WO2024021942A1 - 蓄电装置及用电装置 - Google Patents

蓄电装置及用电装置 Download PDF

Info

Publication number
WO2024021942A1
WO2024021942A1 PCT/CN2023/101707 CN2023101707W WO2024021942A1 WO 2024021942 A1 WO2024021942 A1 WO 2024021942A1 CN 2023101707 W CN2023101707 W CN 2023101707W WO 2024021942 A1 WO2024021942 A1 WO 2024021942A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
storage device
partition
power storage
battery cells
Prior art date
Application number
PCT/CN2023/101707
Other languages
English (en)
French (fr)
Inventor
湛英杰
刘建华
曾信
李志强
汪宇超
闫传苗
王升威
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2024021942A1 publication Critical patent/WO2024021942A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to an electrical storage device and an electrical device.
  • a separator is provided between two adjacent battery cells of a power storage device, and a cooling channel is formed between the separator and the battery cell. After the separator is aged and deformed, the cooling effect of the cooling channel is weakened.
  • Some embodiments of the present application provide an electrical storage device and an electrical device to alleviate the problem of weakened cooling effect.
  • Some embodiments of the present application provide a power storage device, including: at least two battery cells arranged sequentially along a first direction; and a separator disposed between two adjacent battery cells;
  • the separator includes a first side adjacent to one of the battery cells, the first side is provided with at least one first separator strip, and the space between the first separator strip, the first side and the battery cell is Enclosed between them to form at least one first channel.
  • the cooling channel is formed by dividing the first partition strip. After the partition is aged, the first The partition strip is not easy to deform, and the shape and circulation area of the cooling channel are not easy to change, which alleviates the problem of aging and deformation of the partition, resulting in weakened cooling effect.
  • the first separation bar abuts the adjacent battery cells.
  • the first partition strip is in contact with the adjacent battery unit, which can divide the space between the partition and the battery unit into at least two first channels.
  • the flow of the refrigerant in the first channel can be used to control the temperature rise of the battery unit. .
  • the first separation bar includes a contact surface that contacts the battery cell, and the contact surface is a plane.
  • the contact surface between the first separator bar and the battery cell is a flat surface, which can increase the contact area between the first separator bar and the battery cell, make the heat exchange surface of the battery cell evenly stressed, and improve the performance of the battery cell. cycle life.
  • the separator includes a second side adjacent to another of the battery cells, the second side is provided with at least one second separator bar, the second separator bar, the second side At least one second channel is formed between the battery cell and the battery cell.
  • the first side and the second side of the divider are both provided with separation strips, and the cooling channels are separated by separation strips, which can conduct heat exchange and cooling on the two sides of the battery cells.
  • the battery cells are cooled on both sides, and the cooling is even, and the battery The temperature difference between the cells is small and the temperature is balanced.
  • the second separation bar abuts the adjacent battery cell.
  • the first separating strip on the first side of the separator is in contact with the adjacent battery cells, and the second separating strip on the second side is in contact with the adjacent battery cells, so that the heat exchange surface of the battery cells can be evenly stressed. Improve the cycle life of battery cells.
  • At least one of the first channels communicates with one of the second channels in the first direction.
  • the refrigerant fluid flows between the first channel, the second channel and the first channel to the second channel, which can further improve the cooling effect and cycle life of the battery cell.
  • the partition includes a second side adjacent to another of the battery cells, and the second side abuts the adjacent battery cell.
  • the first side of the separator is provided with at least one first separator bar, and the at least one first separator bar is in contact with the adjacent battery cells.
  • the second side of the separator is not provided with a separator bar, and the second side is directly in contact with the adjacent battery cells.
  • Body abutting that is, one side of the separator is provided with a cooling channel, and the other side is in close contact with the large surface of the battery cell, which increases the stress-bearing area of the battery cell and alleviates the problem of uneven stress on the battery cell and reduced cycle life. question.
  • the first dividing strip extends along a second direction that intersects the first direction.
  • the first dividing strip extends along the second direction.
  • the first channel extends along the second direction.
  • the refrigerant flows along the first channel to cool the battery cells, which can improve the cooling efficiency of the battery cells.
