルパーオキシジカーボネート(同「パーロイルSBP」)、クミルパーオキシネオデカノエート(同「パークミルND」)、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート(同「パーオクタND」)、t-ヘキシルパーオキシネオデカノエート(同「パーヘキシルND」)、t-ブチルパーオキシネオデカノエート(同「パーブチルND」)、t-ブチルパーオキシネオヘプタノエート(同「パーブチルNHP」)、t-ヘキシルパーオキシピバレート(同「パーヘキシルPV」)、t-ブチルパーオキシピバレート(同「パーブチルPV」)、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイル)ヘキサン(同「パーヘキサ250」)、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート(同「パーオクタO」)、t-ヘキシルパーオキシ-2-エチルヘキサノエート(同「パーヘキシルO」)、t-ブチルパーオキシ-2-エチルヘキサノエート(同「パーブチルO」)、t-ブチルパーオキシラウレート(同「パーブチルL」)、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート(同「パーブチル355」)、t-ヘキシルパーオキシイソプロピルモノカーボネート(同「パーヘキシルI」)、t-ブチルパーオキシイソプロピルモノカーボネート(同「パーブチルI」)、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(同「パーブチルE」)、t-ブチルパーオキシアセテート(同「パーブチルA」)、t-ヘキシルパーオキシベンゾエート(同「パーヘキシルZ」)及びt-ブチルパーオキシベンゾエート(同「パーブチルZ」)等が挙げられ、これらの内の1種又は2種以上を用いることができる。
 上記無機過酸化物としては、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等が挙げられる。また、レドックス開始の場合、亜硫酸ナトリウム、チオ硫酸ナトリウム、ナトリウムホルムアルデヒドスルホキシレート、アスコルビン酸、亜硫酸ガス(SO)、硫酸第一鉄等を還元剤として用いることができる。
 重合開始剤の好ましい使用量は、非架橋性単量体組成物の総量を100質量部としたときに、例えば、0.001質量部以上2質量部以下であり、また例えば、0.005質量部以上1質量部以下であり、また例えば、0.01質量部以上0.5質量部以下である。重合開始剤の使用量が0.001質量部以上であれば重合反応を安定的に行うことができ、2質量部以下であれば一次鎖長の長い重合体を得やすい。
 重合温度は、使用する単量体の種類及び濃度等の条件にもよるが、例えば、0℃以上100℃以下が好ましい場合があり、また例えば、20℃以上80℃以下が好ましい場合があり、また例えば、40℃以上80℃以下、また例えば、40℃以上70℃以下、また例えば、50℃以上60℃以下が好ましい場合がある。20℃以上80℃以下であれば、意図した粒子径及び水膨潤度の架橋重合体を得られやすい。重合温度は一定であってもよいし、重合反応の期間において変化するものであってもよい。また、重合時間は1分間~20時間が好ましく、1時間~15時間がより好ましい。
 重合工程を経て得られた架橋重合体分散液は、乾燥工程において減圧及び/又は加熱処理等を行い溶媒留去することにより、目的とする架橋重合体を粉末状態で得ることができる。この際、上記乾燥工程の前に、未反応単量体(及びその塩)、開始剤由来の不純物等を除去する目的で、重合工程に引き続き、遠心分離及び濾過等の固液分離工程、水、メタノール又は重合溶媒と同一の溶媒等を用いた洗浄工程を備えることが好ましい。上記洗浄工程を備えた場合、架橋重合体が二次凝集した場合であっても使用時に解れやすく、さらに残存する未反応単量体が除去されることにより密着性や電池特性の点でも良好な性能を示す。
 本製造方法では、塩基化合物存在下にエチレン性不飽和カルボン酸単量体及び含窒素エチレン性不飽和単量体を含む非架橋性単量体組成物の重合反応を行うが、重合工程により得られた重合体分散液に、架橋重合体の塩として好ましい塩基を備えるアルカリ化合物を添加して重合体を中和(以下、「工程中和」ともいう)した後、乾燥工程で溶媒を除去してもよい。また、上記工程中和の処理を行わずに架橋重合体の粉末を得た後、電極合剤層組成物を調製する際にアルカリ化合物を添加して、重合体を中和(以下、「後中和」ともいう)してもよい。上記の内、工程中和の方が、二次凝集体が解れやすい傾向にあり好ましい。
<架橋重合体又はその塩のアセトニトリル媒体中における粒子径>
 本製造方法で得ることができる架橋重合体又はその塩は、アセトニトリル媒体中で測定した粒子径が、体積基準メジアン径で、例えば、0.60μm以上1.0μm以下である。かかる粒子径がこの範囲であると、電極膨張度を効果的に抑制し、それによりサイクル特性の低下を抑制できる場合がある。また、粒子径が0.60μmを下回ると、電極膨張度が増大する傾向があり、1.0μmを上回ってもまた電極膨張度が増大する傾向がある。
 粒子径の下限は、例えば、0.62μmであり、また例えば、0.65μmであり、また例えば、0.66μmであり、また例えば、0.67μmであり、また例えば、0.68μmであり、また例えば、0.69μmであり、また例えば、0.70μmであり、また例えば、0.71μmであり、また例えば、0.72μmであり、また例えば、0.73μmであり、また例えば、0.74μmであり、また例えば、0.75μmであり、また例えば0.76μmであり、また例えば、0.77μmであり、また例えば、0.78μmである。粒子径の上限は、例えば、0.99μmであり、また例えば、0.97μmであり、また例えば、0.95μmであり、また例えば、0.93μmであり、また例えば、0.91μmであり、また例えば、0.89μmである。
 粒子径の範囲は、既述の下限及び上限から任意で選択することができるが、例えば、0.65μm以上1.0μm以下、また例えば、0.75μm以上1.0μm以下であり、また例えば、0.75μm以上0.99μm以下であり、また例えば、0.75μm以上0.95μm以下であり、また例えば、0.76μm以上0.95μm以下である。
