WO2024023872A1 - 電力変換装置 - Google Patents
電力変換装置 Download PDFInfo
- Publication number
- WO2024023872A1 WO2024023872A1 PCT/JP2022/028570 JP2022028570W WO2024023872A1 WO 2024023872 A1 WO2024023872 A1 WO 2024023872A1 JP 2022028570 W JP2022028570 W JP 2022028570W WO 2024023872 A1 WO2024023872 A1 WO 2024023872A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switching
- level
- switching element
- level operation
- conversion device
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 76
- 239000003990 capacitor Substances 0.000 claims abstract description 53
- 230000008859 change Effects 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 11
- 238000010586 diagram Methods 0.000 description 27
- 230000009467 reduction Effects 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000006872 improvement Effects 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000007257 malfunction Effects 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/487—Neutral point clamped inverters
Definitions
- This application relates to a power conversion device.
- the power converter includes first and second DC power supplies connected in series and a power converter that converts the DC power of each of the DC power supplies into AC power, and the power converter includes at least two switching devices each made of a semiconductor element.
- the elements are connected in series to form one arm, and at least three arms are connected in parallel, and a semiconductor element and a semiconductor
- the power converter can be operated in three-level operation or There is a power conversion device that enables two-level operation (see Patent Document 1 below).
- the power supply voltage is applied to the series-connected switching elements, but during 3-level operation, a voltage that is half the power supply voltage is applied to the series-connected switching elements. applied.
- the gate resistance value in the off state is optimally adjusted within a range where the surge voltage generated during switching is below the allowable surge voltage of the switching element, and then the gate resistance value is changed to 2-level operation.
- the voltage applied to the series-connected switching elements becomes twice as high as when operating at three levels. As a result, there is a concern that the surge voltage generated during switching exceeds the allowable surge voltage of the switching element, and the switching element may malfunction.
- the present application discloses a technology for solving the above-mentioned problems, and in a power converter device capable of switching between operation levels of 2-level operation and 3-level operation, failure of the switching element occurs even when switching the operation level.
- the purpose of the present invention is to provide a power conversion device that does not have such concerns.
- the power conversion device disclosed in this application includes: a capacitor series circuit having a plurality of capacitors connected in series, both ends of which are connected to both ends of a DC voltage source; an inverter circuit in which a plurality of legs in which a plurality of switching elements are connected in series are connected in parallel, a DC input terminal is connected to both ends of the capacitor series circuit, and an AC output terminal is connected to a load; a switch circuit having a plurality of switching elements, one end connected to a plurality of connection points of the plurality of capacitors, and the other end connected to a plurality of connection points of the switching elements of the inverter circuit; a control circuit that controls the inverter circuit and the switch circuit,
- the inverter circuit is capable of two-level operation by turning off the switching element included in the switch circuit, and is capable of three-level operation by turning on and off the switching element included in the switch circuit,
- the control circuit changes the switching speed of the switching elements of the inverter circuit and the switch circuit when switching the operation level between the 2-level
- the power conversion device disclosed in the present application it is possible to realize a power conversion device in which there is no fear of failure of switching elements even when switching operation levels.
- FIG. 1 is a configuration diagram showing a power conversion device according to Embodiment 1.
- FIG. FIG. 3 is a configuration diagram showing a gate input section of the power conversion device according to the first embodiment.
- FIG. 3 is a diagram showing load current and switching voltage during 2-level operation and 3-level operation.
- FIG. 2 is a schematic diagram showing the breakdown of loss of the power conversion device during 2-level operation and 3-level operation.
- FIG. 3 is a diagram showing time-series data of a WLTC mode driving pattern.
- FIG. 3 is a schematic diagram showing the relationship between the current value for level operation switching and the loss during WLTC mode running.
- FIG. 2 is a schematic diagram showing the relationship between the current value for level operation switching and the volume of the power conversion device.
- FIG. 3 is an operational conceptual diagram showing characteristics of control of the power conversion device according to the first embodiment.
- FIG. 3 is a diagram showing a specific control flowchart of the power conversion device according to the first embodiment.
- FIG. 3 is a diagram showing a specific control flowchart of the power conversion device according to the first embodiment.
- FIG. 3 is a diagram showing a specific control flowchart of the power conversion device according to the first embodiment.
- FIG. 2 is a schematic diagram showing switching of operation levels according to the motor operating point according to Embodiment 1, and is a diagram mapping the relationship between 2-level operation, 3-level operation, and carrier frequency to the rotation speed and torque characteristics of the motor.
- FIG. 2 is a diagram showing the configuration of a power conversion device other than that shown in FIG. 1 according to the first embodiment.
- FIG. 7 is an operational conceptual diagram showing characteristics of control of the power conversion device according to Embodiment 2.
- FIG. 3 is a diagram showing the configuration of a buffer circuit of a gate input section of the power converter device according to the first embodiment.
- FIG. 2 is a diagram showing a hardware configuration of a control circuit of a power conversion device according to Embodiments 1 and 2.
- FIG. 1 is a configuration diagram showing a power conversion device according to Embodiment 1.
- the power conversion device shown in FIG. 1 is connected between a DC voltage source 1 and a motor 7 as a load, and converts DC power from the DC voltage source 1 into AC power and supplies it to the motor (load) 7.
- the motor (load) 7 is operated by outputting the signal.
- the power conversion device includes a capacitor series circuit 2 in which a plurality of capacitors 2a and 2b are connected in series, an inverter circuit 3 having a plurality of switching elements 3a, 3b, 3c, 3d, 3e, and 3f, and a plurality of switching elements 4a.
- 4b, 4c, 4d, 4e, 4f gate input portions 5a, 5b, 5c, 5d, 5e, 5f of switching elements 3a, 3b, 3c, 3d, 3e, 3f, and switching element 4a.
- 4b, 4c, 4d, 4e, and 4f and a control circuit 8 that controls the inverter circuit 3 and the switch circuit 4.
- a three-phase inverter device is shown as an example of the power conversion device, but it does not necessarily have to be a three-phase inverter device, and may be a single-phase or four-phase or more inverter device.
- the motor 7 is shown as an example of the load, other load devices may be used.
- the capacitor 2a and the capacitor 2b are connected in series with each other to form a capacitor series circuit 2.
- the connection point between capacitor 2a and capacitor 2b will be described as a first connection point.
- Both ends of the capacitor series circuit 2 are connected to both ends of the DC voltage source 1 and to a DC input terminal of an inverter circuit 3, which will be described later.
- the capacitor series circuit 2 is shown here with two capacitors connected in series, the present invention is not limited to this, and three or more capacitors may be connected.
- the inverter circuit 3 has a configuration in which three legs each consisting of two switching elements connected in series are connected in parallel, and both ends of each leg are connected to both ends of the capacitor series circuit 2 and to both ends of the DC voltage source 1. has been done.
- the arm of the switching element 3a and the arm of the switching element 3b are connected in series to form a U-phase leg
- the arm of the switching element 3c and the arm of the switching element 3d are connected in series to form a V phase leg.
- the arm of the switching element 3e and the arm of the switching element 3f are connected in series to constitute a W-phase leg.
- connection points of switching elements 3a and 3b, switching elements 3c and 3d, and switching elements 3e and 3f will be described as second, third, and fourth connection points, respectively.
- the second, third, and fourth connection points become AC output ends of the inverter circuit 3.
- a motor 7 as a load is connected to the second, third, and fourth connection points, and the inverter circuit 3 supplies AC power to the motor 7 via the second, third, and fourth connection points.
- the switching element 3A to 3F used for the inverter circuit 3 is made of MOSFET (METAL OXIDE SEMICONDUCTOR FIELD FIELD FIELD FIELD EFFECT TRANSISISTOR), which has a reverse parallel diode between source and drain, but MOSFET is Si. Both C or Si are applied Furthermore, a diode built into the MOSFET may be used as the anti-parallel diode, or a separate diode may be provided externally. Further, an IGBT (Insulated Gate Bipolar Transistor) or a GaN-HEMT (Gallium Nitride-High Mobility Transistor) in which diodes are connected in antiparallel may be used.
- MOSFET METAL OXIDE SEMICONDUCTOR FIELD FIELD FIELD FIELD FIELD EFFECT TRANSISISTOR
- MOSFET is Si. Both C or Si are applied
- a diode built into the MOSFET may be used as the anti-parallel diode,
- the switch circuit 4 includes a plurality of switching elements 4a to 4f, and by controlling these switching elements 4a to 4f, it is possible to switch between two-level operation and three-level operation, which will be described later.
- the switch circuit 4 shown in FIG. 1 is provided between the second to fourth connection points of the inverter circuit 3 and the first connection points of the capacitors 2a and 2b, and has an anti-parallel diode between the source and drain.
- a MOSFET Metal Oxide Semiconductor Field Effect Transistor
- SiC or Si can be used as the MOSFET, and a diode built into the MOSFET may be used as the anti-parallel diode, or a separate external diode may be provided.
- an IGBT Insulated Gate Bipolar Transistor
- GaN-HEMT GaN-HEMT
- a switching element 4a and a switching element 4b, a switching element 4c and a switching element 4d, and a switching element 4e and a switching element 4f are connected in series in opposite directions. Further, the source terminals of the switching elements 4a, 4c, and 4e are connected to the first connection point of the capacitor series circuit 2, and the source terminals of the switching elements 4b, 4d, and 4f are connected to the second to fourth connection points, respectively. It is connected.
- the switching elements 4a and 4b, the switching elements 4c and 4d, and the switching elements 4e and 4f are connected in series in opposite directions, their drain terminals are connected to each other.
- the switch circuit 4 With the configuration of the switch circuit 4 as described above, by turning on the switching element 4a, current can flow from the second connection point to the first connection point, and by turning on the switching element 4b, the current can flow from the second connection point to the first connection point. , current is allowed to flow from the first connection point to the second connection point. Furthermore, by turning on the switching element 4c, current can flow from the third connection point to the first connection point, and by turning on the switching element 4d, a current can flow from the first connection point to the third connection point. current can flow to the connection point. Furthermore, by turning on the switching element 4e, current can flow from the fourth connection point to the first connection point, and by turning on the switching element 4f, a current can flow from the first connection point to the fourth connection point. current can flow to the connection point. Note that the switch circuit 4 is not limited to the configuration shown in FIG. 1, as long as it can control the direction in which the current flows by turning one switching element on or off.
- the gate input sections 5a to 5f turn on and off the switching elements 3a to 3f of the inverter circuit 3 based on a PWM (Pulse Width Modulation) signal output from the control circuit 8, and also input a gate resistance selection signal (Rg selection signal). ), the off-state gate resistance value Rgoff of each switching element 3a to 3f of the inverter circuit 3 is set.
- the gate input sections 6a to 6f turn on and off the switching elements 4a to 4f of the switch circuit 4 based on the PWM signal output from the control circuit 8, and also turn on and off the switching elements 4a to 4f of the switch circuit 4 based on the gate resistance selection signal (Rg selection signal).
- the gate resistance value Rgoff of each switching element 4a to 4f of the circuit 4 when it is off is set.
- FIG. 2 is a configuration diagram showing a gate input section of the power conversion device according to the first embodiment.
- FIG. 2 shows a configuration diagram focusing in particular on the connection relationship between the gate input section 5a and the control circuit 8 corresponding to the switching element 3a.
- the PWM signal P5a output from the control circuit 8 to the gate input section 5a is input to a totem-pole buffer circuit 11 composed of, for example, a PNP transistor and an NPN transistor.
- a current flows from the on-state power source 12 to the switching element 3a via the buffer circuit 11 through the gate resistor Rgon when on, thereby turning on the switching element 3a.
- the PWM signal P5a when the PWM signal P5a is off, a current is caused to flow from the switching element 3a to the off power supply 15 via the gate resistance switching circuit 10 according to the off-state gate resistance value Rgoff, and the switching element 3a is turned off.
- the element 3a is turned on and off.
- the PWM signals P5b, P5c, P5d, P5e, P5f, PWM signals P6a, P6b, P6c, P6d, P6e, P6f output from the control circuit 8 to the gate input sections 5b to 5f and the gate input sections 4a to 4f Also performs the same function as described above, and performs on/off operations of switching elements 3b to 3f and switching elements 4a to 4f.
- the Rg selection signal R5a output from the control circuit 8 performs a switching operation of the switches SW2, SW3, SW4, and SW5 in order to adjust the gate resistance value Rgoff of the gate resistance switching circuit 10. That is, the Rg selection signal R5a is a signal that time-divisionally expresses whether each of the switches SW2, SW3, SW4, and SW5 is to be turned on or off, and this signal is sent to the gate resistance determining section 9.
- the gate resistance determining unit 9 divides the signals into on/off signals for the switches SW2 to SW5 and inputs them to each switch SW2 to SW5, thereby turning on and off the switches SW2 to SW5 in an arbitrary combination.
- the gate resistance switching circuit 10 adjusts the gate resistance value Rgoff when the switching element 3a is turned off to the combined resistance value of the resistance Rg1 and the resistance value when the resistances Rg2, Rg3, Rg4, and Rg5 are turned on. .
- Rg selection signals R5a, R5b, R5c, R5d, R5e, R5f, R6a, R6b, R6c, R6d, R6e, and R6f are of one type ( common).
- Vdc/2 the voltage of the voltage (Vdc) of the DC voltage source 1
- the gate resistance values of the gate input parts 6a to 6f of the switching elements 4a to 4f when the gates are off are set to the gate resistance values of the gate input parts 5a to 5f of the switching elements 3a to 3f when the gates are turned off. It is conceivable to set it smaller than the resistance value. In this case, specifically, in FIG.
- gate input parts 5a to This can be realized by changing the respective resistance values of the resistors Rg1 to Rg5 of the gate input section 5f and the resistors Rg1 to Rg5 of the gate input sections 6a to 6f.
- the motor 7 is connected to the AC output terminal of the inverter circuit 3 and is operated by AC power output from the inverter circuit 3.
- the motor 7 may be of any type, and a control device (not shown in FIG. 1) calculates a torque command and a rotation speed command, and a control circuit 8 controls the power converter based on the torque command and rotation speed command.
- the motor 7 is driven and controlled by controlling the switching elements 3a to 3f and the switching elements 4a to 4f.
- the control circuit 8 may also serve as the control device that generates the torque command and the rotation speed command.
- the control circuit 8 controls the switching elements 3a to 3f of the inverter circuit 3 and the switching elements 4a to 4f of the switch circuit 4. That is, the AC power output to the motor 7 is controlled based on the operating state information of the power converter including the inverter circuit 3 and the switch circuit 4, the operating state information of the motor 7, and the command value information for the power converter and the motor 7. I do.
- the voltage of the DC voltage source 1 the voltage and current of the capacitors 2a and 2b, and the temperature of the inverter circuit 3 and the switch circuit 4 are input, and from the motor 7, the phase current of the motor 7, information on the rotational position, torque command and rotation
- the inverter circuit 3 and the switch circuit 4 are controlled based on this information.
- control circuit 8 controls the carrier frequency of the inverter circuit 3, 2-level operation, 3-level operation,
- the operation state of the level operation and the selection of the gate resistance value Rgoff of the gate resistance switching circuit 10 are appropriately set while applying an operation map defined on the NT characteristics of the motor 7, for example. Details will be described later.
- FIGS. 3A and 3B show schematic diagrams of one-phase motor current when the power conversion device is operated at two levels and when it is operated at three levels.
- the two-level operation in the power conversion device shown in this embodiment is achieved by turning off the switching elements 4a to 4f of the switch circuit 4 in FIG.
- a positive voltage value and a negative voltage value which is the total voltage of capacitors 2a and 2b, can be output to the motor 7.
- three-phase sinusoidal voltages can be applied to the motor 7.
- the two-level operation is the operation of a general three-phase inverter device, and detailed explanation will be omitted.
- switching element 4a blocks the reverse current, so switching elements 4a and 4b have current flowing through them. does not flow, and the current flowing to the motor 7 increases due to the voltage across the series-connected capacitors 2a and 2b.
- switching element 4b when reducing the current to the motor 7, the operation is performed in the reverse order as described above, with the switching element 4b kept on, switching elements 3a, 3b, and switching element 4a are turned off, and the voltage of the capacitor 2b is applied to the motor 7. The current is passed through the switch, the current is reduced, and finally all switching elements are turned off.
- FIG. 4 shows a schematic diagram of the loss details of the power conversion device during two-level operation and three-level operation.
- the switching elements 4a and 4b, the switching elements 4c and 4d, and the switching elements 4e and 4f connected in series are referred to as each arm of the switch circuit 4.
- Each arm of the switch circuit 4 (for example, an arm of switching elements 4a and 4b) is composed of two switching elements connected in series, so when current flows through the switch circuit 4, the switching element (for example, the switching element 4a) that is turned on is Since conduction loss and conduction loss of the diode connected in antiparallel to the other switching element (for example, switching element 4b) occur, the conduction loss of the power converter is the same as that of the three-level operation using the switch circuit 4. is larger.
- the voltage applied to the inverter circuit 3 is halved, so switching loss and recovery loss are significantly reduced, and the total loss of the power converter is reduced. Decrease.
- a power converter capable of three-level operation requires the addition of a switch circuit 4 and an increase in capacitor capacity (connecting two capacitors 2a and 2b in series), resulting in an increase in the volume of the power converter.
- 2-level operation and 3-level operation are Switch accordingly. That is, 3-level operation is used below a frequently used current threshold, and 2-level operation is used in a larger current region. As a result, only a current below a specified current threshold is allowed to flow through the switch circuit 4, so the size of the switching elements 4a to 4f, which is generally determined based on the amount of current, can be reduced, and a significant increase in volume of the power conversion device can be suppressed. .
- the amount of loss when applied to electric vehicles is measured using the international test method WLTC (Worldwide-harmonized Light Vehicles Test Cycle) mode (city mode, suburban mode, expressway mode) on average. It is expressed as the fuel efficiency in the mode (configured by usage time allocation). Most of the time specified in the WLTC mode is used in an area that is sufficiently small relative to the performance limit torque of the motor. In other words, in order to maximize the WLTC mode fuel efficiency (loss) by minimizing the volume increase of the power converter, it is necessary to perform 3-level operation only below the current region that occupies the majority of the time specified in the WLTC mode. to switch the level behavior.
- WLTC Worldwide-harmonized Light Vehicles Test Cycle
- FIG. 5 is a diagram showing time-series data in which the vertical axis of the WLTC mode driving pattern is replaced with the current value for convenience and the horizontal axis is the time.
- minimum value, A value, B value, and maximum value are shown as current values for switching level operation.
- FIG. 6 shows an example of the total loss when the WLTC mode run is completed when the current value for level operation switching is changed to the entire range, A value, and B value in FIG. 5.
- FIG. 7 shows an example of the volume of the power conversion device when the current value for level operation switching is changed to the entire range, A value, and B value in FIG. 5.
- condition 1 is a case where two-level operation is performed in all current regions, and although the loss of the power converter shown in FIG. 6 is large, since the switch circuit 4 is not required, the power converter shown in FIG. The power converter has a small volume.