  • one end of the first dividing strip is configured in an angular shape, which is connected by an intersection of inclined planes extending along the second direction and transitions in an arc shape.
  • the end of the first dividing bar is configured in an angular shape connected by inclined planes and an arc transition, which can greatly reduce the resistance when the refrigerant enters the channel, reduce the pressure loss of the refrigerant fluid, and improve the cooling performance.
  • the at least one first separation bar includes first ribs provided at both ends of the first side in the third direction, and the first ribs are connected to the adjacent battery cells. In contact, the third direction intersects the first direction.
  • the first ribs at both ends of the first side in the third direction are in contact with the adjacent battery cells.
  • the interference fit between the first ribs and the adjacent battery cells can prevent the refrigerant in the first channel from passing through the third direction.
  • the two ends of one side in the third direction leak out, so that all the refrigerant flows in the first channel as much as possible to improve the cooling efficiency of the battery cells.
  • the power storage device further includes a snap-on component provided on the partition, Two adjacent partitions are connected through the clamping assembly, and the clamping assembly is configured to hold the bottom of the battery cell.
  • Two adjacent separators are connected through snap-in components, and the battery cells are fixed by snap-in connection with each other, which can improve the rigidity and safety of the power storage device and alleviate the problem of weak structural strength of the power storage device.
  • the power storage device further includes a first limiting member provided on the partition and in contact with the top of the battery cell, the first limiting member extending along the first direction, and is constructed in a hook shape.
  • the first limiter is configured in a hook shape, which enables the first limiter to have a certain degree of elasticity.
  • the first limiter can produce a certain deformation, which is beneficial to the installation of the battery cell.
  • the first limiting member resumes its deformation, which can exert a certain tightening effect on the battery cell, absorb assembly tolerances, facilitate the fixation of the battery cell, and prevent the battery cell from shaking.
  • the power storage device further includes two second limiting members provided on the partition, and the two second limiting members are configured to be aligned between the two second limiting members.
  • the battery cells in between are limited, and one of the second limiting parts is provided with a second rib that abuts the adjacent battery cells.
  • a second limiter is provided on both sides of the separator.
  • the two second limiters cooperate to limit the battery cell located between the two second limiters, which can fix the battery cell and prevent the battery cell from being blocked.
  • the battery cell shakes, increasing the module's main frequency.
  • the power storage device further includes: a side plate, the side plate is provided on the side of the at least two battery cells and extends along the first direction, and the side plate is provided with an opening. .
  • An opening is provided on the side of the power storage device, and the refrigerant introduced through the opening flows along the first channel separated by the first dividing strip.
  • the inflow direction of the refrigerant is perpendicular to the side of the power storage device, so that the battery cells can be cooled.
  • the opening covers at least one of the partitions in the first direction.
  • An opening is provided on the side plate.
  • the opening covers at least one partition in the first direction.
  • the opening is aligned with at least one cooling channel formed on the partition to improve the cooling effect.
  • the side plates are respectively provided on both sides of the at least two battery cells, and the first dividing strip is on the side plates of both sides of the at least two battery cells. extend between.
  • An opening is provided on the side of the electric storage device, and the refrigerant introduced through the opening flows along the first channel between the first dividing bars.
  • the inflow direction of the refrigerant is perpendicular to the side of the electric storage device, so that the large surface of the battery cell can be cooled.
  • the power storage device further includes: a sealing member, the sealing member is provided on a side of the side plate adjacent to the battery cell and avoids the opening.
  • a seal is provided on the side of the side plate adjacent to the battery cell, which maintains the electrical gap between the side plate and the battery cell and prevents refrigerant leakage from the side plate.
  • the power storage device further includes: a side plate provided on the sides of the at least two battery cells and extending along the first direction; a first plate connected to the side plate, and It is in contact with the bottom of the clamping component; and a second plate is connected to the side plate and is in contact with the top of the first limiting member.
  • the side plates are provided on the sides of at least two battery cells and limit each battery cell from the sides of the at least two battery cells.
  • the first plate is connected to the side plates and abuts against the bottom of the snap-in assembly.
