WO2016158964A1 - 非水電解質二次電池電極合剤層用組成物及びその製造方法、並びに、その用途 - Google Patents

非水電解質二次電池電極合剤層用組成物及びその製造方法、並びに、その用途 Download PDF

Info

Publication number
WO2016158964A1
WO2016158964A1 PCT/JP2016/060156 JP2016060156W WO2016158964A1 WO 2016158964 A1 WO2016158964 A1 WO 2016158964A1 JP 2016060156 W JP2016060156 W JP 2016060156W WO 2016158964 A1 WO2016158964 A1 WO 2016158964A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
mixture layer
secondary battery
electrolyte secondary
weight
Prior art date
Application number
PCT/JP2016/060156
Other languages
English (en)
French (fr)
Inventor
松崎 英男
直彦 斎藤
守功 松永
伸哉 熊谷
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to JP2017510031A priority Critical patent/JP6388145B2/ja
Priority to US15/561,391 priority patent/US10541423B2/en
Publication of WO2016158964A1 publication Critical patent/WO2016158964A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8615Bifunctional electrodes for rechargeable cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/14Organic medium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention uses a composition for a non-aqueous electrolyte secondary battery electrode mixture layer that can be used for a lithium ion secondary battery and the like, a production method thereof, and the composition for a non-aqueous electrolyte secondary battery electrode mixture layer.
  • the present invention relates to a nonaqueous electrolyte secondary battery electrode and a nonaqueous electrolyte secondary battery to be obtained.
  • a lithium ion secondary battery As a nonaqueous electrolyte secondary battery, for example, a lithium ion secondary battery is well known. Lithium ion secondary batteries are superior in energy density, output density, charge / discharge cycle characteristics, etc. compared to other secondary batteries such as lead-acid batteries, so mobiles such as smartphones, tablet terminals and laptop computers Used in terminals, it contributes to reducing the size and weight of terminals and improving their performance. On the other hand, secondary batteries for electric vehicles and hybrid vehicles (on-vehicle secondary batteries) have not yet achieved sufficient performance in terms of output, required charging time, and the like.
  • the non-aqueous electrolyte secondary battery is composed of a pair of electrodes disposed via a separator and a non-aqueous electrolyte solution.
  • the electrode is composed of a current collector and a mixture layer formed on the surface thereof, and the mixture layer is coated with a composition (slurry) for the electrode mixture layer containing an active material and a binder on the current collector. And formed by drying or the like.
  • a composition for an electrode mixture layer there is an increasing demand for water-based treatment from the viewpoints of environmental protection and cost reduction.
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • a binder is used.
  • further improvement is desired in order to cope with high-rate characteristics and cycle characteristics required for in-vehicle applications.
  • a solvent-based binder such as polyvinylidene fluoride (PVDF) using an organic solvent such as N-methyl-2-pyrrolidone (NMP) is mainly used, and the above requirements are sufficiently satisfied. No water-based binder has been proposed.
  • Components constituting the lithium ion secondary battery electrode include active materials such as graphite and hard carbon (HC), and carbon-based materials such as conductive additives such as ketjen black (KC) and acetylene black (AB). Often used. In general, these carbon-based materials have poor wettability to an aqueous medium, and in order to obtain a composition for an electrode mixture layer that is uniform and excellent in dispersion stability, an aqueous system excellent in the dispersion stabilization effect of the carbon-based material is used.
  • a binder is desired. As an aqueous binder that can be applied to a lithium ion secondary battery electrode, an aqueous binder containing a crosslinked polyacrylic acid has been proposed as shown below.
  • Patent Document 1 discloses an acrylic acid polymer crosslinked with polyalkenyl ether as a binder for forming a negative electrode coating film of a lithium ion secondary battery. Further, in Patent Document 2, a polymer obtained by crosslinking polyacrylic acid with a specific crosslinking agent is used as a binder, so that the electrode structure is not destroyed even when an active material containing silicon is used. It is described that an excellent capacity retention ratio can be obtained. On the other hand, cross-linked polyacrylic acid is also widely used as a water-soluble thickener, and Patent Document 3 discloses an unsaturated carboxylic acid-based cross-linked polymer obtained in combination with a specific cross-linking agent. Yes.
  • Patent Document 1 a binder composition containing an acrylic acid polymer crosslinked with a polyalkenyl polyether is disclosed.
  • the binder composition containing the acrylic acid polymer has a high viscosity, and it is difficult to ensure uniformity when kneading and preparing the mixture layer composition by mixing with an active material or the like. There was a risk of effect.
  • the blending composition ratio of the acrylic acid polymer in the binder exceeds 95% by weight, the particle surface of the carbon material is coated and the conductivity is lowered. And has a problem of inhibiting the movement of lithium ions.
  • a binder composed of cross-linked polyacrylic acid having different types of cross-linking agents and different amounts of cross-linking agents is disclosed, and 1 wt% slurry of the cross-linked polyacrylic acid at 0.6 rpm or 60 rpm is disclosed. Viscosity is described ([Table 3] etc.). However, the binder composition containing cross-linked polyacrylic acid having a specific viscosity value of 60 rpm has a low viscosity, and there is concern about dispersion stability and binding properties of active materials and the like. .
  • the binder composition containing a cross-linked polyacrylic acid specifically having a viscosity value of 0.6 rpm has a high viscosity, and the uniformity in kneading and preparing the mixture layer composition is reduced.
  • the electrode characteristics may be adversely affected.
  • Patent Document 3 discloses a crosslinked polymer having water solubility and high viscosity, but there is no description or suggestion about application to a composition for a non-aqueous electrolyte secondary battery electrode mixture layer. Also, none of Patent Documents 1 to 3 describes high rate characteristics.
  • the present invention has been made in view of such circumstances, and is a non-aqueous electrolyte secondary battery including an aqueous binder that can satisfy both electrode characteristics such as high rate characteristics and durability (cycle characteristics). It aims at providing the composition for electrode mixture layers, and its manufacturing method. Another object of the present invention is to provide a non-aqueous electrolyte secondary battery electrode and a non-aqueous electrolyte secondary battery obtained by using the composition for an aqueous electrode mixture layer.
  • a binder containing a cross-linked polymer of ethylenically unsaturated carboxylic acid monomer cross-linked with allyl methacrylate and a salt thereof can be used in a small amount.
  • the knowledge that the high rate characteristic can be improved was obtained because of its excellent binding property.
  • the said binder was excellent in binding property, it discovered that it was effective also with respect to the durability (cycle characteristic) improvement of an electrode.
  • the composition for a mixture layer containing the binder has a viscosity suitable for electrode preparation, it is possible to obtain a nonaqueous electrolyte secondary battery electrode having a uniform mixture layer and good electrode characteristics. It was.
  • the present invention has been completed based on these findings.
  • a composition for a non-aqueous electrolyte secondary battery electrode mixture layer comprising an active material, water and a binder
  • the binder contains a crosslinked polymer of a monomer component containing an ethylenically unsaturated carboxylic acid monomer and a salt thereof,
  • the crosslinked polymer is crosslinked with allyl methacrylate, and the amount of allyl methacrylate used is 0.1 to 2.0 parts by weight based on 100 parts by weight of the total amount of non-crosslinkable monomers.
  • the crosslinked polymer is crosslinked with allyl methacrylate and a polyfunctional allyl compound, and the amount of the allyl methacrylate and polyfunctional allyl compound used is 100 parts by weight of the total amount of non-crosslinkable monomers.
  • a method for producing a composition for a non-aqueous electrolyte secondary battery electrode mixture layer After precipitation polymerization of a monomer component containing an ethylenically unsaturated carboxylic acid monomer and allyl methacrylate in an aqueous medium to obtain a crosslinked polymer, A method for producing a composition for a non-aqueous electrolyte secondary battery electrode mixture layer by mixing with an active material and water.
  • a nonaqueous electrolyte 2 comprising a mixture layer formed on the surface of the current collector from the composition for a nonaqueous electrolyte secondary battery electrode mixture layer according to any one of [1] to [4].
  • Secondary battery electrode [6] A nonaqueous electrolyte secondary battery comprising the nonaqueous electrolyte secondary battery electrode according to [5], a separator, and a nonaqueous electrolyte solution.
  • the binder used in the composition for a nonaqueous electrolyte secondary battery electrode mixture layer of the present invention exhibits excellent binding properties even in a small amount. For this reason, it becomes possible to reduce the binder content in the composition for the mixture layer, and it is possible to obtain an electrode having high high-rate characteristics and excellent durability (cycle characteristics). Moreover, since the composition for a nonaqueous electrolyte secondary battery electrode mixture layer of the present invention has a viscosity suitable for electrode production, the nonaqueous electrolyte secondary battery electrode has a uniform mixture layer and good electrode characteristics. Can be obtained.
  • (meth) acryl means acryl and / or methacryl
  • (meth) acrylate means acrylate and / or methacrylate
  • the “(meth) acryloyl group” means an acryloyl group and / or a methacryloyl group.
  • the composition for a nonaqueous electrolyte secondary battery electrode mixture layer comprises a crosslinked polymer of a monomer component containing an ethylenically unsaturated carboxylic acid monomer, a binder containing the salt, an active material, and water. It contains.
  • the composition described above may be in a slurry state that can be applied to the current collector, or may be prepared in a wet powder state so that it can be applied to pressing on the surface of the current collector.
  • a nonaqueous electrolyte secondary battery electrode of the present invention is obtained by forming a mixture layer formed from the above composition on the surface of a current collector such as a copper foil or an aluminum foil.
  • the composition for the secondary battery electrode mixture layer and the production method thereof, and the components of the nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery obtained by using the composition will be described in detail. .
  • the binder of the present invention contains a cross-linked polymer of a monomer component containing an ethylenically unsaturated carboxylic acid monomer and a salt thereof.
  • ethylenically unsaturated carboxylic acid monomer include (meth) acrylic acid, crotonic acid, itaconic acid, maleic acid, maleic anhydride, fumaric acid, monobutyl itaconic acid, monobutyl maleate, and cyclohexanedicarboxylic acid.
  • vinyl monomers having a carboxyl group such as acid, or (partial) alkali neutralized products thereof. One of these may be used alone, or two or more may be used in combination. May be.
  • carbon such as (meth) acrylic acid, crotonic acid, itaconic acid, maleic acid, maleic anhydride, and fumaric acid is preferable in that the primary chain length of the obtained polymer is long and the binding power of the binder is good.
  • carboxylic acid monomers and salts thereof are preferred, and acrylic acid is more preferred.
  • the types of salts include alkali metal salts such as lithium, sodium and potassium; alkaline earth metal salts such as calcium salts and barium salts; other metal salts such as magnesium salts and aluminum salts; ammonium salts and organic amine salts Is mentioned. Of these, alkali metal salts and magnesium salts are preferred, and alkali metal salts are more preferred because they are less likely to adversely affect battery characteristics.
  • non-crosslinkable monomers other than the ethylenically unsaturated carboxylic acid monomer can be used in combination as the monomer component.
  • Other non-crosslinkable monomers include (meth) acrylic acid alkyl esters, (meth) acrylic acid hydroxyalkyl esters, aromatic vinyl compounds, amino group-containing vinyl compounds, amide group-containing vinyl compounds, sulfonic acid group-containing vinyls. Examples thereof include a compound, a polyoxyalkylene group-containing vinyl compound, and an alkoxyl group-containing vinyl compound. These compounds can be used alone or in combination of two or more.
  • Specific compounds of the above (meth) acrylic acid alkyl ester include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and (meth) acrylic.
  • N-butyl acid isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, isoamyl (meth) acrylate, (meth) acrylic
  • acrylic acid ester compounds having a linear, branched or cyclic alkyl group, such as hexyl acid, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and octyl (meth) acrylate.
  • (meth) acrylic acid hydroxyalkyl ester examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and (meth) Examples include ⁇ -caprolactone adduct of 2-hydroxyethyl acrylate.
  • aromatic vinyl compound examples include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, and 4-tert-butylstyrene.
  • amino group-containing vinyl compound examples include dimethylaminomethyl (meth) acrylate, diethylaminomethyl (meth) acrylate, 2-dimethylaminoethyl (meth) acrylate, 2-diethylaminoethyl (meth) acrylate, (meth) 2- (di-n-propylamino) ethyl acrylate, 2-dimethylaminopropyl (meth) acrylate, 2-diethylaminopropyl (meth) acrylate, 2- (di-n-propylamino) (meth) acrylate And propyl, 3-dimethylaminopropyl (meth) acrylate, 3-diethylaminopropyl (meth) acrylate, 3- (di-n-propylamino) propyl (meth) acrylate, and the like.
  • amide group-containing vinyl compound examples include (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, N-isopropylacrylamide, Nt-butylacrylamide and the like. It is done.
  • sulfonic acid group-containing vinyl compound examples include methallylsulfonic acid, (meth) acrylamido-2-methyl-2-propanesulfonic acid, and the like.
  • polyoxyalkylene group-containing vinyl compound examples include (meth) acrylic acid esters of alcohols having a polyoxyethylene group and / or a polyoxypropylene group.
  • alkoxyl group-containing vinyl compound examples include 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2- (n-propoxy) ethyl (meth) acrylate, and 2- (meth) acrylic acid 2- (N-butoxy) ethyl, 3-methoxypropyl (meth) acrylate, 3-ethoxypropyl (meth) acrylate, 2- (n-propoxy) propyl (meth) acrylate, 2- (n) (meth) acrylate -Butoxy) propyl and the like.
  • the proportion of the ethylenically unsaturated carboxylic acid monomer in the total amount of the non-crosslinkable monomer is preferably in the range of 50 to 100% by weight, more preferably in the range of 70 to 100% by weight, and 90 to 100% by weight. The range is more preferable, and the range of 95 to 100% by weight is more preferable.
  • the polymer has a carboxyl group, it has an excellent desolvation effect and ion conductivity of lithium ions, so that an electrode having low resistance and excellent high rate characteristics can be obtained.
  • the proportion of the ethylenically unsaturated carboxylic acid monomer in the total amount of the non-crosslinkable monomer is 50% by weight or more, the effect of the carboxyl group can be sufficiently imparted.
  • a crosslinkable monomer is used in addition to the non-crosslinkable monomer.
  • allyl methacrylate is essential as the crosslinkable monomer.
  • the amount of allyl methacrylate used is 0.1 to 2.0 parts by weight, preferably 0.2 to 1.5 parts by weight, based on 100 parts by weight of the total amount of non-crosslinkable monomers. More preferred is 3 to 1.0 part by weight. When the usage-amount of allyl methacrylate is less than 0.1 weight part, the binding property of the composition for electrode mixture layers may become inadequate.
  • crosslinkable monomer a polyfunctional polymerizable monomer other than allyl methacrylate and a crosslinkable functional group capable of self-crosslinking such as a hydrolyzable silyl group, as long as the effects of the present invention are not impaired.