- Condition 2 is to perform 3-level operation in the current range from 0 value to A value (A value is the upper limit value of current that occupies most of the time in the WLTC mode driving pattern, and is a value larger than 0 value), and the current This is a case where 2-level operation is performed in the region where A value or more, and 3-level operation is performed in the majority of the time for condition 1, so the loss of the power converter shown in FIG. 6 is greatly improved, and the switch circuit 4 Due to the addition, the volume of the power converter shown in FIG.
- Condition 3 is a case where 3-level operation is performed in the area where the current is from 0 value to B value (A ⁇ B), and 2-level operation is performed in the area where the current is equal to or higher than the B value, and 3-level operation is performed for condition 2. Since the time for performing the switching does not change significantly, the loss of the power converter shown in FIG. As a result, the volume of the power conversion device shown in FIG. 7 increases.
- Condition 4 is a case where 3-level operation is performed in all current regions, and the loss improvement effect of the power converter shown in FIG. 6 is the greatest, but the loss improvement is only slight compared to Condition 2. On the other hand, since the maximum current corresponding to the maximum torque of the motor 7 flows through the switch circuit 4, the volume of the power converter shown in FIG. 7 increases to the maximum extent by increasing the size of the switch circuit 4.
- the current threshold value for switching the level operation is set to the A value, for example, as in condition 2.
- the upper limit current value (level switching threshold) for three-level operation may be determined depending on the volume of the switching element of the switch circuit 4.
- the control circuit 8 performs switching between the two-level operation and the three-level operation based on the predetermined current value as described above.
- the rotation of the motor can be calculated.
- the threshold value for switching the operation level is determined on the rotation speed-torque map (NT map) showing the speed and torque characteristics. Any method can be used to estimate the loss, but for example, it can be calculated based on the torque command or rotation speed command during 2-level operation and 3-level operation (so that the surge voltage is the same at each operation level).
- a mathematical formula may be used to calculate the loss of the inverter circuit (selecting the gate resistance value Rgoff at the off time), or an operation table prepared in advance based on actual measurement data or the like may be used.
- Inverter losses during two-level operation and three-level operation can be calculated from switching loss (single pulse) data for each resistance value Rgoff and the detected voltage of the DC voltage source.
- the switch circuit 4 has a volume (size) corresponding to the maximum current according to the motor specifications, and focusing only on loss reduction, the control circuit 8 has a volume (size) that corresponds to the maximum current according to the motor specifications, and the control circuit 8 has Based on the total loss of the inverter circuit 3, the level operation may be switched such that the one with the smaller total loss between the two-level operation and the three-level operation is selected at any time.
- the maximum surge voltage within the cycle is detected, and the maximum surge voltage is determined based on design factors such as switching element breakdown voltage, variation, and voltage detection accuracy.
- the range (VY to VX) between the determined allowable surge upper limit voltage VY and the allowable surge lower limit voltage VX which is set as a constant maximum surge voltage target range from the allowable surge upper limit voltage VY. If the maximum surge voltage is within the range from the allowable surge lower limit voltage VX to the allowable surge upper limit voltage VY, it is determined that the optimal off-state gate resistance value Rgoff has been selected, and the off-state gate resistance value Rgoff is not changed. .
- the switching speed is set to be one step faster. do.
- the gate resistance value Rgoff when turned off should be increased by one step because it exceeds the allowable surge upper limit voltage VY and there is a concern that the switching element may fail. That is, the switching speed is set to one step slower.
- the gate resistance value Rgoff during off-time may be set to the maximum value in the settable range instead of changing by one step.
- the determination whether the maximum surge voltage is not higher than the allowable surge upper limit voltage VY is made not every fundamental wave cycle of the AC output, but within a control loop with a shorter cycle than that. It may also be carried out.
- the setting of the gate resistance Rgoff during off-time can be realized by the circuit shown in FIG. 2 as described above.
- the gate resistance value Rgoff when off is changed in one step at a time, for example, if the maximum surge voltage is significantly smaller than the allowable surge lower limit voltage VX, it may be changed in two steps depending on the amount of deviation. Alternatively, it may be changed in three stages.
- the off-state gate resistance value Rgoff may be calculated and set based on the switching speed (di/dt) and switching element characteristics required from the relationship between the input voltage or the load operating point.
- changing the switching speed to minimize switching loss as described above is not limited to changing the gate resistance value Rgoff when off, but can also be achieved by changing the gate voltage, changing the buffer capacity (current supply amount), etc. It's okay.
- the variable configuration of the off-power source 15 includes, for example, a method in which a desired power source voltage is selected from a plurality of different power source voltages using a switch based on command information from the control circuit 8.
- the buffer circuit 11 is configured with multiple stages of buffer circuits 11a, 11b, 11c, . . . , 11N, and the switches SW1, SW2,
- the configuration is such that switch a or switch b of SW3, . . . is turned on and off.
- the number of stages of the buffer circuit can be switched to a desired number by turning on/off the switch a or switch b described above. For example, in the case of FIG.
- an A/D converter installed in a microcomputer or the like may be used, and high-speed sampling and a sample hold function may be used.
- a separately provided control capacitor is charged with a control voltage corresponding to the voltage detected from the capacitors 2a and 2b in an analog manner (discharged after being used for detecting the maximum surge voltage and determining gate resistance value Rgoff selection). You can also ask for it.
- the determination timing for calculating the maximum surge voltage for one cycle may be determined based on the phase of the phase current or the detected current value.
- the switching speed is increased (gate gate When switching to two-level operation in a state where the resistance value Rgoff is set to a small value, the voltage applied to the switching element doubles. Therefore, there is a concern that the maximum surge voltage generated across the switching element may exceed the allowable surge upper limit voltage VY, and the switching element may fail. Therefore, in this embodiment, by changing the off-state gate resistance value to a large value before switching from 3-level operation to 2-level operation, the surge voltage generated across the switching element is suppressed, and the switching element due to the surge voltage is suppressed. It is characterized by minimizing the loss of the power converter while preventing the failure of the power converter.
- FIG. 8 is an operational conceptual diagram showing the characteristics of control of the power conversion device of this embodiment. Based on FIG. 8, an operation for realizing switching of the operating level of the power conversion device and switching of the gate resistance value Rgoff during off-time will be described. In this embodiment, the operation level and the gate resistance value Rgoff are switched at control intervals of the fundamental wave period of the output current of the power conversion device.
- A1 in FIG. 8 shows the U-phase current Iu of the inverter circuit 3, and the operation level and gate resistance value Rgoff are switched in the peak region of the U-phase current Iu. Note that although FIG.
- A2 in FIG. 8 is a diagram for explaining switching between 3-level operation and 2-level operation.
- the level switching threshold when switching from 3-level operation to 2-level operation is Lvth3-2
- the level switching threshold when switching from 2-level operation to 3-level operation is Lvth2-3.
- 3-level operation is currently being performed, and the power conversion device is switched from 3-level operation to 2-level operation based on the comparison between the current command value Iu (rms)* and the level switching threshold Lvth3-2. represents the case.
- the operation level of the power converter is changed from 3-level operation to 2-level operation.
- the off-state gate resistance value Rgoff is changed from a small value to a large value.
- a relatively small off-state gate resistance value (Rgoff16 in Figure 8) was selected, which was adjusted so that the maximum surge voltage was approximately the allowable surge voltage during 3-level operation, the switch was changed to 2-level operation.
- the thin solid line A5 in FIG. 8 indicates the voltage (instantaneous value) Va between the switching elements 3a
- the thick solid line indicates the voltage maximum value (arm (maximum value of voltage between
- the thin solid line A6 in FIG. 8 indicates the voltage (instantaneous value) Vb between the switching elements 3b
- the thick solid line indicates the voltage maximum value (arm (maximum value of the voltage between
- the arm-to-arm voltage maximum values Vmaxa and Vmaxb can be set, for example, by using software in the control circuit 8 to hold the maximum values of the voltages (instantaneous values) Va and Vb, or by using a capacitor (hardware) to hold the maximum values of the voltages (instantaneous values) Va and Vb.
- the judgment of switching the operation level has been carried out based on the current command value Iu (rms)*, but instead of the current command value Iu (rms)*, it is determined based on the motor rotation speed or required torque.
- judgment criteria calculated from a table prepared in advance may be used.
- it may be determined based on loss calculation results during 2-level operation and 3-level operation depending on the rotational speed or torque of the motor.
- each level switching threshold is set as (level switching threshold Lvth3-2)>(level switching threshold Lvth2-3).
- the current lower than the level switching threshold as 3-level operation, and the current higher than the level switching threshold as 2-level operation.
- a current lower than the level switching threshold may be set as 2-level operation, and a current higher than the level switching threshold may be set as 3-level operation.
- FIG. 10 and FIG. 11 show examples of specific control flowcharts of the power conversion device of this embodiment, and will be described below. Note that this explanation is given as an example of control of a power converter that can switch between 2-level operation and 3-level operation in two stages, and this control flowchart is based on the fundamental wave period of the AC output of the power converter. This will be carried out every year.
- step S1 when the control flow is executed by START, it is determined in step S1 whether the current operation level is a 2-level operation or a 3-level operation based on the above-mentioned operation conditions. Furthermore, in step S1, the maximum value of the surge voltage within the fundamental wave period of the AC output is detected. That is, the arm voltage maximum values Vmaxa and Vmaxb shown by thick solid lines in A5 and A6 in FIG. 8 are detected. In step S2, in order to confirm whether it is the timing to change the operation level from level 3 operation to level 2 operation, it is first determined whether the previous operation level was level 3 operation, and the previous operation level is set to level 3 operation. If (YES), step S3 is executed, and if the previous operation level is 2-level operation (NO), step S4 of FIG. 11 is executed.
- step S4 of FIG. 11 since the previous operation level is a 2-level operation, there is no concern that the surge voltage when changing the operation level will exceed the allowable surge upper limit voltage VY, and optimization control of the gate resistance value at the off time is performed. continue. That is, in step S4, it is checked whether the maximum surge voltage is within the range from the allowable surge lower limit voltage VX to the allowable surge upper limit voltage VY, and if it is within the range from the allowable surge lower limit voltage VX to the allowable surge upper limit voltage VY. If (YES), the optimum off-time gate resistance value Rgoff has been selected, the current off-time gate resistance value Rgoff is maintained (step S19), and the operation is performed at the current operation level determined in step S1. (Step S20), this cycle ends.
- step S4 determines whether the surge voltage maximum value is less than the allowable surge lower limit voltage VX. Determine whether it is higher than the surge upper limit voltage VY. That is, in step S21, it is checked whether the maximum surge voltage value is less than the allowable surge lower limit voltage VX, and if the maximum surge voltage value is less than the allowable surge lower limit voltage VX (YES), it is determined that there is room for further loss improvement. Then, the off-state gate resistance value Rgoff is reduced.
- step S22 it is checked whether the current off-state gate resistance value Rgoff has been set to the minimum value. If the off-state gate resistance value Rgoff is not the minimum in step S22 (YES), the off-state gate resistance value Rgoff is decreased by one step (step S23), and the operation is performed at the current operation level determined in step S1 (step S20), this cycle ends.
- the off-state gate resistance value Rgoff is the minimum value (NO)
- the off-state gate resistance value Rgoff cannot be made any smaller, so it is set to the same minimum value as the current value (step S24);
- the device is operated at the current operation level determined in step S1 (step S20), and this cycle ends.
- step S21 If NO in step S21, the maximum surge voltage value becomes larger than the allowable surge upper limit voltage VY, and there is a concern that the switching element may fail, so the off-state gate resistance value Rgoff is set large. However, if the off-time gate resistance value Rgoff has already been set to the maximum value, it cannot be further maximized, so in step S25 it is checked whether the current off-time gate resistance value Rgoff has not been set to the maximum value. If the off-state gate resistance value Rgoff is not the maximum in step S25 (YES), the off-state gate resistance value Rgoff is increased by one step (step S26), and the operation is performed at the current operation level determined in step S1 (step S20), this cycle ends.
- step S25 if the off-state gate resistance value Rgoff is the maximum (NO) in step S25, the off-state gate resistance value Rgoff cannot be increased any further, so it is set to the same maximum value as the current value (step S27), and the step It is operated at the current operation level determined in S1 (step S20), and this cycle ends.
- the gate resistance value Rgoff when turned off is already at its maximum value and exceeds the allowable surge upper limit voltage VY, in order to prevent switching element failure, it is necessary to transmit this state to the host system or output Measures such as reducing the power (current) may also be taken.
- step S3 since the previous operation level is 3-level operation (step S2), in order to check whether it is the timing to change from 3-level operation to 2-level operation, It is necessary to confirm whether the current operation level is a 2-level operation. That is, if the current operation level is the 2nd level operation in step S3 (YES), step S5 is executed, and if the current operation level is the 3rd level operation (NO), step S9 in FIG. 10 is executed.
- step S9 of FIG. 10 since both the previous operation level and the current operation level are three-level operations, there is no concern that the switching element will fail due to surge voltage when switching the operation level, and the gate resistance value at the off time is optimal.
- step S9 it is checked whether the maximum surge voltage is within the range from the allowable surge lower limit voltage VX to the allowable surge upper limit voltage VY, and if it is within the range from the allowable surge lower limit voltage VX to the allowable surge upper limit voltage VY. If (YES), the optimum off-time gate resistance value Rgoff has been selected, the current off-time gate resistance value Rgoff is maintained (step S10), and the 3-level operation is performed again this time as determined in step S1. (step S11), and this cycle ends.
- step S12 it is determined whether the surge voltage maximum value is less than the allowable surge lower limit voltage VX. , it is determined whether the surge voltage is larger than the allowable surge upper limit voltage VY. That is, in step S12, it is confirmed whether the maximum surge voltage value is less than the allowable surge lower limit voltage VX, and if the maximum surge voltage value is less than the allowable surge lower limit voltage VX (YES), it is determined that there is room for further loss improvement. Then, the off-state gate resistance value Rgoff is reduced. However, if the off-state gate resistance value Rgoff has already been set to the minimum value, further minimization is not possible, so in step S13 it is checked whether the current off-state gate resistance value Rgoff has not been set to the minimum value.
- step S13 If the off-time gate resistance value Rgoff is not the minimum (YES) in step S13, the off-time gate resistance value Rgoff is decreased by one step (step S14), the 3-level operation is continued (step S11), and this cycle ends. becomes.
- step S13 the off-state gate resistance value Rgoff is the minimum value in step S13 (NO)
- the gate resistance value Rgoff cannot be made any smaller, so it is set to the same minimum value as the current value (step S15), and 3-level operation is performed. continues (step S11), and this cycle ends.
- step S12 if the maximum surge voltage value is larger than the allowable surge upper limit voltage VY (NO), there is a concern that the switching element may fail, so the off-state gate resistance value Rgoff is set large. However, if the off-state gate resistance value Rgoff has already been set to the maximum value, it cannot be further maximized, so in step S16 it is checked whether the current off-state gate resistance value Rgoff has not been set to the maximum value. If the off-state gate resistance value Rgoff is not the maximum value in step S16 (YES), the off-state gate resistance value Rgoff is increased by one step (step S17), and the 3-level operation is continued (step S11). It ends.
- the off-state gate resistance value Rgoff is the maximum value (NO)
- the off-state gate resistance value Rgoff cannot be increased any further, so it is set to the same maximum value as the current value (step S18);
- the device is operated at the current operation level determined in step S1 (step S11), and this cycle ends.
- the gate resistance value Rgoff when off is already at its maximum value and exceeds the allowable surge upper limit voltage VY, in order to prevent switching element failure, it is necessary to transmit this state to the host system or , measures such as reducing the output power (current) may be taken.
- step S5 the previous operation level is 3-level operation (YES in step S2), and the current operation level is 2-level operation (YES in step S3), so it is optimal for 3-level operation. If two-level operation is performed using the adjusted gate resistance value Rgoff, there is a concern that an excessive surge voltage will be generated across the switching element. Therefore, in step S5, the off-state gate resistance value Rgoff is set to the maximum value.
- step S6 considering the switching speed of the switch SW of the gate resistance switching circuit 10, the process waits until a sufficient time (for example, 1 us) has elapsed to complete the switching, and then the process moves to step S7.
- a sufficient time for example, 1 us
- step S7 the switching speed at the previous switching off is compared with the switching speed at the current switching off after maximizing the gate resistance value Rgoff, and it is confirmed whether the switching speed has become slower than a certain level.
- step S7 if the switching speed becomes slower than a certain level (YES), it is determined that the change of the gate resistance value Rgoff to the maximum value is completed, and the process moves to step S8 to execute switching to two-level operation. .
- step S7 if the switching speed does not become slower than a certain level (NO), it is determined that the gate resistance value Rgoff has not been changed to the maximum value, and the process in step S6 is continued until the gate resistance value Rgoff shifts to the maximum value. After a certain delay, the determination in step S7 is continued. Note that if the off-state gate resistance value Rgoff is already the maximum during the previous switching, the gate resistance value Rgoff cannot be increased any further, so the process moves to step S8 without comparing the off-state switching speeds. Switch to level operation.
- step S7 the completion of switching of the gate resistance value Rgoff at the time of off is determined by the change in the switching speed at the time of off, but other methods may also be used, and it can be determined that the gate resistance value Rgoff has been reliably switched. It would be good if you could confirm. For example, after receiving a command to change the switching speed, the slope of the gate voltage applied to the gate terminal of the switching element has changed by more than a certain level, or the gate current of the switching element has changed by more than a certain level, or both ends or multiple terminals of the switching element have changed. Reliable switching may be determined based on the fact that the maximum value of the surge voltage generated across the capacitor has changed by a certain amount or more.
- control circuit 8 switches between 2-level operation and 3-level operation and also switches the gate resistance value at the off time so as to minimize the loss of the power conversion device.
- the gate resistance value at the off time may be switched so that the total loss including the power converter and the motor is minimized.
- control may be performed to change the carrier frequency that controls the operation of the inverter circuit.
- the carrier frequency during the 3-level operation may be set to be lower than the carrier frequency during the 2-level operation. That is, when the carrier frequency during 2-level operation is fx_2lv and the carrier frequency during 3-level operation is fx_3lv, the carrier frequency is set so that fx_2lv ⁇ fx_3lv is satisfied.
- FIG. 12 schematically maps the 2-level operation, 3-level operation, and carrier frequency of the power converter (inverter circuit) to the rotational speed and torque characteristics of the motor.
- the control circuit 8 switches to 2-level operation when the torque command (or current command) is greater than or equal to a predetermined threshold, and when it is smaller than the predetermined threshold. Switch to 3-level operation.
- the predetermined threshold value here is, for example, as described above, a threshold value predetermined based on the trial calculation results of the amount of loss and volume of the power conversion device. In the example shown in FIG. 12, there is one threshold value, but a plurality of threshold values may be provided to perform hysteresis control to stabilize the operation.
- the threshold value for switching between the 2-level operation and the 3-level operation in response to the torque command is set to a different threshold value depending on whether the torque command increases or decreases. Further, by setting the threshold value for increase higher than the threshold value for decrease, unnecessary switching between 2-level operation and 3-level operation can be prevented, resulting in stable operation.
- the carrier frequency is also changed in accordance with the motor rotation speed command.