 本明細書において、アセトニトリル媒体中での粒子径は、実質的に水で膨潤していない状態の架橋重合体又はその塩の粒子径を意図している。例えば、架橋重合体又はその塩の粉末1.0gに、99.5質量%以上のアセトニトリル5.0gを加えて、超音波ホモジナイザー(例えば、ヤマト科学株式会社製、LUH150又はそれと同等の装置)で、出力25Wにて30秒間超音波を照射し、分散液を得る。この分散液を、上記アセトニトリルを分散媒とするレーザー回折/散乱式粒度分布計(マイクロトラックベル社製、マイクロトラックMT-3300EXII)にて、粒度分布測定を行った。分散液0.05mLを過剰量の分散媒が循環しているところに、投入することで、適切な散乱光強度が得られた。その後、数分後に粒度分布形状の安定を確認次第、粒度分布測定を行い、粒子径の代表値として体積基準メジアン径(D50)を得る。
 本明細書において、電極膨張度とは、充放電前の負極の厚みに対する、所定条件での充放電後に再度充電状態にした負極の厚み増加分の割合(%)である。負極は、充電時に膨張し放電時に収縮するが、充放電を繰り返すことにより、電極は初期より膨張し、充電時の負極においても維持されている厚みとなる。
 より具体的には、電極膨張度は、以下のようにして測定できる。すなわち、所定回数で充電及び放電を行い、再度充電状態にし、電池を解体して負極(負極合剤層)を取り出して、負極本来の成分に影響を与えない溶剤で洗浄後に、その厚み(T)を測定する。対照として、同一構成の電極につき、塗工・圧延した後の合材層厚み(T)を測定する。電極膨張度は、これらの厚み(T、T)を用いて、以下の計算式(1)で算出される。
 電極膨張度=(T-T)/T×100(%)   (1)
 なお、充放電の回数及び充放電条件は、電池に応じて適宜設定される。例えば、充放電の回数は数回~50回の範囲で設定することができる。また、負極の厚みは、接触式マイクロメータで測定することができる。電極膨張度の測定方法の具体例は、実施例において開示されている。
 当業者であれば、本明細書の実施例における組成等のほか本出願時の技術常識に基づいて、架橋重合体又はその塩の組成及び構造等を制御することにより、アセトニトリル媒体中での粒子径の調整を行うことができる。例えば、後述する第二の構造単位の導入によって粒子径を増大させることができる場合がある。また、重合時の初期単量体濃度を高くすることで、粒子径を増大させることができる場合がある。
<架橋重合体又はその塩のpH8における水膨潤度>
 本製造方法で得ることができる架橋重合体又はその塩のpH8における水膨潤度は、例えば、25.0以上、40.0以下である。この範囲であると、集電体への塗工性と集電体に対するバインダーの密着性とを同時に充足することができる。当該水膨潤度は、水膨潤度が25.0未満では、上記密着性が低下しサイクル特性が低下する場合があり、水膨潤度が40.0を超えると、塗工性が低下する場合がある。
 本明細書では、水膨潤度は架橋重合体又はその塩の乾燥時の質量「(WA)g」、及び当該架橋重合体又はその塩をpH8の水で飽和膨潤させた際に吸収される水の量「(WB)g」とから、以下の計算式(2)に基づいて算出される。
(水膨潤度)={(WA)+(WB)}/(WA)   (2)
 pH8における水膨潤度の下限は、電極膨張度、塗工性等の観点から、例えば、25.5であり、また例えば、26.0であり、また例えば、27.0であり、また例えば、27.5であり、また例えば、27.9であり、また例えば、28.0であり、また例えば、28.5であり、また例えば、28.9であり、また例えば、29.0であり、また例えば、29.2である。水膨潤度の上限は、電極膨張度、塗工性及び密着性等の観点から、例えば、39.0であり、また例えば、38.7であり、また例えば、38.5であり、また例えば、38.0であり、また例えば、37.5であり、また例えば、37.0であり、また例えば、36.8であり、また例えば、36.5であり、また例えば、36.0であり、また例えば、35.5であり、また例えば、35.0であり、また例えば、34.6である。水膨潤度の範囲は、既述の下限及び上限から任意で選択することができるが、例えば、25.0以上39.0以下であり、また例えば、27.5以上37.4以下であり、また例えば、28.5以上37.4以下であり、また例えば、29.0以上35.0以下である。また例えば、27.9以上36.8以下であり、また例えば、28.5以上36.8以下であり、また例えば、29.2以上36.8以下である。
 pH8における水膨潤度は、pH8の水中における架橋重合体又はその塩の水膨潤度を測定することにより得ることができる。上記pH8の水としては、例えばイオン交換水を使用することができ、必要に応じて適当な酸若しくはアルカリ、又は緩衝液等を用いてpHの値を調整してもよい。また、測定は、25±5℃で行う。水膨潤度の測定方法の具体例は、実施例において開示されている。
 当業者であれば、本明細書の実施例における組成等のほか本出願時の技術常識に基づいて、架橋重合体又はその塩の組成及び構造等を制御することにより、その水膨潤度の調整を行うことができる。例えば、後述する第二の構造単位の導入量によって、水膨潤度を調整することができ、概して、こうした構造単位の導入によって水膨潤度を向上させることができる場合がある。また、架橋重合体の架橋度を低くすることによっても、通常その水膨潤度は高くなる場合がある。さらに、重合時の初期単量体濃度を高くすることで、水膨潤度を高くすることができる場合がある。さらに、沈殿重合又は分散重合で架橋重合体を製造するのにあたって、後述する第二の構造単位が由来する単量体の添加タイミングや添加方法を制御することでも、水膨潤度の調整が可能な場合がある。
<電極合剤層組成物>
