WO2024024089A1 - 光コネクタ - Google Patents

光コネクタ Download PDF

Info

Publication number
WO2024024089A1
WO2024024089A1 PCT/JP2022/029304 JP2022029304W WO2024024089A1 WO 2024024089 A1 WO2024024089 A1 WO 2024024089A1 JP 2022029304 W JP2022029304 W JP 2022029304W WO 2024024089 A1 WO2024024089 A1 WO 2024024089A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
alignment mechanism
central axis
protrusion
tip
Prior art date
Application number
PCT/JP2022/029304
Other languages
English (en)
French (fr)
Inventor
良 小山
宜輝 阿部
和典 片山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/029304 priority Critical patent/WO2024024089A1/ja
Publication of WO2024024089A1 publication Critical patent/WO2024024089A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/245Removing protective coverings of light guides before coupling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means

Definitions

  • the present invention relates to an optical connector to which an optical fiber is attached.
  • Patent Document 1 discloses an optical connector that can reduce this work burden.
  • the optical connector disclosed in the document includes a ferrule containing an optical fiber. A through hole extending along the central axis of the ferrule is formed in the ferrule, and an optical fiber having a shorter length than the ferrule is fixed to the through hole. The optical fiber within the through hole is exposed at one end surface of the ferrule facing the mating connector.
  • the inner diameter of the through hole formed in the ferrule is slightly larger than the outer diameter of the bare optical fiber constituting the optical fiber strand, and sufficiently smaller than the outer diameter of the optical fiber strand. Therefore, this through hole functions as a coating removal portion for the optical fiber strand. That is, the optical fiber wire attached to the optical connector comes into contact with the other end surface of the ferrule in which the above-mentioned through hole is opened. Furthermore, when an attempt is made to insert an optical fiber into this through-hole, the coating around the bare optical fiber is peeled off, and only the bare optical fiber enters the through-hole and is optically connected to the built-in optical fiber.
  • eccentricity of the bare optical fiber often occurs within the coating.
  • the difference in rigidity between the coating, which is mainly made of resin, and the bare optical fiber, which is mainly made of quartz glass causes the coating to deteriorate. This causes a larger deformation and decentering of the bare optical fiber. Therefore, for example, when attempting to attach an optical fiber to an optical connector equipped with the above-mentioned built-in optical fiber and ferrule, the position of the bare optical fiber may shift with respect to the through hole of the ferrule, which serves as the coating removal section. If so, it cannot be installed.
  • the present invention has been made in view of the above situation, and aims to provide an optical connector that can reduce the burden of installation work even when the bare optical fiber is an eccentric optical fiber wire.
  • An optical connector includes an alignment mechanism including an inlet into which an optical fiber strand including a coating covering a bare optical fiber is inserted and an outlet thereof, the alignment mechanism It includes a plurality of protrusions that are arranged with gaps in the circumferential direction around the central axis of and that protrude toward the central axis.
  • the protrusion is formed of a material that is harder than the coating of the optical fiber and softer than the bare optical fiber, and the protrusion includes a tip facing the central axis and perpendicular to the central axis.
  • the diameter of the smallest imaginary circle of the imaginary circles that are in contact with the tip in the plane is greater than or equal to the diameter of the bare optical fiber and less than the outer diameter of the optical fiber.
  • an optical connector that can reduce the burden of installation work even when the bare optical fiber is an eccentric optical fiber wire.
  • FIG. 1 is a cross-sectional view of an example of an optical fiber wire attached to an optical connector according to an embodiment.
  • FIG. 2 is a cross-sectional view of an example of an optical connector to which the alignment mechanism according to the embodiment is applied.
  • FIG. 3 is a perspective view showing the positional relationship between the alignment mechanism and the coating removal section in the optical connector shown in FIG. 2.
  • FIG. 4 is a perspective view of the alignment mechanism according to the embodiment.
  • FIG. 5 is a front view of the alignment mechanism according to the embodiment as seen from the exit side
  • FIG. 5(a) is a diagram showing the entire alignment mechanism
  • FIG. FIG. 5C is an enlarged front view of another example of the tip of the protrusion according to the embodiment.
  • FIG. 6 is a sectional view including the central axis of the alignment mechanism according to the embodiment.
  • FIG. 7A is a cross-sectional view showing an optical fiber inserted into the alignment mechanism according to the embodiment.
  • FIG. 7B is a cross-sectional view showing an optical fiber inserted into the alignment mechanism according to the embodiment.
  • FIG. 7C is a cross-sectional view showing an optical fiber inserted into the alignment mechanism according to the embodiment.
  • FIG. 7D is a cross-sectional view showing an optical fiber inserted into the alignment mechanism according to the embodiment.
  • FIG. 7E is a cross-sectional view showing an optical fiber inserted into the alignment mechanism according to the embodiment.
  • FIG. 7F is a cross-sectional view showing the optical fiber strand inserted into the sheath removal section via the alignment mechanism according to the embodiment.
  • FIG. 8 is a diagram illustrating a modification of the arrangement of the protrusions according to the embodiment.
  • FIG. 9 is a perspective view showing a modification of the alignment mechanism according to the embodiment.
  • FIG. 1 is a cross-sectional view of an example of an optical fiber wire (covered optical fiber) 2 that is attached to an optical connector according to the present embodiment.
  • the optical fiber 2 includes a bare optical fiber 4 and a coating 5 surrounding the bare optical fiber 4.
  • the bare optical fiber 4 has a core 6 and a cladding 7 mainly composed of silica glass.
  • the outer diameter d1 of the bare optical fiber 4 is, for example, 125 ⁇ m.
  • the outer diameter d2 of the optical fiber strand 2 is, for example, 0.25 mm.
  • the material of the coating 5 is, for example, an ultraviolet curable resin such as urethane acrylate resin, or a polyamide resin.
  • the coating 5 is a protective layer for the optical fiber 2, and may include at least one colored layer.
  • FIG. 2 is a cross-sectional view of an example of the optical connector 10 to which the alignment mechanism 20 according to the present embodiment is applied.
  • FIG. 3 is a perspective view showing the positional relationship between the alignment mechanism 20 and the coating removal section 13 in the optical connector 10 shown in FIG.
  • the bare optical fiber 4 of the optical fiber 2 is optically connected to a short optical fiber 16 built in a ferrule 11 inside the optical connector 10.
  • the central axis Z is the central axis of each of the ferrule 11, the coating removal part 13, the alignment mechanism 20, and the guide part 14.
  • the short optical fiber 16 and the bare optical fiber 4 of the optical fiber strand 2 are arranged on the central axis Z in the ferrule 11.
  • the circumferential direction and the radial direction around the central axis Z are respectively referred to as the circumferential direction CD and the radial direction RD.
  • the optical fiber 2 is inserted into the optical connector 10 from the back to the front.
  • the optical connector 10 connects to an optical connection member (not shown) such as an optical connector placed in front of it.
  • an optical connection member such as an optical connector placed in front of it.