- the setting of the carrier frequency since the current distortion of the motor is smaller during 3-level operation, the harmonic iron loss is smaller than during 2-level operation. Since the switching loss of the inverter circuit and the switching frequency are in a proportional relationship, lowering the frequency makes it possible to use the inverter with lower loss, although there is a trade-off with the high-frequency core loss of the motor. In this way, the carrier frequency becomes a conflicting parameter for the inverter circuit and the motor, and needs to be set so as to minimize the total loss of the inverter circuit and motor while ensuring controllability.
- the carrier frequency is changed in three stages according to the rotation speed, and f1_3lv ⁇ f2_3lv ⁇ f3_3lv.
- the loss of the inverter circuit and motor during 2-level operation and 3-level operation may be calculated using not only the torque command or rotation speed command but also other parameters.
- the voltage of the DC voltage source and the temperature of the power converter are used to create an operation table according to at least one parameter of the voltage of the DC voltage source and the temperature of the power converter.
- the loss of the power converter and motor may be calculated based on this operation table.
- a MOSFET Metal Oxide Semiconductor Field Effect Transistor
- IGBT Insulated Gate Bipolar Transistor
- a switch circuit 4B of the power converter shown in FIG. 13 includes switching elements 14a, 14b, 14c, 14d, 14e, and 14f that are reverse block type IGBTs.
- the switching element 14a and the switching element 14b, the switching element 14c and the switching element 14d, and the switching element 14e and the switching element 14f are connected in parallel in opposite directions.
- One end of the switch circuit 4B is connected to the first connection point of the capacitor series circuit 2, and the other end is connected to the second, third, and fourth connection points, respectively.
- 16a, 16b, 16c, 16d, 16e, and 16f have shown the gate input part of switching element 14a, 14b, 14c, 14d, 14e, and 14f.
- the other configurations are the same as the power conversion device in FIG. 1 .
- the power converter configured as shown in FIG. 13 can also achieve the same operation and effect as the power converter shown in FIG. 1.
- a capacitor series circuit having a plurality of capacitors connected in series, both ends of which are connected to both ends of a DC voltage source; an inverter circuit in which a plurality of legs in which a plurality of switching elements are connected in series are connected in parallel, a DC input terminal is connected to both ends of the capacitor series circuit, and an AC output terminal is connected to a load; a switch circuit having a plurality of switching elements, one end connected to a plurality of connection points of the plurality of capacitors, and the other end connected to a plurality of connection points of the switching elements of the inverter circuit; a control circuit that controls the inverter circuit and the switch circuit,
- the inverter circuit is capable of two-level operation by turning off the switching element included in the switch circuit, and is capable of three-level operation by turning on and off the switching element included in the switch circuit,
- the control circuit changes the switching speed of the switching elements of the inverter circuit and the switch circuit when switching
- control circuit slows down the switching speed of the switching element when changing from the 3-level operation to the 2-level operation, so that the surge voltage can be kept within an allowable range, and the switching element There is no need to worry about malfunctions.
- control circuit changes the switching speed of the switching element before switching the operation level between the 3-level operation and the 2-level operation, thereby ensuring that the surge voltage is within the allowable range. There is no need to worry about switching element failure.
- control circuit switches the operation level between the 3-level operation and the 2-level operation after waiting for a certain period of time after issuing a command to change the switching speed of the switching element, so that the surge voltage can be reliably suppressed. This can be kept within the permissible range, eliminating concerns about switching element failure.
- control circuit determines the switching speed change processing based on the change in the switching speed of the switching element after receiving the command to change the switching speed of the switching element, so that the surge voltage is reliably kept within the allowable range. It can be contained within.
- control circuit determines a switching speed change process based on a change in a gate voltage slope applied to a gate terminal of the switching element after receiving a command to change the switching speed of the switching element. Therefore, the surge voltage can be reliably kept within the permissible range.
- control circuit determines the switching speed change process based on the change in the gate current of the switching element after receiving the command to change the switching speed of the switching element, so that the surge voltage can be reliably suppressed. It can be kept within the permissible range.
- the control circuit also performs switching speed change processing based on a change in surge voltage generated across the switching element or across the capacitor series circuit after receiving the command to change the switching speed of the switching element. Since the voltage is determined, the surge voltage can be reliably kept within the allowable range.
- a level switching threshold when changing from the 2-level operation to the 3-level operation and a level switching threshold when changing from the 3-level operation to the 2-level operation are set to different values to provide hysteresis. Therefore, frequent changes in operation level can be avoided.
- control circuit changes the switching speed of the switching element based on the detected value of the surge voltage generated across the switching element or across the capacitor series circuit, so that the surge voltage can be reliably suppressed.
- the voltage can be kept within an acceptable range.
- the control circuit also controls the switching of the switching element so that the maximum value of the detected surge voltage generated across the switching element or across the capacitor series circuit falls within a target allowable voltage range. Since the speed is changed, the surge voltage can be reliably kept within the allowable range.
- control circuit changes the switching speed based on the detected value of the surge voltage a plurality of consecutive times, it is possible to reliably keep the surge voltage within an allowable range.
- control circuit switches between the 2-level operation and the 3-level operation based on a comparison between the AC output current value of the power conversion device and a preset current threshold value, so that It is possible to appropriately switch levels.
- control circuit switches the operating level and changes the switching speed every fundamental wave cycle of the AC output current of the power converter, so that the control circuit switches the operating level and changes the switching speed. Can be done properly.
- the level switching threshold for switching between the 2-level operation and the 3-level operation is determined according to the volume of the switching element of the switch circuit, the operation level can be appropriately switched. .
- a motor is connected as the load, and the control circuit calculates the amount from a table prepared in advance or from calculation results based on command information of the motor and the power converter, and detection information of the motor and the power converter. Since the switching of the operation level and the switching speed are determined, the switching of the operation level and the change of the switching speed can be appropriately performed.
- command information for the motor and power converter refers to "torque command or rotation speed command of the motor, each phase current command (Iu (rms)*, Iu*, etc.) of the power converter", etc. means.
- detection information of the motor and power converter refers to “rotational speed of the motor, each phase current (Iu, etc.) of the power converter, switching modulation rate of the switching element, gate voltage of the switching element, This means bus voltage, surge voltage, temperature, etc.
- control circuit realizes changing the switching speed of the switching element by changing the gate resistance value when turning off the switching element, so that the switching speed of the switching element can be changed appropriately. It will be done.
- Embodiment 2 Next, a power conversion device according to Embodiment 2 will be described.
- the circuit block diagram of the power conversion device according to the second embodiment is similar to the circuit block diagram of the power conversion device in FIG. 1, FIG. 13, etc. in the first embodiment, but in the second embodiment, the power conversion device
- the control operation by the control circuit is different from the first embodiment.
- FIG. 14 shows the operation of the control circuit of the power converter according to the second embodiment, and the following points are compared with the control operation of the first embodiment (FIG. 8) regarding the differences from the first embodiment.
- FIG. 14 shows the operation of the control circuit of the power converter according to the second embodiment, and the following points are compared with the control operation of the first embodiment (FIG. 8) regarding the differences from the first embodiment.
- FIG. 14 shows the operation of the control circuit of the power converter according to the second embodiment, and the following points are compared with the control operation of the first embodiment (FIG. 8) regarding the differences from the first embodiment.
- FIG. 8 shows the control operation of
- the operating level and the off-state gate resistance value were switched for each fundamental wave cycle of the AC output of the power converter, but in the second embodiment, the AC output of the power converter It is characterized by switching the operating level and switching the gate resistance value when off at a time interval shorter than the fundamental wave cycle of the output. That is, in the first embodiment, the operation level is determined by comparing the AC output current command value (effective value) Iu (rms) * with the level switching threshold, but in the second embodiment, As shown by B1 and B2, this is performed by comparing the AC output current command value (instantaneous value) Iu* with the level switching thresholds Lvth3-2 and Lvth2-3.
- the detected current value Iu is, for example, a detected value of the current flowing through a switching element (for example, the U-phase current Iu in FIG. This is the average of 10 stored values.
- the current command value (effective value) Iu (rms)* of the AC output when the current command value (effective value) Iu (rms)* of the AC output is larger than the level switching threshold, the entire range of the AC output (sine wave) is This is carried out by level operation, but in the second embodiment, it is carried out by comparing the current command value (instantaneous value) Iu* of AC output with the level switching threshold, so in the low current region of AC output (sine wave), Three-level operation will be performed, and further reduction in loss of the power conversion device will be realized.
- the gate resistance value when off is determined so as to satisfy the surge voltage rate limiting at the maximum current value of the AC output (sine wave). In this case, there is a surge voltage margin, leaving room for further reduction in loss.
- the gate resistance value when off is changed each time so as to satisfy the surge voltage rate control in the entire range of AC output (sine wave). Even in the current range, there is no surge margin, and further loss reduction is achieved.
- satisfying the surge voltage rate-limiting condition means that the surge voltage does not exceed the module withstand voltage of the switching element.
- FIG. 14 Based on FIG. 14, an operation for realizing switching of the operating level and switching of the gate resistance value during off-time according to the second embodiment will be described.
- 2-level operation is determined by comparing the current command value (instantaneous value) Iu* of the power converter with a predetermined level switching threshold Lvth3-2. Or, it is determined which of the 3-level operations should be used. That is, as shown in B2 of FIG. 14, when the current command value (instantaneous value) Iu* crosses the level switching threshold Lvth3-2, it is determined that the 3-level operation is to be changed to the 2-level operation (upward arrow of the solid line D).
- gate resistance value Rgoff1 in FIG. 14 After changing the gate resistance value when off to the largest value (gate resistance value Rgoff1 in FIG. 14), the slope of the gate voltage when the switching element was off was relaxed, and the amount of gate current was reduced. Alternatively, by monitoring whether the surge voltage has decreased, it is confirmed that the gate resistance value Rgoff during off-time has actually changed to a large value.
- the operation level is changed from 3-level operation to 2-level operation.
- the off-state gate resistance value Rgoff is changed from a small value to a large value.
- the maximum surge voltage detection for selecting the gate resistance value during off-time is determined using successive detected values of the surge voltage. That is, as shown by B5 in FIG. 14, when the surge voltage detection value (maximum voltage between arms) Vmax is less than the allowable surge voltage VX, the surge margin detection CNT (counter) value is incremented by 1, When the surge margin detection CNT value reaches a preset Rgoff switching threshold RZ, the off-state gate resistance value Rgoff is changed. That is, in FIG. 14, when the surge margin detection CNT value reaches the Rgoff switching threshold RZ, the gate resistance value is changed, for example, as Rgoff1, Rgoff2, Rgoff3, Rgoff4, Rgoff5, Rgoff6, . . . . Note that Rgoff1>Rgoff2>Rgoff3>Rgoff4>...>Rgoff14>Rgoff15>Rgoff16.
- Embodiment 2 Other controls in Embodiment 2 are the same as in Embodiment 1, so description thereof will be omitted.
- surge detection is performed based on detection information of the motor and power conversion device (phase current, phase current (torque) command value, detected rotational speed value, modulation rate, gate voltage value, surge voltage value, temperature, etc.).
- the combination of the operating level and off-time gate resistance that minimizes the loss while keeping the voltage within the allowable range may be calculated for each control cycle, and may be determined from a table prepared in advance or loss calculation.
- the operating level and the off-time gate resistance value are switched relatively quickly, a great effect can be obtained in terms of loss reduction.
- the switching of the operating level and the switching of the gate resistance value at the time of off are performed at every detection period of the AC output current for controlling the AC output current, which is shorter than the fundamental wave period, for example. This makes it possible to switch between 2-level operation and 3-level operation, as well as switch the gate resistance value when off, even within the same cycle, ensuring safety while achieving stronger loss reduction. Can be done.
- Embodiment 2 As described above, according to Embodiment 2, the same effects as those of Embodiment 1 can be achieved, and the following effects can also be achieved. That is, the control circuit switches the operation level and changes the switching speed at a time interval shorter than the fundamental wave period of the AC output current of the power conversion device, so that the control circuit operates more reliably and appropriately. Levels can be switched and switching speeds can be changed.
- control circuit 8 of the first and second embodiments includes a processor 100 and a storage device 101, as an example of hardware is shown in FIG.
- the storage device 101 includes a volatile storage device such as a random access memory and a non-volatile auxiliary storage device such as a flash memory (not shown). Further, a hard disk may be provided instead of the flash memory.
- Processor 100 executes a program input from storage device 101. In this case, the program is input from the auxiliary storage device to the processor 100 via the volatile storage device.
- the processor 100 may output data such as calculation results to a volatile storage device of the storage device 101, or may store data in an auxiliary storage device via the volatile storage device.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
コンデンサ直列回路(2a、2b)と、複数のスイッチング素子(3a~3f)が直列接続されたレグが複数並列に接続されたインバータ回路(3)と、複数のスイッチング素子(4a~4f)を有し、一端がコンデンサ直列回路(2a、2b)の接続点に接続され、他端がインバータ回路(3)のスイッチング素子(3a~3f)の複数の接続点に接続されたスイッチ回路(4)とを備え、インバータ回路(3)は、スイッチ回路(4)のスイッチング素子(4a~4f)をオフさせることにより2レベル動作が可能であり、スイッチ回路(4)のスイッチング素子(4a~4f)をオン・オフさせることにより3レベル動作が可能であり、制御回路(8)は、2レベル動作と3レベル動作との間の動作レベルの切替の際に、スイッチング素子(3a~3f)、(4a~4f)のスイッチング速度を変更する。
Description
本願は、電力変換装置に関するものである。
従来、直列接続した第1及び第2の直流電源と、前記各直流電源の直流電力を交流電力に変換を行う電力変換器を備え、前記電力変換器は、半導体素子からなる少なくとも2個のスイッチング素子を直列接続して1アームを構成し、これを少なくとも3アーム並列接続し、各アーム毎の前記スイッチング素子相互の接続点と、前記直流電源相互の接続点との間に、半導体素子と半導体素子に逆並列に接続したダイオードからなる少なくとも2個のスイッチング素子を直列接続してなる交流スイッチをそれぞれ接続し、前記各交流スイッチをオン又はオフすることで、前記電力変換器を3レベル運転又は2レベル運転を可能にした電力変換装置がある(下記の特許文献1参照)。
前述のような電力変換装置において、2レベル動作時は直列接続されたスイッチング素子には電源電圧が印加されるが、3レベル動作時は直列接続されたスイッチング素子には電源電圧の半分の電圧が印加される。ここで、3レベル動作時に低損失となるようにスイッチング時に発生するサージ電圧がスイッチング素子の許容サージ電圧以下となる範囲で最適に調整されたオフ時のゲート抵抗値の状態から、2レベル動作に切り替えられると、直列接続されたスイッチング素子に印加される電圧が3レベル動作時に比べて2倍となる。その結果、スイッチング時に発生するサージ電圧がスイッチング素子の許容サージ電圧を超過し、スイッチング素子が故障する懸念がある。
本願は、前記のような課題を解決するための技術を開示するものであり、2レベル動作と3レベル動作の動作レベルの切替可能な電力変換装置において、動作レベル切替時においてもスイッチング素子の故障の懸念がない電力変換装置を提供することを目的としている。
本願に開示される電力変換装置は、
直列に接続された複数のコンデンサを有し、両端が直流電圧源の両端に接続されるコンデンサ直列回路と、
複数のスイッチング素子が直列接続されたレグが複数並列に接続され、直流入力端が前記コンデンサ直列回路の両端に接続されるとともに交流出力端が負荷に接続されるインバータ回路と、
複数のスイッチング素子を有し、一端が複数の前記コンデンサの接続点に接続され、他端が前記インバータ回路の前記スイッチング素子の複数の接続点に接続されたスイッチ回路と、
前記インバータ回路および前記スイッチ回路を制御する制御回路と、を備え、
前記インバータ回路は、前記スイッチ回路が有する前記スイッチング素子をオフさせることにより2レベル動作が可能であり、前記スイッチ回路が有する前記スイッチング素子をオン・オフさせることにより3レベル動作が可能であり、
前記制御回路は、前記2レベル動作と前記3レベル動作との間の動作レベルの切替の際に、前記インバータ回路および前記スイッチ回路の前記スイッチング素子のスイッチング速度を変更するものである。
直列に接続された複数のコンデンサを有し、両端が直流電圧源の両端に接続されるコンデンサ直列回路と、
複数のスイッチング素子が直列接続されたレグが複数並列に接続され、直流入力端が前記コンデンサ直列回路の両端に接続されるとともに交流出力端が負荷に接続されるインバータ回路と、
複数のスイッチング素子を有し、一端が複数の前記コンデンサの接続点に接続され、他端が前記インバータ回路の前記スイッチング素子の複数の接続点に接続されたスイッチ回路と、
前記インバータ回路および前記スイッチ回路を制御する制御回路と、を備え、
前記インバータ回路は、前記スイッチ回路が有する前記スイッチング素子をオフさせることにより2レベル動作が可能であり、前記スイッチ回路が有する前記スイッチング素子をオン・オフさせることにより3レベル動作が可能であり、
前記制御回路は、前記2レベル動作と前記3レベル動作との間の動作レベルの切替の際に、前記インバータ回路および前記スイッチ回路の前記スイッチング素子のスイッチング速度を変更するものである。
本願に開示される電力変換装置によれば、動作レベル切替時においてもスイッチング素子の故障の懸念がない電力変換装置を実現することが可能となる。
実施の形態1.