 本明細書に開示される電極合剤層組成物は、架橋重合体又はその塩を含有するバインダー、活物質及び水を含む。電極合剤層組成物における架橋重合体又はその塩の使用量は、固形分の総量100質量部に対して、例えば、0.1質量部以上20質量部以下である。上記使用量は、また例えば、0.2質量部以上10質量部以下であり、また例えば0.3質量部以上8質量部以下であり、また例えば0.4質量部以上5質量部以下であり、また例えば、0.5質量部以上2質量部以下である。架橋重合体又はその塩の使用量が0.1質量部未満の場合、十分な電極膨張度の抑制効果や集電体への密着性並びに良好な塗工性が得られないことがある。また、活物質等の分散安定性が不十分となり、形成される合剤層の均一性が低下する場合がある。一方、架橋重合体及びその塩の使用量が20質量部を超える場合、電極合剤層組成物が高粘度となり集電体への塗工性が低下することがある。その結果、得られた合剤層にブツや凹凸が生じて電極特性に悪影響を及ぼす虞がある。架橋重合体又はその塩は、固形分に対して少量(例えば5質量%以下)でも十分高い電極膨張度抑制効果を示し、かつ、カルボキシアニオンを有することから、界面抵抗が小さく、ハイレート特性に優れた電極が得られる。
<活物質>
 負極活物質としては、例えば炭素系材料、リチウム金属、リチウム合金及び金属酸化物等が挙げられ、これらの内の1種又は2種以上を組み合わせて用いることができる。これらの内でも、天然黒鉛、人造黒鉛、ハードカーボン及びソフトカーボン等の炭素系材料からなる活物質(以下、「炭素系活物質」ともいう)が好ましく、天然黒鉛及び人造黒鉛等の黒鉛、並びにハードカーボンがより好ましい。また、黒鉛の場合、電池性能の面から球形化黒鉛が好適に用いられ、その粒子サイズの好ましい範囲は、例えば、1~20μmであり、また例えば、5~15μmである。また、エネルギー密度を高くするために、ケイ素やスズなどのリチウムを吸蔵できる金属又は金属酸化物等を負極活物質として使用することもできる。その中でも、ケイ素は黒鉛に比べて高容量であり、ケイ素、ケイ素合金及び一酸化ケイ素(SiO)等のケイ素酸化物のようなケイ素系材料からなる活物質(以下、「ケイ素系活物質」ともいう)を用いることができる。しかし、上記ケイ素系活物質は高容量である反面充放電に伴う体積変化が大きい。このため、上記炭素系活物質と併用するのが好ましい。この場合、ケイ素活物質の使用量は、炭素系活物質及びケイ素系活物質の総量に対し、好ましくは2質量%以上80質量%以下である。ケイ素系活物質の使用量は、2質量%以上60質量%以下であってもよく2質量%以上40質量%以下であってもよく、2質量%以上10質量%以下であってもよい。
 炭素系活物質は、それ自身が良好な電気伝導性を有するため、必ずしも導電助剤を添加する必要はない。抵抗をより低減する等の目的で導電助剤を添加する場合、エネルギー密度の観点からその使用量は活物質の総量に対して、例えば、10質量%以下であり、また例えば、5質量%以下である。
 正極活物質としては遷移金属酸化物のリチウム塩を用いることができ、例えば、層状岩塩型及びスピネル型のリチウム含有金属酸化物を使用することができる。層状岩塩型の正極活物質の具体的な化合物としては、コバルト酸リチウム、ニッケル酸リチウム、並びに、三元系と呼ばれるNCM{Li(Ni,Co,Mn)、x+y+z=1}及びNCA{Li(Ni1-a-bCoAlb)}等が挙げられる。また、スピネル型の正極活物質としてはマンガン酸リチウム等が挙げられる。酸化物以外にもリン酸塩、ケイ酸塩及び硫黄等が使用され、リン酸塩としては、オリビン型のリン酸鉄リチウム等が挙げられる。正極活物質としては、上記のうちの1種を単独で使用してもよく、2種以上を組み合わせて混合物又は複合物として使用してもよい。
 尚、層状岩塩型のリチウム含有金属酸化物を含む正極活物質を水に分散させた場合、活物質表面のリチウムイオンと水中の水素イオンとが交換されることにより、分散液がアルカリ性を示す。このため、一般的な正極用集電体材料であるアルミ箔(Al)等が腐食される虞がある。このような場合には、バインダーとして未中和又は部分中和された架橋重合体を用いることにより、活物質から溶出するアルカリ分を中和することが好ましい。また、未中和又は部分中和された架橋重合体の使用量は、架橋重合体の中和されていないカルボキシル基量が活物質から溶出するアルカリ量に対して当量以上となるように用いることが好ましい。
 正極活物質はいずれも電気伝導性が低いため、導電助剤を添加して使用されるのが一般的である。導電助剤としては、カーボンブラック、カーボンナノチューブ、カーボンファイバー、黒鉛微粉、炭素繊維等の炭素系材料が挙げられ、これらの内、優れた導電性を得やすい点からカーボンブラック、カーボンナノチューブ及びカーボンファイバー、が好ましい。また、カーボンブラックとしては、ケッチェンブラック及びアセチレンブラックが好ましい。導電助剤は、上記の1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。導電助剤の使用量は、導電性とエネルギー密度を両立するという観点から活物質の全量100質量部に対して、例えば、0.2~20質量部とすることができ、また例えば、0.2~10質量部とすることができる。また正極活物質は導電性を有する炭素系材料で表面コーティングしたものを使用してもよい。
 電極合剤層組成物がスラリー状態の場合、活物質の使用量は、電極合剤層組成物全量に対して、例えば、10質量%以上75質量%以下である。活物質の使用量が10質量%以上であればバインダー等のマイグレーションが抑えられる。一方、75質量%以下であれば電極合剤層組成物の流動性及び塗工性を確保することができ、均一な合剤層を形成することができる。また、媒体の乾燥コストの面でも有利となることから、活物質の使用量は、また例えば、30質量%以上であり、また例えば40質量%以上であり、また例えば45質量%以上であり、また例えば50質量%以上である。
 電極合剤層組成物における活物質の使用量は、固形分の総量100質量部に対して、例えば、80質量部以上であり、また例えば、85質量部以上であり、また例えば、90質量部以上であり、また例えば、95質量部以上である。また、例えば、99質量部以下であり、また例えば、98質量部以下であり、また例えば、97質量部以下である。
 電極合剤層組成物は、媒体として水を使用する。また、電極合剤層組成物の性状及び乾燥性等を調整する目的で、メタノール及びエタノール等の低級アルコール類、エチレンカーボネート等のカーボネート類、アセトン等のケトン類、テトラヒドロフラン、N-メチルピロリドン等の水溶性有機溶剤との混合溶媒としてもよい。混合媒体中の水の割合は、例えば、50質量%以上であり、また例えば、70質量%以上である。