  • the optical fiber wire 2 is optically connected to an optical element or an optical fiber provided in an optical connection member (not shown).
  • the optical connector 10 includes a ferrule 11, a fiber fixing section 12, a coating removal section 13, an alignment mechanism 20, and a guide section 14. These are arranged from the front to the rear along the central axis Z of the optical connector 10, and are housed in, for example, a connector body 15 serving as a housing section. Note that the optical connector 10 also includes a grip part (not shown) that grips the optical fiber wire 2. A gripping portion (not shown) is attached to the rear end of the connector body 15 and stably grips the optical fiber strand 2 optically connected to the short optical fiber 16.
  • the ferrule 11 is attached to the front end of the connector body 15. As shown in FIG. 3, the ferrule 11 is a cylindrical member made of ceramic such as zirconia, which has high weather resistance and mechanical strength. A through hole 11b is formed on the central axis Z of the ferrule 11. A short optical fiber 16 is fixed within the through hole 11b. The front end 16a of the short optical fiber 16 is exposed at the front end surface 11a of the ferrule 11.
  • the fiber fixing part 12 is provided at the rear of the ferrule 11. As shown in FIG. 3, the fiber fixing part 12 holds the short optical fiber 16 and the bare optical fiber 4 of the optical fiber 2 against each other by mechanical splicing. Note that a refractive index matching agent (not shown) is filled (or coated) between these optical fibers.
  • the fiber fixing part 12 has a pedestal part 17 and a lid part 18. These have, for example, a substantially semicircular cross section centered on the central axis Z, and extend along the central axis Z.
  • the pedestal portion 17 has a plane 17a parallel to the central axis Z.
  • a groove portion 17b is formed in this plane 17a.
  • the groove portion 17b has, for example, a V-shaped cross section and extends along the central axis Z.
  • the lid portion 18 is provided above the pedestal portion 17.
  • the lid portion 18 has a flat surface 18a that faces the flat surface 17a of the pedestal portion 17.
  • the pedestal part 17 and the lid part 18 are clamped by a clamp 19 with their flat surfaces 17a and 18a facing each other.
  • the short optical fiber 16 and the bare optical fiber 4 arranged in the groove portion 17b are held between the pedestal portion 17 and the lid portion 18.
  • the coating removal section 13 is provided behind the fiber fixing section 12. As shown in FIG. 3, the covering removal part 13 is a cylindrical member centered on the central axis Z. As shown in FIG. An insertion hole 13a for the bare optical fiber 4 is formed on the central axis Z of the coating removal section 13. The diameter of the insertion hole 13a is slightly larger than the diameter of the bare optical fiber 4. Further, the covering removal section 13 may have a tapered surface 13b at the rear thereof. The tapered surface 13b approaches the central axis Z toward the rear.
  • the diameter on the rear end side of the insertion hole 13a may increase toward the rear so as to make it easier to guide the tip of the bare optical fiber 4 forward. That is, the rear end of the insertion hole 13a may be formed into a flared shape.
  • the diameter d5 of the circular region 13c formed by the rear edge of the insertion hole 13a is larger than the diameter of the virtual circle 40 (see FIG. 6).
  • the virtual circle 40 is the smallest circle that can be obtained by arbitrarily moving the plane (for example, along the central axis Z) among the circles that are in contact with the tips 24a of all the protrusions 24 within a plane perpendicular to the central axis Z. It is a yen. Note that the centers of the region 13c and the virtual circle 40 are substantially located on the central axis Z. Therefore, when viewed from the front or rear, the virtual circle 40 is located within the area 13c.
  • the alignment mechanism 20 is provided behind the coating removal section 13. Details of this alignment mechanism 20 will be described later.
  • the guide section 14 is provided at the rear of the alignment mechanism 20.
  • the guide portion 14 is, for example, a tubular member centered on the central axis Z, and is provided with a guide hole 14a extending along the central axis Z.
  • the guide hole 14a has the same cross-sectional shape as the entrance 21 of the alignment mechanism 20. Further, the rear end of the guide hole 14a is formed in a flare shape toward the rear, and guides the tip of the optical fiber strand 2 forward.
  • FIG. 4 is a perspective view of the alignment mechanism 20 according to this embodiment.
  • 5A, 5B, and 5C are front views of the alignment mechanism 20 seen from the exit side
  • FIG. 5A is a diagram showing the entire alignment mechanism 20
  • FIG. 5B is a tip of the protrusion 24 according to this embodiment.
  • FIG. 5C is an enlarged front view of another example of the tip 24a of the protrusion 24 according to the present embodiment.
  • FIG. 6 is a cross-sectional view of the alignment mechanism 20 including the central axis Z.
  • the alignment mechanism 20 includes a hollow cylindrical portion 23 centered on the central axis Z and a plurality of protrusions 24.
  • the rear end of the cylindrical portion 23 is the inlet 21 of the optical fiber 2, and the front end of the cylindrical portion 23 is the outlet 22 of the optical fiber 2.
  • the cylindrical portion 23 includes an inner circumferential surface 23a centered on the central axis Z.
  • the diameter d6 (see FIG. 6) of the inner circumferential surface 23a is constant along the central axis Z.
  • the protruding portion 24 is a plate-like member that protrudes toward the central axis Z and extends in a direction parallel to the central axis Z.
  • the protrusions 24 are arranged with a gap of a predetermined length in the circumferential direction CD around the central axis Z.
  • the protruding portion 24 may be formed in the shape of a cone or a pyramid, such as a cone or pyramid whose apex protrudes toward the central axis Z. In this case, the protrusion 24 may have a flat (in other words, stretched) shape in a direction parallel to the central axis Z.
  • the protrusion 24 includes a tip 24a facing the central axis Z.
  • the diameter d4 of the smallest imaginary circle 40 of the imaginary circles perpendicular to the central axis Z and in contact with the tip portion 24a is greater than or equal to the diameter d1 of the bare optical fiber 4 of the optical fiber 2 and outside the optical fiber 2.
  • the diameter is less than d2. That is, the protruding portion 24 protrudes toward the central axis Z so as to satisfy this condition.
  • the interval between two mutually adjacent tip portions 24a may be shorter than the diameter of the bare optical fiber 4. In this case, the bare optical fiber 4 can be prevented from entering between the two protrusions 24 adjacent to each other.
  • the protrusion 24 is made of a material that is harder than the coating 5 of the optical fiber 2 and softer than the bare optical fiber 4.
  • a material is, for example, a synthetic resin that has a higher hardness than the coating 5 and a lower hardness than the glass that is the material of the bare optical fiber 4.
  • the width of the tip 24a of the protrusion 24 along the circumferential direction CD may be constant, or may widen from the tip 24a toward the outside in the radial direction. In the latter case, it is easier to apply local pressure to the coating 5 of the optical fiber 2 than in the former case. That is, in the latter case, deformation of the covering 5, which will be described later, is likely to occur.
  • the tip 24a of the protrusion 24 may have a cross-sectional shape that allows it to cut into the coating 5 of the optical fiber 2. That is, the tip portion 24a may have a sharp tip shape like a blade or a wedge. In this case, the force necessary for inserting the optical fiber strand 2 that deforms the coating 5 can be reduced.
  • the shape of the tip portion 24a is not limited to the above-mentioned shape as long as the coating 5 can be deformed.