本開示の実施の形態1に係る電力変換装置について図面を用いて説明する。
[電力変換装置の構成]
図1は、実施の形態1に係る電力変換装置を示す構成図である。
図1に示す電力変換装置は、直流電圧源1と、負荷としてのモータ7との間に接続されており、直流電圧源1からの直流電力を交流電力に変換してモータ(負荷)7に出力することによりモータ(負荷)7を動作させる。
電力変換装置は、複数のコンデンサ2a、2bが直列に接続されたコンデンサ直列回路2と、複数のスイッチング素子3a、3b、3c、3d、3e、3fを有するインバータ回路3と、複数のスイッチング素子4a、4b、4c、4d、4e、4fを有するスイッチ回路4と、スイッチング素子3a、3b、3c、3d、3e、3fのゲート入力部5a、5b、5c、5d、5e、5fと、スイッチング素子4a、4b、4c、4d、4e、4fのゲート入力部6a、6b、6c、6d、6e、6fと、インバータ回路3およびスイッチ回路4を制御する制御回路8を備えている。
なお、本実施の形態では、電力変換装置の例として三相インバータ装置を示しているが、必ずしも三相インバータ装置である必要はなく、単相または四相以上のインバータ装置であってもよい。また、負荷としてモータ7の例を示したが、その他の負荷機器であっても良い。
本開示の実施の形態1に係る電力変換装置について図面を用いて説明する。
[電力変換装置の構成]
図1は、実施の形態1に係る電力変換装置を示す構成図である。
図1に示す電力変換装置は、直流電圧源1と、負荷としてのモータ7との間に接続されており、直流電圧源1からの直流電力を交流電力に変換してモータ(負荷)7に出力することによりモータ(負荷)7を動作させる。
電力変換装置は、複数のコンデンサ2a、2bが直列に接続されたコンデンサ直列回路2と、複数のスイッチング素子3a、3b、3c、3d、3e、3fを有するインバータ回路3と、複数のスイッチング素子4a、4b、4c、4d、4e、4fを有するスイッチ回路4と、スイッチング素子3a、3b、3c、3d、3e、3fのゲート入力部5a、5b、5c、5d、5e、5fと、スイッチング素子4a、4b、4c、4d、4e、4fのゲート入力部6a、6b、6c、6d、6e、6fと、インバータ回路3およびスイッチ回路4を制御する制御回路8を備えている。
なお、本実施の形態では、電力変換装置の例として三相インバータ装置を示しているが、必ずしも三相インバータ装置である必要はなく、単相または四相以上のインバータ装置であってもよい。また、負荷としてモータ7の例を示したが、その他の負荷機器であっても良い。
コンデンサ2aおよびコンデンサ2bは、互いに直列に接続されており、コンデンサ直列回路2を形成している。ここでは、コンデンサ2aおよびコンデンサ2bの接続点を第1の接続点として説明する。コンデンサ直列回路2は、その両端が直流電圧源1の両端および後述するインバータ回路3の直流入力端に接続されている。なお、ここではコンデンサ直列回路2は、2つのコンデンサが直列に接続された場合について示しているが、これに限ったものではなく、3つ以上のコンデンサが接続されていてもよい。
インバータ回路3は、直列接続された2つのスイッチング素子からなるレグを3つ並列に接続された構成をしており、各レグの両端はコンデンサ直列回路2の両端および直流電圧源1の両端に接続されている。図1に示す例では、スイッチング素子3aのアームとスイッチング素子3bのアームが直列に接続されてU相のレグを構成し、スイッチング素子3cのアームとスイッチング素子3dのアームが直列に接続されてV相のレグを構成し、スイッチング素子3eのアームとスイッチング素子3fのアームが直列に接続されてW相のレグを構成している。ここでは、スイッチング素子3aおよび3b、スイッチング素子3cおよび3d、スイッチング素子3eおよび3fの接続点を、それぞれ第2、第3、第4の接続点として説明する。第2、第3、第4の接続点は、インバータ回路3の交流出力端となる。第2、第3、第4の接続点には、負荷としてのモータ7が接続されており、インバータ回路3は、第2、第3、第4の接続点を介してモータ7に交流電力を供給する。
なお、インバータ回路3に用いるスイッチング素子3a~3fは、ソース・ドレイン間に逆並列ダイオードを備えたMOSFET(Metal Oxide Semiconductor Field Effect Transistor)が用いられているが、MOSFETはSiCまたはSiのどちらも適用することが可能であり、また、逆並列ダイオードはMOSFETに内蔵されたダイオードを用いても良く、外付けに別途ダイオードを設けても良い。さらに、ダイオードが逆並列に接続されたIGBT(Insulated Gate Bipolar Transistor)あるいはGaN-HEMT(Gallium nitride-High Mobility Transistor)などを用いても良い。
スイッチ回路4は、複数のスイッチング素子4a~4fを備えており、これらのスイッチング素子4a~4fを制御することで、後述する2レベル動作および3レベル動作を切り替えることができる。図1に示すスイッチ回路4は、インバータ回路3の第2~第4の接続点と、コンデンサ2a、2bの第1の接続点との間に設けられており、ソース・ドレイン間に逆並列ダイオードを備えたMOSFET(Metal Oxide Semiconductor Field Effect Transistor)が用いられる。ここでも、MOSFETはSiCまたはSiのどちらも適用することが可能であり、また、逆並列ダイオードはMOSFETに内蔵されたダイオードを用いても良く、外付けに別途ダイオードを設けても良い。さらに、ダイオードが逆並列に接続されたIGBT(Insulated Gate Bipolar Transistor)あるいはGaN-HEMT(Gallium nitride-High Mobility Transistor)などを用いても良い。
スイッチ回路4において、スイッチング素子4aとスイッチング素子4b、スイッチング素子4cとスイッチング素子4d、スイッチング素子4eとスイッチング素子4f、が逆方向に直列接続されている。また、スイッチング素子4a、4c、4eのソース端子はコンデンサ直列回路2の第1の接続点に接続されており、スイッチング素子4b、4d、4fのソース端子はそれぞれ第2~第4の接続点に接続されている。逆方向に直列接続されている構成として、スイッチング素子4aと4b、スイッチング素子4cと4d、スイッチング素子4eと4fは、互いのドレイン端子同士が接続されている。
前記のようなスイッチ回路4の構成により、スイッチング素子4aをオンとすることにより、第2の接続点から第1の接続点へ電流が流れることが可能となり、スイッチング素子4bをオンとすることにより、第1の接続点から第2の接続点へ電流が流れることが可能となる。また、スイッチング素子4cをオンとすることにより、第3の接続点から第1の接続点へ電流が流れることが可能となり、スイッチング素子4dをオンとすることにより、第1の接続点から第3の接続点へ電流が流れることが可能となる。さらに、スイッチング素子4eをオンとすることにより、第4の接続点から第1の接続点へ電流が流れることが可能となり、スイッチング素子4fをオンとすることにより、第1の接続点から第4の接続点へ電流が流れることが可能となる。なお、スイッチ回路4は、図1に示す構成に限定されるものではなく、一方のスイッチング素子をオンまたはオフとすることにより電流の流れる方向を制御できればよい。
ゲート入力部5a~5fは、制御回路8から出力されたPWM(Pulse Width Modulation)信号に基づいて、インバータ回路3の各スイッチング素子3a~3fをオンオフ動作させるとともに、ゲート抵抗選択信号(Rg選択信号)に基づいてインバータ回路3の各スイッチング素子3a~3fのオフ時のゲート抵抗値Rgoffを設定する。
ゲート入力部6a~6fは、制御回路8から出力されたPWM信号に基づいて、スイッチ回路4の各スイッチング素子4a~4fをオンオフ動作させるとともに、ゲート抵抗選択信号(Rg選択信号)に基づいてスイッチ回路4の各スイッチング素子4a~4fのオフ時のゲート抵抗値Rgoffを設定する。
ゲート入力部6a~6fは、制御回路8から出力されたPWM信号に基づいて、スイッチ回路4の各スイッチング素子4a~4fをオンオフ動作させるとともに、ゲート抵抗選択信号(Rg選択信号)に基づいてスイッチ回路4の各スイッチング素子4a~4fのオフ時のゲート抵抗値Rgoffを設定する。
[電力変換装置のゲート入力部]
図2は、実施の形態1に係る電力変換装置のゲート入力部を示す構成図である。図2では、特にスイッチング素子3aに対応したゲート入力部5aと制御回路8との接続関係に着目した構成図を示す。
図2に示すように、ゲート入力部5aに対して制御回路8から出力されたPWM信号P5aは、例えばPNPトランジスタとNPNトランジスタから構成されるトーテムポール型のバッファ回路11に入力される。そして、PWM信号P5aがオンの場合は、オン時のゲート抵抗Rgonを介してオン電源12からバッファ回路11を介してスイッチング素子3aに電流を流してスイッチング素子3aをオン状態とする。一方、PWM信号P5aがオフの場合は、ゲート抵抗切替回路10を介してオフ時のゲート抵抗値Rgoffによりスイッチング素子3aからオフ電源15に電流を流してスイッチング素子3aをオフ状態とすることでスイッチング素子3aのオンオフ動作を行う。
なお、ゲート入力部5b~5f、ゲート入力部4a~4fに対して制御回路8から出力されたPWM信号P5b、P5c、P5d、P5e、P5f、PWM信号P6a、P6b、P6c、P6d、P6e、P6fも、上記と同様の働きを行い、スイッチング素子3b~3f、スイッチング素子4a~4fのオンオフ動作を行う。
図2は、実施の形態1に係る電力変換装置のゲート入力部を示す構成図である。図2では、特にスイッチング素子3aに対応したゲート入力部5aと制御回路8との接続関係に着目した構成図を示す。
図2に示すように、ゲート入力部5aに対して制御回路8から出力されたPWM信号P5aは、例えばPNPトランジスタとNPNトランジスタから構成されるトーテムポール型のバッファ回路11に入力される。そして、PWM信号P5aがオンの場合は、オン時のゲート抵抗Rgonを介してオン電源12からバッファ回路11を介してスイッチング素子3aに電流を流してスイッチング素子3aをオン状態とする。一方、PWM信号P5aがオフの場合は、ゲート抵抗切替回路10を介してオフ時のゲート抵抗値Rgoffによりスイッチング素子3aからオフ電源15に電流を流してスイッチング素子3aをオフ状態とすることでスイッチング素子3aのオンオフ動作を行う。
なお、ゲート入力部5b~5f、ゲート入力部4a~4fに対して制御回路8から出力されたPWM信号P5b、P5c、P5d、P5e、P5f、PWM信号P6a、P6b、P6c、P6d、P6e、P6fも、上記と同様の働きを行い、スイッチング素子3b~3f、スイッチング素子4a~4fのオンオフ動作を行う。
また、制御回路8から出力されるRg選択信号R5aは、ゲート抵抗切替回路10のゲート抵抗値Rgoffを調整するために、スイッチSW2、SW3、SW4、SW5の切替動作を行う。すなわち、Rg選択信号R5aは、スイッチSW2、SW3、SW4、SW5のそれぞれのスイッチをオン状態またはオフ状態のどちらにするかを時分割で表現した信号であり、この信号がゲート抵抗決定部9に入力されると、ゲート抵抗決定部9においてスイッチSW2~SW5のオンまたはオフの信号に分割して各スイッチSW2~SW5に入力することでスイッチSW2~SW5を任意の組み合わせでオンオフ操作する。そして、ゲート抵抗切替回路10は、抵抗Rg1と、抵抗Rg2、Rg3、Rg4、Rg5がオンした場合の抵抗値と、の合成抵抗値に、スイッチング素子3aのオフ時のゲート抵抗値Rgoffを調整する。
なお、図1において「Rg選択信号×1」として、Rg選択信号R5a、R5b、R5c、R5d、R5e、R5f、R6a、R6b、R6c、R6d、R6e、R6fは制御簡素化のために1種類(共通)としている。ここで、スイッチング素子4a~4fには、直流電圧源1の電圧(Vdc)の半分の電圧(Vdc/2)しか印加されないことから、スイッチング素子3a~3fに比べて最大サージ電圧が低く、当該サージ電圧の余裕を損失低減に使用するために、スイッチング素子4a~4fのゲート入力部6a~6fのオフ時のゲート抵抗値をスイッチング素子3a~3fのゲート入力部5a~5fのオフ時のゲート抵抗値よりも小さく設定することが考えられる。この場合は、具体的に、図2において、ゲート入力部5a~5f、ゲート入力部6a~6fに伝達される共通のRg選択信号R5a~R5f、R6a~R6fに対して、ゲート入力部5a~5fの抵抗Rg1~Rg5と、ゲート入力部6a~6fの抵抗Rg1~Rg5の、それぞれの抵抗値を変えることにより実現することができる。
[電力変換装置とモータ]
モータ7は、インバータ回路3の交流出力端に接続されており、インバータ回路3から出力される交流電力により動作する。モータ7は、どのような形式であってもよく、図1では図示しない制御装置によりトルク指令および回転数指令を算出し、当該トルク指令および回転数指令に基づいて制御回路8は電力変換装置のスイッチング素子3a~3f、スイッチング素子4a~4fを制御することにより、モータ7を駆動制御する。なお、トルク指令および回転数指令を生成する制御装置は、制御回路8が兼ねてもよい。
モータ7は、インバータ回路3の交流出力端に接続されており、インバータ回路3から出力される交流電力により動作する。モータ7は、どのような形式であってもよく、図1では図示しない制御装置によりトルク指令および回転数指令を算出し、当該トルク指令および回転数指令に基づいて制御回路8は電力変換装置のスイッチング素子3a~3f、スイッチング素子4a~4fを制御することにより、モータ7を駆動制御する。なお、トルク指令および回転数指令を生成する制御装置は、制御回路8が兼ねてもよい。
制御回路8は、インバータ回路3のスイッチング素子3a~3f、およびスイッチ回路4のスイッチング素子4a~4fを制御する。すなわち、インバータ回路3およびスイッチ回路4を含む電力変換装置の動作状態情報、モータ7の動作状態情報、並びに電力変換装置およびモータ7に対する指令値情報に基づいて、モータ7に出力する交流電力の制御を行う。例えば、直流電圧源1の電圧、コンデンサ2a、2bの電圧および電流、インバータ回路3およびスイッチ回路4の温度を取り込み、モータ7からは、モータ7の相電流、回転位置の情報、トルク指令および回転数指令情報(NT特性)を取り込み、これらの情報に基づいてインバータ回路3およびスイッチ回路4の制御を行う。また、制御回路8は、あらかじめ設定された電力変換装置(インバータ回路3、スイッチ回路4)またはモータ7の動作状態情報、指令値情報に応じて、インバータ回路3のキャリア周波数、2レベル動作または3レベル動作の動作状態、ゲート抵抗切替回路10のゲート抵抗値Rgoffの選択を、例えばモータ7のNT特性上に定義する動作マップを適用しながら適切に設定する。詳細については、後述する。
[電力変換装置の2レベル動作と3レベル動作]
ここで、図3Aおよび図3Bに基づいて、電力変換装置の2レベル動作と3レベル動作について説明する。
図3Aおよび図3Bは、電力変換装置を2レベルで動作させた場合と3レベルで動作させた場合の1相のモータ電流の模式図を示す。
まず、図3Aにより2レベル動作について説明する。本実施の形態に示す電力変換装置における2レベル動作は、図1においてスイッチ回路4のスイッチング素子4a~4fをオフとし、インバータ回路3の各スイッチング素子3a~3fをオン・オフさせることにより、各相において、コンデンサ2aおよび2bの合計電圧である正の電圧値および負の電圧値をモータ7に出力することができる。正電圧および負電圧の時間比率を制御することにより、モータ7に三相の正弦波電圧を与えることができる。2レベル動作は一般的な三相インバータ装置の動作であり、詳細な説明は省略する。
ここで、図3Aおよび図3Bに基づいて、電力変換装置の2レベル動作と3レベル動作について説明する。
図3Aおよび図3Bは、電力変換装置を2レベルで動作させた場合と3レベルで動作させた場合の1相のモータ電流の模式図を示す。
まず、図3Aにより2レベル動作について説明する。本実施の形態に示す電力変換装置における2レベル動作は、図1においてスイッチ回路4のスイッチング素子4a~4fをオフとし、インバータ回路3の各スイッチング素子3a~3fをオン・オフさせることにより、各相において、コンデンサ2aおよび2bの合計電圧である正の電圧値および負の電圧値をモータ7に出力することができる。正電圧および負電圧の時間比率を制御することにより、モータ7に三相の正弦波電圧を与えることができる。2レベル動作は一般的な三相インバータ装置の動作であり、詳細な説明は省略する。
次に、図3Bにより3レベル動作について説明する。ここでは、1相の動作を説明するが、他の2相の動作についても当該1相の動作と同様であるため説明は省略する。
まず、電力変換装置からモータ7へ電流が流れる状態を例に説明する。図1において、スイッチング素子3a、3bおよびスイッチング素子4a、4bがオフの状態で、電流がスイッチング素子3bに逆並列に接続されたダイオードを流れてモータ7に還流している状態から説明を始める。この状態からスイッチング素子4bをオンとし、スイッチング素子3a、3bおよびスイッチング素子4aをオフのままとすることにより、コンデンサ2bの電圧により、スイッチング素子4aに逆並列に接続されたダイオードとスイッチング素子4bを介してモータ7に電流が流れる。
まず、電力変換装置からモータ7へ電流が流れる状態を例に説明する。図1において、スイッチング素子3a、3bおよびスイッチング素子4a、4bがオフの状態で、電流がスイッチング素子3bに逆並列に接続されたダイオードを流れてモータ7に還流している状態から説明を始める。この状態からスイッチング素子4bをオンとし、スイッチング素子3a、3bおよびスイッチング素子4aをオフのままとすることにより、コンデンサ2bの電圧により、スイッチング素子4aに逆並列に接続されたダイオードとスイッチング素子4bを介してモータ7に電流が流れる。
次に、スイッチング素子4bをオンのまま、スイッチング素子3aをオンにすると(スイッチング素子3bおよびスイッチング素子4aはオフのまま)、スイッチング素子4aはリバース電流をブロックするためスイッチング素子4a、4bには電流は流れず、直列接続したコンデンサ2aおよび2bの電圧によりモータ7に流れる電流が増加する。
一方、モータ7への電流を減らす場合は、上記と逆の順序で動作し、スイッチング素子4bをオンのまま、スイッチング素子3a、3bおよびスイッチング素子4aをオフにして、コンデンサ2bの電圧でモータ7に電流を流して電流を減らし、最後はすべてのスイッチング素子をオフするという動作を行う。
このようにインバータ回路3およびスイッチ回路4を動作させると、各スイッチング素子の電圧は、それぞれコンデンサ2a、2bの電圧すなわち直流電圧源1の半分の電圧(Vdc/2)となり、スイッチング損失が低下するとともに、電流を制御する電圧が小さいため電流ひずみが小さくなる。
一方、モータ7への電流を減らす場合は、上記と逆の順序で動作し、スイッチング素子4bをオンのまま、スイッチング素子3a、3bおよびスイッチング素子4aをオフにして、コンデンサ2bの電圧でモータ7に電流を流して電流を減らし、最後はすべてのスイッチング素子をオフするという動作を行う。