 電極合剤層組成物を塗工可能なスラリー状態とする場合、電極合剤層組成物全体に占める水を含む媒体の含有量は、スラリーの塗工性、および乾燥に必要なエネルギーコスト、生産性の観点から、例えば、25質量%以上90質量%以下の範囲とすることができ、また例えば、35質量%以上70質量%以下などとすることができる。
 本明細書に開示されるバインダーは、上記架橋重合体又はその塩のみからなるものであってもよいが、これ以外にもスチレン/ブタジエン系ラテックス(SBR)、アクリル系ラテックス及びポリフッ化ビニリデン系ラテックス、カルボキシメチルセルロース(CMC)などのセルロース誘導体など他のバインダー成分を併用してもよい。他のバインダー成分を併用する場合、その使用量は、活物質に対して、例えば、0.1~5質量%以下とすることができ、また例えば、0.1~2質量%以下とすることができる。他のバインダー成分の使用量が5質量%を超えると抵抗が増大し、ハイレート特性が不十分なものとなる場合がある。上記の中でも、架橋重合体又はその塩との親和性の観点から密着性及び耐屈曲性のバランスの観点から、スチレン/ブタジエン系ラテックス及び/又はセルロース誘導体が好ましい場合がある。
 スチレン/ブタジエン系ラテックスとは、スチレン等の芳香族ビニル単量体に由来する構造単位及び1,3-ブタジエン等の脂肪族共役ジエン系単量体に由来する構造単位を有する共重合体の水系分散体を示す。上記芳香族ビニル単量体としては、スチレンの他にα-メチルスチレン、ビニルトルエン、ジビニルベンゼン等が挙げられ、これらの内の1種又は2種以上を用いることができる。上記共重合体中における上記芳香族ビニル単量体に由来する構造単位は、主に密着性の観点から、例えば、20~60質量%の範囲とすることができ、また例えば、30~50質量%の範囲とすることができる。
 上記脂肪族共役ジエン系単量体としては、1,3-ブタジエンの他に2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン等が挙げられ、これらの内の1種又は2種以上を用いることができる。上記共重合体中における上記脂肪族共役ジエン系単量体に由来する構造単位は、バインダーの密着性及び得られる電極の柔軟性が良好なものとなる点で、例えば、30~70質量%の範囲とすることができ、また例えば、40~60質量%の範囲とすることができる。
 スチレン/ブタジエン系ラテックスは、上記の単量体以外にも、密着性等の性能をさらに向上させるために、その他の単量体として(メタ)アクリロニトリル等のニトリル基含有単量体、(メタ)アクリル酸、イタンコン酸、マレイン酸等のカルボキシル基含有単量体を共重合単量体として用いてもよい。上記共重合体中における上記その他の単量体に由来する構造単位は、例えば、0~30質量%の範囲とすることができ、また例えば、0~20質量%の範囲とすることができる。
 本明細書に開示される電極合剤層組成物は、上記の活物質、水及びバインダーを必須の構成成分とするものであり、公知の手段を用いて各成分を混合することにより得られる。各成分の混合方法は特段制限されるものではなく、公知の方法を採用することができるが、活物質、導電助剤及びバインダーである架橋重合体粒子等の粉末成分をドライブレンドした後、水等の分散媒と混合し、分散混練する方法が好ましい。電極合剤層組成物をスラリー状態で得る場合、分散不良や凝集のないスラリーに仕上げることが好ましい。混合手段としては、プラネタリーミキサー、薄膜旋回式ミキサー及び自公転式ミキサー等の公知のミキサーを使用することができるが、短時間で良好な分散状態が得られる点で薄膜旋回式ミキサーを使用して行うことが好ましい。また、薄膜旋回式ミキサーを用いる場合は、予めディスパー等の攪拌機で予備分散を行うことが好ましい。
 一方、電極合剤層組成物を湿粉状態で得る場合、ヘンシェルミキサー、ブレンダ―、プラネタリーミキサー及び2軸混練機等を用いて、濃度ムラのない均一な状態まで混練することが好ましい。
<二次電池用電極>
 本明細書に開示される二次電池用電極は、銅又はアルミニウム等の集電体表面に上記電極合剤層組成物から形成される合剤層を備えてなるものである。合剤層は、集電体の表面に本明細書に開示される電極合剤層組成物を塗工した後、水等の媒体を乾燥除去することにより形成される。電極合剤層組成物を塗工する方法は特に限定されず、ドクターブレード法、ディップ法、ロールコート法、コンマコート法、カーテンコート法、グラビアコート法及びエクストルージョン法などの公知の方法を採用することができる。また、上記乾燥は、温風吹付け、減圧、(遠)赤外線、マイクロ波照射等の公知の方法により行うことができる。通常、乾燥後に得られた合剤層には、金型プレス及びロールプレス等による圧縮処理が施される。圧縮することにより活物質及びバインダーを密着させ、合剤層の強度及び集電体への密着性を向上させることができる。圧縮により合剤層の厚みを、例えば、圧縮前の30~80%程度に調整することができ、圧縮後の合剤層の厚みは4~200μm程度が一般的である。
 本明細書に開示される二次電池用電極にセパレータ及び有機溶媒を用いた電解液を備えることにより、二次電池を作製することができる。電解液は液状であってもよく、ゲル状であってもよい。セパレータは電池の正極及び負極間に配され、両極の接触による短絡の防止や電解液を保持してイオン導電性を確保する役割を担う。セパレータにはフィルム状の絶縁性微多孔膜であって、良好なイオン透過性及び機械的強度を有するものが好ましい。具体的な素材としては、ポリエチレン及びポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン等を使用することができる。
 電解液は、活物質の種類に応じて一般的に使用される公知のものを用いることができる。リチウムイオン二次電池では、具体的な溶媒として、プロピレンカーボネート及びエチレンカーボネート等の高誘電率で電解質の溶解能力の高い環状カーボネート、並びに、エチルメチルカーボネート、ジメチルカーボネート及びジエチルカーボネート等の粘性の低い鎖状カーボネート等が挙げられ、これらを単独で又は混合溶媒として使用することができる。電解液は、これらの溶媒にLiPF、LiSbF、LiBF、LiClO、LiAlO等のリチウム塩を溶解して使用される。ニッケル水素二次電池では、電解液として水酸化カリウム水溶液を使用することができる。二次電池は、セパレータで仕切られた正極極板及び負極極板を渦巻き状又は積層構造にしてケース等に収納することにより得られる。