  • the crosslinkable monomer which has can be used together.
  • the polyfunctional polymerizable monomer is a compound having two or more polymerizable functional groups such as a (meth) acryloyl group and an alkenyl group in the molecule, and is a polyfunctional (meth) acrylate compound, a polyfunctional alkenyl compound, a methacrylic compound, Examples include compounds having both a (meth) acryloyl group and an alkenyl group other than allyl acid. These compounds may be used alone or in combination of two or more. Among these, a polyfunctional alkenyl compound is preferable because a uniform cross-linked structure is easily obtained. When allyl methacrylate and a polyfunctional alkenyl compound are used in combination as the crosslinkable monomer, an electrode mixture layer composition excellent in swelling property and extremely good dispersion stability is obtained.
  • Polyfunctional (meth) acrylate compounds include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di ( Di (meth) acrylates of dihydric alcohols such as (meth) acrylate; trimethylolpropane tri (meth) acrylate, trimethylolpropane ethylene oxide modified tri (meth) acrylate, glycerin tri (meth) acrylate, pentaerythritol tri ( Poly (meth) acrylates such as tri (meth) acrylates and tetra (meth) acrylates of trihydric or higher polyhydric alcohols such as (meth) acrylates and pentaerythritol tetra (meth) acrylates Relate can be mentioned.
  • polyfunctional alkenyl compound examples include trimethylolpropane diallyl ether, pentaerythritol diallyl ether, pentaerythritol triallyl ether, tetraallyloxyethane, polyallyl saccharose and the like; polyfunctional allyl compounds such as diallyl phthalate; divinyl Examples thereof include polyfunctional vinyl compounds such as benzene.
  • Compounds having both (meth) acryloyl groups and alkenyl groups other than allyl methacrylate include allyl acrylate, isopropenyl (meth) acrylate, butenyl (meth) acrylate, pentenyl (meth) acrylate, (meth) Examples include 2- (2-vinyloxyethoxy) ethyl acrylate.
  • Examples of other polyfunctional polymerizable monomers include bisamides such as methylene bisacrylamide and hydroxyethylene bisacrylamide.
  • the monomer having a crosslinkable functional group capable of self-crosslinking include hydrolyzable silyl group-containing vinyl monomers, N-methylol (meth) acrylamide, N-methoxyalkyl (meth) acrylate, and the like. Is mentioned. These compounds can be used alone or in combination of two or more.
  • the hydrolyzable silyl group-containing vinyl monomer is not particularly limited as long as it is a vinyl monomer having at least one hydrolyzable silyl group.
  • vinyl silanes such as vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, and vinyldimethylmethoxysilane
  • silyl such as trimethoxysilylpropyl acrylate, triethoxysilylpropyl acrylate, and methyldimethoxysilylpropyl acrylate Group-containing acrylic acid esters
  • silyl group-containing methacrylates such as trimethoxysilylpropyl methacrylate, triethoxysilylpropyl methacrylate, methyldimethoxysilylpropyl methacrylate, dimethylmethoxysilylpropyl methacrylate
  • trimethoxysilylpropyl vinyl ether etc.
  • the crosslinking degree of the crosslinked polymer of the present invention is relatively low, and the amount of the crosslinking monomer used is 100 parts by weight based on the total amount of monomers other than the crosslinking monomer (non-crosslinking monomer).
  • the amount is preferably 0.1 to 3.0 parts by weight, and more preferably 0.4 to 2.0 parts by weight. If the usage-amount of a crosslinkable monomer is the said range, the binder which has the more outstanding binding force can be obtained.
  • the crosslinked polymer of the present invention may be crosslinked with a compound having two or more functional groups capable of reacting with a carboxyl group introduced into the polymer in addition to the above-mentioned crosslinkable monomer.
  • the compound having two or more functional groups capable of reacting with a carboxyl group include the following compounds. i) A compound that forms a covalent bond with a carboxyl group such as an epoxy group, a carbodiimide group, or an oxazoline group. ii) A compound having Ca 2+ , Mg 2+ and the like and forming an ionic bond with a carboxyl group. iii) A compound having Zn 2+ , Al 3+ , Fe 3+ and the like and forming a coordinate bond with a carboxyl group.
  • the viscosity may be in the range of 1,000 to 40,000 mPa ⁇ s. preferable.
  • the viscosity is measured by the B-type viscosity at the liquid temperature 25 (rotor rotation speed 20 rpm).
  • the viscosity of the 0.5 wt% aqueous dispersion is more preferably in the range of 2,000 to 40,000 mPa ⁇ s, still more preferably in the range of 3,000 to 40,000 mPa ⁇ s.
  • the most preferable range is from 5,000 to 35,000 mPa ⁇ s.
  • the viscosity is in the range of 1,000 to 40,000 mPa ⁇ s, a composition for a mixture layer having excellent dispersion stability and uniformity of the active material can be obtained.
  • the cross-linked polymer is not neutralized or has a neutralization degree of less than 90 mol%, it is neutralized in an aqueous medium with an alkali compound to a neutralization degree of 90 mol%, and after making a 0.5 wt% aqueous dispersion, the viscosity is taking measurement.
  • the degree of neutralization of the cross-linked polymer exceeds 90 mol%, 0.5 wt% after the neutralization degree is adjusted to 90 mol% with the addition of an appropriate acid such as sulfuric acid or the like. Measure the viscosity of the% aqueous dispersion.
  • the toughness increases, it becomes possible to obtain high binding properties, and the viscosity of the aqueous dispersion increases.
  • a crosslinked polymer (salt) obtained by subjecting a polymer having a long primary chain length to a relatively small amount of crosslinking exists as a microgel body swollen in water in water.
  • the viscosity of the aqueous dispersion also increases.
  • the water swellability of the crosslinked polymer is limited, and as a result, the viscosity of the aqueous dispersion tends to decrease.
  • a thickening effect and a dispersion stabilizing effect are expressed by the interaction of the microgel bodies.
  • the interaction of the microgel body varies depending on the water swelling degree of the microgel body and the strength of the microgel body, and these are controlled by the crosslinking degree of the crosslinked polymer.
  • the degree of crosslinking is too low, the strength of the microgel is insufficient, and the dispersion stabilizing effect and the binding property may be insufficient.
  • the degree of crosslinking is too high, the degree of swelling of the microgel may be insufficient and the dispersion stabilizing effect and binding properties may be insufficient.
  • the cross-linked polymer is desirably a micro-crosslinked polymer obtained by appropriately crosslinking a polymer having a sufficiently long primary chain length.
  • the crosslinked polymer of the present invention uses allyl methacrylate as a crosslinkable monomer.
  • a polyfunctional methacrylate compound such as dimethacrylate
  • intramolecular crosslinking takes precedence, so that the obtained crosslinked polymer tends to have insufficient water swellability.
  • Allyl methacrylate is efficiently incorporated into the polymer chain by the methacryloyl group, and further, the intermolecular crosslinking proceeds by the allyl group, so that a polymer having a long primary chain length and appropriately crosslinked can be efficiently obtained. .
  • the crosslinked polymer of the present invention is used as a salt form in which an acid group such as a carboxyl group derived from an ethylenically unsaturated carboxylic acid monomer is neutralized so that the degree of neutralization is 20 to 100 mol%. Is preferred.
  • the neutralization degree is more preferably 50 to 100 mol%, and further preferably 60 to 95 mol%. When the degree of neutralization is 20 mol% or more, water swellability is good and a dispersion stabilizing effect is easily obtained.
  • the amount of the crosslinked polymer and its salt used in the composition for electrode mixture layer of the present invention is 0.5 to 5.0% by weight based on the total amount of the active material.
  • the amount used is preferably 1.0 to 5.0% by weight, more preferably 1.5 to 5.0% by weight, and still more preferably 2.0 to 5.0 parts by weight.
  • the amount of the crosslinked polymer and its salt used is less than 0.5% by weight, sufficient binding properties may not be obtained. Further, the dispersion stability of the active material or the like becomes insufficient, and the uniformity of the formed mixture layer may be lowered.
  • the usage-amount of a crosslinked polymer and its salt exceeds 5.0 weight%, the composition for electrode mixture layers may become high viscosity, and the coating property to a collector may fall. As a result, bumps and irregularities are generated in the obtained mixture layer, which may adversely affect the electrode characteristics. In addition, the interface resistance increases, and there is a concern that the high-rate characteristics will deteriorate. If the use amount of the crosslinked polymer and its salt is within the above range, a composition having excellent dispersion stability can be obtained, and a mixture layer having extremely high adhesion to the current collector can be obtained. As a result, the durability of the battery is improved. Furthermore, since the amount used is as small as 0.5 to 5.0% by weight with respect to the active material, and the polymer has a carboxy anion, an electrode having low interface resistance and excellent high rate characteristics can be obtained. .
  • the crosslinked polymer of the present invention can use a known polymerization method such as solution polymerization, precipitation polymerization, suspension polymerization, reverse phase emulsion polymerization, etc., but has a long primary chain length and is appropriately crosslinked.
  • Precipitation polymerization is preferred in that the polymer can be produced efficiently.
  • Precipitation polymerization is a method for producing a polymer by carrying out a polymerization reaction in a solvent that dissolves an unsaturated monomer as a raw material but does not substantially dissolve the produced polymer.
  • the polymer particles become larger due to aggregation and growth, and a dispersion of polymer particles in which primary particles of several tens to several hundreds of nm are aggregated to several ⁇ m to several tens of ⁇ m is obtained.
  • a dispersion stabilizer can also be used to control the particle size of the polymer.
  • the polymerization solvent may be a solvent selected from water and various organic solvents in consideration of the type of monomer used. In order to obtain a polymer having a longer primary chain length, it is preferable to use a solvent having a small chain transfer constant.
  • specific polymerization solvents when the ethylenically unsaturated carboxylic acid monomer is polymerized in an unneutralized state, examples thereof include benzene, ethyl acetate, dichloroethane, n-hexane, cyclohexane, and n-heptane. These can be used alone or in combination of two or more.
  • water-soluble solvents such as methanol, t-butyl alcohol, acetone and tetrahydrofuran can be used.
  • methanol, t-butyl alcohol, acetone and tetrahydrofuran can be used.
  • One of these may be used alone or 2
  • a combination of more than one species can be used.
  • the water-soluble solvent refers to a solvent having a solubility in water at 20 ° C. of more than 10 g / 100 ml.
  • a (partial) neutralized product of an ethylenically unsaturated carboxylic acid monomer is precipitated in an aqueous medium containing water and a water-soluble solvent because a polymer having excellent dispersion stability of the active material is obtained.
  • a polymerization method is preferred.
  • the ratio of the water-soluble solvent contained in the aqueous medium is preferably 50 to 100% by weight, more preferably 70 to 100% by weight, and still more preferably 90 to 100% by weight with respect to the total amount of the aqueous medium.
  • the polymerization initiator may be a known polymerization initiator such as an azo compound, an organic peroxide, or an inorganic peroxide, but is not particularly limited.
  • the conditions of use can be adjusted by a known method such as thermal initiation, redox initiation using a reducing agent in combination, UV initiation, or the like so as to obtain an appropriate radical generation amount.
  • thermal initiation redox initiation using a reducing agent in combination
  • UV initiation or the like so as to obtain an appropriate radical generation amount.
  • Examples of the azo compound include 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (N-butyl-2-methylpropionamide), 2- (tert-butylazo) -2. -Cyanopropane, 2,2'-azobis (2,4,4-trimethylpentane), 2,2'-azobis (2-methylpropane), etc., and one or more of these are used be able to.
  • organic peroxide examples include 2,2-bis (4,4-di-t-butylperoxycyclohexyl) propane (manufactured by NOF Corporation, trade name “Pertetra A”), 1,1-di (t- Hexylperoxy) cyclohexane (same as “Perhexa HC”), 1,1-di (t-butylperoxy) cyclohexane (same as “PerhexaC”), n-butyl-4,4-di (t-butylperoxy) Valerate ("Perhexa V"), 2,2-di (t-butylperoxy) butane ("Perhexa 22"), t-butyl hydroperoxide ("Perbutyl H”), cumene hydroperoxide (Japan) Made by Oil Co., Ltd., trade name “Park Mill H”), 1,1,3,3-tetramethylbutyl hydroperoxide (“Perocta H”), t-
  • inorganic peroxide examples include potassium persulfate, sodium persulfate, and ammonium persulfate.
  • potassium persulfate sodium persulfate
  • sodium persulfate sodium persulfate
  • ammonium persulfate sodium sulfite, sodium thiosulfate, sodium formaldehyde sulfoxylate, ascorbic acid, sulfurous acid gas (SO 2 ), ferrous sulfate and the like can be used as a reducing agent.
  • the preferred use amount of the polymerization initiator is 0.001 to 2 parts by weight, more preferably 0.005 to 1 part by weight, further preferably 100 parts by weight based on the total amount of monomer components to be used. Is 0.01 to 0.1 parts by weight.
  • the amount of the polymerization initiator used is 0.001 part or more, the polymerization reaction can be stably performed, and when it is 2 parts or less, a polymer having a long primary chain length is easily obtained.
  • the concentration of the monomer component is usually in the range of about 2 to 30% by weight.
  • Polymerization takes place at The monomer concentration at the start of polymerization is preferably 5 to 30% by weight, more preferably 15 to 30% by weight, and even more preferably 20 to 30% by weight.
  • the polymerization temperature is preferably 0 to 100 ° C., more preferably 20 to 80 ° C., although it depends on conditions such as the type and concentration of the monomer used.
  • the polymerization temperature may be constant or may change during the polymerization reaction.
  • the polymerization time is preferably 1 minute to 10 hours, more preferably 10 minutes to 5 hours, and further preferably 30 minutes to 2 hours.
  • the binder of the present invention comprises a cross-linked polymer of a monomer component containing the ethylenically unsaturated carboxylic acid monomer and a salt thereof, but in addition to this, a styrene / butadiene latex (SBR). ),
  • SBR styrene / butadiene latex
  • Other binder components such as acrylic latex and polyvinylidene fluoride latex can be used in combination.
  • the amount used is preferably 5% by weight or less, more preferably 2% by weight or less, still more preferably 1% by weight or less based on the active material. .
  • the amount of other binder components used exceeds 5% by weight, the resistance increases and the high rate characteristics may be insufficient.
  • the mixture layer composition for a non-aqueous electrolyte secondary battery of the present invention contains a binder, an active material, and water composed of the crosslinked polymer and a salt thereof.
  • a lithium salt of a transition metal oxide is mainly used as a positive electrode active material.
  • a layered rock salt type and a spinel type lithium-containing metal oxide can be used.
  • Specific compounds of the positive electrode active material of layered rock-salt, lithium cobaltate, lithium nickelate, and, NCM ⁇ Li (Ni x, Co y, Mn z), x + y + x 1 ⁇ called ternary and NCA ⁇ Li (Ni 1-ab Co a Al b ) ⁇ and the like.
  • the spinel positive electrode active material include lithium manganate.
  • oxides, phosphates, silicates, sulfur and the like are used, and examples of the phosphate include olivine type lithium iron phosphate.
  • the positive electrode active material one of the above may be used alone, or two or more may be used in combination as a mixture or a composite.