このようにインバータ回路3およびスイッチ回路4を動作させると、各スイッチング素子の電圧は、それぞれコンデンサ2a、2bの電圧すなわち直流電圧源1の半分の電圧(Vdc/2)となり、スイッチング損失が低下するとともに、電流を制御する電圧が小さいため電流ひずみが小さくなる。
次に、モータ7からインバータ回路3に電流が流れる場合について説明する。
まず、スイッチング素子4aをオン、スイッチング素子3bをオン、スイッチング素子4bをオフにすると、スイッチング素子4aはリバース電流をブロックするのでコンデンサ2bに電流は流れず、モータ7からの電流はスイッチング素子3bに流れてモータ7に還流する。
次に、スイッチング素子3bをオフ(スイッチング素子3aおよびスイッチング素子4bはオフのまま)すると、モータ7の電流はスイッチング素子4bに逆並列に接続されているダイオードとスイッチング素子4aを介してコンデンサ2bに流れる。
次に、スイッチング素子4aをオフすると、モータ7の電流はスイッチング素子3aに逆並列に接続されているダイオードを通り、コンデンサ2aおよび2bに流れる。その後は上記と逆の順序でスイッチすることによりモータ7の電流を減らすように動作をさせる。1相の動作を例にとって説明したが、他相についても位相が異なるだけで同様である。
まず、スイッチング素子4aをオン、スイッチング素子3bをオン、スイッチング素子4bをオフにすると、スイッチング素子4aはリバース電流をブロックするのでコンデンサ2bに電流は流れず、モータ7からの電流はスイッチング素子3bに流れてモータ7に還流する。
次に、スイッチング素子3bをオフ(スイッチング素子3aおよびスイッチング素子4bはオフのまま)すると、モータ7の電流はスイッチング素子4bに逆並列に接続されているダイオードとスイッチング素子4aを介してコンデンサ2bに流れる。
次に、スイッチング素子4aをオフすると、モータ7の電流はスイッチング素子3aに逆並列に接続されているダイオードを通り、コンデンサ2aおよび2bに流れる。その後は上記と逆の順序でスイッチすることによりモータ7の電流を減らすように動作をさせる。1相の動作を例にとって説明したが、他相についても位相が異なるだけで同様である。
図3Aに示す2レベル動作時と、図3Bに示す3レベル動作時のモータ相電流の電流波形を比較すると、2レベル動作時の電流波形は3レベル動作時の電流波形に比べて歪むこととなる。これは、電流を生成するための電圧が、2レベル動作時は3レベル動作時に比べて2倍の電圧で電流を制御するためである。2レベル動作時では、電流ひずみが大きくなるため、モータの高調波鉄損が大きくなるというデメリットがある。さらに、2レベル動作時では、スイッチング時の電圧が2倍となることから、スイッチング時に発生するインバータ回路3のスイッチング損失が増大するというデメリットがある。
図4は、2レベル動作時と3レベル動作時の電力変換装置の損失内訳の模式図を示す。
ここで、スイッチ回路4において、直列接続した、スイッチング素子4aおよび4b、スイッチング素子4cおよび4d、スイッチング素子4eおよび4fを、スイッチ回路4の各アームと称す。
スイッチ回路4の各アーム(例えばスイッチング素子4aと4bのアーム)はスイッチング素子が2直列で構成されているため、スイッチ回路4に電流を流すときにはオンした側のスイッチング素子(例えばスイッチング素子4a)の導通損失と、もう一方のスイッチング素子(例えばスイッチング素子4b)に逆並列に接続されているダイオードの導通損失が発生することから、電力変換装置の導通損失はスイッチ回路4を使用する3レベル動作の方が大きくなる。しかし、前述したとおりに2レベル動作時に比べて3レベル動作時では、インバータ回路3に印加される電圧が半分となるため、スイッチング損失とリカバリ損失が大幅に減少し、電力変換装置の総合損失は減少する。
ここで、スイッチ回路4において、直列接続した、スイッチング素子4aおよび4b、スイッチング素子4cおよび4d、スイッチング素子4eおよび4fを、スイッチ回路4の各アームと称す。
スイッチ回路4の各アーム(例えばスイッチング素子4aと4bのアーム)はスイッチング素子が2直列で構成されているため、スイッチ回路4に電流を流すときにはオンした側のスイッチング素子(例えばスイッチング素子4a)の導通損失と、もう一方のスイッチング素子(例えばスイッチング素子4b)に逆並列に接続されているダイオードの導通損失が発生することから、電力変換装置の導通損失はスイッチ回路4を使用する3レベル動作の方が大きくなる。しかし、前述したとおりに2レベル動作時に比べて3レベル動作時では、インバータ回路3に印加される電圧が半分となるため、スイッチング損失とリカバリ損失が大幅に減少し、電力変換装置の総合損失は減少する。
一方、3レベル動作を可能とした電力変換装置は、スイッチ回路4の追加およびコンデンサ容量の増大(コンデンサ2a、2bの2直列化)が必要なため、電力変換装置の体積が増大する。
そこで、3レベル動作を可能とした電力変換装置の体積増大を最小限に抑えつつ、電力変換装置の損失を最大限に低減させるために、2レベル動作と3レベル動作を電力変換装置の電流値に応じて切り替える。すなわち、3レベル動作は頻繁に使用する電流閾値以下での使用とし、それよりも大きい電流領域では2レベル動作とする。これにより、スイッチ回路4には規定される電流閾値以下の電流しか流さないため、一般的に電流量から決まるスイッチング素子4a~4fのサイズを小さくし、電力変換装置の大幅な体積増大を抑制できる。
実際に、電動車両に適用する場合の損失量は、国際的な試験法であるWLTC(Worldwide-harmonized Light vehicles Test Cycle)モード(市街地モード、郊外モード、高速道路モードといった各走行モードを平均的な使用時間配分で構成したモード)での燃費で表現される。WLTCモードで規定される大多数の時間はモータの持つ性能限界トルクに対して十分に小さい領域が使用されている。すなわち、電力変換装置の最小限の体積増大により最大限のWLTCモード燃費(損失)を改善するためには、WLTCモードで規定される大多数時間を占める電流領域以下でのみ3レベル動作をするようにレベル動作を切り替えるようにする。
具体的に説明すると、図5は、WLTCモード走行パターンの縦軸を便宜上電流値と置き換え横軸を時刻とした、時系列データを示した図である。図5において、レベル動作を切り替える電流値として、最小値、A値、B値、最大値(最小値<A値<B値<最大値)を示している。
図6は、レベル動作切替のための電流値を、図5の全領域、A値、B値と変化させたときのWLTCモード走行完走時の合計損失の一例を示す。
図7は、図6と同じく、レベル動作切替のための電流値を、図5の全領域、A値、B値と変化させたときの電力変換装置の体積を表現した一例を示す。
図6は、レベル動作切替のための電流値を、図5の全領域、A値、B値と変化させたときのWLTCモード走行完走時の合計損失の一例を示す。
図7は、図6と同じく、レベル動作切替のための電流値を、図5の全領域、A値、B値と変化させたときの電力変換装置の体積を表現した一例を示す。
図6および図7において、条件1は、全ての電流領域で2レベル動作させた場合であり、図6に示す電力変換装置の損失は大きいが、スイッチ回路4が不要なため、図7に示す電力変換装置の体積は小さい。
条件2は、電流が0値からA値(A値はWLTCモード走行パターンにおいて大多数時間が占める電流の上限値であり、0値よりも大きい値)までの領域で3レベル動作を行い、電流がA値以上の領域で2レベル動作を行った場合であり、条件1に対して大多数時間で3レベル動作を行うため図6に示す電力変換装置の損失が大きく改善され、スイッチ回路4の追加により図7に示す電力変換装置の体積は増大する。
条件3は、電流が0値からB値(A<B)までの領域を3レベル動作、電流がB値以上の領域で2レベル動作を行った場合であり、条件2に対して3レベル動作を行う時間は大きくは変わらないため、条件2に対して、図6に示す電力変換装置の若干の損失改善があるが、一方、スイッチ回路4の通流電流量増大のためスイッチ回路4の大型化により図7に示す電力変換装置の体積は増大する。
条件4は、全ての電流領域において3レベル動作させた場合であり、図6に示す電力変換装置の損失改善効果は最も大きく得られるが、条件2に対しても若干の損失改善程度である。一方、スイッチ回路4にはモータ7の最大トルクに対応する最大電流が通流するため、スイッチ回路4の大型化により図7に示す電力変換装置の体積は最大限増大する。
条件2は、電流が0値からA値(A値はWLTCモード走行パターンにおいて大多数時間が占める電流の上限値であり、0値よりも大きい値)までの領域で3レベル動作を行い、電流がA値以上の領域で2レベル動作を行った場合であり、条件1に対して大多数時間で3レベル動作を行うため図6に示す電力変換装置の損失が大きく改善され、スイッチ回路4の追加により図7に示す電力変換装置の体積は増大する。
条件3は、電流が0値からB値(A<B)までの領域を3レベル動作、電流がB値以上の領域で2レベル動作を行った場合であり、条件2に対して3レベル動作を行う時間は大きくは変わらないため、条件2に対して、図6に示す電力変換装置の若干の損失改善があるが、一方、スイッチ回路4の通流電流量増大のためスイッチ回路4の大型化により図7に示す電力変換装置の体積は増大する。
条件4は、全ての電流領域において3レベル動作させた場合であり、図6に示す電力変換装置の損失改善効果は最も大きく得られるが、条件2に対しても若干の損失改善程度である。一方、スイッチ回路4にはモータ7の最大トルクに対応する最大電流が通流するため、スイッチ回路4の大型化により図7に示す電力変換装置の体積は最大限増大する。
以上のように、電力変換装置の損失低減量と電力変換装置の体積増大量の関係性を考慮し、例えば、条件2のように、レベル動作を切り替える電流閾値をA値に設定する。または、反対にスイッチ回路4のスイッチング素子の体積に応じて3レベル動作の上限電流値(レベル切替閾値)を決定しても良い。制御回路8は、このようにあらかじめ決められた電流値に基づいて、2レベル動作および3レベル動作の切り替えを行う。
なお、モータ7の回転数に応じて、電力変換装置の損失(インバータ損失)におけるスイッチング損失と導通損失とリカバリ損失との比率が変化することから、動作レベルの切替を電流値ではなくモータ動作点に応じて決定しても良い。
すなわち、トルク指令、回転数指令および直流電圧源の電圧から、電力変換装置およびモータの、それぞれ2レベル動作時と3レベル動作時の損失と電力変換装置の体積を試算することで、モータの回転数とトルク特性を示した回転数-トルクマップ(NTマップ)上に動作レベル切替の閾値を定める。なお、損失の試算方法については、どのようなものを用いてもよいが、例えば、トルク指令または回転数指令から2レベル動作時と3レベル動作時(それぞれの動作レベル時にサージ電圧同等となるようなオフ時のゲート抵抗値Rgoffを選定)のインバータ回路の損失を計算する数式を用いてもよいし、あるいは、予め実測データ等に基づいて作成された動作テーブルを用いてもよい。インバータ損失を試算する場合には、モータのトルク指令および回転数指令から、モータ相電流、インバータ回路3のスイッチングの変調率、キャリア周波数、力率を算出して、これらの値とオフ時のゲート抵抗値Rgoff毎のスイッチング損失(単パルス)データと検出した直流電圧源の電圧から2レベル動作時および3レベル動作時のインバータ損失を算出することができる。
あるいは、スイッチ回路4はモータ仕様上の最大電流に対応した体積(サイズ)とし、損失低減のみに着目して、制御回路8では前記のように算出された2レベル動作時と3レベル動作時のインバータ回路3の合計損失に基づいて、2レベル動作と3レベル動作のうちの合計損失の小さくなる方を随時選択するようにレベル動作を切り替えても良い。
[電力変換装置のスイッチング速度の変更]
本実施の形態では、前述のような動作レベルの切り替えに加えて、スイッチング素子のスイッチング速度の変更を行うことによりさらなる損失改善を行う。具体的には、スイッチング素子のオフ時のゲート抵抗値Rgoffを切り替えることにより損失改善を行う。
スイッチング素子がオフしたときに発生するサージ電圧は、スイッチング素子の素子耐圧を超過しない範囲で、オフ時のゲート抵抗値Rgoffの調整により、スイッチング速度を高速化することにより、スイッチング損失を低減することができる。
通常、入出力動作条件(電流、電圧、温度、等)が時々刻々と変化するシステムにおいては、前記動作範囲内のワースト条件においてサージ電圧が許容電圧を超過しないようにゲート抵抗値が調整されている。
本実施の形態においては、入出力動作条件が変化する環境においても、サージ電圧をモニタしながら損失最小化のためのオフ時のゲート抵抗値の切替を実施する。
本実施の形態では、前述のような動作レベルの切り替えに加えて、スイッチング素子のスイッチング速度の変更を行うことによりさらなる損失改善を行う。具体的には、スイッチング素子のオフ時のゲート抵抗値Rgoffを切り替えることにより損失改善を行う。
スイッチング素子がオフしたときに発生するサージ電圧は、スイッチング素子の素子耐圧を超過しない範囲で、オフ時のゲート抵抗値Rgoffの調整により、スイッチング速度を高速化することにより、スイッチング損失を低減することができる。
通常、入出力動作条件(電流、電圧、温度、等)が時々刻々と変化するシステムにおいては、前記動作範囲内のワースト条件においてサージ電圧が許容電圧を超過しないようにゲート抵抗値が調整されている。
本実施の形態においては、入出力動作条件が変化する環境においても、サージ電圧をモニタしながら損失最小化のためのオフ時のゲート抵抗値の切替を実施する。
具体的には、電力変換装置の交流出力の基本波周期毎に、周期内における最大サージ電圧を検出し、最大サージ電圧がスイッチング素子の耐圧、ばらつき、電圧検出精度等の設計要素を考慮して決まる許容サージ上限電圧VYと、許容サージ上限電圧VYから一定の最大サージ電圧目標範囲として設定する許容サージ下限電圧VXとの範囲(VY~VX)内に入っているかを確認する。
最大サージ電圧が許容サージ下限電圧VXから許容サージ上限電圧VYの範囲にある場合は、最適なオフ時のゲート抵抗値Rgoffが選択されていると判断し、オフ時のゲート抵抗値Rgoffを変更しない。
一方、最大サージ電圧が許容サージ下限電圧VX未満である場合は、さらなる損失改善の余地があると判断し、オフ時のゲート抵抗値Rgoffを1段階小さく、すなわち、スイッチング速度を1段階高速に設定する。
他方、最大サージ電圧が許容サージ上限電圧VY以上である場合は、許容サージ上限電圧VYを超過しており、スイッチング素子が故障する懸念があることから、オフ時のゲート抵抗値Rgoffを1段階大きく、すなわち、スイッチング速度を1段階低速に設定する。
最大サージ電圧が許容サージ下限電圧VXから許容サージ上限電圧VYの範囲にある場合は、最適なオフ時のゲート抵抗値Rgoffが選択されていると判断し、オフ時のゲート抵抗値Rgoffを変更しない。
一方、最大サージ電圧が許容サージ下限電圧VX未満である場合は、さらなる損失改善の余地があると判断し、オフ時のゲート抵抗値Rgoffを1段階小さく、すなわち、スイッチング速度を1段階高速に設定する。
他方、最大サージ電圧が許容サージ上限電圧VY以上である場合は、許容サージ上限電圧VYを超過しており、スイッチング素子が故障する懸念があることから、オフ時のゲート抵抗値Rgoffを1段階大きく、すなわち、スイッチング速度を1段階低速に設定する。
なお、スイッチング素子の故障の懸念をより確実に解消させるために、オフ時のゲート抵抗値Rgoffを1段階の変更ではなく、設定可能範囲の最大値に設定しても良い。また、前記懸念をより高速に解消させるために、最大サージ電圧が許容サージ上限電圧VY以上ではないかの判断を、交流出力の基本波周期毎ではなく、それよりも短周期の制御ループの中で実施しても良い。
ここで、オフ時のゲート抵抗Rgoffの設定は、前記したように図2に示す回路で実現することができる。また、オフ時のゲート抵抗値Rgoffは1段階ずつの変更として説明したが、例えば、最大サージ電圧が許容サージ下限電圧VXに対して大幅に小さい場合には、その乖離量に応じて2段階、または3段階変更しても良い。さらに、入力電圧または負荷動作点の関係性から必要なスイッチング速度(di/dt)とスイッチング素子特性を踏まえて、オフ時のゲート抵抗値Rgoffを計算により算出し設定しても良い。
また、ここまで説明したスイッチング損失最小化のためのスイッチング速度の変更は、オフ時のゲート抵抗値Rgoffの可変に限らず、ゲート電圧の可変、バッファ能力(電流供給量)の可変等で実現しても良い。
ゲート電圧の可変については、図2に示したオフ電源15の電源電圧を可変構成とし、スイッチング素子の両端または複数コンデンサの両端に発生するサージ電圧が許容サージ電圧に対して余裕があればオフ電源15を高電圧側に変更する。オフ電源15の可変構成は、例えば複数用意されている異なる電源電圧の中から制御回路8からの指令情報に基づいて、スイッチにより所望の電源電圧を選択する方法がある。
バッファ能力(電流供給量)の可変については、例えば、図2のバッファ回路11の段数を可変構成とし、スイッチング素子の両端または複数コンデンサの両端に発生するサージ電圧が許容サージ電圧に対して余裕があればバッファ回路11の段数を増やすようにする。例えば、図15に示すように、バッファ回路11を複数段のバッファ回路11a、11b、11c、・・・、11Nで構成し、バッファ回路11a、11b、11c、・・・のスイッチSW1、SW2、SW3、・・・のスイッチaまたはスイッチbをオン・オフする構成とする。そして、制御回路8からの指令情報に基づいて、前述のスイッチaまたはスイッチbをオン・オフすることにより所望のバッファ回路の段数に切り替えることができる。例えば、図15の場合、全スイッチSW1、SW2、SW3、・・・においてスイッチaをオフし、スイッチbをオンすれば、1段のバッファ回路11Nが選択される。また、全スイッチSW1、SW2、SW3、・・・においてスイッチaをオンし、スイッチbをオフすれば、最大の段数のバッファ回路11a、11b、11c、・・・、11Nが選択される。
ここで、周期内における最大サージ電圧をモニタする手法としては、例えば、マイコン等に搭載されているA/D変換器を用いて、高速サンプリングとサンプルホールド機能を用いても良い。
また、アナログ的にコンデンサ2a、2bから検出した電圧に対応した制御電圧を別途設けられた制御用コンデンサに充電(最大サージ電圧の検出とゲート抵抗値Rgoff選定判断に使用した後は放電)することで求めても良い。
さらに、1周期分の最大サージ電圧を算出する判定タイミングは、相電流の位相または電流検出値に基づいて判断しても良い。
また、アナログ的にコンデンサ2a、2bから検出した電圧に対応した制御電圧を別途設けられた制御用コンデンサに充電(最大サージ電圧の検出とゲート抵抗値Rgoff選定判断に使用した後は放電)することで求めても良い。
さらに、1周期分の最大サージ電圧を算出する判定タイミングは、相電流の位相または電流検出値に基づいて判断しても良い。