  • the tip portion 24a may be rounded or may have other shapes.
  • the plurality of protrusions 24 have a shape that allows the coating 5 of the optical fiber 2 to be deformed toward the central axis Z (in other words, can be deformed) when the optical fiber 2 is inserted.
  • a shape is illustrated in FIG.
  • the protrusion 24 extends in a direction from the inlet 21 to the outlet 22 of the alignment mechanism 20.
  • This stretching direction may be parallel to the central axis Z or may be inclined with respect to the central axis Z.
  • each of the distal ends 24a of the protrusions 24 includes a tapered portion 25 that approaches the central axis Z as it approaches the outlet 22 from the inlet 21 of the alignment mechanism 20.
  • the bare optical fiber 4 is normally eccentric.
  • the optical connector 10 is equipped with an alignment mechanism 20.
  • FIGS. 7A to 7E are cross-sectional views showing stepwise changes in the position and shape of the optical fiber 2 as it passes through the alignment mechanism 20.
  • FIGS. The left side of each figure shows a cross section including the central axis Z. Further, the right side in each figure shows a cross section perpendicular to the central axis Z. The position of this cross section is indicated by a line with an alphabet attached in the left cross-sectional view.
  • FIG. 7F is a cross-sectional view showing the optical fiber 2 inserted into the sheath removal section 13 via the alignment mechanism 20.
  • the optical fiber wire 2 When the optical fiber wire 2 is attached to the optical connector 10, the optical fiber wire 2 is inserted from the rear of the connector body 15 through the guide portion 14 and the alignment mechanism 20 to the through hole 11b of the ferrule 11. However, as will be described later, the coating 5 is removed during the insertion process of the optical fiber 2, and only the bare optical fiber 4 reaches the through hole 11b of the ferrule 11.
  • FIG. 7A shows a state in which the tip 2a of the optical fiber 2 has reached the entrance 21 of the alignment mechanism 20. As shown in FIG. 7A, the tip 2a of the optical fiber 2 is often in contact with the inner circumferential surface 23a of the cylindrical portion 23 due to the bending of the optical fiber 2, gravity, etc.
  • the optical fiber 2 When the optical fiber 2 is further inserted from the state shown in FIG. 7A, the optical fiber 2 moves forward and the tip 2a of the optical fiber 2 comes into contact with the protrusion 24 (see FIG. 7B). .
  • the tip 2a of the optical fiber 2 comes into contact with one of the plurality of tapered parts 25. Therefore, in this state, movement of the optical fiber 2 in a direction perpendicular to the central axis Z is allowed. Therefore, the tip 2a of the optical fiber 2 moves forward and moves toward the central axis Z (upward in FIG. 7B) due to contact with the tapered portion 25. In this way, the tapered portion 25 smoothly guides the optical fiber 2 toward the central axis Z.
  • the movement of the cylindrical portion 23 in the direction perpendicular to the central axis Z is restricted because the cylindrical portion 23 is accommodated in the connector body 15. Furthermore, the protrusion 24 is harder than the covering 5. Therefore, when the optical fiber strand 2 is pushed further forward from the state shown in FIG. 7C, the coating 5 is pushed from the protrusion 24 toward the central axis Z. On the other hand, there is a space between the protrusions 24 along the circumferential direction CD. Therefore, the portion of the covering 5 that is not in contact with the protrusion 24 is allowed to deform outward in the radial direction. Therefore, when the optical fiber 2 is pushed forward with the tip 2a of the optical fiber 2 in contact with all the protrusions 24, the coating 5 begins to deform.
  • the portion of the covering 5 that contacts the protruding portion 24 deforms inward in the radial direction, and the portion of the covering 5 that does not contact the protruding portion 24 deforms outward in the radial direction.
  • the tip 24a of the protrusion 24 is formed sharply, the coating 5 will be cut into the tip 24a (see FIG. 7D).
  • the tip 24a of the protrusion 24 approaches the bare optical fiber 4 (see FIG. 7D). Since the movement of the bare optical fiber 4 perpendicular to the central axis Z is still allowed, the bare optical fiber 4 receives the pressure of the protrusion 24 and moves toward the central axis Z (see FIG. 7D). Note that the protrusion 24 is softer than the bare optical fiber 4. Therefore, even if the protrusion 24 comes into contact with the bare optical fiber 4 due to a cut in the coating 5 or the like, the bare optical fiber 4 will not be damaged.
  • the diameter d4 of the virtual circle 40 in contact with the tip 24a of the protrusion 24 is greater than or equal to the diameter d1 of the bare optical fiber 4 and less than the outer diameter d2 of the optical fiber strand 2.
  • This virtual circle 40 is located at or near the exit 22 of the alignment mechanism 20. Therefore, when the optical fiber 2 is further inserted from the state shown in FIG. 7D, the bare optical fiber 4 enters the area within the virtual circle 40 and is exposed from the exit 22 of the alignment mechanism 20 (see FIG. 7E). . On the other hand, the covering 5 is also exposed from the outlet 22 of the alignment mechanism 20 in a deformed state.
  • the insertion hole 13a formed in the covering removal part 13 is located on the central axis Z. That is, the tip 4a of the bare optical fiber 4 that has passed through the alignment mechanism 20 faces the insertion hole 13a. Therefore, when the optical fiber strand 2 is further inserted, the bare optical fiber 4 enters the insertion hole 13a and faces the short optical fiber 16 at the fiber fixing part 12. The bare optical fiber 4 and the short optical fiber 16 are held between the fiber fixing part 12. On the other hand, the coating 5 is peeled off (removed) from the bare optical fiber 4 and moves along the tapered surface 13b of the coating removal section 13 (see FIG. 7F).
  • an optical fiber whose bare optical fiber is eccentric can be easily attached to an optical connector without removing the coating before attaching it to the optical connector. In other words, it is possible to reduce the burden of installing the optical fiber wire.
  • FIG. 8 is a diagram showing a modification of the arrangement of the protrusion 24. As shown in FIG. FIG. 8 is a diagram showing the position of the tip end 24a of the protrusion 24 developed in the circumferential direction CD. As shown in FIG. 8, the number of protrusions 24 along the circumferential direction CD may decrease from the inlet 21 to the outlet 22 of the alignment mechanism 20.
  • the distance between the two tip portions 24a adjacent to each other in the circumferential direction CD becomes narrower as the protruding portion 24 approaches the outlet 22 of the alignment mechanism 20.
  • the distance between the two distal ends 24a which are separated from each other is set to a value approximately equal to the diameter of the bare optical fiber 4.
  • the alignment mechanism 20 is formed, for example, by molding using a metal mold. Therefore, by reducing the number of protrusions 24, the protrusions 24 can be easily formed and the manufacturing cost of the mold can be lowered.
  • FIG. 9 is a perspective view showing a modification of the alignment mechanism 20.
  • the cylindrical portion 23 of the alignment mechanism 20 may include a tapered outer peripheral surface 23b that approaches the central axis Z as it approaches the outlet 22 of the alignment mechanism 20.
  • the optical connector 10 includes a member including an inner circumferential surface (not shown) forming a cross section complementary to the cross section formed by the outer circumferential surface 23b.
  • a member is, for example, the connector body 15.
  • the member on which the above-mentioned inner peripheral surface is formed may be an optical connector provided separately from the connector main body 15. There may be ten components (not shown).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