  • the dispersion When the layered rock salt type positive electrode active material is dispersed in water, the dispersion exhibits alkalinity by exchanging lithium ions on the surface of the active material and hydrogen ions in water. For this reason, there exists a possibility that the aluminum foil (Al) etc. which are general collector materials for positive electrodes may be corroded. In such a case, it is preferable to neutralize the alkali content eluted from the active material by using an unneutralized or partially neutralized crosslinked polymer as a binder. The amount of unneutralized or partially neutralized cross-linked polymer is used so that the amount of unneutralized carboxyl groups in the cross-linked polymer is equal to or greater than the amount of alkali eluted from the active material. It is preferable.
  • any positive electrode active material has low electrical conductivity, it is common to add a conductive auxiliary agent.
  • the conductive assistant include carbon-based materials such as carbon black, carbon nanotube, carbon fiber, graphite fine powder, and carbon fiber. Among these, carbon black, carbon nanotube, and carbon fiber are easy to obtain excellent conductivity. Is preferred. Moreover, as carbon black, ketjen black and acetylene black are preferable.
  • the conductive assistant one of the above may be used alone, or two or more may be used in combination.
  • the amount of the conductive aid used is preferably 2 to 20% by weight and more preferably 2 to 10% by weight with respect to the total amount of the active material from the viewpoint of achieving both conductivity and energy density.
  • the positive electrode active material may be a surface coated with a conductive carbon-based material.
  • examples of the negative electrode active material include carbon materials, lithium metals, lithium alloys, metal oxides, and the like, and one or more of them can be used in combination.
  • active materials composed of carbon-based materials such as natural graphite, artificial graphite, hard carbon, and soft carbon (hereinafter, also referred to as “carbon-based active material”) are preferable, graphite such as natural graphite and artificial graphite, and Hard carbon is more preferable.
  • carbon-based active material such as natural graphite, artificial graphite, hard carbon, and soft carbon
  • graphite such as natural graphite and artificial graphite
  • Hard carbon is more preferable.
  • spheroidized graphite is preferably used from the viewpoint of battery performance, and the preferred particle size range is 1 to 20 ⁇ m, and the more preferred range is 5 to 15 ⁇ m.
  • silicon has a higher capacity than graphite, and an active material composed of silicon-based materials such as silicon, silicon alloys and silicon oxides such as silicon monoxide (SiO) (hereinafter referred to as “silicon-based active material”).
  • silicon-based active material has a high capacity, but has a large volume change due to charge / discharge. For this reason, it is preferable to use together with the carbon-based active material.
  • the compounding amount of the silicon-based active material is large, the electrode material may be collapsed and the cycle characteristics (durability) may be greatly reduced.
  • the amount used is preferably 60% by mass or less, and more preferably 30% by mass or less with respect to the carbon-based active material.
  • the carbon-based active material itself has good electrical conductivity, it is not always necessary to add a conductive additive.
  • a conductive additive is added for the purpose of further reducing resistance, the amount used is preferably 10% by weight or less, preferably 5% by weight or less based on the total amount of the active material from the viewpoint of energy density. Is more preferable.
  • the amount of the active material used is preferably in the range of 10 to 75% by weight, preferably 30 to 65% by weight, based on the total amount of the composition. More preferably, it is the range.
  • the amount of the active material used is 10% by weight or more, the migration of the binder and the like is suppressed, and the medium drying cost is advantageous.
  • it is 75 weight% or less, the fluidity
  • the amount of the active material used is preferably in the range of 60 to 97% by weight, preferably 70 to 90% by weight with respect to the total amount of the composition. A range is more preferable. Further, from the viewpoint of energy density, it is preferable that the non-volatile components other than the active material such as the binder and the conductive assistant are as small as possible within a range in which necessary binding properties and conductivity are ensured.
  • the composition for a nonaqueous electrolyte secondary battery electrode mixture layer of the present invention uses water as a medium.
  • water-soluble organic solvents such as lower alcohols such as methanol and ethanol, carbonates such as ethylene carbonate, ketones such as acetone, tetrahydrofuran, N-methylpyrrolidone, etc. It is good also as a mixed solvent.
  • the proportion of water in the mixed medium is preferably 50% by weight or more, and more preferably 70% by weight or more.
  • the content of the medium containing water in the entire composition is determined from the viewpoints of slurry coating properties, energy costs required for drying, and productivity. Is preferably in the range of 25 to 90% by weight, more preferably in the range of 35 to 70% by weight. Further, in the case of a pressable wet powder state, the content of the medium is preferably in the range of 3 to 40% by weight, more preferably in the range of 10 to 30% by weight from the viewpoint of the uniformity of the mixture layer after pressing. .
  • composition for a non-aqueous electrolyte secondary battery electrode mixture layer and method for producing the same comprises the above active material, water and binder as essential components, and by mixing each component using known means. can get.
  • the mixing method of each component is not particularly limited, and a known method can be adopted. However, after dry blending the powder components such as the active material, the conductive auxiliary agent and the crosslinked polymer particles as a binder, A method of mixing and dispersing and kneading with a dispersion medium such as the above is preferable.
  • the composition for an electrode mixture layer is obtained in a slurry state, it is preferable to finish the slurry without any poor dispersion or aggregation.
  • a mixing means known mixers such as a planetary mixer, a thin film swirl mixer, and a self-revolving mixer can be used, but a thin film swirl mixer is used because a good dispersion state can be obtained in a short time. It is preferable to carry out.
  • a thin film swirling mixer it is preferable to perform preliminary dispersion with a stirrer such as a disper in advance.
  • the viscosity of the slurry is preferably in the range of 500 to 100,000 mPa ⁇ s, and more preferably in the range of 1,000 to 50,000 mPa ⁇ s as the B-type viscosity at 60 rpm.
  • the electrode mixture layer composition when obtained in a wet powder state, it is preferably kneaded to a uniform state with no density unevenness using a planetary mixer, a biaxial kneader or the like.
  • the electrode for nonaqueous electrolyte secondary batteries of the present invention comprises a mixture layer formed from the above composition for an electrode mixture layer on the surface of a current collector such as copper or aluminum.
  • the mixture layer is formed by coating the surface of the current collector with the composition for electrode mixture layer of the present invention, and then drying and removing a medium such as water.
  • the method for applying the mixture layer composition is not particularly limited, and a known method such as a doctor blade method, a dip method, a roll coat method, a comma coat method, a curtain coat method, a gravure coat method, and an extrusion method is adopted. be able to.
  • the said drying can be performed by well-known methods, such as hot air spraying, pressure reduction, (far) infrared rays, and microwave irradiation.
  • the mixture layer obtained after drying is subjected to a compression treatment by a die press, a roll press or the like.
  • a compression treatment by a die press, a roll press or the like.
  • the strength of the mixture layer and the adhesiveness to the current collector can be improved. It is preferable to adjust the thickness of the mixture layer by compression to about 30 to 80% before compression, and the thickness of the mixture layer after compression is generally about 4 to 200 ⁇ m.
  • the nonaqueous electrolyte secondary battery of the present invention comprises the electrode for a nonaqueous electrolyte secondary battery according to the present invention, a separator, and a nonaqueous electrolyte solution.
  • the separator is disposed between the positive electrode and the negative electrode of the battery, and plays a role of ensuring ionic conductivity by preventing a short circuit due to contact between both electrodes and holding an electrolytic solution.
  • the separator is preferably a film-like insulating microporous film having good ion permeability and mechanical strength.
  • polyolefins such as polyethylene and polypropylene, polytetrafluoroethylene, and the like can be used.
  • non-aqueous electrolyte solution a known one generally used for non-aqueous electrolyte secondary batteries can be used.
  • the solvent include cyclic carbonates having a high dielectric constant such as propylene carbonate and ethylene carbonate and high electrolyte dissolving ability, and low-viscosity chain carbonates such as ethyl methyl carbonate, dimethyl carbonate, and diethyl carbonate. These can be used alone or as a mixed solvent.
  • the non-aqueous electrolyte solution is used by dissolving lithium salts such as LiPF 6 , LiSbF 6 , LiBF 4 , LiClO 4 , LiAlO 4 in these solvents.
  • the non-aqueous electrolyte secondary battery of the present invention can be obtained by storing a positive electrode plate and a negative electrode plate partitioned by a separator in a spiral or laminated structure in a case or the like.
  • AA Acrylic acid
  • AAM Acrylamide
  • AMA Allyl methacrylate
  • P-30 Pentaerythritol triallyl ether (trade name “Neoallyl P-30” manufactured by Daiso Corporation)
  • T-20 Trimethylolpropane diallyl ether (Daiso Co., Ltd., trade name “Neoallyl T-20”)
  • ACVA 4,4′-azobiscyanovaleric acid (Otsuka Chemical Co., Ltd.)
  • Nonaqueous Electrolyte Secondary Battery Electrode Example 1-1 Regarding the composition for the mixture layer using graphite as the negative electrode active material and the cross-linked polymer R-1 as the binder, the coating property and the peel strength between the formed mixture layer / current collector (that is, binder binding) Property). Take 100 parts of artificial graphite (trade name “CGB-10” manufactured by Nippon Graphite Co., Ltd.) and 3 parts of powdered cross-linked polymer R-1, mix well in advance, add 126 parts of ion-exchanged water, and use a disper.
  • artificial graphite trade name “CGB-10” manufactured by Nippon Graphite Co., Ltd.
  • this dispersion is performed for 15 seconds at a peripheral speed of 20 m / second using a thin-film swirling mixer (manufactured by PRIMIX Corporation, FM-56-30) for slurry-like negative electrode mixture layer A composition was obtained.
  • a variable applicator the mixture layer composition was coated on a 20 ⁇ m thick copper foil (manufactured by Nihon Foil Co., Ltd.) so that the film thickness after drying was 50 ⁇ m, and then immediately in the ventilation dryer.
  • the mixture layer was formed by drying at 100 ° C. for 10 minutes. As a result of visually observing the appearance of the obtained mixture layer and evaluating the coatability based on the following criteria, it was judged as “ ⁇ ”.
  • the mixture layer density was adjusted to 1.7 ⁇ 0.05 g / cm 3 with a roll press machine to prepare an electrode, and then cut into a 25 mm width strip to prepare a peel test sample.
  • the mixture layer surface of the above sample was attached to a double-sided tape fixed to a horizontal surface, 90 ° peeling was performed at a tensile speed of 50 mm / min, and the peel strength between the mixture layer and the copper foil was measured.
  • the peel strength was as good as 6.0 N / m.
  • Examples 1-2 to 1-9 and Comparative Examples 1-1 to 1-4 A mixture layer composition was prepared by performing the same operation as in Example 1-1 except that the crosslinked polymer used as the binder was used as shown in Tables 2 and 3, and the coating property and 90 ° peel strength were improved. evaluated. The results are shown in Tables 2 and 3.
  • Examples 1-1 to 1-9 electrodes were prepared using the composition for a nonaqueous electrolyte secondary battery electrode mixture layer belonging to the present invention.
  • the coating property of each composition (slurry) is good, and the peel strength between the obtained mixture layer and the current collector (copper foil) is 1.0N / m or more. Excellent binding properties were exhibited.
  • Example 1-4 and Example 1-5, or Example 1-7 and Example 1-8 using a crosslinked polymer having the same degree of crosslinking were compared, as a crosslinking monomer, Example 1-4 or Example 1-8 using the cross-linked polymer R-4 in which allyl methacrylate and a polyfunctional allyl compound were used in combination resulted in superior coating properties and binding properties.
  • Comparative Example 1-4 in which the amount of the crosslinked polymer to the active material is small, has almost no binding property of the mixture layer, and the mixture layer does not form when the electrode is cut to prepare a sample for a peel test. Since it peeled off, the peel strength could not be measured.
  • Example 2-1 A lithium ion secondary battery was prepared using a composition for a mixture layer containing hard carbon as a negative electrode material, acetylene black as a conductive additive, and a crosslinked polymer R-1 as a binder, and the battery characteristics were evaluated.
  • the above mixture layer composition was coated on both sides with a coating width of 120 mm on a 20 ⁇ m thick copper foil (manufactured by Nippon Foil Co., Ltd.) as a current collector. After drying, roll press treatment was performed to prepare a negative electrode having a mixture layer on both sides of the current collector.
  • the adhesion amount of the mixture layer was 4.96 mg / cm 2 (for one side), and the density was 1.0 g / cm 3 .
  • NCM manufactured by Nippon Chemical Industry Co., Ltd.
  • HS-100 as the conductive additive
  • polyvinylidene fluoride manufactured by Kureha Co., Ltd., trade name “KF # 1000”
  • the adhesion amount of the positive electrode mixture layer was 6.80 mg / cm 2 (for one side), and the density was 2.78 g / cm 3 .
  • Both the positive electrode and the negative electrode were vacuum-dried at 120 ° C. for 12 hours, and then the positive electrode was slit to a size of 96 ⁇ 84 mm and the negative electrode was 100 ⁇ 88 mm.
  • Examples 2-2 to 2-4 and comparative examples 2-1 to 2-3 A laminate cell was assembled by performing the same operation as in Example 2-1, except that the crosslinked polymer used as the binder was used as shown in Table 4, and the battery characteristics were evaluated. The results are shown in Table 4.
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • Examples 2-1 to 2-4 belong to the nonaqueous electrolyte secondary battery of the present invention, and the discharge capacity retention rate after the cycle test was as high as 93 to 95%, and the results of excellent cycle characteristics were obtained. .
  • each example showed good high rate characteristics. This is because the internal resistance of the battery is small because the interface resistance value is small due to the characteristics of the used crosslinked polymer, the uniform dispersibility of the active material and the conductive assistant is good, and the electronic resistance is small. This is presumed to be due to In particular, when Example 2-1 and Example 2-3, which use the same amount of the crosslinked polymer, are compared, Example 2-3 using the crosslinked polymer R-4, which is particularly excellent in dispersion stabilizing effect, is better.
  • Comparative Example 2-2 using the cross-linked polymer R-9 that does not use allyl methacrylate as the cross-linkable monomer was as low as 79%.
  • Comparative Example 2-3 using SBR and CMC as the binder is inferior in the high rate characteristics as compared with the Examples.
  • Comparative Example 2-3 it is presumed that the interfacial resistance increased because the binder did not have sufficient carboxyl groups, and as a result, the high-rate characteristics decreased.
  • Comparative Example 2-1 having a high content of the crosslinked polymer also had insufficient high rate characteristics.
  • the electrode obtained from the composition for a non-aqueous electrolyte secondary battery electrode mixture layer of the present invention has an excellent binding force and an effect of reducing battery resistance. For this reason, the nonaqueous electrolyte secondary battery provided with the electrode exhibits excellent high rate characteristics and durability (cycle characteristics), and is expected to be applied to a vehicle-mounted secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