  • the combination formed by the battery cell and the separator can be limited from the bottom
  • the second plate is connected to the side plate, and is in contact with the top of the first limiting member
  • the combination formed by the battery cell and the separator can be limited from the top. The combination is limited.
  • the snap assembly includes a third rib abutting the first plate.
  • the first plate squeezes the third rib, deforming the third rib.
  • the third rib is restored. Part of the deformation is in contact with the first plate, and the third rib is an interference fit with the first plate.
  • the power storage device further includes two docking assemblies provided on the partition, the two docking assemblies are configured to limit the battery cells located between the two docking assemblies. position, and the docking components on two adjacent partitions are docked.
  • the two docking assemblies cooperate to limit the position of the battery cell located between the two second limiting members, thereby fixing the battery cell and preventing the battery cell from shaking. Increase the module frequency.
  • one of the two docking components is provided with a fourth rib that abuts the adjacent battery cell.
  • one side of the battery cell squeezes the fourth rib, causing the fourth rib to deform. After the other side of the battery cell is installed in place with the corresponding docking component, the fourth rib is restored.
  • a certain amount of elastic deformation contacts the battery cells, and the use of the fourth ribs can absorb assembly tolerances, facilitate the fixation of the battery cells, and prevent the battery cells from shaking.
  • the power storage device further includes side plates provided on both sides of the at least two battery cells, the side plates extending along the first direction; at least one of the two docking components One is provided with a fifth rib abutting the adjacent side plate.
  • the side plate is in contact with the fifth rib to absorb assembly tolerances, which facilitates the side plate to fix the battery cells and separators and prevent the battery cells and separators from shaking.
  • Some embodiments of the present application also provide an electrical device, which includes the above-mentioned electrical storage device.
  • the electric device includes the above-mentioned electric storage device, and accordingly has the beneficial effects of the electric storage device.
  • the cooling channels are formed by dividing the first partition strips. After the partitions are aged, the first partition strips are not easily deformed, and the shape and circulation area of the cooling channels are not easily changed, which alleviates the aging deformation of the partitions and causes cooling. The issue of diminished effectiveness.
  • Figure 1 is a schematic structural diagram of a vehicle disclosed in some embodiments of the present application.
  • Figure 2 is a schematic structural diagram of a power storage device disclosed in some embodiments of the present application.
  • FIG. 3 is a schematic diagram of the battery cells and separators disclosed in some embodiments of the present application combined;
  • Figure 4 is a schematic front view of Figure 2;
  • Figure 5 is a schematic front view of Figure 3;
  • FIG. 6 is a schematic diagram of a first side of a partition disclosed in some embodiments of the present application from a first perspective;
  • FIG. 7 is a schematic diagram of a first side of a partition disclosed in some embodiments of the present application from a second perspective;
  • Figure 8 is a schematic front view of Figure 6;
  • Figure 9 is an enlarged schematic view of the first partial structure A of Figure 8.
  • Figure 10 is an enlarged schematic view of the second partial structure B of Figure 8.
  • Figure 11 is a schematic view of the second side of the partition disclosed in some embodiments of the present application.
  • Figure 12 is a schematic front view of Figure 11;
  • Figure 13 is a first schematic side view of a partition disclosed in some embodiments of the present application.
  • Figure 14 is a second schematic side view of a partition disclosed in some embodiments of the present application.
  • Figure 15 is a schematic view of the second side of the partition disclosed in other embodiments of the present application.
  • Figure 16 is a schematic front view of Figure 15;
  • Figure 17 is a first side schematic view of a partition disclosed in other embodiments of the present application.
  • Figure 18 is a second schematic side view of a partition disclosed in other embodiments of the present application.
  • Figure 19 is a schematic top view of a partition disclosed in some embodiments of the present application.
  • Figure 20 is a schematic bottom view of a partition disclosed in some embodiments of the present application.