光コネクタ(10)は、裸光ファイバ(4)を覆う被覆(8)を含む光ファイバ素線(2)が挿入される入口(21)とその出口(22)とを含む調心機構(20)を備える。調心機構(20)は、当該調心機構(20)の中心軸周りの周方向に間隙を置いて配置され、中心軸に向けて突出する複数の突出部(24)を含む。突出部(24)は、光ファイバ素線(2)の被覆(8)よりも固く且つ裸光ファイバ(4)よりも柔らかい材料によって形成される。突出部(24)は、中心軸に面する先端部(24a)を含む。中心軸と直交する平面内で先端部(24a)に接する仮想円のうちの最小の仮想円(40)の直径は、裸光ファイバ(4)の直径以上且つ光ファイバ素線(2)の外径未満である。

Description

光コネクタ
 本発明は、光ファイバ素線が装着される光コネクタに関する。
 光ファイバによる光通信網を構築する場合、作業現場では光ファイバに光コネクタを装着する作業が頻発する。特許文献1は、この作業負担を軽減することが可能な光コネクタを開示している。同文献の光コネクタは、光ファイバを内蔵したフェルールを備えている。フェルールには、その中心軸に沿って延伸する貫通孔が形成され、当該貫通孔にはフェルールよりも短い長さの光ファイバが固定されている。貫通孔内の光ファイバは相手コネクタに対向するフェルールの一方の端面に露出している。
 フェルールに形成された貫通孔の内径は、光ファイバ素線を構成する裸光ファイバの外径よりも僅かに大きく、且つ光ファイバ素線の外径よりも十分に小さい。従って、この貫通孔は光ファイバ素線に対する被覆除去部として機能する。つまり、光コネクタに装着される光ファイバ素線は、上述の貫通孔が開口するフェルールの他方の端面に当接する。更にこの貫通孔に光ファイバ素線を挿入させようとすると、裸光ファイバの周りの被覆が剥がれ、当該裸光ファイバだけが貫通孔に進入し、内蔵光ファイバと光学的に接続する。
特開2009-12850号公報
 一方、光ファイバ素線では被覆内で裸光ファイバの偏心が生じていることが多い。製造時の製造誤差に加えて、保管時や敷設時にかかる外力や側圧、曲げによって、主に樹脂で構成される被覆と主に石英系ガラスで構成される裸光ファイバとの剛性の違いから被覆により大きな変形が生じ裸光ファイバに偏心が生じる。従って、例えば、上述の内蔵光ファイバとフェルールを備える光コネクタに光ファイバ素線を装着しようとすると、被覆除去部としてのフェルールの貫通孔に対して裸光ファイバの位置がずれることがあり、この場合は装着ができない。
 本発明は上記状況に鑑みてなされたもので、裸光ファイバが偏心した光ファイバ素線でも装着作業の負担を軽減することが可能な光コネクタの提供を目的とする。
 本発明の一態様に係る光コネクタは、裸光ファイバを覆う被覆を含む光ファイバ素線が挿入される入口とその出口とを含む調心機構を備え、前記調心機構は、当該調心機構の中心軸周りの周方向に間隙を置いて配置され、前記中心軸に向けて突出する複数の突出部を含む。前記突出部は、前記光ファイバ素線の前記被覆よりも固く且つ前記裸光ファイバよりも柔らかい材料によって形成され、前記突出部は、前記中心軸に面する先端部を含み、前記中心軸と直交する平面内で前記先端部に接する仮想円のうちの最小の仮想円の直径は、前記裸光ファイバの直径以上且つ前記光ファイバ素線の外径未満である。
 本発明によれば、裸光ファイバが偏心した光ファイバ素線でも装着作業の負担を軽減することが可能な光コネクタを提供することができる。
図1は、実施形態に係る光コネクタに装着される光ファイバ素線の一例の断面図である。 図2は、実施形態に係る調心機構が適用された光コネクタの一例の断面図である。 図3は、図2に示す光コネクタにおける調心機構と被覆除去部の位置関係を示す斜視図である。 図4は、実施形態に係る調心機構の斜視図である。 図5は実施形態に係る調心機構を出口側から見た正面図であり、図5(a)は調心機構全体を示す図、図5(b)は実施形態に係る突出部の先端部の一例の拡大正面図、図5(c)は実施形態に係る突出部の先端部の他の例の拡大正面図である。 図6は、実施形態に係る調心機構の中心軸を含む断面図である。 図7Aは、実施形態に係る調心機構に挿入された光ファイバ素線を示す断面図である。 図7Bは、実施形態に係る調心機構に挿入された光ファイバ素線を示す断面図である。 図7Cは、実施形態に係る調心機構に挿入された光ファイバ素線を示す断面図である。 図7Dは、実施形態に係る調心機構に挿入された光ファイバ素線を示す断面図である。 図7Eは、実施形態に係る調心機構に挿入された光ファイバ素線を示す断面図である。 図7Fは、実施形態に係る調心機構を介して被覆除去部に挿入される光ファイバ素線を示す断面図である。 図8は、実施形態に係る突出部の配置の変形例を示す図である。 図9は、実施形態に係る調心機構の変形例を示す斜視図である。
 以下、本発明の幾つかの実施形態に係る光コネクタについて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