ここで、3レベル動作において損失を最小化させるために、スイッチング素子両端に発生する最大サージ電圧が、許容サージ下限電圧VXから許容サージ上限電圧VYの範囲内になるまでスイッチング速度を高速化(ゲート抵抗値Rgoffを小さな値に設定)した状態において2レベル動作に切り替えると、スイッチング素子に印加される電圧が2倍となる。そのため、スイッチング素子両端に発生する最大サージ電圧が許容サージ上限電圧VYを超過し、スイッチング素子が故障する懸念がある。
そこで、本実施の形態では3レベル動作から2レベル動作に切り替える前にオフ時のゲート抵抗値を大きな値に変更することで、スイッチング素子両端に発生するサージ電圧を抑制し、サージ電圧によるスイッチング素子の故障を防ぎながら電力変換装置の損失を最小化することを特徴としている。
そこで、本実施の形態では3レベル動作から2レベル動作に切り替える前にオフ時のゲート抵抗値を大きな値に変更することで、スイッチング素子両端に発生するサージ電圧を抑制し、サージ電圧によるスイッチング素子の故障を防ぎながら電力変換装置の損失を最小化することを特徴としている。
[電力変換装置の制御]
図8は、本実施の形態の電力変換装置の制御の特徴を表す動作概念図である。
図8に基づいて、電力変換装置の動作レベルの切替とオフ時のゲート抵抗値Rgoffの切替を実現するための動作について説明する。
本実施の形態では、電力変換装置の出力電流の基本波周期の制御間隔で動作レベルの切替とゲート抵抗値Rgoffの切替を行うこととしている。そして、図8のA1はインバータ回路3のU相電流Iuを示したものであり、U相電流Iuのピーク領域において動作レベルの切替とゲート抵抗値Rgoffの切替を実施している。
なお、図8は、電力変換装置のU相電流Iuに関して、動作レベルの切替とゲート抵抗値Rgoffの切替を説明しているが、電力変換装置のV相電流Iv、W相電流Iwについても同様であり、その説明は省略する。
図8は、本実施の形態の電力変換装置の制御の特徴を表す動作概念図である。
図8に基づいて、電力変換装置の動作レベルの切替とオフ時のゲート抵抗値Rgoffの切替を実現するための動作について説明する。
本実施の形態では、電力変換装置の出力電流の基本波周期の制御間隔で動作レベルの切替とゲート抵抗値Rgoffの切替を行うこととしている。そして、図8のA1はインバータ回路3のU相電流Iuを示したものであり、U相電流Iuのピーク領域において動作レベルの切替とゲート抵抗値Rgoffの切替を実施している。
なお、図8は、電力変換装置のU相電流Iuに関して、動作レベルの切替とゲート抵抗値Rgoffの切替を説明しているが、電力変換装置のV相電流Iv、W相電流Iwについても同様であり、その説明は省略する。
図8のA2は、3レベル動作と2レベル動作の切替について説明するための図である。
図8のA2において、3レベル動作から2レベル動作に切り替える際のレベル切替閾値をLvth3-2とし、2レベル動作から3レベル動作に切り替える際のレベル切替閾値をLvth2-3としている。
図8のA2において、3レベル動作から2レベル動作に切り替える際のレベル切替閾値をLvth3-2とし、2レベル動作から3レベル動作に切り替える際のレベル切替閾値をLvth2-3としている。
図8のA2に示すように、電力変換装置の電流指令値(実効値)Iu(rms)*が与えられると、現在3レベル動作を行っている場合、電流指令値Iu(rms)*と予め定められたレベル切替閾値Lvth3-2との比較から、電力変換装置を現在の3レベル動作から、2レベル動作または3レベル動作のどちらで動作させるかを判断する。なお、現在2レベル動作を行っている場合は、電流指令値Iu(rms)*と予め定められたレベル切替閾値Lvth2-3との比較から、電力変換装置を現在の2レベル動作から、3レベル動作または2レベル動作のどちらで動作させるかを判断する。
図8のA2の例では、現在3レベル動作を行っており、電流指令値Iu(rms)*とレベル切替閾値Lvth3-2との比較から、電力変換装置を3レベル動作から2レベル動作に切り替える場合を表している。
図8のA2に示すように、電流指令値Iu(rms)*がレベル切替閾値Lvth3-2を横切ると、3レベル動作から2レベル動作に変更すると判断される(実線Dの上向き矢印が3レベル動作から2レベル動作への切り替えを表している。なお、実線DにおいてLowが3レベル動作、Highが2レベル動作を示している)。
そして、3レベル動作から2レベル動作に変更すると判断されると、まず、図8のA4に示すように、3レベル動作時に使用していた比較的小さなオフ時のゲート抵抗値(図8ではゲート抵抗値Rgoff16)を、設定可能範囲の一番大きな値(図8ではゲート抵抗値Rgoff1)に変更する。具体的には、図2のゲート抵抗切替回路10においてスイッチSW2からSW5をすべてオンすることで実現されるゲート抵抗値Rgoff16から、スイッチSW2からSW5をすべてオフすることで実現されるゲート抵抗値Rgoff1に変更する。ただし、Rgoff1>>Rgoff16である。
そして、3レベル動作から2レベル動作に変更すると判断されると、まず、図8のA4に示すように、3レベル動作時に使用していた比較的小さなオフ時のゲート抵抗値(図8ではゲート抵抗値Rgoff16)を、設定可能範囲の一番大きな値(図8ではゲート抵抗値Rgoff1)に変更する。具体的には、図2のゲート抵抗切替回路10においてスイッチSW2からSW5をすべてオンすることで実現されるゲート抵抗値Rgoff16から、スイッチSW2からSW5をすべてオフすることで実現されるゲート抵抗値Rgoff1に変更する。ただし、Rgoff1>>Rgoff16である。
次に、オフ時のゲート抵抗値Rgoffを一番大きな値(図8ではゲート抵抗値Rgoff1)に変更した後、スイッチング素子のオフ時のゲート電圧傾きが緩和したこと、ゲート電流量が減少したこと、またはサージ電圧が低下したことをモニタすることで、実際にオフ時のゲート抵抗値Rgoffが大きい値に変化したことを確認する。
次に、スイッチング素子のオフ時のゲート抵抗値Rgoffの一番大きな値への変更した結果に対応する変化(ゲート電圧傾きが緩和したこと等の変化)を確認した後に、図8のA3に示すように、時間Eを経て、電力変換装置の動作レベルを3レベル動作から2レベル動作に変更する。
このように、動作レベルを3レベル動作から2レベル動作に切り替える前にオフ時のゲート抵抗値Rgoffを小さな値から大きな値に変更する。
すなわち、3レベル動作時に最大サージ電圧がほぼ許容サージ電圧となるように調整した比較的小さなオフ時のゲート抵抗値(図8のRgoff16)が選択されていた場合に、2レベル動作に変更されたときのインバータ回路3のスイッチング素子両端に印加される電圧が2倍になることによりスイッチング素子間電圧の許容サージ電圧超過(図8のA5の点線Hで記載)が発生してスイッチング素子が故障する懸念が生じる。しかしながら、本実施の形態のように制御することにより、スイッチング素子の故障を防止でき、損失最小化を実現することができる。
このように、動作レベルを3レベル動作から2レベル動作に切り替える前にオフ時のゲート抵抗値Rgoffを小さな値から大きな値に変更する。
すなわち、3レベル動作時に最大サージ電圧がほぼ許容サージ電圧となるように調整した比較的小さなオフ時のゲート抵抗値(図8のRgoff16)が選択されていた場合に、2レベル動作に変更されたときのインバータ回路3のスイッチング素子両端に印加される電圧が2倍になることによりスイッチング素子間電圧の許容サージ電圧超過(図8のA5の点線Hで記載)が発生してスイッチング素子が故障する懸念が生じる。しかしながら、本実施の形態のように制御することにより、スイッチング素子の故障を防止でき、損失最小化を実現することができる。
ここで、図8のA5の細い実線は、スイッチング素子3a間の電圧(瞬時値)Vaを示しており、太い実線は、スイッチング素子3a間の電圧Vaの最大値をホールドした電圧最大値(アーム間電圧最大値)Vmaxaを示している。
同様に、図8のA6の細い実線は、スイッチング素子3b間の電圧(瞬時値)Vbを示しており、太い実線は、スイッチング素子3b間の電圧Vbの最大値をホールドした電圧最大値(アーム間電圧最大値)Vmaxbを示している。
アーム間電圧最大値Vmaxa、Vmaxbは、例えば制御回路8内のソフトウエアを用いて電圧(瞬時値)Va、Vbの最大値をホールドするように構成したり、コンデンサ(ハードウエア)を用いて電圧(瞬時値)Va、Vbの最大電圧をコンデンサに充電する構成により実現することができる。なお、アーム間電圧最大値Vmaxa、Vmaxbは、動作レベル切替と同時にゼロリセットする。
また、図8のA7は、スイッチング素子3a、3b、4a、4bのオン、オフ動作を表している。
同様に、図8のA6の細い実線は、スイッチング素子3b間の電圧(瞬時値)Vbを示しており、太い実線は、スイッチング素子3b間の電圧Vbの最大値をホールドした電圧最大値(アーム間電圧最大値)Vmaxbを示している。
アーム間電圧最大値Vmaxa、Vmaxbは、例えば制御回路8内のソフトウエアを用いて電圧(瞬時値)Va、Vbの最大値をホールドするように構成したり、コンデンサ(ハードウエア)を用いて電圧(瞬時値)Va、Vbの最大電圧をコンデンサに充電する構成により実現することができる。なお、アーム間電圧最大値Vmaxa、Vmaxbは、動作レベル切替と同時にゼロリセットする。
また、図8のA7は、スイッチング素子3a、3b、4a、4bのオン、オフ動作を表している。
図8の説明では、動作レベルの切替の判断は、電流指令値Iu(rms)*に基づいて実施してきたが、電流指令値Iu(rms)*の代わりに、モータの回転数または必要トルクに対応して事前に用意されたテーブルから算出した判断基準を用いても良い。さらに、モータの回転数またはトルクに応じて2レベル動作時、3レベル動作時の損失計算結果を基に決定しても良い。
本実施の形態では、3レベル動作時には電流指令値Iu(rms)*とレベル切替閾値Lvth3-2との比較から動作レベルを切り替えるかを判断し、2レベル動作時にはIu(rms)*とレベル切替閾値Lvth2-3との比較から動作レベルを切り替えるかを判断している。この場合、各レベル切替閾値は、(レベル切替閾値Lvth3-2)>(レベル切替閾値Lvth2-3)としている。このように現在の動作レベルに応じてレベル切替閾値Lvth3-2とLvth2-3との間にヒステリシスを設けることで、頻繁な動作レベル変更を回避することが可能である。
さらに、ここまでは電力変換装置の体積(サイズ)を電流値に応じて極力小さく実現するために、レベル切替閾値よりも低い電流を3レベル動作、レベル切替閾値以上の電流を2レベル動作と設定する説明をしたが、電力変換装置の体積(サイズ)を問わない場合、レベル切替閾値よりも低い電流を2レベル動作、レベル切替閾値以上の電流を3レベル動作と設定しても良い。これによりサージ電圧が大きくなる正弦波の電流ピーク領域におけるサージ電圧を抑制できるため、大電流領域のオフ時のゲート抵抗値を小さくでき、さらなる低損失化を実現できる。
[電力変換装置の具体的な制御フローチャート]
図9、図10、図11は、本実施の形態の電力変換装置の具体的な制御フローチャートの一例を示したものであり、以下に説明する。なお、ここでの説明では2レベル動作と3レベル動作との間で2段階に切り替えることができる電力変換装置の制御の一例として説明し、この制御フローチャートは電力変換装置の交流出力の基本波周期毎に実施されることとする。
図9、図10、図11は、本実施の形態の電力変換装置の具体的な制御フローチャートの一例を示したものであり、以下に説明する。なお、ここでの説明では2レベル動作と3レベル動作との間で2段階に切り替えることができる電力変換装置の制御の一例として説明し、この制御フローチャートは電力変換装置の交流出力の基本波周期毎に実施されることとする。
図9において、STARTにより制御フローが実施されると、ステップS1において、前述した動作条件に基づき、今回の動作レベルが2レベル動作または3レベル動作であるかが判断される。さらに、ステップS1では、交流出力の基本波周期内のサージ電圧最大値を検出する。すなわち、図8のA5およびA6の、太い実線で示されるアーム電圧最大値Vmaxa、Vmaxbを検出する。
ステップS2では、動作レベルが3レベル動作から2レベル動作に変更するタイミングであるか、を確認するため、まずは前回の動作レベルが3レベル動作であったかを判断し、前回の動作レベルが3レベル動作(YES)であればステップS3を実行し、前回の動作レベルが2レベル動作(NO)であれば、図11のステップS4を実行する。
ステップS2では、動作レベルが3レベル動作から2レベル動作に変更するタイミングであるか、を確認するため、まずは前回の動作レベルが3レベル動作であったかを判断し、前回の動作レベルが3レベル動作(YES)であればステップS3を実行し、前回の動作レベルが2レベル動作(NO)であれば、図11のステップS4を実行する。
図11のステップS4では、前回の動作レベルが2レベル動作であるため、動作レベル変更時のサージ電圧が許容サージ上限電圧VYを超過する懸念はなく、オフ時のゲート抵抗値の最適化制御を継続する。すなわち、ステップS4では、サージ電圧最大値が許容サージ下限電圧VXから許容サージ上限電圧VYの範囲に収まっているかを確認し、許容サージ下限電圧VXから許容サージ上限電圧VYの範囲に収まっている場合(YES)は、最適なオフ時のゲート抵抗値Rgoffが選択されており、現在のオフ時のゲート抵抗値Rgoffを維持し(ステップS19)、ステップS1で判断された今回の動作レベルで動作させ(ステップS20)、この周期は終了となる。
一方、ステップS4でサージ電圧最大値が許容サージ下限電圧VXから許容サージ上限電圧VYの範囲に収まっていない場合(NOの場合)、サージ電圧最大値が許容サージ下限電圧VX未満であるのか、許容サージ上限電圧VYより大きいのかを判断する。すなわち、ステップS21において、サージ電圧最大値は許容サージ下限電圧VX未満であるかを確認し、サージ電圧最大値が許容サージ下限電圧VX未満の場合(YES)、さらなる損失改善の余地があると判断し、オフ時のゲート抵抗値Rgoffを小さくする。ただし、既にオフ時のゲート抵抗値Rgoffが最小値設定であればこれ以上の最小化ができないため、ステップS22で現在のオフ時のゲート抵抗値Rgoffが最小値に設定されていないか確認する。ステップS22でオフ時のゲート抵抗値Rgoffが最小でない場合(YES)、オフ時のゲート抵抗値Rgoffを1段階小さくし(ステップS23)、ステップS1で判断された今回の動作レベルで動作させ(ステップS20)、この周期は終了となる。
一方、ステップS22でオフ時のゲート抵抗値Rgoffが最小値である場合(NO)、オフ時のゲート抵抗値Rgoffはこれ以上小さくできないため、現在値と同じ最小値の設定とし(ステップS24)、ステップS1で判断された今回の動作レベルで動作させ(ステップS20)、この周期は終了となる。
一方、ステップS22でオフ時のゲート抵抗値Rgoffが最小値である場合(NO)、オフ時のゲート抵抗値Rgoffはこれ以上小さくできないため、現在値と同じ最小値の設定とし(ステップS24)、ステップS1で判断された今回の動作レベルで動作させ(ステップS20)、この周期は終了となる。
ステップS21においてNOの場合、サージ電圧最大値が許容サージ上限電圧VYよりも大きくなるので、スイッチング素子の故障の懸念があるため、オフ時のゲート抵抗値Rgoffを大きく設定する。ただし、既にオフ時のゲート抵抗値Rgoffが最大値設定であればこれ以上の最大化ができないため、ステップS25で現在のオフ時のゲート抵抗値Rgoffが最大値に設定されていないか確認する。ステップS25でオフ時のゲート抵抗値Rgoffが最大でない場合(YES)、オフ時のゲート抵抗値Rgoffを1段階大きくし(ステップS26)、ステップS1で判断された今回の動作レベルで動作させ(ステップS20)、この周期は終了となる。
一方、ステップS25でオフ時のゲート抵抗値Rgoffが最大である場合(NO)、オフ時のゲート抵抗値Rgoffはこれ以上大きくできないため、現在値と同じ最大値の設定とし(ステップS27)、ステップS1で判断された今回の動作レベルで動作させ(ステップS20)、この周期は終了となる。なお、既にオフ時のゲート抵抗値Rgoffが最大値で許容サージ上限電圧VYを超過している状態のため、スイッチング素子の故障を防止するために、上位システムにこの状態を伝達するか、または出力電力(電流)を絞る、等の対策を行っても良い。
一方、ステップS25でオフ時のゲート抵抗値Rgoffが最大である場合(NO)、オフ時のゲート抵抗値Rgoffはこれ以上大きくできないため、現在値と同じ最大値の設定とし(ステップS27)、ステップS1で判断された今回の動作レベルで動作させ(ステップS20)、この周期は終了となる。なお、既にオフ時のゲート抵抗値Rgoffが最大値で許容サージ上限電圧VYを超過している状態のため、スイッチング素子の故障を防止するために、上位システムにこの状態を伝達するか、または出力電力(電流)を絞る、等の対策を行っても良い。
ここで、図9に戻って、ステップS3では、前回の動作レベルが3レベル動作であるため(ステップS2)、3レベル動作から2レベル動作に変更するタイミングであるかどうか、を確認するため、今回の動作レベルが2レベル動作であるかを確認する必要がある。すなわち、ステップS3で今回の動作レベルが2レベル動作であれば(YES)、ステップS5を実行し、今回の動作レベルが3レベル動作であれば(NO)、図10のステップS9を実行する。
図10のステップS9では、前回の動作レベルも今回の動作レベルも共に3レベル動作であるため、動作レベル切替時のサージ電圧によるスイッチング素子の故障の懸念はなく、オフ時のゲート抵抗値の最適化制御を継続する。すなわち、ステップS9では、サージ電圧最大値が許容サージ下限電圧VXから許容サージ上限電圧VYの範囲に収まっているかを確認し、許容サージ下限電圧VXから許容サージ上限電圧VYの範囲に収まっている場合(YES)は、最適なオフ時のゲート抵抗値Rgoffが選択されており、現在のオフ時のゲート抵抗値Rgoffを維持し(ステップS10)、ステップS1で判断された通りに今回も3レベル動作で動作させ(ステップS11)、この周期は終了となる。
一方、ステップS9でサージ電圧最大値が許容サージ下限電圧VXから許容サージ上限電圧VYの範囲に収まっていない場合(NO)、ステップS12において、サージ電圧最大値が許容サージ下限電圧VX未満であるのか、許容サージ上限電圧VYより大きいのかを判断する。すなわち、ステップS12において、サージ電圧最大値は許容サージ下限電圧VX未満であるかを確認し、サージ電圧最大値が許容サージ下限電圧VX未満の場合(YES)、さらなる損失改善の余地があると判断し、オフ時のゲート抵抗値Rgoffを小さくする。ただし、既にオフ時のゲート抵抗値Rgoffが最小値設定であればこれ以上の最小化ができないため、ステップS13で現在のオフ時のゲート抵抗値Rgoffが最小値に設定されていないか確認する。
ステップS13でオフ時のゲート抵抗値Rgoffが最小でない場合(YES)、オフ時のゲート抵抗値Rgoffを1段階小さくし(ステップS14)、3レベル動作を継続させ(ステップS11)、この周期は終了となる。
一方、ステップS13でオフ時のゲート抵抗値Rgoffが最小値である場合(NO)、ゲート抵抗値Rgoffはこれ以上小さくできないため、現在値と同じ最小値の設定とし(ステップS15)、3レベル動作を継続させ(ステップS11)、この周期は終了となる。