  • Figure 21 is a schematic front view of the separator disclosed in some embodiments of the present application and the battery cell after assembly;
  • Figure 22 is a schematic diagram of the partitions, battery cells and side panels disclosed in some embodiments of the present application after assembly;
  • Figure 23 is an enlarged schematic view of the third partial structure C of Figure 22;
  • Figure 24 is a schematic bottom view of the separator disclosed in some embodiments of the present application and the battery cell after assembly;
  • Figure 25 is a comparison chart of the circulation capacity retention rates of the separators disclosed in some embodiments of the present application and the "bow"-shaped separators in the related art.
  • Electric storage devices are not only used in energy storage power systems such as hydraulic, thermal, wind and solar power stations, but are also widely used in electric bicycles, electric motorcycles, electric cars and other electric vehicles, as well as in military equipment and aerospace, etc. field. As the application fields of power storage devices continue to expand, their market demand is also expanding.
  • a power storage device includes at least two battery cells, and a separator is provided between two adjacent battery cells.
  • a separator is provided between two adjacent battery cells.
  • a cooling channel is formed in between, a part of the separator is in contact with one of the adjacent battery cells, another part of the separator is in contact with another adjacent battery cell, and the part of the separator that is not in contact with the battery cell forms Cooling channel, therefore, the partitions are generally "bow" shaped partitions.
  • a power storage device including: at least two battery cells arranged sequentially along a first direction; and a separator disposed between two adjacent battery cells; the separator It includes a first side adjacent to one of the battery cells, and at least one first partition bar is provided on the first side. At least one first channel is formed between the first partition bar, the first side and the battery unit.
  • the cooling channel is formed by dividing the first separator strip. After the separator ages, the first separator strip is not easily deformed, and the shape and flow area of the cooling channel are less likely to change. This alleviates the problem of aging and deformation of the separator, resulting in weakened cooling effect.
  • the power storage device 100 of the present application can be used for electrical devices and can provide electrical energy for the electrical devices.
  • the electrical devices can be mobile phones, portable devices, laptops, battery cars, electric vehicles, ships, spacecrafts, electric toys, electric tools, etc.
  • spacecraft include airplanes, rockets, space shuttles and spaceships, etc.
  • electric toys include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric aircraft toys, etc.
  • electric tools include Metal cutting power tools, grinding power tools, assembly power tools and railway power tools, e.g. electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete Soil vibrators and planers.
  • the electric device may also be a vehicle 200, such as a new energy vehicle.
  • the new energy vehicle may be a pure electric vehicle, a hybrid vehicle, an extended-range vehicle, etc.; or the electric device may also be a drone, a ship, etc.
  • a vehicle 200 includes an axle 201, wheels 202 connected to the axle 201, a motor 203, a controller 204 and a power storage device 100.
  • the motor 203 is used to drive the axle 201 to drive the wheels 202 to rotate
  • the controller 204 is used to drive the axle 201 to rotate.
  • the power storage device 100 can be disposed at the bottom, head or tail of the vehicle 200 to provide electrical energy for the operation of the motor 203 and other components in the vehicle.
  • the power storage device 100 includes at least two battery cells 1 , a separator 2 , a side plate 3 , a top plate 7 and an end plate 8 .
  • At least two battery cells 1 are arranged sequentially along the first direction X, and a partition 2 is provided between two adjacent battery cells 1 .
  • the end plates 8 are provided on the ends of at least two battery cells 1 in the first direction X
  • the side plates 3 are provided on the sides of at least two battery cells 1 in the second direction Y
  • the side plates 3 are arranged along the Extending in one direction X
  • the top plate 7 is provided on the top of at least two battery cells 1 in the third direction Z.
  • the first direction X in this application is consistent with the length direction of the power storage device 100 .
  • the size of the battery cell 1 along the first direction X is the thickness size of the battery cell 1 .
  • the third direction Z coincides with the height direction of power storage device 100 .
  • the height direction of the power storage device 100 is the direction between the top and the bottom.
  • the top of the power storage device 100 is provided with an end cover.
  • the end cover is provided with electronic terminals.
  • the bottom of the power storage device 100 is opposite to the top. one end.
  • the size of the battery cell 1 along the third direction Z is the height size of the battery cell 1 .
  • the first direction X is perpendicular to the third direction Z
  • the second direction Y is perpendicular to the plane formed by the first direction X and the third direction Z.