【解決手段】 活物質、水及びバインダーを含む非水電解質二次電池電極合剤層用組成物であって、上記バインダーが、エチレン性不飽和カルボン酸単量体を含む単量体成分の架橋重合体及びその塩を含有し、上記架橋重合体はメタクリル酸アリルにより架橋されたものであって該メタクリル酸アリルの使用量が非架橋性単量体の総量100重量部に対して0.1~2.0重量部であり、上記架橋重合体及びその塩の含有量が、上記活物質に対して0.5~5.0重量%である非水電解質二次電池電極合剤層用組成物。

Description

非水電解質二次電池電極合剤層用組成物及びその製造方法、並びに、その用途
 本発明はリチウムイオン二次電池等に使用可能な非水電解質二次電池電極合剤層用組成物及びその製造方法、並びに、上記非水電解質二次電池電極合剤層用組成物を用いて得られる非水電解質二次電池電極及び非水電解質二次電池に関する。
 非水電解質二次電池としては、例えばリチウムイオン二次電池がよく知られている。リチウムイオン二次電池は、鉛蓄電池等の他の二次電池と比較して、エネルギー密度、出力密度、及び充放電サイクル特性等に優れることから、スマートフォン、タブレット型端末及びノート型パソコン等のモバイル端末に採用され、端末の小型軽量化及び高性能化に貢献している。一方、電気自動車やハイブリッド自動車用の二次電池(車載用二次電池)としては、出力、充電所要時間等の面でまだ十分な性能には達していない。このため、非水電解質二次電池の高出力化、充電時間の短縮化を目指し、高い電流密度における充放電特性(ハイレート特性)を改善するための検討が行われている。また、同じく車載用途では高い耐久性が必要とされるため、サイクル特性との両立が求められている。
 非水電解質二次電池は、セパレータを介して配される一対の電極、並びに非水電解質溶液から構成される。電極は、集電体及びその表面に形成された合剤層とからなり、該合剤層は、集電体上に活物質及びバインダー等を含む電極合剤層用組成物(スラリー)をコーティングし、乾燥等することにより形成される。
 一方、近年、上記電極合剤層用組成物については、環境保全及びコストダウン等の観点から水系化の要望が高まっている。この点に関してリチウムイオン二次電池では、活物質として黒鉛等の炭素系材料を用いる負極向け電極合剤層用組成物のバインダーとして、スチレンブタジエンゴム(SBR)及びカルボキシメチルセルロース(CMC)を用いた水系バインダーが使用されている。しかし、車載用途に求められる高度なハイレート特性及びサイクル特性に対応すべく、さらなる改善が望まれている。また、リチウムイオン二次電池の正極に関しては、N-メチル-2-ピロリドン(NMP)等の有機溶剤を用いたポリフッ化ビニリデン(PVDF)等の溶剤系バインダーが主流であり、上記要求を十分満足する水系バインダーは未だ提案されていない。
 リチウムイオン二次電池電極を構成する成分としては、黒鉛及びハードカーボン(HC)等の活物質、並びに、ケッチェンブラック(KC)及びアセチレンブラック(AB)等の導電助剤等の炭素系材料が多用される。一般にこれらの炭素系材料は水系媒体への濡れ性が悪く、均一で分散安定性に優れた電極合剤層用組成物を得るためには、上記炭素系材料の分散安定化効果に優れた水系バインダーが望まれる。リチウムイオン二次電池電極への適用が可能な水系バインダーとしては、以下に示す通り、架橋型ポリアクリル酸を含有する水系バインダーが提案されている。
 特許文献1では、リチウムイオン二次電池の負極塗膜を形成する結着剤としてポリアルケニルエーテルにより架橋したアクリル酸重合体が開示されている。また、特許文献2には、特定の架橋剤によりポリアクリル酸を架橋したポリマーを結着剤として用いることにより、シリコンを含む活物質を用いた場合であっても電極構造が破壊されることなく、優れた容量維持率が得られることが記載されている。
 一方、架橋型ポリアクリル酸は水溶性増粘剤としても広く用いられており、特許文献3には、特定の架橋剤を併用して得られた不飽和カルボン酸系架橋重合体が開示されている。
特開2000-294247号公報 国際公開第2014/065407号 特開2010-132723号公報
 特許文献1の実施例には、ポリアルケニルポリエーテルにより架橋したアクリル酸重合体を含む結着剤組成物が開示されている。しかし、上記アクリル酸重合体を含む結着剤組成物は粘度が高く、活物質等と混合して合剤層組成物を混練調製する際の均一性が確保しづらいため、電池特性に悪影響を及ぼす虞があった。また、特許文献1の発明の詳細な説明には、結着剤中の上記アクリル酸重合体の配合組成比が95重量%を超える場合は、炭素材料の粒子表面を被覆し、導電性を低下させ、リチウムイオンの移動を阻害するという問題を有することが記載されている。
 特許文献2の実施例には、架橋剤の種類及び架橋剤量の異なる架橋型ポリアクリル酸からなる結着剤が開示され、0.6rpm又は60rpmにおける上記架橋型ポリアクリル酸の1wt%スラリーの粘度が記載されている([表3]他)。しかし、60rpmの粘度値が具体的に示された架橋型ポリアクリル酸を含む結着剤組成物は、粘度が低く、活物質等の分散安定性及び結着性が懸念されるものであった。一方、0.6rpmの粘度値が具体的に示された架橋型ポリアクリル酸を含む結着剤組成物は、粘度が高く、合剤層用組成物を混練調製する際の均一性が低下して電極特性に悪影響を及ぼす虞があった。
 特許文献3には、水溶性で高増粘性を有する架橋重合体が示されているものの、非水電解質二次電池電極合剤層用組成物への適用については何らの記載も示唆もない。
 また、特許文献1~3ともに、ハイレート特性に関しては何ら記載されていない。
 本発明は、このような事情に鑑みてなされたものであり、ハイレート特性及び耐久性(サイクル特性)等の電極特性の双方を満足することが可能な、水系バインダーを含む非水電解質二次電池電極合剤層用組成物及びその製造方法の提供を目的とするものである。また、本発明は、上記水系電極合剤層用組成物を用いて得られる非水電解質二次電池電極及び非水電解質二次電池の提供を他の目的とするものである。
 一般に、高度なハイレート特性を実現するためには、抵抗成分となるバインダー量は可能な限り少量とすることが望ましい。したがって、少量でも活物質及び導電助剤等を安定に分散すること可能であり、且つ、活物質間並びに活物質及び集電体間の結着力が大きく(結果として合剤層と集電体との密着性が高く)、得られる電極の耐久性にも優れるバインダーが望まれる。
 さらに、バインダーに対しては、活物質表面に存在していてもリチウムイオンの侵入や脱出を妨げないようなものであることが要求される。すなわち、リチウムイオンの脱溶媒和効果やリチウムイオン伝導度に優れることにより、リチウムイオンの活物質への侵入、もしくは活物質からの脱出に伴う抵抗(=界面抵抗)が小さくなるようなバインダーが好ましい。
 本発明者らは、上記課題を解決するために鋭意検討した結果、メタクリル酸アリルにより架橋されたエチレン性不飽和カルボン酸単量体の架橋重合体及びその塩を含むバインダーであれば、少量でも優れた結着性を示すことからハイレート特性の向上が可能となる知見を得た。また、上記バインダーは結着性に優れることから、電極の耐久性(サイクル特性)向上に対しても効果的であることを見出した。さらに、上記バインダーを含む合剤層用組成物は電極作成に適した粘性を有するため、均一な合剤層を有し電極特性の良好な非水電解質二次電池電極を得ることが可能となった。本発明はこれらの知見に基づいて完成されたものである。
 本発明は以下の通りである。
〔1〕活物質、水及びバインダーを含む非水電解質二次電池電極合剤層用組成物であって、
 上記バインダーが、エチレン性不飽和カルボン酸単量体を含む単量体成分の架橋重合体及びその塩を含有し、
 上記架橋重合体はメタクリル酸アリルにより架橋されたものであって、該メタクリル酸アリルの使用量が非架橋性単量体の総量100重量部に対して0.1~2.0重量部であり、
 上記架橋重合体及びその塩の含有量が、前記活物質に対して0.5~5.0重量%である非水電解質二次電池電極合剤層用組成物。
〔2〕上記架橋重合体が、メタクリル酸アリル及び多官能アリル化合物により架橋されたものであって、該メタクリル酸アリル及び多官能アリル化合物の使用量が非架橋性単量体の総量100重量部に対して0.1~3.0重量部である上記〔1〕に記載の非水電解質二次電池電極合剤層用組成物。
〔3〕上記架橋重合体の中和度が20~100モル%である上記〔1〕又は〔2〕に記載の非水電解質二次電池電極合剤層用組成物。
〔4〕非水電解質二次電池電極合剤層用組成物の製造方法であって、
 水性媒体中でエチレン性不飽和カルボン酸単量体及びメタクリル酸アリルを含む単量体成分を沈殿重合して架橋重合体を得た後、
 活物質及び水と混合することにより非水電解質二次電池電極合剤層用組成物を製造する方法。
〔5〕集電体表面に、上記〔1〕~〔4〕のいずれかに記載の非水電解質二次電池電極合剤層用組成物から形成される合剤層を備えた非水電解質二次電池電極。
〔6〕上記〔5〕に記載の非水電解質二次電池電極、セパレータ及び非水電解質液を備えた非水電解質二次電池。
 本発明の非水電解質二次電池電極合剤層用組成物に用いられるバインダーは、少量でも優れた結着性を示す。このため、合剤層用組成物中のバインダー含有量を低減することが可能となり、ハイレート特性が高く、耐久性(サイクル特性)に優れる電極を得ることができる。また、本発明の非水電解質二次電池電極合剤層用組成物は、電極作製に適した粘性を有するため、均一な合剤層を有し電極特性の良好な非水電解質二次電池電極を得ることが可能となる。
 以下、本発明を詳しく説明する。尚、本明細書において、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。また、「(メタ)アクリロイル基」とは、アクリロイル基及び/又はメタクリロイル基を意味する。
 本発明の非水電解質二次電池電極合剤層用組成物は、エチレン性不飽和カルボン酸単量体を含む単量体成分の架橋重合体及びその塩を含有するバインダー、活物質並びに水を含有するものである。上記の組成物は、集電体への塗工が可能なスラリー状態であってもよいし、湿粉状態として調製し、集電体表面へのプレス加工に対応できるようにしてもよい。銅箔又はアルミニウム箔等の集電体表面に上記組成物から形成される合剤層を形成することにより、本発明の非水電解質二次電池電極が得られる
 以下に、本発明の非水電解質二次電池電極合剤層用組成物及びその製造方法、並びに、該組成物を用いて得られる非水電解質二次電池用電極及び非水電解質二次電池の各構成成分等について詳細に説明する。
<バインダー>
 本発明のバインダーは、エチレン性不飽和カルボン酸単量体を含む単量体成分の架橋重合体及びその塩を含有する。上記エチレン性不飽和カルボン酸単量体の具体的な化合物としては、(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸モノブチル、マレイン酸モノブチル、シクロヘキサンジカルボン酸などのカルボキシル基を有するビニル系単量体またはそれらの(部分)アルカリ中和物が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。上記の中でも、得られる重合体の一次鎖長が長く、バインダーの結着力が良好となる点で、(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、無水マレイン酸及びフマル酸等の炭素数3~5個のエチレン性不飽和カルボン酸単量体及びその塩が好ましく、アクリル酸がより好ましい。
 また、塩の種類としてはリチウム、ナトリウム、カリウム等のアルカリ金属塩;カルシウム塩及びバリウム塩等のアルカリ土類金属塩;マグネシウム塩、アルミニウム塩等のその他の金属塩;アンモニウム塩及び有機アミン塩等が挙げられる。これらの中でも電池特性への悪影響が生じにくい点からアルカリ金属塩及びマグネシウム塩が好ましく、アルカリ金属塩がより好ましい。
 また、本発明の効果を損なわない範囲であれば、単量体成分として上記エチレン性不飽和カルボン酸単量体以外の他の非架橋性単量体を併用することも可能である。他の非架橋性単量体としては、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸ヒドロキシアルキルエステル、芳香族ビニル化合物、アミノ基含有ビニル化合物、アミド基含有ビニル化合物、スルホン酸基含有ビニル化合物、ポリオキシアルキレン基含有ビニル化合物、アルコキシル基含有ビニル化合物等が挙げられる。これらの化合物は、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記(メタ)アクリル酸アルキルエステルの具体的な化合物としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル及び(メタ)アクリル酸オクチル等の直鎖状、分岐状又は環状アルキル基を有する(メタ)アクリル酸エステル化合物が挙げられる。
 上記(メタ)アクリル酸ヒドロキシアルキルエステルの具体的な化合物としては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル及び(メタ)アクリル酸2-ヒドロキシエチルのε-カプロラクトン付加物等が挙げられる。
 上記芳香族ビニル化合物としては、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、4-tert-ブチルスチレン、tert-ブトキシスチレン、ビニルトルエン、ビニルナフタレン、ハロゲン化スチレン、スチレンスルホン酸、α-メチルスチレンスルホン酸等が挙げられる。
 上記アミノ基含有ビニル化合物としては、(メタ)アクリル酸ジメチルアミノメチル、(メタ)アクリル酸ジエチルアミノメチル、(メタ)アクリル酸2-ジメチルアミノエチル、(メタ)アクリル酸2-ジエチルアミノエチル、(メタ)アクリル酸2-(ジ-n-プロピルアミノ)エチル、(メタ)アクリル酸2-ジメチルアミノプロピル、(メタ)アクリル酸2-ジエチルアミノプロピル、(メタ)アクリル酸2-(ジ-n-プロピルアミノ)プロピル、(メタ)アクリル酸3-ジメチルアミノプロピル、(メタ)アクリル酸3-ジエチルアミノプロピル、(メタ)アクリル酸3-(ジ-n-プロピルアミノ)プロピル等が挙げられる。
 上記アミド基含有ビニル化合物としては、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N-イソプロピルアクリルアミド、N-t-ブチルアクリルアミド等が挙げられる。
 上記スルホン酸基含有ビニル化合物としては、メタリルスルホン酸、(メタ)アクリルアミド-2-メチル-2-プロパンスルホン酸等が挙げられる。
 上記ポリオキシアルキレン基含有ビニル化合物としては、ポリオキシエチレン基、及び/又は、ポリオキシプロピレン基を有するアルコールの(メタ)アクリル酸エステル等が挙げられる。