 図1は、本実施形態に係る光コネクタに装着される光ファイバ素線(被覆付き光ファイバ)2の一例の断面図である。図1に示すように、光ファイバ素線2は、裸光ファイバ4と、裸光ファイバ4の周りを囲む被覆5とを備える。更に、裸光ファイバ4は、石英ガラスを主成分とするコア6およびクラッド7を有する。裸光ファイバ4の外径d1は、例えば125μmである。光ファイバ素線2の外径d2は例えば0.25mmである。被覆5の材質は例えば、ウレタンアクリレート系樹脂等の紫外線硬化性樹脂、又はポリアミド樹脂などである。また、被覆5は光ファイバ素線2の保護層であり、少なくとも1層の着色層を含んでもよい。
 次に光コネクタ10の構成について説明する。
 図2は、本実施形態に係る調心機構20が適用された光コネクタ10の一例の断面図である。図3は、図2に示す光コネクタ10における調心機構20と被覆除去部13の位置関係を示す斜視図である。図2に示すように、光ファイバ素線2の裸光ファイバ4は光コネクタ10の内部で、フェルール11に内蔵された短尺光ファイバ16と光学的に接続する。
 以下の説明では、中心軸Zを定義する。中心軸Zは、フェルール11、被覆除去部13、調心機構20、及びガイド部14の各中心軸である。例えば、短尺光ファイバ16と光ファイバ素線2の裸光ファイバ4は、フェルール11において中心軸Z上に配置される。更に、中心軸Zを中心とした周方向及び径方向を、それぞれ周方向CD及び径方向RDと称する。
 光ファイバ素線2は、後方から前方に向けて光コネクタ10に挿入される。光コネクタ10は、その前方に配置された光コネクタ等の光接続部材(図示せず)と接続する。これにより、光ファイバ素線2は、光接続部材(図示せず)内に設けられた光学素子又は光ファイバと光学的に接続する。
 図2に示すように、光コネクタ10は、フェルール11と、ファイバ固定部12と、被覆除去部13と、調心機構20と、ガイド部14とを備えている。これらは、光コネクタ10の中心軸Zに沿って前方から後方に配列し、例えば収容部としてのコネクタ本体15に収容されている。なお、光コネクタ10は、光ファイバ素線2を把持する把持部(図示せず)も備える。把持部(図示せず)はコネクタ本体15の後端に取り付けられ、短尺光ファイバ16と光学的に接続した光ファイバ素線2を安定に把持する。
 フェルール11は、コネクタ本体15の前端部に取り付けられている。図3に示すように、フェルール11は円柱状の部材であり、耐候性や機械強度の高いジルコニアなどのセラミックスによって形成されている。フェルール11における中心軸Z上には貫通孔11bが形成されている。貫通孔11b内には短尺光ファイバ16が固定される。短尺光ファイバ16の前端16aは、フェルール11の前端面11aに露出している。
 ファイバ固定部12はフェルール11の後方に設けられる。図3に示すように、ファイバ固定部12は、メカニカルスプライスによって短尺光ファイバ16と光ファイバ素線2の裸光ファイバ4とを互いに突き合せた状態で挟持する。なお、これらの光ファイバの間には屈折率整合剤(図示せず)が充填(又は塗布)されている。
 ファイバ固定部12は、台座部17と、蓋部18とを有している。これらは、例えば中心軸Zを中心とする略半円の断面を有し、中心軸Zに沿って延伸している。台座部17は中心軸Zと平行な平面17aを有する。この平面17aには溝部17bが形成されている。溝部17bは例えばV字状の断面を有し、中心軸Zに沿って延伸している。
 蓋部18は、台座部17の上方に設けられる。蓋部18は、台座部17の平面17aに対向する平面18aを有する。台座部17と蓋部18は、互いの平面17a、18aが対向した状態で、クランプ19によって挟持される。これにより、溝部17bに配置された短尺光ファイバ16及び裸光ファイバ4が台座部17と蓋部18によって挟持される。
 被覆除去部13はファイバ固定部12の後方に設けられる。図3に示すように、被覆除去部13は中心軸Zを中心とする円柱状の部材である。被覆除去部13における中心軸Z上には裸光ファイバ4の挿通孔13aが形成されている。挿通孔13aの直径は、裸光ファイバ4の直径よりも僅かに大きい。また、被覆除去部13は、その後部にテーパ面13bを有してもよい。テーパ面13bは、後方に向かうに連れて中心軸Zに接近する。
 挿通孔13aの後端側の直径は、裸光ファイバ4の先端を前方に誘導しやすくするように、後方に向かうに連れて大きくなっていてもよい。即ち、挿通孔13aの後端はフレア状に形成されていてもよい。この場合、挿通孔13aの後縁が形成する円形の領域13cの直径d5は、仮想円40の直径よりも大きい(図6参照)。仮想円40は、中心軸Zに直交する平面内で全ての突出部24の先端部24aに接する円のうち、平面を任意に(例えば中心軸Zに沿って)動かした際に得られる最小の円である。なお、領域13cと仮想円40の各中心は実質的に中心軸Z上に位置する。従って、前方又は後方から見て、仮想円40は領域13c内に位置する。
 調心機構20は、被覆除去部13の後方に設けられる。この調心機構20の詳細は後述する。
 ガイド部14は、調心機構20の後方に設けられる。ガイド部14には、例えば、中心軸Zを中心とした管状部材であり、中心軸Zに沿って延伸するガイド孔14aが設けられている。ガイド孔14aは、調心機構20の入口21と同一の断面形状を有する。また、ガイド孔14aの後端は後方に向けてフレア状に形成され、光ファイバ素線2の先端を前方に誘導する。
 次に調心機構20について説明する。