  • the size of the battery cell 1 along the second direction Y is the length of the battery cell.
  • the power storage device 100 may further include a middle plate 9 , at least two battery cells 1 are evenly divided into two groups, and the middle plate 9 is disposed between the two groups of battery cells 1 .
  • some embodiments provide a power storage device 100 that includes at least two battery cells 1 arranged sequentially along a first direction X.
  • the power storage device 100 further includes a separator 2 disposed between two adjacent battery cells 1 .
  • the separator 2 includes an adjacent one of the battery cells.
  • the first side 211 of 1 is provided with at least one first partition bar 21 , and at least one first channel 221 is formed between the first partition bar 21 , the first side 211 and the battery cell 1 .
  • the separator 2 is used to separate two adjacent battery cells 1 .
  • the first side 211 is a side of the separator 2 adjacent to one of the battery cells 1 .
  • the first dividing bar 21 is provided on the first side 211 to divide the space between the first side 211 and the battery cell 1 to form the first channel 221 .
  • the first channel 221 is a cooling channel used to cool the battery cells 1.
  • the refrigerant passes through the first channel 221 and is used to cool the battery cells 1. That is, the cooling medium between adjacent battery cells 1 can provide cooling.
  • the separators 2 are formed into a group, and a cooling channel structure is formed between the separators 2 and the battery unit 1 to allow refrigerant to pass through. The flow of the refrigerant can be used to control the temperature rise of the battery cells.
  • the refrigerant here includes gaseous refrigerant or liquid refrigerant.
  • cooling channels are formed by dividing the first partition strips 21. After the partition member 2 is aged, the first partition strips 21 are not easily deformed, and the shape and circulation area of the cooling channel are not easily changed. This alleviates the problem of accumulation caused by aging and deformation of the partition members. The cooling effect of the electrical device 100 is weakened.
  • the first separation bar 21 abuts the adjacent battery cell 1 .
  • the first partition bar 21 contacts the adjacent battery unit 1, and can divide the space between the partition 2 and the battery unit 1 into at least two first channels 221, and the flow control of the refrigerant in the first channel 221 can be utilized.
  • the temperature rise of the battery cell is the temperature rise of the battery cell.
  • the first side 211 is provided with at least two first separation bars 21 , and the at least two first separation bars 21 are in contact with the adjacent battery cells 1 .
  • At least two first separation bars 21 are in contact with the adjacent battery cells 1, so that the heat exchange surface of the battery cells 1 can be evenly stressed, thereby avoiding uneven electrolyte distribution and increased polarization during the cycle of the battery cells. problem and improve the cycle life of the battery cells.
  • the heat exchange surface of the battery cell 1 is a surface formed by the length and height of the battery cell 1 .
  • the distance between two adjacent first separation bars 21 is not fixed and can be determined according to the size of the battery cell 1 along the first direction X, the size of the separator 2 along the first direction X, and the size of the two adjacent battery cells 1
  • the distance in the first direction X is determined.
  • the first partition bar 21 includes a contact surface 213 that contacts the battery cell 1 , and the contact surface 213 is a flat surface.
  • the contact surface 213 between the first separator bar 21 and the battery cell 1 is flat, which can increase the contact area between the first separator bar 21 and the battery cell 1 and make the heat exchange surface of the battery cell 1 evenly stressed. , improve the cycle life of the battery cells.
  • the separator 2 includes a second side 212 adjacent to another battery cell 1, the second side 212 is provided with at least one second separator bar 25, the second separator bar 25, At least one second channel 222 is formed between the second side surface 212 and the battery cell 1 .
  • the second channel 222 is a cooling channel used to cool the battery cell 1.
  • the cooling channel is formed by dividing it with a second partition bar 25. After the partition 2 is aged, the second partition bar 25 is not easily deformed and the cooling The shape and circulation area of the channel will not change, and the cooling efficiency will not be reduced, which prolongs the service life of the battery cells and alleviates the problems of aging and deformation of the separator 2 and reduced cooling efficiency.