 上記アルコキシル基含有ビニル化合物としては、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸2-(n-プロポキシ)エチル、(メタ)アクリル酸2-(n-ブトキシ)エチル、(メタ)アクリル酸3-メトキシプロピル、(メタ)アクリル酸3-エトキシプロピル、(メタ)アクリル酸2-(n-プロポキシ)プロピル、(メタ)アクリル酸2-(n-ブトキシ)プロピル等が挙げられる。
 非架橋性単量体の総量に占めるエチレン性不飽和カルボン酸単量体の割合は、50~100重量%の範囲が好ましく、70~100重量%の範囲がより好ましく、90~100重量%の範囲がさらに好ましく、95~100重量%の範囲が一層好ましい。重合体がカルボキシル基を有する場合、リチウムイオンの脱溶媒和効果及びイオン伝導性に優れるため、抵抗が小さく、ハイレート特性に優れた電極が得られる。非架橋性単量体の総量に占めるエチレン性不飽和カルボン酸単量体の割合が50重量%以上であれば、上記カルボキシル基による効果を十分付与することができる。
 単量体成分としては、上記非架橋性単量体以外に架橋性単量体が使用されるが、本発明では、架橋性単量体としてメタクリル酸アリルが必須に用いられる。メタクリル酸アリルの使用量は、非架橋性単量体の総量を100重量部とした場合に0.1~2.0重量部であり、0.2~1.5重量部が好ましく、0.3~1.0重量部がより好ましい。メタクリル酸アリルの使用量が0.1重量部未満の場合、電極合剤層用組成物の結着性が不十分となるときがある。また、2.0重量部を超える場合、得られる架橋重合体が過架橋となるために水による膨潤性が不十分となり、電極合剤層用組成物の分散安定性及び結着性が不足する虞がある。
 また、架橋性単量体としては、本発明による効果を阻害しない範囲において、メタクリル酸アリル以外の多官能重合性単量体、及び加水分解性シリル基等の自己架橋可能な架橋性官能基を有する架橋性単量体を併用することができる。
 上記多官能重合性単量体は、(メタ)アクリロイル基、アルケニル基等の重合性官能基を分子内に2つ以上有する化合物であり、多官能(メタ)アクリレート化合物、多官能アルケニル化合物、メタクリル酸アリル以外の(メタ)アクリロイル基及びアルケニル基の両方を有する化合物等が挙げられる。これらの化合物は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの内でも、均一な架橋構造を得やすい点で多官能アルケニル化合物が好ましい。架橋性単量体としてメタクリル酸アリル及び多官能アルケニル化合物を併用した場合、特に膨潤性に優れ分散安定性が極めて良好な電極合剤層組成物が得られることから好ましい。
 多官能(メタ)アクリレート化合物としては、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等の2価アルコールのジ(メタ)アクリレート類;トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性体のトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の3価以上の多価アルコールのトリ(メタ)アクリレート、テトラ(メタ)アクリレート等のポリ(メタ)アクリレートを挙げることができる。
 多官能アルケニル化合物としては、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールジアリルエーテル、ペンタエリスリトールトリアリルエーテル、テトラアリルオキシエタン、ポリアリルサッカロース等の多官能アリルエーテル化合物;ジアリルフタレート等の多官能アリル化合物;ジビニルベンゼン等の多官能ビニル化合物等を挙げることができる。
 メタクリル酸アリル以外の(メタ)アクリロイル基及びアルケニル基の両方を有する化合物としては、アクリル酸アリル、(メタ)アクリル酸イソプロペニル、(メタ)アクリル酸ブテニル、(メタ)アクリル酸ペンテニル、(メタ)アクリル酸2-(2-ビニロキシエトキシ)エチル等を挙げることができる。
 その他の多官能重合性単量体としては、メチレンビスアクリルアミド、ヒドロキシエチレンビスアクリルアミド等のビスアミド類を挙げることができる。
 上記自己架橋可能な架橋性官能基を有する単量体の具体的な例としては、加水分解性シリル基含有ビニル単量体、N-メチロール(メタ)アクリルアミド、N-メトキシアルキル(メタ)アクリレート等が挙げられる。これらの化合物は、1種単独であるいは2種以上を組み合わせて用いることができる。
 加水分解性シリル基含有ビニル単量体としては、加水分解性シリル基を少なくとも1個有するビニル単量体であれば、特に限定されない。例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシランン等のビニルシラン類;アクリル酸トリメトキシシリルプロピル、アクリル酸トリエトキシシリルプロピル、アクリル酸メチルジメトキシシリルプロピル等のシリル基含有アクリル酸エステル類;メタクリル酸トリメトキシシリルプロピル、メタクリル酸トリエトキシシリルプロピル、メタクリル酸メチルジメトキシシリルプロピル、メタクリル酸ジメチルメトキシシリルプロピル等のシリル基含有メタクリル酸エステル類;トリメトキシシリルプロピルビニルエーテル等のシリル基含有ビニルエーテル類;トリメトキシシリルウンデカン酸ビニル等のシリル基含有ビニルエステル類等を挙げることができる。
 本発明の架橋重合体の架橋度は比較的低く、架橋性単量体の使用量は、架橋性単量体以外の単量体(非架橋性単量体)の総量100重量部に対して0.1~3.0重量部であることが好ましく、0.4~2.0重量部であることがより好ましい。架橋性単量体の使用量が上記範囲であれば、より優れた結着力を有するバインダーを得ることができる。
 本発明の架橋重合体は、上記架橋性単量体の他、重合体に導入されたカルボキシル基と反応し得る官能基を2個以上有する化合物により架橋されたものであってもよい。
 カルボキシル基と反応し得る官能基を2個以上有する化合物としては、以下のような化合物を挙げることができる。
i)エポキシ基、カルボジイミド基及びオキサゾリン基等のカルボキシル基と共有結合を形成する化合物。
ii)Ca2+、Mg2+等を有し、カルボキシル基とイオン結合を形成する化合物。
iii)Zn2+、Al3+、Fe3+等を有し、カルボキシル基と配位結合を形成する化合物。
 本発明の架橋重合体は、その中和度を90モル%に調製し、0.5重量%水分散液とした場合、その粘度が1,000~40,000mPa・sの範囲であることが好ましい。ここで、上記粘度は、液温25におけるB型粘度(ローター回転速度20rpm)により測定される。上記0.5重量%水分散液の粘度は、2,000~40,000mPa・sの範囲であることがより好ましく、3,000~40,000mPa・sの範囲であることがさらに好ましく、3,000~35,000mPa・sの範囲であることが最も好ましい。上記粘度が1,000~40,000mPa・sの範囲であれば、活物質の分散安定性及び均一性に優れた合剤層用組成物を得ることができる。
 架橋重合体が未中和若しくは中和度90モル%未満の場合は、水媒体中でアルカリ化合物により中和度90モル%に中和し、0.5重量%水分散液とした後に粘度を測定する。架橋重合体の中和度が90モル%を超えている場合、当該中和度のまま、若しくは硫酸等の適当な酸を加えて中和度を90モル%に調製した後の0.5重量%水分散液の粘度を測定する。
 一般に、架橋重合体は、そのポリマー鎖の長さ(一次鎖長)が長いほど強靭さが増大し、高い結着性を得ることが可能となるとともに、その水分散液の粘度が上昇する。また、長い一次鎖長を有するポリマーに比較的少量の架橋を施して得られた架橋重合体(塩)は、水中では水に膨潤したミクロゲル体として存在する。架橋度の増大に伴い水分散液の粘度も上昇するが、過度の架橋がなされた場合には架橋重合体の水膨潤性が制限される結果水分散液の粘度は低下する傾向がある。本発明の電極合剤層用組成物においては、このミクロゲル体の相互作用により増粘効果や分散安定化効果が発現される。ミクロゲル体の相互作用はミクロゲル体の水膨潤度、およびミクロゲル体の強度によって変化するが、これらは架橋重合体の架橋度によりコントロールされる。架橋度が低すぎる場合はミクロゲルの強度が不足して、分散安定化効果や結着性が不足する場合がある。一方架橋度が高すぎる場合は、ミクロゲルの膨潤度が不足して分散安定化効果や結着性が不足する場合がある。すなわち、架橋重合体としては、十分に長い一次鎖長を有する重合体に適度な架橋を施した微架橋重合体であることが望ましい。
 上記の通り、本発明の架橋重合体は架橋性単量体としてメタクリル酸アリルを用いる。架橋性単量体としてジメタクリレート等の多官能メタクリレート化合物を用いた場合、分子内架橋が優先するため、得られた架橋重合体は水膨潤性が不十分なものとなる傾向がある。また、不飽和基としてアリル基のみを有する多官能アリル化合物を用いた場合、アリル基の共重合性が低いために目的とする架橋度を得るためには多官能アリル化合物を多く使用する必要がある。この場合、退化的連鎖移動反応により得られる架橋重合体の一次鎖長が短くなるため結着性が不十分となるときがある。また未反応で残留する架橋性単量体が多くなり、重合後に未反応分を除去することなく乾燥を行った場合に架橋が進行して過架橋となる場合がある。メタクリル酸アリルは、メタクリロイル基により効率よくポリマー鎖に取り込まれ、さらにアリル基により分子間架橋が進行するため、一次鎖長が長く、且つ、適度に架橋された重合体を効率よく得ることができる。
 本発明の架橋重合体は、中和度が20~100モル%となるように、エチレン性不飽和カルボン酸単量体由来のカルボキシル基等の酸基が中和され、塩の態様として用いることが好ましい。上記中和度は50~100モル%であることがより好ましく、60~95モル%であることがさらに好ましい。中和度が20モル%以上の場合、水膨潤性が良好となり分散安定化効果が得やすいという点で好ましい。
 本発明の電極合剤層用組成物における架橋重合体及びその塩の使用量は、活物質の全量に対して0.5~5.0重量%である。上記使用量は好ましくは1.0~5.0重量%であり、より好ましくは1.5~5.0重量%であり、さらに好ましくは2.0~5.0重量部である。架橋重合体及びその塩の使用量が0.5重量%未満の場合、十分な結着性が得られないことがある。また、活物質等の分散安定性が不十分となり、形成される合剤層の均一性が低下する場合がある。一方、架橋重合体及びその塩の使用量が5.0重量%を超える場合、電極合剤層用組成物が高粘度となり集電体への塗工性が低下することがある。その結果、得られた合剤層にブツや凹凸が生じて電極特性に悪影響を及ぼす虞がある。また、界面抵抗が大きくなり、ハイレート特性の悪化が懸念される。
 架橋重合体及びその塩の使用量が上記範囲内であれば、分散安定性に優れた組成物が得られるとともに、集電体への密着性が極めて高い合剤層を得ることができ、結果として電池の耐久性が向上する。さらに、上記使用量が活物質に対して0.5~5.0重量%と少なく、かつ、上記重合体はカルボキシアニオンを有することから、界面抵抗が小さく、ハイレート特性に優れた電極が得られる。
<架橋重合体及びその塩の製造方法>
 本発明の架橋重合体は、溶液重合、沈殿重合、懸濁重合、逆相乳化重合等の公知の重合方法を使用することが可能であるが、一次鎖長が長く、かつ適度に架橋された重合体を効率よく製造できる点で、沈殿重合が好ましい。
 沈殿重合は、原料である不飽和単量体を溶解するが、生成する重合体を実質溶解しない溶媒中で重合反応を行うことにより重合体を製造する方法である。重合の進行とともにポリマー粒子は凝集及び成長により大きくなり、数十nm~数百nmの一次粒子が数μm~数十μmに凝集したポリマー粒子の分散液が得られる。ポリマーの粒子サイズを制御するために分散安定剤を使用することもできる。また、重合後に反応液に濾過又は遠心分離等の処理を施すことによりポリマー粒子を溶媒から分離してもよい。
 沈殿重合の場合、重合溶媒は、使用する単量体の種類等を考慮して水及び各種有機溶剤等から選択される溶媒を使用することができる。より一次鎖長の長い重合体を得るためには、連鎖移動定数の小さい溶媒を使用することが好ましい。
 具体的な重合溶媒として、エチレン性不飽和カルボン酸単量体を未中和の状態で重合する場合は、ベンゼン、酢酸エチル、ジクロロエタン、n-ヘキサン、シクロヘキサン及びn-ヘプタン等が挙げられ、これらの1種を単独であるいは2種以上を組み合わせて用いることができる。
 エチレン性不飽和カルボン酸単量体の(部分)中和物を重合する場合は、メタノール、t-ブチルアルコール、アセトン及びテトラヒドロフラン等の水溶性溶剤が挙げられ、これらの1種を単独であるいは2種以上を組み合わせて用いることができる。又は、これらと水との混合溶媒として用いてもよい。本発明において水溶性溶剤とは、20℃における水への溶解度が10g/100mlより大きいものを指す。
 これらの内、活物質の分散安定性に優れた重合体が得られる点から、水及び水溶性溶剤を含む水性媒体中でエチレン性不飽和カルボン酸単量体の(部分)中和物を沈殿重合する方法が好ましい。この際、使用するモノマーの種類及び量に応じて水の量を調整することにより、ポリマーの析出及び凝集を制御し、析出粒子の分散安定性を確保することにより安定に重合を完結することができる。上記水性媒体に含まれる水溶性溶剤の割合は、水性媒体全量に対して50~100重量%が好ましく、70~100重量%がより好ましく、90~100重量%がさらに好ましい。
 重合開始剤は、アゾ系化合物、有機過酸化物、無機過酸化物等の公知の重合開始剤を用いることができるが、特に限定されるものではない。熱開始、還元剤を併用したレドックス開始、UV開始等、公知の方法で適切なラジカル発生量となるように使用条件を調整することができる。一次鎖長の長い架橋重合体を得るためには、製造時間が許容される範囲内で、ラジカル発生量がより少なくなるように条件を設定することが好ましい。
 上記アゾ系化合物としては、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2-(tert-ブチルアゾ)-2-シアノプロパン、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2,2’-アゾビス(2-メチルプロパン)等が挙げられ、これらの内の1種又は2種以上を用いることができる。