 図4は、本実施形態に係る調心機構20の斜視図である。図5A、図5B、図5Cは調心機構20を出口側から見た正面図であり、図5Aは調心機構20全体を示す図、図5Bは本実施形態に係る突出部24の先端部24aの一例の拡大正面図、図5Cは本実施形態に係る突出部24の先端部24aの他の例の拡大正面図である。図6は、中心軸Zを含む調心機構20の断面図である。
 図4及び図5Aに示すように、調心機構20は、中心軸Zを中心とする中空の円筒部23と、複数の突出部24とを含む。円筒部23の後端は光ファイバ素線2の入口21であり、円筒部23の前端は光ファイバ素線2の出口22である。円筒部23は、中心軸Zを中心とする内周面23aを含む。内周面23aの直径d6(図6参照)は中心軸Zに沿って一定である。
 突出部24は、中心軸Zに向けて突出すると共に、中心軸Zと平行な方向に延伸する板状部材である。突出部24は、中心軸Z周りの周方向CDに所定の長さの間隙を置いて配置される。なお、突出部24は、中心軸Zに向けて頂点が突出する円錐又は角錐などの錘状に形成されてもよい。この場合、突出部24は、中心軸Zと平行な方向に扁平な(換言すれば引き伸ばされた)形状を有してもよい。
 突出部24は、中心軸Zに面する先端部24aを含む。中心軸Zと直交し且つこれら先端部24aに接する仮想円のうちの最小の仮想円40の直径d4は、光ファイバ素線2の裸光ファイバ4の直径d1以上且つ光ファイバ素線2の外径d2未満である。即ち、この条件を満たすように、突出部24は中心軸Zに向けて突出している。また、中心軸Zに直交する断面において、互いに隣接する2つの先端部24aの間隔は、裸光ファイバ4の直径よりも短くてもよい。この場合、裸光ファイバ4が互いに隣接する2つの突出部24の間に侵入することを防止できる。
 突出部24は、光ファイバ素線2の被覆5よりも固く且つ裸光ファイバ4よりも柔らかい材料によって形成されている。このような材料は例えば、被覆5よりも硬度が高く、且つ、裸光ファイバ4の材料であるガラスよりも硬度が低い合成樹脂である。
 図5Aに示すように、周方向CDに沿った突出部24の先端部24aの幅は一定でもよく、先端部24aから径方向外方に向かうに連れて広がっていてもよい。後者の場合は、前者に比べて、光ファイバ素線2の被覆5に対する局所的な押圧が加えやすくなる。つまり、後者の場合は、後述する被覆5の変形を促しやすい。
 図5Bに示すように、突出部24の先端部24aは、光ファイバ素線2の被覆5を切り込むことが可能な断面形状を有してもよい。即ち、先端部24aは刃或いは楔のような鋭利な先端形状を有してもよい。この場合、被覆5を変形させる光ファイバ素線2の挿入に必要な力を軽減できる。ただし、被覆5の変形が得られる限り、先端部24aの形状は上述の形状に限られない。例えば図5(c)に示すように、先端部24aは丸められていてもよく、その他の形状を有してもよい。
 複数の突出部24は、光ファイバ素線2の挿入によって、光ファイバ素線2の被覆5を中心軸Zに向けて変形させる(換言すれば、変形させることが可能な)形状を有する。このような形状を図6に例示する。図6に示すように、突出部24は、調心機構20の入口21から出口22に向かう方向に延伸している。この延伸方向は中心軸Zと平行でもよく、中心軸Zに対して傾斜していてもよい。更に、突出部24の先端部24aはそれぞれ、調心機構20の入口21から出口22に近づくに連れて、中心軸Zに近づくテーパ部25を含む。
 ところで、本実施形態に係る光ファイバ素線2は通常、裸光ファイバ4の偏心が生じている。一方、光コネクタ10に光ファイバ素線2を装着する場合、最終的には裸光ファイバ4を、フェルール11内の短尺光ファイバ16に突き合わせる必要がある。つまり、裸光ファイバ4をフェルール11の貫通孔11bに挿入できる位置まで誘導する必要がある。この誘導を遂行するために、光コネクタ10は調心機構20を備えている。
 次に、光ファイバ素線2の装着時における調心機構20の作用について説明する。
 図7A~図7Eは、光ファイバ素線2が調心機構20を通過する際の、光ファイバ素線2の位置及び形状の変化を段階的に示す断面図である。各図における左側は中心軸Zを含む断面を示す。また、各図における右側は、中心軸Zに直交する断面を示す。この断面の位置は左側の断面図においてアルファベットを付記した線で示している。また、図7Fは、調心機構20を介して被覆除去部13に挿入された光ファイバ素線2を示す断面図である。
 光ファイバ素線2を光コネクタ10に装着するとき、光ファイバ素線2はコネクタ本体15の後方から、ガイド部14及び調心機構20を介してフェルール11の貫通孔11bまで挿入される。但し、後述の通り、光ファイバ素線2の挿入過程で、被覆5が除去され、フェルール11の貫通孔11bには裸光ファイバ4だけが到達する。
 図7Aは、光ファイバ素線2の先端2aが、調心機構20の入口21に到達した状態を示している。図7Aに示すように、光ファイバ素線2の撓みや重力などにより、光ファイバ素線2の先端2aは、円筒部23の内周面23aに接触していることが多い。
 図7Aに示した状態から光ファイバ素線2の挿入を更に進めると、光ファイバ素線2が前方に移動し、光ファイバ素線2の先端2aが突出部24に接触する(図7B参照)。図7Bの例では、光ファイバ素線2の先端2aが、複数のテーパ部25のうちの1つに接触する。従って、この状態では中心軸Zに直交する方向の光ファイバ素線2の移動が許容されている。よって、光ファイバ素線2の先端2aは前方に移動しつつ、テーパ部25との接触によって中心軸Zに向けて(図7Bでは上方に)移動する。このように、テーパ部25は、光ファイバ素線2を中心軸Zに向けて円滑に誘導する。