 以上説明したように、本明細書に開示されるバインダーは、合剤層において活物質などとの優れた密着性及び追従性を示す。このため、上記バインダーを使用して得られた電極を備えた二次電池は、良好な一体性を確保でき、充放電を繰り返しても電極膨張度を抑制することができる。この結果、良好なサイクル特性に貢献できる。また、膨張収縮率が大きいシリコンを含む活物質の使用にも有用であり、電池の高容量化への寄与が期待される。特に、車載用二次電池等に好適である。さらに、活物質濃度が高い条件下であっても、電極合剤層組成物(電極スラリー)の塗工性を向上することができる。よって、合剤層形成時の乾燥エネルギー低減、生産性向上の点で有利である。したがって、本明細書に開示されるバインダーは、特に非水電解質二次電池電極に好適に用いることができ、中でも、エネルギー密度が高い非水電解質リチウムイオン二次電池に有用である。
 以下、実施例に基づいて本発明を具体的に説明する。尚、本明細書の開示は、これらの実施例により限定されるものではない。尚、以下において「部」及び「%」は、特に断らない限り質量部及び質量%を意味する。
 以下の例において、カルボキシル基含有架橋重合体又はその塩についての評価は、以下の方法により実施した。
<カルボキシル基含有架橋重合体又はその塩の評価方法>
[アセトニトリル媒体中での粒子径(膨潤前粒子径)の測定]
 カルボキシル基含有架橋重合体又はその塩の粉末1.0g、及び99.5質量%以上のアセトニトリル5.0gを20cc容器に量りとり、超音波ホモジナイザー(ヤマト科学株式会社製、LUH150)、を出力25Wにて30秒間照射し、分散液を得た。次に、アセトニトリルを分散媒とするレーザー回折/散乱式粒度分布計(マイクロトラックベル社製、マイクロトラックMT-3300EXII)にて、上記分散液の粒度分布測定を行った。分散液0.05mLを過剰量の分散媒が循環しているところに、投入することで、適切な散乱光強度が得られた。その後、数分後に粒度分布形状の安定を確認次第、粒度分布測定を行い、粒子径の代表値としての体積基準メジアン径(D50)を得た。
[pH8における水膨潤度]
 pH8における水膨潤度は、試料の乾燥時質量に対する試料の水膨潤時質量の比で表される。水膨潤度は、以下の方法によって測定した。測定装置を図1に示す。
 測定装置は図1における<要素1>~<要素3>から構成される。
<要素1>空気抜きするための枝管が付いたビュレット1、ピンチコック2、シリコンチューブ3及びポリテトラフルオロエチレンチューブ4から成る。
<要素2>ロート5の上に底面に多数の穴が空いた支柱円筒8、さらにその上に装置用濾紙10が設置されている。
<要素3>架橋重合体又はその塩の試料6(測定試料)は2枚の試料固定用濾紙7に挟まれ、試料固定用濾紙7は粘着テープ9によって固定される。なお、使用する濾紙は全てADVANTEC No.2、内径55mmである。
<要素1>と<要素2>とはシリコンチューブ3によって繋がれる。
 また、ロート5及び支柱円筒8は、ビュレット1に対する高さが固定されており、ビュレット枝管の内部に設置されたポリテトラフルオロエチレンチューブ4の下端と支柱円筒8の底面とが同じ高さになる様に設定されている(図1中の点線)。
 次に、測定方法について説明する。
(1)<要素1>にあるピンチコック2を外し、ビュレット1の上部からシリコンチューブ3を通してイオン交換水(pH8)を入れ、ビュレット1から装置用濾紙10までイオン交換水12で満たされた状態とする。次いで、ピンチコック2を閉じ、ビュレット枝管にゴム栓で接続されたポリテトラフルオロエチレンチューブ4から空気を除去する。こうして、ビュレット1から装置用濾紙10までイオン交換水12が連続的に供給される状態とする。
(2)次に、装置用濾紙10からにじみ出た余分なイオン交換水12を除去した後、ビュレット1の目盛りの読み(a)を記録する。
(3)測定試料の粉末0.1~0.2gを秤量し、<要素3>にある様に、試料固定用濾紙7の中央部に均一に置く。もう1枚の濾紙でサンプルを挟み、粘着テープ9で2枚の濾紙を留め、サンプルを固定する。サンプルが固定された濾紙を<要素2>に示される装置用濾紙10上に載置する。
(4)次に、装置用濾紙10上に蓋11を載置した時点から、30分間経過した後のビュレット1の目盛りの読み(b)を記録する。
(5)測定試料の吸水量と2枚の試料固定用濾紙7の吸水量の合計(c)は(a-b)で求められる。同様の操作により、架橋重合体又はその塩の試料を含まない、2枚の濾紙7のみの吸水量(d)を測定する。
(6)上記操作を行い、水膨潤度を以下の式より計算した。なお、計算に使用する固形分は、後述する方法により測定した値を使用した。この式は、既述の計算式(2)と同義である。
 水膨潤度={測定試料の乾燥重量(g)+(c-d)}/{測定試料の乾燥重量(g)}
 ただし、測定試料の乾燥重量(g)=測定試料の重量(g)×(固形分(%)÷100)
 ここで、固形分の測定方法について以下に記載する。
 試料約0.5gを、予め重さを測定しておいた秤量瓶[秤量瓶の重さ=B(g)]に採取して、秤量瓶ごと正確に秤量した後[W(g)]、その試料を秤量瓶ごと無風乾燥機内に収容して155℃で45分間乾燥してその時の重さを秤量瓶ごと測定し[W(g)]、以下の式により固形分を求めた。
 固形分(%)=(W-B)/(W-B)×100
<カルボキシル基含有架橋重合体塩の製造>
(製造例1:カルボキシル基含有架橋重合体塩R-1の製造)
 重合には、攪拌翼、温度計、還流冷却器及び窒素導入管を備えた反応器を用いた。