 上記有機過酸化物としては、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン(日油社製、商品名「パーテトラA」)、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン(同「パーヘキサHC」)、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン(同「パーヘキサC」)、n-ブチル-4,4-ジ(t-ブチルパーオキシ)バレレート(同「パーヘキサV」)、2,2-ジ(t-ブチルパーオキシ)ブタン(同「パーヘキサ22」)、t-ブチルハイドロパーオキサイド(同「パーブチルH」)、クメンハイドロパーオキサイド(日油社製、商品名「パークミルH」)、1,1,3,3-テトラメチルブチルハイドロパーオキサイド(同「パーオクタH」)、t-ブチルクミルパーオキサイド(同「パーブチルC」)、ジ-t-ブチルパーオキサイド(同「パーブチルD」)、ジ-t-ヘキシルパーオキサイド(同「パーヘキシルD」)、ジ(3,5,5-トリメチルヘキサノイル)パーオキサイド(同「パーロイル355」)、ジラウロイルパーオキサイド(同「パーロイルL」)、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート(同「パーロイルTCP」)、ジ-2-エチルヘキシルパーオキシジカーボネート(同「パーロイルOPP」)、ジ-sec-ブチルパーオキシジカーボネート(同「パーロイルSBP」)、クミルパーオキシネオデカノエート(同「パークミルND」)、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート(同「パーオクタND」)、t-ヘキシルパーオキシネオデカノエート(同「パーヘキシルND」)、t-ブチルパーオキシネオデカノエート(同「パーブチルND」)、t-ブチルパーオキシネオヘプタノエート(同「パーブチルNHP」)、t-ヘキシルパーオキシピバレート(同「パーヘキシルPV」)、t-ブチルパーオキシピバレート(同「パーブチルPV」)、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイル)ヘキサン(同「パーヘキサ250」)、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート(同「パーオクタO」)、t-ヘキシルパーオキシ-2-エチルヘキサノエート(同「パーヘキシルO」)、t-ブチルパーオキシ-2-エチルヘキサノエート(同「パーブチルO」)、t-ブチルパーオキシラウレート(同「パーブチルL」)、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート(同「パーブチル355」)、t-ヘキシルパーオキシイソプロピルモノカーボネート(同「パーヘキシルI」)、t-ブチルパーオキシイソプロピルモノカーボネート(同「パーブチルI」)、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(同「パーブチルE」)、t-ブチルパーオキシアセテート(同「パーブチルA」)、t-ヘキシルパーオキシベンゾエート(同「パーヘキシルZ」)及びt-ブチルパーオキシベンゾエート(同「パーブチルZ」)等が挙げられ、これらの内の1種又は2種以上を用いることができる。
 上記無機過酸化物としては、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等が挙げられる。
 また、レドックス開始の場合、亜硫酸ナトリウム、チオ硫酸ナトリウム、ナトリウムホルムアルデヒドスルホキシレート、アスコルビン酸、亜硫酸ガス(SO2)、硫酸第一鉄等を還元剤として用いることができる。
 重合開始剤の好ましい使用量は、用いる単量体成分の総量を100重量部としたときに、0.001~2重量部であり、より好ましくは0.005~1重量部であり、さらに好ましくは0.01~0.1重量部である。重合開始剤の使用量が0.001部以上であれば重合反応を安定的に行うことができ、2部以下であれば一次鎖長の長い重合体を得やすい。
 重合時の単量体成分の濃度については、より一次鎖長の長い重合体を得る観点から高い方が好ましい。ただし、単量体成分の濃度が高すぎる場合、重合熱の制御が困難となり重合反応が暴走する虞があるため、重合開始時の単量体濃度は、通常は2~30重量%程度の範囲で重合が行われる。重合開始時の単量体濃度としては、5~30重量%が好ましく、15~30重量%がより好ましく、20~30重量%がさらに好ましい。
 重合温度は、使用する単量体の種類及び濃度等の条件にもよるが、0~100℃が好ましく、20~80℃がより好ましい。重合温度は一定であってもよいし、重合反応の期間において変化するものであってもよい。また、重合時間は1分間~10時間が好ましく、10分間~5時間がより好ましく、30分間~2時間がさらに好ましい。
 本発明のバインダーは、上記エチレン性不飽和カルボン酸単量体を含む単量体成分の架橋重合体架橋重合体及びその塩からなるものであるが、これ以外にもスチレン/ブタジエン系ラテックス(SBR)、アクリル系ラテックス及びポリフッ化ビニリデン系ラテックス等の他のバインダー成分を併用することができる。他のバインダー成分を併用する場合、その使用量は、活物質に対して5重量%以下とすることが好ましく、2重量%以下とすることがより好ましく、1重量%以下とすることがさらに好ましい。他のバインダー成分の使用量が5重量%を超えると抵抗が増大し、ハイレート特性が不十分なものとなる場合がある。
<活物質>
 本発明の非水電解質二次電池用合剤層組成物は、上記架橋重合体及びその塩からなるバインダー、活物質及び水を含む。
 上記活物質の内、正極活物質としては主に遷移金属酸化物のリチウム塩が用いられ、例えば、層状岩塩型及びスピネル型のリチウム含有金属酸化物を使用することができる。層状岩塩型の正極活物質の具体的な化合物としては、コバルト酸リチウム、ニッケル酸リチウム、並びに、三元系と呼ばれるNCM{Li(Nix,Coy,Mnz)、x+y+x=1}及びNCA{Li(Ni1-a-bCoaAlb)}等が挙げられる。また、スピネル型の正極活物質としてはマンガン酸リチウム等が挙げられる。酸化物以外にもリン酸塩、ケイ酸塩及び硫黄等が使用され、リン酸塩としては、オリビン型のリン酸鉄リチウム等が挙げられる。正極活物質としては、上記のうちの1種を単独で使用してもよく、2種以上を組み合わせて混合物又は複合物として使用してもよい。
 尚、層状岩塩型の正極活物質を水に分散させた場合、活物質表面のリチウムイオンと水中の水素イオンとが交換されることにより、分散液がアルカリ性を示す。このため、一般的な正極用集電体材料であるアルミ箔(Al)等が腐食される虞がある。このような場合には、バインダーとして未中和又は部分中和された架橋重合体を用いることにより、活物質から溶出するアルカリ分を中和することが好ましい。また、未中和又は部分中和された架橋重合体の使用量は、架橋重合体の中和されていないカルボキシル基量が活物質から溶出するアルカリ量に対して等量以上となるように用いることが好ましい。
 正極活物質はいずれも電気伝導性が低いため、導電助剤を添加して使用されるのが一般的である。導電助剤としては、カーボンブラック、カーボンナノチューブ、カーボンファイバー、黒鉛微粉、炭素繊維等の炭素系材料が挙げられ、これらの内、優れた導電性を得やすい点からカーボンブラック、カーボンナノチューブ及びカーボンファイバーが好ましい。また、カーボンブラックとしては、ケッチェンブラック及びアセチレンブラックが好ましい。導電助剤は、上記の1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。導電助剤の使用量は、導電性とエネルギー密度を両立するという観点から活物質の全量に対して2~20重量%であることが好ましく、2~10重量%であることがより好ましい。
 また正極活物質は導電性を有する炭素系材料で表面コーティングしたものを使用してもよい。
 一方、負極活物質としては、例えば炭素系材料、リチウム金属、リチウム合金及び金属酸化物等が挙げられ、これらの内の1種又は2種以上を組み合わせて用いることができる。これらの内でも、天然黒鉛、人造黒鉛、ハードカーボン及びソフトカーボン等の炭素系材料からなる活物質(以下、「炭素系活物質」ともいう)が好ましく、天然黒鉛及び人造黒鉛等の黒鉛、並びにハードカーボンがより好ましい。また、黒鉛の場合、電池性能の面から球形化黒鉛が好適に用いられ、その粒子サイズの好ましい範囲は1~20μmであり、より好ましい範囲は5~15μmである。
 また、エネルギー密度を高くするために、ケイ素やスズなどのリチウムを吸蔵できる金属又は金属酸化物等を負極活物質として使用することも好ましい。その中でも、ケイ素は黒鉛に比べて高容量であり、ケイ素、ケイ素合金及び一酸化ケイ素(SiO)等のケイ素酸化物のようなケイ素系材料からなる活物質(以下、「ケイ素系活物質」ともいう)を用いることができる。しかし、上記ケイ素系活物質は高容量である反面充放電に伴う体積変化が大きい。このため、上記炭素系活物質と併用するのが好ましい。この場合、ケイ素系活物質の配合量が多いと電極材料の崩壊を招き、サイクル特性(耐久性)が大きく低下する場合がある。このような観点から、ケイ素系活物質を併用する場合、その使用量は炭素系活物質に対して60質量%以下であることが好ましく、30質量%以下であることがより好ましい。
 炭素系活物質は、それ自身が良好な電気伝導性を有するため、必ずしも導電助剤を添加する必要はない。抵抗をより低減する等の目的で導電助剤を添加する場合、エネルギー密度の観点からその使用量は活物質の総量に対して10重量%以下であることが好ましく、5重量%以下であることがより好ましい。
 非水電解質二次電池電極合剤層用組成物がスラリー状態の場合、活物質の使用量は、組成物全量に対して10~75重量%の範囲であることが好ましく、30~65重量%の範囲であることがより好ましい。活物質の使用量が10重量%以上であればバインダー等のマイグレーションが抑えられるとともに、媒体の乾燥コストの面でも有利となる。一方、75重量%以下であれば組成物の流動性及び塗工性を確保することができ、均一な合剤層を形成することができる。
 また、湿粉状態で電極合剤層用組成物を調製する場合、活物質の使用量は、組成物全量に対して60~97重量%の範囲であることが好ましく、70~90重量%の範囲であることがより好ましい。
 また、エネルギー密度の観点から、バインダーや導電助剤等の活物質以外の不揮発成分は、必要な結着性や導電性が担保される範囲内で出来る限り少ない方がよい。
<水>
 本発明の非水電解質二次電池電極合剤層用組成物は、媒体として水を使用する。また、組成物の性状及び乾燥性等を調整する目的で、メタノール及びエタノール等の低級アルコール類、エチレンカーボネート等のカーボネート類、アセトン等のケトン類、テトラヒドロフラン、N-メチルピロリドン等の水溶性有機溶剤との混合溶媒としてもよい。混合媒体中の水の割合は50重量%以上が好ましく、70重量%以上がより好ましい。
 電極合剤層用組成物を塗工可能なスラリー状態とする場合、組成物全体に占める水を含む媒体の含有量は、スラリーの塗工性、および乾燥に必要なエネルギーコスト、生産性の観点から25~90重量%の範囲が好ましく、35~70重量%の範囲がより好ましい。また、プレス可能な湿粉状態とする場合、上記媒体の含有量はプレス後の合剤層の均一性の観点から3~40重量%の範囲が好ましく、10~30重量%の範囲がより好ましい。
<非水電解質二次電池電極合剤層用組成物及びその製造方法>
 本発明の非水電解質二次電池電極合剤層用組成物は、上記の活物質、水及びバインダーを必須の構成成分とするものであり、公知の手段を用いて各成分を混合することにより得られる。各成分の混合方法は特段制限されるものではなく、公知の方法を採用することができるが、活物質、導電助剤及びバインダーである架橋重合体粒子等の粉末成分をドライブレンドした後、水等の分散媒と混合し、分散混練する方法が好ましい。
 電極合剤層用組成物をスラリー状態で得る場合、分散不良や凝集のないスラリーに仕上げることが好ましい。混合手段としては、プラネタリーミキサー、薄膜旋回式ミキサー及び自公転式ミキサー等の公知のミキサーを使用することができるが、短時間で良好な分散状態が得られる点で薄膜旋回式ミキサーを使用して行うことが好ましい。また、薄膜旋回式ミキサーを用いる場合は、予めディスパー等の攪拌機で予備分散を行うことが好ましい。
 また、上記スラリーの粘度は、60rpmにおけるB型粘度として500~100,000mPa・sの範囲が好ましく、1,000~50,000mPa・sの範囲がより好ましい。
 一方、電極合剤層用組成物を湿粉状態で得る場合、プラネタリーミキサー及び2軸混練機等を用いて、濃度ムラのない均一な状態まで混練することが好ましい。
<非水電解質二次電池用電極>
 本発明の非水電解質二次電池用電極は、銅又はアルミニウム等の集電体表面に上記電極合剤層用組成物から形成される合剤層を備えてなるものである。合剤層は、集電体の表面に本発明の電極合剤層用組成物を塗工した後、水等の媒体を乾燥除去することにより形成される。合剤層組成物を塗工する方法は特に限定されず、ドクターブレード法、ディップ法、ロールコート法、コンマコート法、カーテンコート法、グラビアコート法及びエクストルージョン法などの公知の方法を採用することができる。また、上記乾燥は、温風吹付け、減圧、(遠)赤外線、マイクロ波照射等の公知の方法により行うことができる。
 通常、乾燥後に得られた合剤層には、金型プレス及びロールプレス等による圧縮処理が施される。圧縮することにより活物質及びバインダーを密着させ、合剤層の強度及び集電体への密着性を向上させることができる。圧縮により合剤層の厚みを圧縮前の30~80%程度に調整することが好ましく、圧縮後の合剤層の厚みは4~200μm程度が一般的である。
<非水電解質二次電池>
 本発明の非水電解質二次電池について説明する。本発明の非水電解質二次電池は、本発明による非水電解質二次電池用電極、セパレータ及び非水電解質液を備えてなる。
 セパレータは電池の正極及び負極間に配され、両極の接触による短絡の防止や電解液を保持してイオン導電性を確保する役割を担う。セパレータにはフィルム状の絶縁性微多孔膜であって、良好なイオン透過性及び機械的強度を有するものが好ましい。具体的な素材としては、ポリエチレン及びポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン等を使用することができる。
 非水電解質液は、非水電解質二次電池に一般的に使用される公知のものを用いることができる。具体的な溶媒としては、プロピレンカーボネート及びエチレンカーボネート等の高誘電率で電解質の溶解能力の高い環状カーボネート、並びに、エチルメチルカーボネート、ジメチルカーボネート及びジエチルカーボネート等の粘性の低い鎖状カーボネート等が挙げられ、これらを単独で又は混合溶媒として使用することができる。非水電解質液は、これらの溶媒にLiPF6、LiSbF6、LiBF4、LiClO4、LiAlO4等のリチウム塩を溶解して使用される。