 図7Bに示した状態から光ファイバ素線2の挿入を更に進めると、光ファイバ素線2の先端2aが全ての突出部24の先端部24aに接触する(図7C参照)。従って、この状態では被覆5の中心が中心軸Z上に位置することになる。しかしながら、裸光ファイバ4の中心は偏心したままである。
 中心軸Zと直交する方向への円筒部23の移動は、当該円筒部23がコネクタ本体15に収容されているため、規制されている。また、突出部24は被覆5よりも固い。従って、図7Cに示す状態から、光ファイバ素線2が更に前方に押されると、被覆5は、突出部24から中心軸Zに向けて押圧される。一方、周方向CDに沿った突出部24の間は空間である。従って、被覆5のうち突出部24が接触していない部分は径方向外方への変形が許容されている。よって、光ファイバ素線2の先端2aが全ての突出部24に接触した状態で、光ファイバ素線2が前方に押されると、被覆5が変形し始める。具体的には、被覆5のうち突出部24に接触する部分は径方向内方に変形し、被覆5のうち突出部24に接触してない部分は径方向外方に変形する。このとき、突出部24の先端部24aが鋭利に形成されているのであれば、被覆5は先端部24aに切り込まれることになる(図7D参照)。
 光ファイバ素線2の更なる挿入によって被覆5の変形が進むと、突出部24の先端部24aが裸光ファイバ4に接近する(図7D参照)。中心軸Zに直交する裸光ファイバ4の移動は許容されたままであるため、裸光ファイバ4は突出部24の押圧を受け、中心軸Zに向けて移動する(図7D参照)。なお、突出部24は裸光ファイバ4よりも柔らかい。従って、被覆5への切れ込み等で突出部24が裸光ファイバ4に接触しても、裸光ファイバ4は損傷しない。
 上述の通り、突出部24の先端部24aに接する仮想円40の直径d4は、裸光ファイバ4の直径d1以上且つ光ファイバ素線2の外径d2未満である。そしてこの仮想円40は、調心機構20の出口22又はその近傍に位置する。従って、図7Dに示す状態から光ファイバ素線2を更に挿入させると、裸光ファイバ4が仮想円40内の領域に進入しつつ、調心機構20の出口22から露出する(図7E参照)。一方、被覆5も変形した状態で調心機構20の出口22から露出する。
 被覆除去部13に形成された挿通孔13aは、中心軸Z上に位置している。つまり、調心機構20を通過した裸光ファイバ4の先端4aは、挿通孔13aに対向する。よって、光ファイバ素線2を更に挿入させると、裸光ファイバ4が挿通孔13aに進入し、ファイバ固定部12において短尺光ファイバ16と対向する。裸光ファイバ4と短尺光ファイバ16はファイバ固定部12によって挟持される。一方、被覆5は裸光ファイバ4から剥がされ(除去され)、被覆除去部13のテーパ面13bに沿って移動する(図7F参照)。
 このように、本実施形態によれば、裸光ファイバが偏心した光ファイバ素線でも、光コネクタへの装着前に被覆の除去作業を行うことなく容易に光コネクタに装着することができる。つまり、光ファイバ素線の装着作業の負担を軽減することができる。
 次に、本実施形態の幾つかの変形例について説明する。
 図8は、突出部24の配置の変形例を示す図である。図8は、突出部24の先端部24aの位置を周方向CDに展開した図である。図8に示すように、周方向CDに沿った突出部24の個数は、調心機構20の入口21から出口22に向かって減少していてもよい。
 突出部24にテーパ部25が形成されている場合、周方向CDに互いに隣接する2つの先端部24aの間隔は、調心機構20の出口22に近づくほど狭まる。一方、互いに離接する2つの先端部24aの間隔は、裸光ファイバ4の直径程度の値に設定されていれば十分である。調心機構20は例えば金型を用いた成型によって形成される。従って、突出部24の数を減じることによって、突出部24の形成を容易にし、金型の製造コストを下げることができる。
 図9は、調心機構20の変形例を示す斜視図である。図9に示すように、調心機構20の円筒部23は、調心機構20の出口22に近づくに連れて中心軸Zに近づくテーパ状の外周面23bを含んでもよい。この場合、光コネクタ10は、外周面23bが形成する断面と相補的な断面を形成する内周面(図示せず)を含む部材を備える。このような部材は、例えばコネクタ本体15である。但し、被覆除去部13の挿通孔13aに対して調心機構20の位置が適切に位置決めできる限り、上述の内周面が形成される部材は、コネクタ本体15とは別体として設けられる光コネクタ10の構成部材(図示せず)でもよい。
 調心機構20が、外周面23bに対応する内周面を含むコネクタ本体15等に収容されることによって、中心軸Zに対して径方向に沿った調心機構20の位置ずれを抑制することできる。
2 光ファイバ素線(被覆付き光ファイバ)
4 裸光ファイバ
5 被覆
6 コア
7 クラッド
10 光コネクタ
11 フェルール
12 ファイバ固定部
13 被覆除去部
14 ガイド部
15 コネクタ本体
16 短尺光ファイバ
17 台座部
18 蓋部
19 クランプ
20 調心機構
21 入口
22 出口
23 円筒部
24 突出部
24a 先端部
25 テーパ部
40 仮想円