 反応器内にアセトニトリル395部、イオン交換水1.63部、アクリル酸(以下、「AA」という。)99.9部、アクリロイルモルホリン0.1部、トリメチロールプロパンジアリルエーテル(大阪ソーダ社製、商品名「ネオアリルT-20」)0.6部及び上記AAに対して1.0モル%に相当するトリオクチルアミン(TOA)を仕込んだ。反応器内を十分に窒素置換した後、加温して内温を55℃まで昇温した。内温が55℃で安定したことを確認した後、重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)(富士フイルム和光純薬社製、商品名「V-65」)0.040部を添加したところ、反応液に白濁が認められたため、この点を重合開始点とした。なお、非架橋性単量体の重合反応液に対する濃度は20%と算出された。また、重合反応液の総量に対する水の量(水分量)は、3300ppmであった。外温(水バス温度)を調整して内温を50℃に維持しながら重合反応を継続し、重合開始点から12時間経過した時点で反応液の冷却を開始し、内温が25℃まで低下した後、水酸化リチウム・―水和物(以下、「LiOH・HO」ともいう。)の粉末52.4部を添加した。添加後室温下12時間撹拌を継続して、カルボキシル基含有架橋重合体塩(以下、単に架橋重合体塩ともいう。)R-1(Li塩、中和度90モル%)の粒子が媒体に分散したスラリー状の重合反応液を得た。
 得られた重合反応液を遠心分離して重合体を沈降させた後、上澄みを除去した。その後、重合反応液と同重量のアセトニトリルに沈降物を再分散させた後、遠心分離により重合体粒子を沈降させて上澄みを除去する洗浄操作を2回繰り返した。沈降物を回収し、減圧条件下、80℃で3時間乾燥処理を行い、揮発分を除去することにより、カルボキシル基を有する架橋重合体塩R-1の粉末を得た。架橋重合体塩R-1は吸湿性を有するため、水蒸気バリア性を有する容器に密封保管した。なお、架橋重合体塩R-1の粉末をIR測定し、カルボン酸のC=O基由来のピークとカルボン酸リチウムのC=O由来のピークの強度比より中和度を求めたところ、仕込みからの計算値に等しく90モル%であった。また、アセトニトリル媒体中での粒子径は0.68μmであり、pH8における水膨潤度は25.5であった。
(製造例2~18及び比較製造例1~4:架橋重合体塩R-2~R-22の製造)
 各原料の仕込み量及び重合温度を表1に記載の通りとした以外は製造例1と同様の操作を行い、架橋重合体塩R-2~R-22を含む重合反応液を得た。次いで、各重合反応液について、製造例1と同様の操作を行い、粉末状の架橋重合体塩R-2~R-22を得た。各架橋重合体塩は、水蒸気バリア性を有する容器に密封保管した。得られた各架橋重合体塩について、製造例1と同様に物性値を測定し、表1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
表1において用いた化合物の詳細を以下に示す。
 AA:アクリル酸
 ACMO:アクロイルモルフォリン
 DMAAm:N,N-ジメチルアクリルアミド
 HEAAm:2-ヒドロキシエチルアクリルアミド
 T-20:トリメチロールプロパンジアリルエーテル(大阪ソーダ社製、商品名「ネオアリルT-20」)
 TMPTA:トリメチロールプロパントリアクリレート(東亞合成社製、商品名「アロニックス(登録商標)M-309」)
 TOA:トリオクチルアミン
 AcN:アセトニトリル
 MeOH:メタノール
 V-65:2,2’-アゾビス(2,4-ジメチルバレロニトリル)(富士フイルム和光純薬社製)
 LiOH・HO:水酸化リチウム・一水和物
 KCO:炭酸カリウム
<架橋重合体塩R-1~22のバインダーとしての評価>
 次に、作製した架橋重合体塩R-1~22(R-1~18:製造例、R19~22:比較製造例)につき、二次電池電極用のバインダーとしての評価を行った。以下に示す方法で、架橋重合体塩R-1~18及びR19~22を用いて、それぞれ実施例1~18及び比較例1~4の電極合剤層組成物を調製して、当該組成物を用いて負極を作製して、塗工性を評価した。さらに、負極及び電解液とともに二次電池を作製して、電極膨張度及びサイクル特性を評価した。結果を表2に示す。塗工性、サイクル特性及び電極膨張度の観点から総合評価も併せて行った。なお、総合評価のAAA、AA、A、B及びCは、アルファベットのAが多いほど、優れていることを示し、アルファベットが降順になるほど、その程度が低下することを意味している。AAA、AA、A、B及びCは、それぞれ、「とても優れている」、「優れている」、「やや優れている」、「良好である」、及び「不良である」を意味している。
(電極合剤層組成物の調製)
 各架橋重合体塩、スチレン/ブタジエンゴム(SBR)及びカルボキシメチルセルロースナトリウム(CMC)の混合物をバインダーとし、人造黒鉛(昭和電工社製 商品名「SCMG-CF」)、Si系活物質(大阪チタニウムテクノロジーズ社製SiO 5μm)を活物として用いた。
 プラネタリーミキサー(プライミクス社製 ハイビスミックス2P-03型)に電極合剤層組成物の固形分濃度が53質量%となるように、イオン交換水を希釈溶媒として、人造黒鉛:Si系活物質:架橋重合体塩R-1:SBR:CMC=92.15:4.85:1:1:1(固形分)の質量比で添加して、1時間30分混合し、スラリー状態の電極合剤層組成物(電極スラリー)を調製した。
(負極極板の作製及び塗工性評価)
 次いで、可変式アプリケーターを用いて、厚さ20μmの集電体(銅箔)上に上記電極スラリーを塗布し、通風乾燥機内で100℃×15分間の乾燥を行うことにより合剤層を形成した。その後、合剤層の厚み(以下、「T」という。)が50±5μm、合剤密度が1.70±0.20g/cmになるよう圧延した後、3cm正方に打ち抜いて負極極板を得た。
 得られた合剤層の外観を目視により観察し、以下の基準に基づいて塗工性を評価した結果、「A」と判断された。
<塗工性判定基準>
 A:表面に筋ムラ、ブツ等の外観異常がまったく認められない。
 B:表面に筋ムラ、ブツ等の外観異常がわずかに認められる。
 C:表面に筋ムラ、ブツ等の外観異常が顕著に認められる。
(正極極板の作製)
 N-メチルピロリドン(NMP)溶媒中、正極活物質としてLiNi0.5Co0.2Mn0.3(NCM)を100部、アセチレンブラックを2部、混合して添加し、電極組成物用バインダーとしてポリフッ化ビニリデン(PVDF)を4部混合し、正極用組成物を調製した。アルミニウム集電体(厚み:20μm)に前記正極用組成物を塗布乾燥することにより合剤層を形成した。その後、合剤層の厚みが125μm、合剤密度が3.0g/cmになるように圧延した後、3cm正方に打ち抜いて正極極板を得た。
(電解液の調製)