 本発明の非水電解質二次電池は、セパレータで仕切られた正極板及び負極板を渦巻き状又は積層構造にしてケース等に収納することにより得られる。
 以下、実施例に基づいて本発明を具体的に説明する。尚、本発明は、これらの実施例により限定されるものではない。尚、以下において「部」及び「%」は、特に断らない限り重量部及び重量%を意味する。
(製造例1:架橋重合体R-1の製造)
 重合には、攪拌翼、温度計、還流冷却器及び窒素導入管を備えた反応器を用いた。
 反応器内にメタノール295部、アクリル酸(以下「AA」という)100部、及びメタクリル酸アリル(三菱ガス化学社製、以下「AMA」という)0.42部を仕込んだ。次いで、撹拌下、苛性ソーダフレーク18部、及びイオン交換水10部を内温が40℃以下に維持されるようゆっくりと添加した。
 反応器内を十分に窒素置換した後、加温して内温を68℃まで昇温した。内温が68℃で安定したことを確認した後、重合開始剤として4,4’-アゾビスシアノ吉草酸(大塚化学社製、商品名「ACVA」)0.014部を添加したところ、反応液に白濁が認められたため、この点を重合開始点とした。溶媒が穏やかに還流するように外温(水バス温度)を調整しながら重合反応を継続し、重合開始点から4時間経過した時点でACVA0.07部を追加で添加するとともに、引き続き溶媒の還流を維持した。重合開始点から8時間を経過したところで反応液の冷却を開始し、内温が30℃まで低下した後、苛性ソーダフレーク32部を内温が50℃を超えないようにゆっくりと添加した。苛性ソーダフレークの添加を完了し、内温を30℃以下に冷却した後、吸引濾過により重合反応液(重合体スラリー)の濾過を行った。濾別した重合体を重合反応液の2倍量のメタノールで洗浄した後、濾過ケーキを回収し、100℃で6時間真空乾燥することにより粉末状の架橋重合体R-1を得た。架橋重合体R-1の中和度は90モル%である。架橋重合体R-1は吸湿性を有するため、水蒸気バリア性を有する容器に密封保管した。
(製造例2~9:架橋重合体R-2~R-9の製造)
 各原料の仕込み量を表1に記載の通りとした以外は製造例1と同様の操作を行い、粉末状の架橋重合体R-2~R-9を得た。
Figure JPOXMLDOC01-appb-T000001
 表1において用いた化合物の詳細を以下に示す。
 AA:アクリル酸
 AAM:アクリルアミド
 AMA:メタクリル酸アリル
 P-30:ペンタエリスリトールトリアリルエーテル(ダイソー社製、商品名「ネオアリルP-30」)
 T-20:トリメチロールプロパンジアリルエーテル(ダイソー社製、商品名「ネオアリルT-20」)
 ACVA:4,4’-アゾビスシアノ吉草酸(大塚化学社製)
 非水電解質二次電池電極の作製及び評価
実施例1-1
 負極活物質として黒鉛、バインダーとして架橋重合体R-1を用いた合剤層用組成物について、その塗工性及び形成された合剤層/集電体間の剥離強度(すなわちバインダーの結着性)を測定した。
 人造黒鉛(日本黒鉛社製、商品名「CGB-10」)100部、及び粉末状の架橋重合体R-1を3部採り、予めよく混合した後、イオン交換水126部を加えてディスパーで予備分散を行った後、薄膜旋回式ミキサー(プライミクス社製、FM-56-30)を用いて周速度20m/秒の条件で本分散を15秒間行うことにより、スラリー状の負極合剤層用組成物を得た。
 可変式アプリケーターを用いて、厚さ20μmの銅箔(日本製箔社製)上に上記合剤層用組成物を乾燥後の膜厚が50μmとなるように塗工した後、直ちに通風乾燥機内で100℃×10分間の乾燥を行うことにより合剤層を形成した。得られた合剤層の外観を目視により観察し、以下の基準に基づいて塗工性を評価した結果、「○」と判断された。
<塗工性判定基準>
 ○:表面に筋ムラ、ブツ等の外観異常がまったく認められない。
 △:表面に筋ムラ、ブツ等の外観異常がわずかに認められる。
 ×:表面に筋ムラ、ブツ等の外観異常が顕著に認められる。
<90°剥離強度(結着性)>
 さらに、ロールプレス機にて合剤層密度を1.7±0.05g/cm3に調整して電極を作成した後、25mm幅の短冊状に裁断して剥離試験用試料を作成した。水平面に固定された両面テープに上記試料の合剤層面を貼付け、引張速度50mm/分における90°剥離を行い、合剤層と銅箔間の剥離強度を測定した。剥離強度は6.0N/mと高く、良好であった。
 一般に、電極を裁断、加工して電池セルの組み立てを行う際、合剤層が集電体(銅箔)から剥がれ落ちるという不具合を避けるためには、1.0N/m以上の剥離強度が必要とされる。剥離強度が高いということは、使用したバインダーが活物質間及び活物質と電極間の結着性に優れているということを意味するものであり、充放電サイクル試験時の容量低下が小さく、耐久性に優れた電池が得られるということが示唆された。
実施例1-2~1-9及び比較例1-1~1-4
 バインダーとして使用する架橋重合体を表2及び表3の通り用いた以外は実施例1-1と同様の操作を行うことにより合剤層組成物を調製し、塗工性及び90°剥離強度を評価した。結果を表2及び表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例1-1~1-9は、本発明に属する非水電解質二次電池電極合剤層用組成物を用いて電極を作製したものである。各組成物(スラリー)の塗工性は良好であり、得られた合剤層と集電体(銅箔)との剥離強度はいずれも1.0N/m以上の値が得られており、優れた結着性を示すものであった。また、架橋度が同程度である架橋重合体を使用した実施例1-4及び実施例1-5、又は、実施例1-7及び実施例1-8を比較すると、架橋性単量体としてメタクリル酸アリルと多官能アリル化合物とを併用した架橋重合体R-4を用いた実施例1-4又は実施例1-8の方が、塗工性及び結着性に優れる結果となった。これは併用した場合は適切な架橋度を有する架橋重合体が得られ、ミクロゲルが良好な膨潤度と強度を示すとともに、優れた分散安定化効果を発揮することによるものと推察される。
 これに対し、架橋性単量体としてメタクリル酸アリルを用いていない架橋重合体を使用した比較例1-1及び1-2は塗工性及び結着性が不十分であった。これは架橋度が不足してミクロゲルの強度が不足するために分散安定化効果が得られなかったことによると推察される。メタクリル酸アリルの使用量が多い比較例1-3も塗工性が不良となった。過架橋となりミクロゲルの水膨潤性が不足したために分散安定化効果が得られなかったことによるものと推察される。さらに、活物質に対する架橋重合体の配合量が少ない比較例1-4は、合剤層の結着性が殆どなく、電極を裁断して剥離試験用のサンプルを作成する際に合剤層が剥がれ落ちたため、剥離強度を測定することができなかった。
実施例2-1
 負極物質としてハードカーボン、導電助剤としてアセチレンブラック、バインダーとして架橋重合体R-1を含む合剤層用組成物を用いてリチウムイオン二次電池を作製し、その電池特性を評価した。
 ハードカーボン(住友ベークライト社製、商品名「LBV-1001」)100部、アセチレンブラック(電気化学工業社製、商品名「HS-100」)2部、及び粉末状の架橋重合体R-1を3部採り、予めよく混合した後、イオン交換水132部を加えてディスパーで予備分散を行った後、薄膜旋回式ミキサー(プライミクス社製、FM-56-30)を用いて周速度20m/秒の条件で本分散を15秒間行うことにより、スラリー状の負極用合剤層組成物を得た。
 乾燥炉を有するダイレクトコート方式の塗工機を用いて、集電体となる厚さ20μmの銅箔(日本製箔社製)に上記合剤層組成物を塗工幅120mmで両面塗工し、乾燥後、ロールプレス処理を行い、集電体の両面に合剤層を有する負極を作製した。合剤層の付着量は4.96mg/cm2(片面分)、密度は1.0g/cm3であった。
 なお、正極には、活物質としてNCM(日本化学工業社製)、導電助剤としてHS-100、バインダーとしてポリフッ化ビニリデン(クレハ社製、商品名「KF#1000」)を85.5/4.5/10(重量比)の比率で含む合剤層用組成物から形成された合剤層を、集電体となる厚さ15μmのアルミ箔(日本製箔社製)の両面に有するものを使用した。正極の合剤層の付着量は6.80mg/cm2(片面分)、密度は2.78g/cm3であった。
 正極、負極ともに120℃で12時間の真空乾燥を行った後、正極は96×84mm、負極は100×88mmのサイズにスリットした。スリットした電極(正極7枚、負極8枚)をポリエチレン系セパレータを介して積層し、ラミネートセルを組み立てた。3方シールしたラミネートセルを60℃で5時間真空乾燥した後、電解液(1M,LiPF6 in EC/EMC=3/7(v/v))を注入して真空シールを行った。尚、ラミネートセルの作製はすべてドライルーム内で実施した。
 上記で作製したラミネートセルについて、以下の電池特性評価を実施した。
<初期充放電試験>
 充放電装置SD8(北斗電工社製)を用い、以下の条件にて初期充放電容量を測定した。
 測定に際し、電池状態を安定化させるために1サイクル充放電した後、2サイクル目の充放電を行い、充放電容量が設計容量(700~800mAh)内で安定していることを確認した。
  測定温度:25℃
  充電:0.1C-CC/Cut-off4.2V ⇒ CV/終止レート0.01C
  放電:0.1C-CC/Cut-off3.0V
  2サイクル
 1サイクル目の充電容量は1142mAh、放電容量は769mAh、2サイクル目の充電容量は778mAh、放電容量は755mAhであった。
<低温レート試験、及び交流インピーダンス測定>
 初期充放電試験を行ったセルについて、以下の条件、順序にて低温レート試験及び交流インピーダンス測定を行った。尚、測定には充放電装置SD8(北斗電工社製)及び交流インピーダンス測定装置VSP(Bio-Logic社製)を使用した。
  測定温度:-15℃
(1)0.1C充放電(低温初期充放電)
    充電:0.1C-CC/Cut-off4.2V
    (休止時間10分)
    放電:0.1C-CC/Cut-off3.0V
(2)交流インピーダンス測定
    充電:0.1C、2時間
    印加電圧:10mV
    周波数:1000kHz~10mHz
    (残放電処理 3Vまで0.1C)
(3)0.5C充放電
    充電:0.5C-CC/Cut-off4.2V
    (休止時間10分)
    放電:0.5C-CC/Cut-off3.0V
    (残放電処理 3Vまで0.1C)
(4)1C充放電
    充電:1C-CC/Cut-off4.2V
    (休止時間10分)
    放電:1C-CC/Cut-off3.0V
    (残放電処理 3Vまで0.1C)
(5)2C充放電
    充電:2C-CC/Cut-off4.2V
    (休止時間10分)
    放電:2C-CC/Cut-off3.0V
    (残放電処理 3Vまで0.1C)
(6)3C充放電
    充電:3C-CC/Cut-off4.2V
    (休止時間10分)
    放電:3C-CC/Cut-off3.0V
    (残放電処理 3Vまで0.1C)
(7)4C充放電
    充電:4C-CC/Cut-off4.2V
    (休止時間10分)
    放電:4C-CC/Cut-off3.0V
    (残放電処理 3Vまで0.1C)
 上記(1)の測定結果は、低温初期充放電容量605mAh、放電容量598mAhであった。
 上記(2)の測定結果より、ナイキストプロットを作成し、その円弧の大きさより界面抵抗値を見積った結果、0.38Ωであった。
上記(3)~上記(7)の測定により得られた放電容量を、上記(1)の測定で得られた放電容量で除することにより、各Cレートでの放電容量維持率を計算した結果、0.5C:67%、1C:44%、2C:15%、3C:3%、4C:0%であった。なお0%とは過電圧による電圧降下により放電開始直後にCut-off電圧(3.0V)に到達したことを意味する。
<サイクル試験>
 初期充放電試験を行ったセルについて、下記条件にてサイクル試験を行った。
  測定温度:25℃
  充電:1C-CC/Cut-off4.2V
  放電:1C-CC/Cut-off3.0V
  200サイクル
 200サイクル目の放電容量を1サイクル目の放電容量で除することで、200サイクル放電容量維持率を計算した結果、93%であった。
実施例2-2~2-4及び比較例2-1~2-3
 バインダーとして使用する架橋重合体を表4の通り用いた以外は実施例2-1と同様の操作を行うことによりラミネートセルを組み立て、電池特性評価を行った。結果を表4に示す。
 なお、比較例2-3については、バインダーとして以下のスチレンブタジエンゴム(SBR)及びカルボキシメチルセルロース(CMC)を使用した。
 SBR:JSR社製、商品名「TRD2001」、固形分として1.5部使用
 CMC:ダイセルファインケム社製、商品名「CMC2200」、固形分として1.5部使用
Figure JPOXMLDOC01-appb-T000004
 表4において用いた化合物の詳細を以下に示す。
 LBV-1001:ハードカーボン(住友ベークライト社製)
 HS-100:アセチレンブラック(電気化学工業社製)
 実施例2-1~2-4は本発明の非水電解質二次電池に属するものであり、サイクル試験後の放電容量維持率が93~95%と高く、サイクル特性に優れる結果が得られた。また、各実施例とも良好なハイレート特性を示した。これは、用いた架橋重合体の特性に由来して、界面抵抗値が小さくなること、活物質及び導電助剤の均一分散性が良好で電子抵抗が小さくなることにより、電池の内部抵抗が小さくなったことによるものと推察される。中でも、架橋重合体の使用量が同じ実施例2-1及び実施例2-3を比較すると、特に分散安定化効果に優れた架橋重合体R-4を用いた実施例2-3の方が高電流密度条件における放電容量維持率が高く、ハイレート特性に優れる結果が得られた。
 これに対し、架橋性単量体としてメタクリル酸アリルを使用していない架橋重合体R-9を用いた比較例2-2のサイクル特性は、79%と低いものであった。また、バインダーとしてSBR及びCMCを使用した比較例2-3は、実施例に比較してハイレート特性に劣るものであることが分かる。比較例2-3では、バインダーが十分なカルボキシル基を持たないことから界面抵抗が増加し、その結果ハイレート特性が低下したものと推察される。架橋重合体の含有量が多い比較例2-1も同様に、ハイレート特性が不十分なものであった。
 本発明の非水電解質二次電池電極合剤層用組成物から得られる電極は、良好な結着力を有するとともに、電池抵抗を低減する効果を示す。このため、上記電極を備えた非水電解質二次電池は優れたハイレート特性及び耐久性(サイクル特性)を示し、車載用二次電池への適用が期待される。