Claims (6)

  1. 光コネクタであって、
     裸光ファイバを覆う被覆を含む光ファイバ素線が挿入される入口とその出口とを含む調心機構を備え、
     前記調心機構は、
     当該調心機構の中心軸周りの周方向に間隙を置いて配置され、前記中心軸に向けて突出する複数の突出部を
    含み、
     前記突出部は、前記光ファイバ素線の前記被覆よりも固く且つ前記裸光ファイバよりも柔らかい材料によって形成され、
     前記突出部は、前記中心軸に面する先端部を含み、
     前記中心軸と直交する平面内で前記先端部に接する仮想円のうちの最小の仮想円の直径は、前記裸光ファイバの直径以上且つ前記光ファイバ素線の外径未満である
    光コネクタ。
  2.  前記突出部は前記調心機構の前記入口から前記出口に向かう方向に延伸し、
     前記突出部の前記先端部はそれぞれ、前記調心機構の前記入口から前記出口に近づくに連れて、前記中心軸に近づくテーパ部を含む、
    請求項1に記載の光コネクタ。
  3.  前記周方向に沿った前記突出部の前記先端部の幅は、前記先端部から径方向外方に向かうに連れて広がっている
    請求項1に記載の光コネクタ。
  4.  前記突出部の前記先端部は、前記光ファイバ素線の前記被覆を切り込むことが可能な断面形状を有する
    請求項3に記載の光コネクタ。
  5.  前記周方向に沿った前記突出部の個数は、前記調心機構の前記入口から前記出口に向かって減少している
    請求項2に記載の光コネクタ。
  6.  前記調心機構は、前記突出部の径方向外方に位置すると共に、前記突出部を支持する円筒部を含み、
     前記円筒部は、前記調心機構の前記出口に近づくに連れて前記中心軸に近づくテーパ状の外周面を含む
    請求項1から5のうちの何れか一項に記載の光コネクタ。
PCT/JP2022/029304 2022-07-29 2022-07-29 光コネクタ WO2024024089A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029304 WO2024024089A1 (ja) 2022-07-29 2022-07-29 光コネクタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029304 WO2024024089A1 (ja) 2022-07-29 2022-07-29 光コネクタ

Publications (1)

Publication Number Publication Date
WO2024024089A1 true WO2024024089A1 (ja) 2024-02-01

Family

ID=89705854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029304 WO2024024089A1 (ja) 2022-07-29 2022-07-29 光コネクタ

Country Status (1)

Country Link
WO (1) WO2024024089A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4925266A (en) * 1988-01-11 1990-05-15 Laszlo Huebscher Optical sleeve or insert apparatus
WO2001029589A1 (fr) * 1999-10-20 2001-04-26 Showa Electric Wire & Cable Co. Ltd Dispositif permettant d'eliminer le revetement d'une fibre optique
JP2011039238A (ja) * 2009-08-10 2011-02-24 Nippon Telegr & Teleph Corp <Ntt> 光ファイバの調心構造及びこれを用いた光コネクタ並びに光ファイバの調心方法
JP2012014159A (ja) * 2010-06-02 2012-01-19 Furukawa Electric Co Ltd:The 光コネクタ及び光ファイバ取付用治具

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4925266A (en) * 1988-01-11 1990-05-15 Laszlo Huebscher Optical sleeve or insert apparatus
WO2001029589A1 (fr) * 1999-10-20 2001-04-26 Showa Electric Wire & Cable Co. Ltd Dispositif permettant d'eliminer le revetement d'une fibre optique
JP2011039238A (ja) * 2009-08-10 2011-02-24 Nippon Telegr & Teleph Corp <Ntt> 光ファイバの調心構造及びこれを用いた光コネクタ並びに光ファイバの調心方法
JP2012014159A (ja) * 2010-06-02 2012-01-19 Furukawa Electric Co Ltd:The 光コネクタ及び光ファイバ取付用治具

Similar Documents

Publication Publication Date Title
US10859771B2 (en) Fiber optic connector
US11086082B2 (en) Ferrule-less fiber optic connector
JP5798177B2 (ja) マルチコア光ファイバケーブルのための単心コネクタ
JP5759183B2 (ja) 光コネクタ及びその組立方法
WO2024024089A1 (ja) 光コネクタ
JP2003307649A (ja) 光コネクタ用フェルール
JP4814122B2 (ja) 光ファイバコネクタ
JP5075562B2 (ja) 多心光コネクタおよびその組み立て方法
WO2022039008A1 (ja) 光ファイバコネクタ部材およびその製造方法
EP3956705B1 (en) Fiber optic connectors with funnel-shaped boots and methods of installing the same
JP4255803B2 (ja) 光コネクタ
JP4141684B2 (ja) コネクタ付き光ファイバコード及びコネクタ付き光ファイバケーブル
CN210666107U (zh) 套圈以及光纤连接器
JP6907866B2 (ja) 光接続構造及び光配線部材
JP2011048157A (ja) フェルール及び多心光コネクタの製造方法
JP4360632B2 (ja) 光ファイバコネクタ。
JP4019788B2 (ja) 光ファイバ位置決めユニット、光ファイバアレイ及び光ファイバアレイ製造方法
JP2022176533A (ja) フェルール、光コネクタ、及びフェルールの製造方法
JP2022176529A (ja) フェルール、光コネクタ、及びフェルールの製造方法
JP2023114160A (ja) バンドルファイバコネクタ
JP2000511298A (ja) コネクタ内の被覆光ファイバのストレインリリーフ用溝付きインサート
JP2005107027A (ja) 光コネクタ付き光ファイバ
JP2003329883A (ja) モードコンディショニングコード
AU2014256343A1 (en) Fiber optic connector
JP2005345840A (ja) Mtコネクタ用ブーツ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953177

Country of ref document: EP

Kind code of ref document: A1