  • the first side 211 and the second side 212 of the partition 2 are both provided with partition strips, and the cooling channels are separated by the partition strips, so that the two sides of the battery cell 1 can be heat exchanged and cooled, and the battery cell 1 can be cooled on both sides. , cooling is even, the temperature difference between battery cells is small, and the temperature is balanced.
  • the partition strips on the first side 211 and the second side 212 of the partition 2 are not easily deformed after the partition 2 is aged.
  • the shape and flow area of the cooling channel will not change, the cooling efficiency will not be reduced, and the battery life will be extended.
  • the service life of the separator 2 is extended, and the problems of aging and deformation of the separator 2 and reduced cooling efficiency are alleviated.
  • the second separation bar 25 abuts the adjacent battery cell 1 .
  • the first partition bar 21 on the first side 211 of the partition 2 is in contact with the adjacent battery cell 1
  • the second partition bar 25 on the second side 212 is in contact with the adjacent battery cell 1 , so that the battery cell 1 can
  • the heat exchange surface is evenly stressed and improves the cycle life of the battery cells.
  • the first dividing bar 21 on the first side 211 of the partition 2 is in contact with the adjacent battery cell 1
  • the second dividing bar 25 on the second side 212 is in contact with the adjacent battery cell 1.
  • This separation Part 2 Compared with the "bow"-shaped separator in the related art, the cycle capacity retention rate of the battery cell is high, and the cycle life of the battery cell is significantly improved.
  • the second side 212 is provided with at least two second separation bars 25 , that is, the second side 212 is provided with a plurality of second separation bars 25 .
  • the first side 211 is provided with at least two first separation bars 21 , that is, the first side 211 is provided with a plurality of first separation bars 21 .
  • the number of the plurality of second partition bars 25 is the same as the number of the plurality of first partition bars 21, and each second partition bar 25 is arranged symmetrically with one first partition bar 21, which can balance the forces on both sides of the partition 2. It alleviates the aging and deformation of the partition 2 and improves the problem of reduced air cooling efficiency caused by the aging and deformation of the partition 2.
  • At least one first channel 221 and a second channel 222 are connected in the first direction X.
  • the first channel 211 is located on the first side 211 of the partition 2, and the second channel 222 is located on the second side 212 of the partition 2.
  • At least one first channel 221 and a second channel 222 are connected in the first direction X, that is, The cooling channel runs through the first direction X, which can not only reduce the fluid resistance, but also improve the cooling effect and cycle life of the battery cell 1 .
  • the number of the plurality of second separation bars 25 is the same as the number of the plurality of first separation bars 21 , and each second separation bar 25 is arranged symmetrically with a first separation bar 21 , and each first channel 211 Correspondingly connected with a second channel 222 in the first direction Improve the cooling effect and cycle life of the battery cell 1.
  • the separator 2 includes a second side 212 adjacent to another battery cell 1 , and the second side 212 abuts the adjacent battery cell 1 .
  • the second side 212 of the partition 2 is not provided with a partition strip, and the second side 212 directly abuts the adjacent battery cells 1 .
  • the separator 2 is disposed between two adjacent battery cells 1.
  • the battery cell 1 is disposed between the two separators 2.
  • the battery cell 1 can be disposed in the middle position between the two separators 2.
  • the battery cell 1 is close to one of the separators 2 .
  • the battery cell 1 is arranged close to one of the separators 2, relative to the battery cell 1 between the two separators. 2.
  • the middle setting method can expand the cross-sectional area of the cooling channel on one side, reduce the fluid resistance, and solve the problem of excessive pressure loss when the lateral distance of the cooling channel is too small.
  • the first side 211 of the separator 2 is provided with at least one first separator bar 21, and the at least one first separator bar 21 is in contact with the adjacent battery cell 1.
  • the second side 212 of the separator 2 is not provided with a separator bar.
  • the side 212 is directly in contact with the adjacent battery cell 1, that is, one side of the separator 2 is provided with a cooling channel, and the other side is in close contact with the large surface of the battery cell, which increases the stress area of the battery cell 1 and alleviates the stress of the battery. The problem of uneven stress on monomer 1 and reduced cycle life.
  • At least one first separator bar 21 is provided on the first side 211 of the separator 2 .