一方、ステップS13でオフ時のゲート抵抗値Rgoffが最小値である場合(NO)、ゲート抵抗値Rgoffはこれ以上小さくできないため、現在値と同じ最小値の設定とし(ステップS15)、3レベル動作を継続させ(ステップS11)、この周期は終了となる。
ステップS12において、サージ電圧最大値が許容サージ上限電圧VYよりも大きい場合(NO)、スイッチング素子の故障の懸念があるため、オフ時のゲート抵抗値Rgoffを大きく設定する。ただし、既にオフ時のゲート抵抗値Rgoffが最大値設定であればこれ以上の最大化ができないため、ステップS16で現在のオフ時のゲート抵抗値Rgoffが最大値に設定されていないか確認する。ステップS16においてオフ時のゲート抵抗値Rgoffが最大値でない場合(YES)、オフ時のゲート抵抗値Rgoffを1段階大きくし(ステップS17)、3レベル動作を継続させ(ステップS11)、この周期は終了となる。
一方、ステップS16でオフ時のゲート抵抗値Rgoffが最大値である場合(NO)、オフ時のゲート抵抗値Rgoffはこれ以上大きくできないため、現在値と同じ最大値の設定とし(ステップS18)、ステップS1で判断された今回の動作レベルで動作させ(ステップS11)、この周期は終了となる。なお、既にオフ時のゲート抵抗値Rgoffが最大値であり許容サージ上限電圧VYを超過している状態のため、スイッチング素子の故障を防止するために、上位システムにこの状態を伝達するか、または、出力電力(電流)を絞る等の対策を行ってもよい。
図9に戻って、ステップS5では、前回の動作レベルが3レベル動作であり(ステップS2でYES)、今回の動作レベルが2レベル動作であるため(ステップS3でYES)、3レベル動作時に最適調整されたゲート抵抗値Rgoffを用いて2レベル動作を行うと、スイッチング素子両端に過大なサージ電圧が発生する懸念がある。そのため、ステップS5では、オフ時のゲート抵抗値Rgoffが最大値となるように設定する。
ここで、オフ時のゲート抵抗値Rgoffの変更と同時に2レベル動作への切り替えを行うと、ゲート抵抗値Rgoffの切替が完了する前に2レベル動作でスイッチング動作を行うことになり、スイッチング素子間に過大なサージ電圧が発生して、スイッチング素子が故障する懸念がある。
そのため、ゲート抵抗値Rgoffの切替が完了するまでは2レベル動作への切り替えは行わない。
ステップS6では、ゲート抵抗切替回路10のスイッチSWのスイッチング速度を考慮して、スイッチングが完了するのに十分な時間(例えば1us)が経過するまで処理を待機させ、その後にステップS7に移行する。
そのため、ゲート抵抗値Rgoffの切替が完了するまでは2レベル動作への切り替えは行わない。
ステップS6では、ゲート抵抗切替回路10のスイッチSWのスイッチング速度を考慮して、スイッチングが完了するのに十分な時間(例えば1us)が経過するまで処理を待機させ、その後にステップS7に移行する。
ステップS7では、前回のスイッチングオフ時のスイッチング速度と、ゲート抵抗値Rgoffを最大にした後の今回のスイッチングオフ時のスイッチング速度を比較し、スイッチング速度が一定以上遅くなったかを確認する。
ステップS7において、スイッチング速度が一定以上遅くなった場合(YES)、ゲート抵抗値Rgoffの最大値への変更が完了したと判断して、ステップS8に移行して2レベル動作への切替を実行する。
ステップS7において、スイッチング速度が一定以上遅くなった場合(YES)、ゲート抵抗値Rgoffの最大値への変更が完了したと判断して、ステップS8に移行して2レベル動作への切替を実行する。
一方、ステップS7において、スイッチング速度が一定以上遅くならない場合(NO)、ゲート抵抗値Rgoffがまだ最大値に変更されていないと判断し、ゲート抵抗値Rgoffが最大値に移行するまで、ステップS6の一定の遅延後にステップS7の判断を続ける。
なお、前回のスイッチング時にオフ時のゲート抵抗値Rgoffが既に最大である場合、これ以上ゲート抵抗値Rgoffを大きくできないため、オフ時のスイッチング速度の比較は行わずに、ステップS8に移行して2レベル動作への切替を行う。
なお、前回のスイッチング時にオフ時のゲート抵抗値Rgoffが既に最大である場合、これ以上ゲート抵抗値Rgoffを大きくできないため、オフ時のスイッチング速度の比較は行わずに、ステップS8に移行して2レベル動作への切替を行う。
なお、ステップS7では、オフ時のゲート抵抗値Rgoffの切替の完了を、オフ時のスイッチング速度の変化によって判断しているが、他の方法でもよく、ゲート抵抗値Rgoffが確実に切り替わったことが確認できればよい。例えば、スイッチング速度の変更指令後に、スイッチング素子のゲート端子に印加されるゲート電圧傾きが一定以上変化したこと、または、スイッチング素子のゲート電流が一定以上変化したこと、または、スイッチング素子の両端または複数コンデンサの両端に発生するサージ電圧最大値が一定以上変化したこと、に基づいて確実に切り替わったことを判断しても良い。
以上のような制御フローにより動作レベルの切り替えとオフ時のゲート抵抗値の切り替えを行うことにより、最大サージ電圧が許容サージ電圧を超過しない範囲で損失最小化の制御を実現することができる。
上述の説明では、制御回路8は、電力変換装置の損失を最小化させるように、2レベル動作と3レベル動作を切り替えるとともに、オフ時のゲート抵抗値を切り替える方法について説明したが、さらには、電力変換装置とモータを含めた合計損失が最小化されるように、2レベル動作と3レベル動作を切り替えるとともに、オフ時のゲート抵抗値を切り替えても良い。
また、2レベル動作と3レベル動作の切り替えおよびオフ時のゲート抵抗値の切り替えに加え、インバータ回路の動作を制御するキャリア周波数を変更する制御を行ってもよい。前述したように、3レベル動作時は電流ひずみが改善されるためモータ鉄損が減る。キャリア周波数を下げると、電流ひずみが増えるためモータ鉄損は増えるが電力変換装置の損失が低下するため、条件によっては全体損失を下げることができる。そのため、回転数指令が同一である場合においては、3レベル動作時のキャリア周波数は、2レベル動作時のキャリア周波数以下に設定しても良い。すなわち、2レベル動作時のキャリア周波数をfx_2lvとし、3レベル動作時のキャリア周波数をfx_3lvとした場合、fx_2lv≧fx_3lvを満たすようにキャリア周波数を設定する。
図12は、モータの回転数とトルク特性に電力変換装置(インバータ回路)の2レベル動作および3レベル動作とキャリア周波数を模式的にマッピングしたものである。制御回路8は、モータの回転数指令が同一である場合においては、トルク指令(または電流指令)があらかじめ定められた閾値以上の場合には2レベル動作に切り替え、あらかじめ定められた閾値より小さい場合には3レベル動作に切り替える。ここであらかじめ定められた閾値は、例えば前述したように、電力変換装置の損失量と体積量の試算結果を基に事前に決められた閾値である。なお、図12に示す例では閾値が1つであるが、動作が安定するように複数の閾値を設けヒステリシス制御を行うようにしてもよい。例えば、トルク指令に応じて2レベル動作と3レベル動作とを切り替える閾値をトルク指令が増加する場合と減少する場合とで異なる閾値とする。また、増加する場合の閾値を減少する場合の閾値に比べて高くすることにより、不必要に2レベル動作と3レベル動作が切り替わることが防止でき、動作が安定することとなる。
また、図12に示す動作マップでは、モータの回転数指令に応じてキャリア周波数についても変更を行うようにしている。キャリア周波数の設定であるが、3レベル動作時はモータの電流ひずみが小さくなるため、2レベル動作時に比べて高調波鉄損が少なくなる。インバータ回路のスイッチング損失とスイッチング周波数は比例の関係にあるため、周波数を下げると、モータの高周波鉄損とトレードオフにはなるが、インバータ損失を低下して使うことが可能となる。このようにキャリア周波数はインバータ回路とモータにとって相反するパラメータとなり、制御性を確保しながら、インバータ回路とモータの合計損失を最小化するように設定する必要がある。通常、回転数が高くなる領域では、モータシステムにおける損失は、モータの高調波鉄損が支配的になるため、回転数が大きくなるにつれてキャリア周波数を高くしてもよい。そのため、図10に示す例では、回転数に応じてキャリア周波数を3段階に変更するようにしており、f1_3lv<f2_3lv<f3_3lvとなる。
なお、トルク指令または回転数指令のみならず、他のパラメータを用いて、2レベル動作時と3レベル動作時のインバータ回路およびモータの損失を算出してもよい。例えば、トルク指令または回転数指令に加え、直流電圧源の電圧、電力変換装置の温度を用いて、直流電圧源の電圧および電力変換装置の温度のうちの少なくとも1つのパラメータに応じた動作テーブルを保持しておき、この動作テーブルに基づいて電力変換装置およびモータの損失を算出してもよい。
[その他の電力変換装置の構成]
図1に示した電力変換装置では、3レベル動作を行うために設けたスイッチ回路4として、ソース・ドレイン間に逆並列ダイオードを備えたMOSFET(Metal Oxide Semiconductor Field Effect Transistor)を用いたものを示したが、図13に示すようにリバースブロックタイプのIGBT(Insulated Gate Bipolar Transistor)を用いた構成のスイッチ回路4Bを用いても良い。
図13に示す電力変換装置のスイッチ回路4Bは、リバースブロックタイプのIGBTであるスイッチング素子14a、14b、14c、14d、14e、14fを備えている。そして、スイッチング素子14aとスイッチング素子14b、スイッチング素子14cとスイッチング素子14d、スイッチング素子14eとスイッチング素子14f、がそれぞれ逆方向に並列に接続されている。スイッチ回路4Bの一端はコンデンサ直列回路2の第1の接続点に接続されており、他端はそれぞれ第2、第3、第4の接続点に接続されている。なお、16a、16b、16c、16d、16e、16fは、スイッチング素子14a、14b、14c、14d、14e、14fのゲート入力部を示している。また、その他の構成は、図1の電力変換装置と同様である。
図13のように構成した電力変換装置でも、図1の電力変換装置と同様の動作および効果を奏することができる。
図1に示した電力変換装置では、3レベル動作を行うために設けたスイッチ回路4として、ソース・ドレイン間に逆並列ダイオードを備えたMOSFET(Metal Oxide Semiconductor Field Effect Transistor)を用いたものを示したが、図13に示すようにリバースブロックタイプのIGBT(Insulated Gate Bipolar Transistor)を用いた構成のスイッチ回路4Bを用いても良い。
図13に示す電力変換装置のスイッチ回路4Bは、リバースブロックタイプのIGBTであるスイッチング素子14a、14b、14c、14d、14e、14fを備えている。そして、スイッチング素子14aとスイッチング素子14b、スイッチング素子14cとスイッチング素子14d、スイッチング素子14eとスイッチング素子14f、がそれぞれ逆方向に並列に接続されている。スイッチ回路4Bの一端はコンデンサ直列回路2の第1の接続点に接続されており、他端はそれぞれ第2、第3、第4の接続点に接続されている。なお、16a、16b、16c、16d、16e、16fは、スイッチング素子14a、14b、14c、14d、14e、14fのゲート入力部を示している。また、その他の構成は、図1の電力変換装置と同様である。
図13のように構成した電力変換装置でも、図1の電力変換装置と同様の動作および効果を奏することができる。
[実施の形態1の効果]
以上のように実施の形態1によれば、
直列に接続された複数のコンデンサを有し、両端が直流電圧源の両端に接続されるコンデンサ直列回路と、
複数のスイッチング素子が直列接続されたレグが複数並列に接続され、直流入力端が前記コンデンサ直列回路の両端に接続されるとともに交流出力端が負荷に接続されるインバータ回路と、
複数のスイッチング素子を有し、一端が複数の前記コンデンサの接続点に接続され、他端が前記インバータ回路の前記スイッチング素子の複数の接続点に接続されたスイッチ回路と、
前記インバータ回路および前記スイッチ回路を制御する制御回路と、を備え、
前記インバータ回路は、前記スイッチ回路が有する前記スイッチング素子をオフさせることにより2レベル動作が可能であり、前記スイッチ回路が有する前記スイッチング素子をオン・オフさせることにより3レベル動作が可能であり、
前記制御回路は、前記2レベル動作と前記3レベル動作との間の動作レベルの切替の際に、前記インバータ回路および前記スイッチ回路の前記スイッチング素子のスイッチング速度を変更するようにしたので、
動作レベル切替時においてもスイッチング素子の故障の懸念がない電力変換装置を提供することができる。
以上のように実施の形態1によれば、
直列に接続された複数のコンデンサを有し、両端が直流電圧源の両端に接続されるコンデンサ直列回路と、
複数のスイッチング素子が直列接続されたレグが複数並列に接続され、直流入力端が前記コンデンサ直列回路の両端に接続されるとともに交流出力端が負荷に接続されるインバータ回路と、
複数のスイッチング素子を有し、一端が複数の前記コンデンサの接続点に接続され、他端が前記インバータ回路の前記スイッチング素子の複数の接続点に接続されたスイッチ回路と、
前記インバータ回路および前記スイッチ回路を制御する制御回路と、を備え、
前記インバータ回路は、前記スイッチ回路が有する前記スイッチング素子をオフさせることにより2レベル動作が可能であり、前記スイッチ回路が有する前記スイッチング素子をオン・オフさせることにより3レベル動作が可能であり、
前記制御回路は、前記2レベル動作と前記3レベル動作との間の動作レベルの切替の際に、前記インバータ回路および前記スイッチ回路の前記スイッチング素子のスイッチング速度を変更するようにしたので、
動作レベル切替時においてもスイッチング素子の故障の懸念がない電力変換装置を提供することができる。
また、前記制御回路は、前記3レベル動作から前記2レベル動作に変更する際に、前記スイッチング素子のスイッチング速度を遅くするようにしたので、サージ電圧を許容範囲内に収めることができ、スイッチング素子の故障の懸念がなくなる。
また、前記制御回路は、前記3レベル動作と前記2レベル動作との間の動作レベルを切り替える前に、前記スイッチング素子のスイッチング速度を変更するようにしたので、確実にサージ電圧を許容範囲内に収めることができ、スイッチング素子の故障の懸念がなくなる。
また、前記制御回路は、前記スイッチング素子のスイッチング速度の変更指令後、一定時間待機した後に前記3レベル動作と前記2レベル動作との間の動作レベルを切り替えるようにしたので、確実にサージ電圧を許容範囲内に収めることができ、スイッチング素子の故障の懸念がなくなる。
また、前記制御回路は、前記スイッチング素子のスイッチング速度の変更指令後、前記スイッチング素子のスイッチング速度の変化に基づいて、スイッチング速度の変更処理を確定するようにしたので、確実にサージ電圧を許容範囲内に収めることができる。
また、前記制御回路は、前記スイッチング素子のスイッチング速度の変更指令後、前記スイッチング素子のゲート端子に印加されるゲート電圧傾きが変化したことに基づいて、スイッチング速度の変更処理を確定するようにしたので、確実にサージ電圧を許容範囲内に収めることができる。
また、前記制御回路は、前記スイッチング素子のスイッチング速度の変更指令後、前記スイッチング素子のゲート電流が変化したことに基づいて、スイッチング速度の変更処理を確定するようにしたので、確実にサージ電圧を許容範囲内に収めることができる。
また、前記制御回路は、前記スイッチング素子のスイッチング速度の変更指令後、前記スイッチング素子の両端、または、前記コンデンサ直列回路の両端に発生するサージ電圧が変化したことに基づいて、スイッチング速度の変更処理を確定するようにしたので、確実にサージ電圧を許容範囲内に収めることができる。
また、前記2レベル動作から前記3レベル動作に変更するときのレベル切替閾値と、前記3レベル動作から前記2レベル動作に変更するときのレベル切替閾値とは、異なる値にしてヒステリシスを設けるようにしたので、頻繁な動作レベル変更を回避することができる。
また、前記制御回路は、前記スイッチング素子の両端、または、前記コンデンサ直列回路の両端に発生するサージ電圧の検出値に基づいて、前記スイッチング素子のスイッチング速度を変化させるようにしたので、確実にサージ電圧を許容範囲内に収めることができる。
また、前記制御回路は、前記スイッチング素子の両端、または、前記コンデンサ直列回路の両端に発生するサージ電圧の検出値の最大値が、目標とする許容電圧範囲に収まるように、前記スイッチング素子のスイッチング速度を変更するようにしたので、確実にサージ電圧を許容範囲内に収めることができる。
また、前記制御回路は、連続した複数回の前記サージ電圧の検出値に基づいて、スイッチング速度を変更するようにしたので、確実にサージ電圧を許容範囲内に収めることができる。
また、前記制御回路は、前記2レベル動作と前記3レベル動作との切替を、前記電力変換装置の交流出力電流値と予め設定された電流閾値との比較に基づいて行うようにしたので、動作レベルの切替を適切に実施することができる。
また、前記制御回路は、前記電力変換装置の交流出力電流の基本波周期毎に、前記動作レベルの切替とスイッチング速度の変更を実施するようにしたので、動作レベルの切替およびスイッチング速度の変更を適切に行うことができる。
また、前記2レベル動作と前記3レベル動作とを切り替えるレベル切替閾値は、前記スイッチ回路の前記スイッチング素子の体積に応じて決定するようにしたので、動作レベルの切替を適切に実施することができる。
また、前記負荷としてモータが接続され、前記制御回路は、前記モータおよび前記電力変換装置の指令情報、並びに前記モータおよび前記電力変換装置の検出情報に基づいて、事前に用意したテーブルまたは計算結果から、前記動作レベルの切替およびスイッチング速度を決定するようにしたので、動作レベルの切替およびスイッチング速度の変更を適切に行うことができる。
なお、ここで、「モータおよび電力変換装置の指令情報」とは、「モータのトルク指令または回転数指令、電力変換装置の各相電流指令(Iu(rms)*、Iu*等)」などを意味する。また、「モータおよび電力変換装置の検出情報」とは、「モータの回転数、電力変換装置の各相電流(Iu等)、スイッチング素子のスイッチング変調率、スイッチング素子のゲート電圧、電力変換装置の母線電圧、サージ電圧、温度」などを意味する。
なお、ここで、「モータおよび電力変換装置の指令情報」とは、「モータのトルク指令または回転数指令、電力変換装置の各相電流指令(Iu(rms)*、Iu*等)」などを意味する。また、「モータおよび電力変換装置の検出情報」とは、「モータの回転数、電力変換装置の各相電流(Iu等)、スイッチング素子のスイッチング変調率、スイッチング素子のゲート電圧、電力変換装置の母線電圧、サージ電圧、温度」などを意味する。
また、前記制御回路は、前記スイッチング素子のスイッチング速度の変更を、前記スイッチング素子をオフするときのゲート抵抗値を変更することで実現するようにしたので、スイッチング素子のスイッチング速度の変更が適切に行われる。
実施の形態2.