 エチレンカーボネート(EC)とジメチルカーボネート(DMC)とからなる混合溶媒(体積比でEC:DMC=3:7)に、ビニレンカーボネート(VC)を1質量%、フルオロエチレンカーボネート(FEC)を2質量%になるように添加し、LiPFを1.2モル/リットル溶解して非水電解質を調製した。
(二次電池の作製)
 電池の構成は、正・負極それぞれにリード端子を取り付け、セパレータ(ポリエチレン製:膜厚16μm、空孔率47%)を介して対向させた電極体を電池外装体としてアルミニウムラミネートを用いたものに入れて注液を行い、封止して試験用電池とした。なお、本試作電池の設計容量は50mAhである。電池の設計容量としては、4.2Vまでの充電終止電圧を基準にして設計を行った。
(サイクル特性の評価)
 上記で作製したラミネート型セルのリチウムイオン二次電池を、45℃の環境下でCC放電にて2.5から4.2Vの条件下、0.1Cの充放電レートにて充放電の操作を行い、初期容量Cを測定した。さらに、25℃の環境下で充放電をCC放電にて2.5から4.2Vの条件下、0.5Cの充放電レートにて繰り返し、50サイクル後の容量C50を測定した。以下の式でサイクル特性(ΔC)を算出した。ΔCの値が高いほどサイクル特性に優れることを示す。
 ΔC=C50/C×100(%)
(電極膨張度の測定)
 上記サイクル特性の評価に規定する充放電を50サイクル実施後に、再度充電後に、電池を解体し、負極極板の合剤層の厚み(以下、「T」という。)を測定した。なお、T1は当初の合剤層の厚みである。
 電極膨張度=(T-T)/T1×100(%)
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2において新たに用いた化合物の詳細を以下に示す。
 CMC:カルボキシメチルセルロースナトリウム
 SBR:スチレンブタジエンゴム
(評価結果)
 表2から明らかなように、実施例1~18の架橋重合体塩は、電極膨張度を優れて抑制できるものであるとともにサイクル特性に優れ、電極スラリーの塗工性に優れるものであった。一方、比較例1~4の架橋重合体塩は、塗工性に優れていた架橋重合体塩(比較例4)、サイクル特性に優れている架橋重合体塩(比較例3、4)など、部分的に電極特性を充足するものもあったが、いずれも、電極膨張度においては、実施例1~18の架橋重合体塩から大きく劣っていた。
 これらの実施例1~18の用いた非架橋性単量体の初期濃度(表1中の初期単量体濃度参照)が17質量%~25質量%であるのに対し、比較例1~4の同初期濃度は、35質量%及び10質量%であった。
 これらのことから、電極膨張度抑制能に優れる架橋重合体塩を製造するには、非架橋性単量体の初期濃度を調整することが重要であることがわかった。また、その調整範囲は、実施例1~18及び比較例1~4の架橋重合体塩の単量体濃度を参照すると、非架橋性単量体の総量の濃度を、16質量%以上30質量%以下とすることで、電極膨張抑制能ほか、塗工性及びサイクル特性に優れるバインダー成分である架橋重合体塩を製造できることがわかった。
 また、アセトニトリル媒体中での粒子径及び水膨潤度の観点からみると、実施例1~18の架橋重合体塩は、0.60μm以上1.0μm以下及びpH8における水膨潤度が25以上、40以下を、いずれも充足していたが、比較例1~4の架橋重合体塩は、これらのいずれかを外れていることから、電極膨張度の抑制効果が著しく劣ったと考えられた。このことから、非架橋性単量体の濃度の調整は、アセトニトリル媒体中での粒子径及び水膨潤度を所定範囲にすることに貢献していることがわかった。
 実施例1~18の架橋重合体塩の重合工程における水分量は、3000ppm~10000ppmの広い範囲であったが、架橋重合体塩の電極膨張抑制能、塗工性及びサイクル特性を良好に維持していた。また、実施例1~18の架橋重合体塩の重合工程における重合温度は、50℃~80℃であったが、架橋重合体塩の電極膨張抑制能、塗工性及びサイクル特性を良好に維持していた。
 また、実施例1~18の架橋重合体塩のうち、電極膨張度、塗工性及びサイクル特性に優れていた架橋重合体塩(R-2~4、R-6~7、9)のアセトニトリル媒体中での粒子径及びpH8における水膨潤度は、それぞれ、0.75~0.95μm及び27.9~36.8(実施例2~4、6~7、9)、0.76~0.95μm及び28.5~36.8(実施例2~4、6~7)、0.76~0.95μm及び29.2~36.8(実施例2~4)となる架橋重合体塩であった。
 これらのことから、アセトニトリル媒体中での粒子径及びpH8における水膨潤度がそれぞれ大きくなることで、活物質間を結着する確率が上り、結着性は向上していくが、当該粒子径が大きくなりすぎると、単位質量当たりの架橋重合体塩の個数が減ることによる結着点が減少するとともに、当該水膨潤度が大きくなりすぎると、架橋重合体塩の力学特性が低下することにより、当該粒子径と当該水膨潤度には最適点が存在していると推察された。
 また、窒素含有エチレン性不飽和単量体の種類に着目すると、アクリロイルモルホリン(実施例2)が他のエチレン性不飽和単量体(実施例6、7)に比べ、電極膨張度の抑制効果に特に優れる結果であった。また、架橋重合体塩は、カリウム塩よりもリチウム塩が電極膨張度抑制能に優れ(実施例2、16)、リチウム塩の中和度が70モル%よりも90モル%が電極膨張度抑制能に優れることもわかった(実施例2、15)。
 

Claims (8)

  1.  架橋重合体又はその塩の製造方法であって、
     エチレン性不飽和カルボン酸単量体と窒素含有エチレン性不飽和単量体を含む非架橋性単量体組成物を沈殿重合により重合する重合工程、
    を備え、
     前記重合工程における前記非架橋性単量体組成物の濃度が、前記重合工程における重合反応液の16質量%以上30質量%以下である、製造方法。
  2.  前記非架橋性単量体組成物は、前記エチレン性不飽和カルボン酸単量体を60質量%以上99.9質量%以下、前記窒素含有エチレン性不飽和単量体を0.1質量%以上40質量%以下含有する、請求項1に記載の製造方法。
  3.  前記窒素含有エチレン性不飽和単量体は、アクリロイルモルホリンを含有する、請求項1又は2に記載の製造方法。
  4.  前記重合工程における重合温度が、40℃以上80℃以下である、請求項1~3のいずれかに記載の製造方法。