Claims (6)

  1.  活物質、水及びバインダーを含む非水電解質二次電池電極合剤層用組成物であって、
     前記バインダーが、エチレン性不飽和カルボン酸単量体を含む単量体成分の架橋重合体及びその塩を含有し、
     前記架橋重合体はメタクリル酸アリルにより架橋されたものであって、該メタクリル酸アリルの使用量が非架橋性単量体の総量100重量部に対して0.1~2.0重量部であり、
     前記架橋重合体及びその塩の含有量が、前記活物質に対して0.5~5.0重量%である非水電解質二次電池電極合剤層用組成物。
  2.  前記架橋重合体が、メタクリル酸アリル及び多官能アリル化合物により架橋されたものであって、該メタクリル酸アリル及び多官能アリル化合物の使用量が非架橋性単量体の総量100重量部に対して0.1~3.0重量部である請求項1に記載の非水電解質二次電池電極合剤層用組成物。
  3.  前記架橋重合体の中和度が20~100モル%である請求項1又は2に記載の非水電解質二次電池電極合剤層用組成物。
  4.  非水電解質二次電池電極合剤層用組成物の製造方法であって、
     水性媒体中でエチレン性不飽和カルボン酸単量体及びメタクリル酸アリルを含む単量体成分を沈殿重合して架橋重合体を得た後、
     活物質及び水と混合することにより非水電解質二次電池電極合剤層用組成物を製造する方法。
  5.  集電体表面に、請求項1~4のいずれかに記載の非水電解質二次電池電極合剤層用組成物から形成される合剤層を備えた非水電解質二次電池電極。
  6.  請求項5に記載の非水電解質二次電池電極、セパレータ及び非水電解質液を備えた非水電解質二次電池。
PCT/JP2016/060156 2015-03-30 2016-03-29 非水電解質二次電池電極合剤層用組成物及びその製造方法、並びに、その用途 WO2016158964A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017510031A JP6388145B2 (ja) 2015-03-30 2016-03-29 非水電解質二次電池電極合剤層用組成物及びその製造方法、並びに、その用途
US15/561,391 US10541423B2 (en) 2015-03-30 2016-03-29 Electrode mixture layer composition for nonaqueous electrolyte secondary battery, manufacturing method thereof and use therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015069477 2015-03-30
JP2015-069477 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016158964A1 true WO2016158964A1 (ja) 2016-10-06

Family

ID=57005137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060156 WO2016158964A1 (ja) 2015-03-30 2016-03-29 非水電解質二次電池電極合剤層用組成物及びその製造方法、並びに、その用途

Country Status (3)

Country Link
US (1) US10541423B2 (ja)
JP (1) JP6388145B2 (ja)
WO (1) WO2016158964A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043484A1 (ja) * 2016-08-31 2018-03-08 東亞合成株式会社 非水電解質二次電池電極用バインダー及びその用途
WO2018180812A1 (ja) * 2017-03-28 2018-10-04 東亞合成株式会社 架橋重合体又はその塩の製造方法
WO2019082867A1 (ja) * 2017-10-24 2019-05-02 東亞合成株式会社 二次電池電極用バインダー及びその用途
WO2020090694A1 (ja) * 2018-10-29 2020-05-07 東亞合成株式会社 二次電池電極用バインダー及びその利用
WO2020110847A1 (ja) * 2018-11-27 2020-06-04 東亞合成株式会社 二次電池電極用バインダー、二次電池電極合剤層用組成物及び二次電池電極
JPWO2019017317A1 (ja) * 2017-07-21 2020-07-16 東亞合成株式会社 非水電解質二次電池電極用バインダー及びその用途
WO2024024773A1 (ja) * 2022-07-27 2024-02-01 東亞合成株式会社 架橋重合体又はその塩の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168323A (ja) * 2012-02-16 2013-08-29 Toyo Ink Sc Holdings Co Ltd 非水二次電池電極用バインダー樹脂組成物
WO2014065407A1 (ja) * 2012-10-26 2014-05-01 和光純薬工業株式会社 リチウム電池用結着剤、電極作製用組成物および電極
JP2015003998A (ja) * 2013-06-21 2015-01-08 日立化成株式会社 アクリルポリマー粒子の製造方法及びそれにより得られるアクリルポリマー粒子
WO2015008626A1 (ja) * 2013-07-18 2015-01-22 Jsr株式会社 蓄電デバイス用バインダー組成物、蓄電デバイス用スラリー、蓄電デバイス電極、セパレーターおよび蓄電デバイス
JP2015018776A (ja) * 2013-07-12 2015-01-29 株式会社日本触媒 電池用水系電極組成物用バインダー
JP2015023015A (ja) * 2013-07-24 2015-02-02 東洋インキScホールディングス株式会社 二次電池電極形成用合材インキ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294247A (ja) 1999-04-12 2000-10-20 Hitachi Powdered Metals Co Ltd リチウムイオン二次電池の負極塗膜およびそれを用いたリチウムイオン二次電池
JP5544706B2 (ja) 2008-12-02 2014-07-09 東亞合成株式会社 不飽和カルボン酸系架橋重合体およびこの重合体の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168323A (ja) * 2012-02-16 2013-08-29 Toyo Ink Sc Holdings Co Ltd 非水二次電池電極用バインダー樹脂組成物
WO2014065407A1 (ja) * 2012-10-26 2014-05-01 和光純薬工業株式会社 リチウム電池用結着剤、電極作製用組成物および電極
JP2015003998A (ja) * 2013-06-21 2015-01-08 日立化成株式会社 アクリルポリマー粒子の製造方法及びそれにより得られるアクリルポリマー粒子
JP2015018776A (ja) * 2013-07-12 2015-01-29 株式会社日本触媒 電池用水系電極組成物用バインダー
WO2015008626A1 (ja) * 2013-07-18 2015-01-22 Jsr株式会社 蓄電デバイス用バインダー組成物、蓄電デバイス用スラリー、蓄電デバイス電極、セパレーターおよび蓄電デバイス
JP2015023015A (ja) * 2013-07-24 2015-02-02 東洋インキScホールディングス株式会社 二次電池電極形成用合材インキ

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043484A1 (ja) * 2016-08-31 2018-03-08 東亞合成株式会社 非水電解質二次電池電極用バインダー及びその用途
US11177478B2 (en) 2016-08-31 2021-11-16 Toagosei Co. Ltd. Crosslinked polymer binder from crosslinkable monomer for nonaqueous electrolyte secondary battery and use thereof
WO2018180812A1 (ja) * 2017-03-28 2018-10-04 東亞合成株式会社 架橋重合体又はその塩の製造方法
JPWO2018180812A1 (ja) * 2017-03-28 2020-02-06 東亞合成株式会社 架橋重合体又はその塩の製造方法
JPWO2019017317A1 (ja) * 2017-07-21 2020-07-16 東亞合成株式会社 非水電解質二次電池電極用バインダー及びその用途
JP7078048B2 (ja) 2017-07-21 2022-05-31 東亞合成株式会社 非水電解質二次電池電極用バインダー及びその用途
JP2022107014A (ja) * 2017-07-21 2022-07-20 東亞合成株式会社 非水電解質二次電池電極用バインダーの製造方法
JP7160222B2 (ja) 2017-07-21 2022-10-25 東亞合成株式会社 非水電解質二次電池電極用バインダーの製造方法
US20200335791A1 (en) * 2017-10-24 2020-10-22 Toagosei Co. Ltd. Binder for secondary battery electrode, and use thereof
WO2019082867A1 (ja) * 2017-10-24 2019-05-02 東亞合成株式会社 二次電池電極用バインダー及びその用途
WO2020090694A1 (ja) * 2018-10-29 2020-05-07 東亞合成株式会社 二次電池電極用バインダー及びその利用
JPWO2020090694A1 (ja) * 2018-10-29 2021-10-14 東亞合成株式会社 二次電池電極用バインダー及びその利用
WO2020110847A1 (ja) * 2018-11-27 2020-06-04 東亞合成株式会社 二次電池電極用バインダー、二次電池電極合剤層用組成物及び二次電池電極
JPWO2020110847A1 (ja) * 2018-11-27 2021-10-21 東亞合成株式会社 二次電池電極用バインダー、二次電池電極合剤層用組成物及び二次電池電極
WO2024024773A1 (ja) * 2022-07-27 2024-02-01 東亞合成株式会社 架橋重合体又はその塩の製造方法

Also Published As

Publication number Publication date
US10541423B2 (en) 2020-01-21
JPWO2016158964A1 (ja) 2017-12-14
JP6388145B2 (ja) 2018-09-12
US20180108917A1 (en) 2018-04-19

Similar Documents

Publication Publication Date Title
JP6465323B2 (ja) 非水電解質二次電池電極用バインダー及びその用途
JP6150031B1 (ja) 非水電解質二次電池電極用バインダー及びその製造方法、並びに、その用途
JP6665857B2 (ja) 非水電解質二次電池電極合剤層用組成物及びその製造方法、並びに、その用途
JP6729603B2 (ja) 非水電解質二次電池電極用バインダー及びその製造方法、並びに、その用途
JP6388145B2 (ja) 非水電解質二次電池電極合剤層用組成物及びその製造方法、並びに、その用途
JP6638747B2 (ja) 二次電池電極用バインダー及びその用途
JP6354929B1 (ja) 非水電解質二次電池電極用バインダー及びその用途
JP6981466B2 (ja) 架橋重合体又はその塩の製造方法
JP7226442B2 (ja) 二次電池電極用バインダー及びその利用
JP6988888B2 (ja) 非水電解質二次電池電極用バインダー及びその製造方法、並びに、その用途
JP7160222B2 (ja) 非水電解質二次電池電極用バインダーの製造方法
CN110462900B (zh) 非水电解质二次电池电极用粘合剂
JP7327404B2 (ja) 二次電池電極合剤層用バインダー、二次電池電極合剤層用組成物及び二次電池電極
JP7480703B2 (ja) 二次電池電極合剤層用組成物及び二次電池電極
JP7211418B2 (ja) 二次電池電極用バインダー及びその利用
US20240332498A1 (en) Method for manufacturing secondary battery electrode slurry composition, and methods for manufacturing secondary battery electrode and secondary battery
WO2021100582A1 (ja) 二次電池電極合剤層用組成物、二次電池電極及び二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510031

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15561391

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772845

Country of ref document: EP

Kind code of ref document: A1