次に、実施の形態2に係る電力変換装置について説明する。実施の形態2に係る電力変換装置の回路ブロック図は、実施の形態1における図1、図13等の電力変換装置の回路ブロック図と同様であるが、本実施の形態2では電力変換装置の制御回路による制御動作が実施の形態1とは相違する。
図14は、本実施の形態2に係る電力変換装置の制御回路の動作を示したものであり、実施の形態1と異なる点について実施の形態1の制御動作(図8)との比較により以下に説明する。なお、特に記載のない説明については実施の形態1と同様である。
次に、実施の形態2に係る電力変換装置について説明する。実施の形態2に係る電力変換装置の回路ブロック図は、実施の形態1における図1、図13等の電力変換装置の回路ブロック図と同様であるが、本実施の形態2では電力変換装置の制御回路による制御動作が実施の形態1とは相違する。
図14は、本実施の形態2に係る電力変換装置の制御回路の動作を示したものであり、実施の形態1と異なる点について実施の形態1の制御動作(図8)との比較により以下に説明する。なお、特に記載のない説明については実施の形態1と同様である。
実施の形態1では、電力変換装置の交流出力の基本波周期毎に動作レベルの切替とオフ時のゲート抵抗値の切替を実施していたが、実施の形態2においては、電力変換装置の交流出力の基本波周期よりも短い時間間隔で動作レベルの切替とオフ時のゲート抵抗値の切替を実施することを特徴としている。すなわち、動作レベルの判断については、実施の形態1では交流出力電流指令値(実効値)Iu(rms)*とレベル切替閾値との比較で実施していたが、実施の形態2では、図14のB1およびB2で示すように、交流出力電流指令値(瞬時値)Iu*とレベル切替閾値Lvth3-2、Lvth2-3との比較で実施している。
なお、交流出力電流指令値(瞬時値)Iu*とレベル切替閾値との比較で実施するほかに、検出電流値Iu(複数の連続検出値の平均)とレベル切替閾値との比較で実施しても良い。検出電流値Iu(複数の連続検出値の平均)とは、例えば、スイッチング素子に流れる電流(例えば図1のU相電流Iu)の検出値を取り込み、取り込み周期毎に保存しておき、例えば最新10回分の保存値を平均したものをいう。
ここで、動作レベルの選定に関して、実施の形態1では、交流出力の電流指令値(実効値)Iu(rms)*がレベル切替閾値よりも大きな場合、交流出力(正弦波)の全領域を2レベル動作で実施させることになるが、実施の形態2では、交流出力の電流指令値(瞬時値)Iu*とレベル切替閾値との比較により行うので、交流出力(正弦波)の低電流領域では3レベル動作を実施することとなり、さらなる電力変換装置の低損失化が実現される。
また、オフ時のゲート抵抗値の選定に関しては、実施の形態1では、交流出力(正弦波)の最大電流値においてサージ電圧律速を満足するように決定するため、最大電流値付近以外の電流領域ではサージ電圧余裕が生じており、さらなる低損失化の余地を残している。これに対して、実施の形態2では、交流出力(正弦波)の全領域においてサージ電圧律速を満足するように、オフ時のゲート抵抗値がその都度変更されるため、最大電流値付近以外の電流領域においてもサージ余裕が発生せず、さらなる低損失化が実現される。ここで、サージ電圧律速を満足するとは、サージ電圧がスイッチング素子のモジュール耐圧を超過しないという意味である。
図14に基づいて、実施の形態2による、動作レベルの切替とオフ時のゲート抵抗値の切替を実現するための動作について説明する。
図14に示すように、現在3レベル動作を行っている場合、電力変換装置の電流指令値(瞬時値)Iu*と、予め定められたレベル切替閾値Lvth3-2との比較から、2レベル動作または3レベル動作のどちらで動作させるかを判断する。すなわち、図14のB2に示すように、電流指令値(瞬時値)Iu*がレベル切替閾値Lvth3-2を横切ると、3レベル動作から2レベル動作に変更すると判断される(実線Dの上向き矢印が3レベル動作から2レベル動作への切り替えを表している。なお、実線DにおいてLowが3レベル動作、Highが2レベル動作を示している)。そして、3レベル動作から2レベル動作に変更すると判断されると、まず、図14のB4に示すように、3レベル動作時に使用していた比較的小さなオフ時のゲート抵抗値(ゲート抵抗値Rgoff14)を、設定可能範囲の一番大きな値(図14ではゲート抵抗値Rgoff1)に変更する。
図14に示すように、現在3レベル動作を行っている場合、電力変換装置の電流指令値(瞬時値)Iu*と、予め定められたレベル切替閾値Lvth3-2との比較から、2レベル動作または3レベル動作のどちらで動作させるかを判断する。すなわち、図14のB2に示すように、電流指令値(瞬時値)Iu*がレベル切替閾値Lvth3-2を横切ると、3レベル動作から2レベル動作に変更すると判断される(実線Dの上向き矢印が3レベル動作から2レベル動作への切り替えを表している。なお、実線DにおいてLowが3レベル動作、Highが2レベル動作を示している)。そして、3レベル動作から2レベル動作に変更すると判断されると、まず、図14のB4に示すように、3レベル動作時に使用していた比較的小さなオフ時のゲート抵抗値(ゲート抵抗値Rgoff14)を、設定可能範囲の一番大きな値(図14ではゲート抵抗値Rgoff1)に変更する。
次に、オフ時のゲート抵抗値を一番大きな値(図14ではゲート抵抗値Rgoff1)に変更した後、スイッチング素子のオフ時のゲート電圧傾きが緩和したこと、ゲート電流量が減少したこと、またはサージ電圧が低下したことをモニタすることで、実際にオフ時のゲート抵抗値Rgoffが大きい値に変化したことを確認する。
次に、スイッチング素子のオフ時のゲート抵抗値Rgoffの一番大きな値への変更した結果に対応する変化(ゲート電圧傾きが緩和したこと等の変化)を確認した後に、図14のB3に示すように、動作レベルを3レベル動作から2レベル動作に変更する。
このように、動作レベルを3レベル動作から2レベル動作に切り替える前にオフ時のゲート抵抗値Rgoffを小さな値から大きな値に変更する。
このように、動作レベルを3レベル動作から2レベル動作に切り替える前にオフ時のゲート抵抗値Rgoffを小さな値から大きな値に変更する。
そして、実施の形態2においては、オフ時のゲート抵抗値の選定のための最大サージ電圧検出に関して、サージ電圧の連続した検出値を用いて判断する。すなわち、図14のB5で示すように、サージ電圧検出値(アーム間電圧最大値)Vmaxが許容サージ電圧VX未満の場合には、サージ余裕検出CNT(カウンタ)値をプラス1ずつインクリメントして、サージ余裕検出CNT値があらかじめ設定したRgoff切替閾値RZに達した時点でオフ時のゲート抵抗値Rgoffを変更して行く。すなわち、図14では、サージ余裕検出CNT値がRgoff切替閾値RZに達した時点で、例えば、ゲート抵抗値をRgoff1、Rgoff2、Rgoff3、Rgoff4、Rgoff5、Rgoff6・・・のように変更していく。
なお、Rgoff1>Rgoff2>Rgoff3>Rgoff4>・・・>Rgoff14>Rgoff15>Rgoff16である。
なお、Rgoff1>Rgoff2>Rgoff3>Rgoff4>・・・>Rgoff14>Rgoff15>Rgoff16である。
このように、サージ余裕検出CNT値があらかじめ設定したRgoff切替閾値RZに達した時点でオフ時のゲート抵抗値Rgoffを変更することで、オフ時のゲート抵抗値が頻繁に変更されることを防ぐことができ、不安定なゲート抵抗値変動を抑制することが可能となる。
実施の形態2のその他の制御は、実施の形態1と同様であるので説明を省略する。
実施の形態2において、モータおよび電力変換装置の検出情報(相電流、相電流(トルク)指令値、回転数検出値、変調率、ゲート電圧値、サージ電圧値、温度等)を基に、サージ電圧を許容範囲に収めつつ損失最小となる動作レベルおよびオフ時のゲート抵抗の組合せを制御周期毎に計算し、事前に用意したテーブルまたは損失計算から決定しても良い。特に、実施の形態2においては、比較的高速に動作レベルの切替およびオフ時のゲート抵抗値の切替を行うため、低損失化に関して大きな効果を得ることができる。
実施の形態2においては、動作レベルの切替およびオフ時のゲート抵抗値の切替について、基本波周期よりも短い、例えば、交流出力電流を制御するための交流出力電流の検出周期毎に実施することで、同一周期内においても2レベル動作と3レベル動作の切替、およびオフ時のゲート抵抗値の切替を実施することができ、安全性を確保した上でより強力な低損失化を実現することができる。
[実施の形態2の効果]
以上のように、実施の形態2によれば、実施の形態1の効果と同様の効果を奏するとともに、以下の効果を奏することができる。
すなわち、前記制御回路は、前記電力変換装置の交流出力電流の基本波周期よりも短い時間間隔で、前記動作レベルの切替とスイッチング速度の変更を実施するようにしたので、より確実かつ適切に動作レベルの切替およびスイッチング速度の変更を行うことができる。
以上のように、実施の形態2によれば、実施の形態1の効果と同様の効果を奏するとともに、以下の効果を奏することができる。
すなわち、前記制御回路は、前記電力変換装置の交流出力電流の基本波周期よりも短い時間間隔で、前記動作レベルの切替とスイッチング速度の変更を実施するようにしたので、より確実かつ適切に動作レベルの切替およびスイッチング速度の変更を行うことができる。
[制御回路のハードウエア構成]
なお、実施の形態1および実施の形態2の制御回路8は、ハードウエアの一例を図16に示すように、プロセッサ100と記憶装置101から構成される。記憶装置101は、図示していない、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを備える。
また、フラッシュメモリの代わりにハードディスクを備えてもよい。プロセッサ100は、記憶装置101から入力されたプログラムを実行する。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ100にプログラムが入力される。また、プロセッサ100は、演算結果等のデータを記憶装置101の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。
なお、実施の形態1および実施の形態2の制御回路8は、ハードウエアの一例を図16に示すように、プロセッサ100と記憶装置101から構成される。記憶装置101は、図示していない、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを備える。
また、フラッシュメモリの代わりにハードディスクを備えてもよい。プロセッサ100は、記憶装置101から入力されたプログラムを実行する。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ100にプログラムが入力される。また、プロセッサ100は、演算結果等のデータを記憶装置101の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。
[その他の実施の形態]
本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 直流電圧源、2 コンデンサ直列回路、2a、2b コンデンサ、3 インバータ回路、3a,3b,3c,3d,3e,3f スイッチング素子(インバータ回路)、4,4B スイッチ回路、4a,4b,4c,4d,4e,4f スイッチング素子(スイッチ回路)、14a,14b,14c,14d,14e,14f スイッチング素子(スイッチ回路)、5a,5b,5c,5d,5e,5f ゲート入力部(インバータ回路)、6a,6b,6c,6d,6e,6f ゲート入力部(スイッチ回路)、16a,16b,16c,16d,16e,16f ゲート入力部(スイッチ回路)、7 モータ(負荷)、8 制御回路、9 ゲート抵抗決定部、10 ゲート抵抗切替回路、11 バッファ回路、12 オン電源、15 オフ電源。
Claims (18)
- 直列に接続された複数のコンデンサを有し、両端が直流電圧源の両端に接続されるコンデンサ直列回路と、
複数のスイッチング素子が直列接続されたレグが複数並列に接続され、直流入力端が前記コンデンサ直列回路の両端に接続されるとともに交流出力端が負荷に接続されるインバータ回路と、
複数のスイッチング素子を有し、一端が複数の前記コンデンサの接続点に接続され、他端が前記インバータ回路の前記スイッチング素子の複数の接続点に接続されたスイッチ回路と、
前記インバータ回路および前記スイッチ回路を制御する制御回路と、を備え、
前記インバータ回路は、前記スイッチ回路が有する前記スイッチング素子をオフさせることにより2レベル動作が可能であり、前記スイッチ回路が有する前記スイッチング素子をオン・オフさせることにより3レベル動作が可能であり、
前記制御回路は、前記2レベル動作と前記3レベル動作との間の動作レベルの切替の際に、前記インバータ回路および前記スイッチ回路の前記スイッチング素子のスイッチング速度を変更する、電力変換装置。 - 前記制御回路は、前記3レベル動作から前記2レベル動作に変更する際に、前記スイッチング素子のスイッチング速度を遅くする、請求項1に記載の電力変換装置。
- 前記制御回路は、前記3レベル動作と前記2レベル動作との間の動作レベルを切り替える前に、前記スイッチング素子のスイッチング速度を変更する、請求項1または請求項2に記載の電力変換装置。
- 前記制御回路は、前記スイッチング素子のスイッチング速度の変更指令後、一定時間待機した後に前記3レベル動作と前記2レベル動作との間の動作レベルを切り替える、請求項1から請求項3のいずれか1項に記載の電力変換装置。
- 前記制御回路は、前記スイッチング素子のスイッチング速度の変更指令後、前記スイッチング素子のスイッチング速度の変化に基づいて、スイッチング速度の変更処理を確定する、請求項1から請求項3のいずれか1項に記載の電力変換装置。
- 前記制御回路は、前記スイッチング素子のスイッチング速度の変更指令後、前記スイッチング素子のゲート端子に印加されるゲート電圧傾きが変化したことに基づいて、スイッチング速度の変更処理を確定する、請求項1から請求項3のいずれか1項に記載の電力変換装置。
- 前記制御回路は、前記スイッチング素子のスイッチング速度の変更指令後、前記スイッチング素子のゲート電流が変化したことに基づいて、スイッチング速度の変更処理を確定する、請求項1から請求項3のいずれか1項に記載の電力変換装置。
- 前記制御回路は、前記スイッチング素子のスイッチング速度の変更指令後、前記スイッチング素子の両端、または、前記コンデンサ直列回路の両端に発生するサージ電圧が変化したことに基づいて、スイッチング速度の変更処理を確定する、請求項1から請求項3のいずれか1項に記載の電力変換装置。
- 前記2レベル動作から前記3レベル動作に変更するときのレベル切替閾値と、前記3レベル動作から前記2レベル動作に変更するときのレベル切替閾値とは、異なる値にする、請求項1から請求項8のいずれか1項に記載の電力変換装置。
- 前記制御回路は、前記スイッチング素子の両端、または、前記コンデンサ直列回路の両端に発生するサージ電圧の検出値に基づいて、前記スイッチング素子のスイッチング速度を変化させる、請求項1から請求項9のいずれか1項に記載の電力変換装置。
- 前記制御回路は、前記スイッチング素子の両端、または、前記コンデンサ直列回路の両端に発生する前記サージ電圧の検出値の最大値が、目標とする許容電圧範囲に収まるように、前記スイッチング素子のスイッチング速度を変更する、請求項10に記載の電力変換装置。
- 前記制御回路は、連続した複数回の前記サージ電圧の検出値に基づいて、スイッチング速度を変更する、請求項10または請求項11に記載の電力変換装置。
- 前記制御回路は、前記2レベル動作と前記3レベル動作との切替を、前記電力変換装置の交流出力電流値と予め設定された電流閾値との比較に基づいて行う、請求項1から請求項12のいずれか1項に記載の電力変換装置。
- 前記制御回路は、前記電力変換装置の交流出力電流の基本波周期毎に、前記動作レベルの切替とスイッチング速度の変更を実施する、請求項1から請求項13のいずれか1項に記載の電力変換装置。
- 前記制御回路は、前記電力変換装置の交流出力電流の基本波周期よりも短い時間間隔で、前記動作レベルの切替とスイッチング速度の変更を実施する、請求項1から請求項13のいずれか1項に記載の電力変換装置。
- 前記2レベル動作と前記3レベル動作とを切り替えるレベル切替閾値は、前記スイッチ回路の前記スイッチング素子の体積に応じて決定する、請求項1から請求項15のいずれか1項に記載の電力変換装置。
- 前記負荷としてモータが接続され、前記制御回路は、前記モータおよび前記電力変換装置の指令情報、並びに前記モータおよび前記電力変換装置の検出情報に基づいて、事前に用意したテーブルまたは計算結果から、前記動作レベルの切替およびスイッチング速度を決定する、請求項1から請求項16のいずれか1項に記載の電力変換装置。
- 前記制御回路は、前記スイッチング素子のスイッチング速度の変更を、前記スイッチング素子をオフするときのゲート抵抗値を変更することで実現する、請求項1から請求項17のいずれか1項に記載の電力変換装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024536550A JPWO2024023872A1 (ja) | 2022-07-25 | 2022-07-25 | |
PCT/JP2022/028570 WO2024023872A1 (ja) | 2022-07-25 | 2022-07-25 | 電力変換装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/028570 WO2024023872A1 (ja) | 2022-07-25 | 2022-07-25 | 電力変換装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024023872A1 true WO2024023872A1 (ja) | 2024-02-01 |
Family
ID=89705714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/028570 WO2024023872A1 (ja) | 2022-07-25 | 2022-07-25 | 電力変換装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2024023872A1 (ja) |
WO (1) | WO2024023872A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012025978A1 (ja) * | 2010-08-23 | 2012-03-01 | 東芝三菱電機産業システム株式会社 | 電力変換装置 |
JP2018191485A (ja) * | 2017-05-11 | 2018-11-29 | 田淵電機株式会社 | 電力変換装置 |
JP2019009846A (ja) * | 2017-06-21 | 2019-01-17 | 富士電機株式会社 | ゲート駆動回路およびインバータ装置 |
JP2020025378A (ja) * | 2018-08-06 | 2020-02-13 | 富士電機株式会社 | 電力変換装置 |
-
2022
- 2022-07-25 WO PCT/JP2022/028570 patent/WO2024023872A1/ja active Application Filing
- 2022-07-25 JP JP2024536550A patent/JPWO2024023872A1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012025978A1 (ja) * | 2010-08-23 | 2012-03-01 | 東芝三菱電機産業システム株式会社 | 電力変換装置 |
JP2018191485A (ja) * | 2017-05-11 | 2018-11-29 | 田淵電機株式会社 | 電力変換装置 |
JP2019009846A (ja) * | 2017-06-21 | 2019-01-17 | 富士電機株式会社 | ゲート駆動回路およびインバータ装置 |
JP2020025378A (ja) * | 2018-08-06 | 2020-02-13 | 富士電機株式会社 | 電力変換装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2024023872A1 (ja) | 2024-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9584043B2 (en) | Inverter phase current reconstruction apparatus and methods | |
US7391181B2 (en) | Loss minimized PWM for voltage source inverters taking into account inverter non-linearity | |
JP5799899B2 (ja) | 電力変換装置 | |
US9543851B2 (en) | Matrix converter | |
US8159851B2 (en) | Matrix converter | |
US8283880B2 (en) | Motor drive device with function of switching to power regenerative operation mode | |
JP2015065742A (ja) | インバータ制御装置およびインバータ装置の制御方法 | |
CN105453434A (zh) | 采用氮化镓开关的驱动单元 | |
JP2018007403A (ja) | 電力変換装置 | |
US11336206B2 (en) | Switching frequency and PWM control to extend power converter lifetime | |
JP4943625B2 (ja) | 能動的なクランピングスイッチを備える3レベル電力変換装置のための制御・調節方法、およびそのための装置 | |
WO2024023872A1 (ja) | 電力変換装置 | |
JP5920305B2 (ja) | マトリクスコンバータ | |
JP5854017B2 (ja) | マトリクスコンバータ | |
JP6689688B2 (ja) | 電力変換装置、空気調和機および電力変換装置の制御方法 | |
JP5506619B2 (ja) | インバータ装置及び制御方法 | |
JP7539943B2 (ja) | 電力変換装置および方法 | |
JP2017228912A (ja) | 半導体装置 | |
JP7466787B2 (ja) | 電力変換装置 | |
JP4780305B2 (ja) | インバータ装置 | |
EP4387064A1 (en) | Bridge converter control | |
WO2021144885A1 (ja) | 電力変換装置およびモータシステム | |
US12132391B2 (en) | Power converter having a gate drive circuit and method of operating | |
JP2014011830A (ja) | 電力変換装置 | |
WO2022176982A1 (ja) | 電力変換装置、及び、電力変換装置の制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22952971 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024536550 Country of ref document: JP |