  5.  前記重合工程における水分量は、前記重合反応液の総量の15000質量ppm以下である、請求項1~4のいずれかに記載の製造方法。
  6.  前記重合工程は、架橋性単量体を用いて前記非架橋性単量体組成物を沈殿重合により重合する工程である、請求項1~5のいずれかに記載の製造方法。
  7.  前記架橋性単量体の使用量は、前記非架橋性単量体組成物の総量に対して0.1モル%以上1.0モル%以下である、請求項6に記載の製造方法。
  8.  前記架橋性単量体は、1分子中に(メタ)アクリロイル基を2個以上有し、かつ、水酸基を有する架橋性単量体を含む、請求項6又は7に記載の製造方法。
     
PCT/JP2023/027157 2022-07-27 2023-07-25 架橋重合体又はその塩の製造方法 WO2024024773A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022119851 2022-07-27
JP2022-119851 2022-07-27

Publications (1)

Publication Number Publication Date
WO2024024773A1 true WO2024024773A1 (ja) 2024-02-01

Family

ID=89706433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027157 WO2024024773A1 (ja) 2022-07-27 2023-07-25 架橋重合体又はその塩の製造方法

Country Status (1)

Country Link
WO (1) WO2024024773A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158964A1 (ja) * 2015-03-30 2016-10-06 東亞合成株式会社 非水電解質二次電池電極合剤層用組成物及びその製造方法、並びに、その用途
WO2019082867A1 (ja) * 2017-10-24 2019-05-02 東亞合成株式会社 二次電池電極用バインダー及びその用途
JP2019139893A (ja) * 2018-02-08 2019-08-22 東亞合成株式会社 二次電池電極用バインダー及びその用途
WO2020137523A1 (ja) * 2018-12-26 2020-07-02 東亞合成株式会社 二次電池電極用バインダー及びその利用
JP2022107014A (ja) * 2017-07-21 2022-07-20 東亞合成株式会社 非水電解質二次電池電極用バインダーの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158964A1 (ja) * 2015-03-30 2016-10-06 東亞合成株式会社 非水電解質二次電池電極合剤層用組成物及びその製造方法、並びに、その用途
JP2022107014A (ja) * 2017-07-21 2022-07-20 東亞合成株式会社 非水電解質二次電池電極用バインダーの製造方法
WO2019082867A1 (ja) * 2017-10-24 2019-05-02 東亞合成株式会社 二次電池電極用バインダー及びその用途
JP2019139893A (ja) * 2018-02-08 2019-08-22 東亞合成株式会社 二次電池電極用バインダー及びその用途
WO2020137523A1 (ja) * 2018-12-26 2020-07-02 東亞合成株式会社 二次電池電極用バインダー及びその利用

Similar Documents

Publication Publication Date Title
CN108604684B (zh) 非水电解质二次电池电极用粘合剂及其制造方法、以及其用途
US20170352886A1 (en) Binder for nonaqueous electrolyte secondary battery electrode, manufacturing method therefor and use therefor
JP6638747B2 (ja) 二次電池電極用バインダー及びその用途
JP6981466B2 (ja) 架橋重合体又はその塩の製造方法
JPWO2016158939A1 (ja) 非水電解質二次電池電極合剤層用組成物及びその製造方法、並びに、その用途
JP7530052B2 (ja) 二次電池電極用バインダー、二次電池電極合剤層用組成物、二次電池電極及び二次電池
JP7372602B2 (ja) 二次電池電極用バインダー及びその利用
JP7234934B2 (ja) 二次電池電極用バインダー及びその用途
WO2021241404A1 (ja) 非水電解質二次電池電極用バインダー及びその用途
JP6944610B2 (ja) 非水電解質二次電池電極用バインダー
JP7428181B2 (ja) 二次電池電極用バインダー及びその利用
JP7226442B2 (ja) 二次電池電極用バインダー及びその利用
WO2020110847A1 (ja) 二次電池電極用バインダー、二次電池電極合剤層用組成物及び二次電池電極
JP7160222B2 (ja) 非水電解質二次電池電極用バインダーの製造方法
JP6988888B2 (ja) 非水電解質二次電池電極用バインダー及びその製造方法、並びに、その用途
WO2024024773A1 (ja) 架橋重合体又はその塩の製造方法
WO2024024772A1 (ja) 非水電解質二次電池電極用バインダー
WO2019017315A1 (ja) 非水電解質二次電池電極用バインダー及びその用途
JP7211418B2 (ja) 二次電池電極用バインダー及びその利用
JP7322882B2 (ja) 二次電池電極用バインダー及びその利用
WO2020090695A1 (ja) 二次電池電極用バインダー及びその利用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846503

Country of ref document: EP

Kind code of ref document: A1