  • the at least one first separator bar 21 abuts the adjacent battery cells 1 .
  • the second side 212 is provided with at least one second partition bar 25 , and the at least one second partition bar 25 is in contact with the adjacent battery cell 1 .
  • there are cooling channels on both sides of the separator 2 which can cool both sides of the battery cell 1 with high cooling efficiency.
  • the cooling efficiency of the cooling channels decreases as the separator 2 ages. It is significantly reduced, and at the same time, the separator 2 can absorb the expansion force of the battery cells.
  • At least one first separator bar 21 is provided on the first side 211 of the separator 2 .
  • the at least one first separator bar 21 abuts the adjacent battery cells 1 .
  • the second side 212 is not provided with a dividing strip, and the second side 212 is in contact with the adjacent battery cells 1 .
  • the cross-sectional area of the single-side cooling channel is enlarged and the fluid resistance is reduced. The cooling efficiency of the cooling channel does not decrease significantly with the aging of the separator 2.
  • the separator 2 can absorb the expansion of the battery cells. force.
  • the first separation bar 21 extends along the second direction Y, and the second direction Y intersects the first direction X.
  • the second direction Y is perpendicular to the first direction X.
  • the first dividing strip 21 extends along the second direction Y.
  • the first channel 221 extends along the second direction Y.
  • the refrigerant flows along the first channel 221 to cool the battery cell 1, which can improve the cooling efficiency of the battery cell 1. .
  • the first side 211 of the partition 2 is provided with at least two first The separation bars 21 and the plurality of first channels 221 formed by the separation of the plurality of first separation bars 21 are arranged sequentially on the heat exchange surface of the battery cell 1, which can improve the cooling efficiency and cooling uniformity of the battery cell 1.
  • the second dividing strip 25 extends along a second direction Y that intersects the first direction X.
  • the second direction Y is perpendicular to the first direction X.
  • the second dividing strip 25 extends along the second direction Y.
  • the second channel 222 extends along the second direction Y.
  • the refrigerant flows along the second channel 222 to cool the battery cell 1, which can improve the cooling efficiency of the battery cell 1. .
  • the second side 212 of the partition 2 is provided with at least two second partition bars 25 , and the plurality of second partition bars 25 separate and form a plurality of second channels 222 on the heat exchange surface of the battery cell 1 Arranged in sequence, the cooling efficiency and cooling uniformity of the battery cell 1 can be improved.
  • one end 214 of the first separation bar 21 is configured in an angular shape, which is connected by the intersection of inclined planes extending along the second direction Y and has an arc-shaped transition.
  • the other end 214 of the first separation bar 21 is configured in an angular shape, which is connected by the intersection of inclined planes extending in the opposite direction of the second direction Y and has an arc-shaped transition.
  • the first partition bar 21 has two ends 214 , the two ends 214 of the first partition bar 21 correspond to the inlet and outlet of the first channel 221 , and the ends 214 of the first partition bar 21 are configured to be connected by inclined planes. Moreover, the angular shape of the arc-shaped transition can greatly reduce the resistance when the refrigerant enters the channel. The resistance at the inlet and outlet of the first channel 221 is reduced, which can reduce the pressure loss of the refrigerant fluid and improve the cooling performance.
  • the end 214 of the first dividing bar 21 is in the shape of a rounded corner connected by an intersection of inclined planes and an arc transition.
  • one end 251 of the second separation bar 25 is configured in an angular shape, which is connected by the intersection of inclined planes extending along the second direction Y and has an arc-shaped transition.
  • the other end 251 of the second separation bar 25 is configured in an angular shape, which is connected by the intersection of inclined planes extending along the second direction Y and has an arc transition.
  • the second partition bar 25 has two ends 251 , the two ends 251 of the second partition bar 25 correspond to the inlet and outlet of the second channel 222 , and the ends 251 of the second partition bar 25 are configured to be connected by inclined planes. And the arc-shaped transition angle can greatly reduce the risk of refrigerant entering the channel. The resistance at the inlet and outlet of the second channel 222 is reduced, which can reduce the pressure loss of the refrigerant fluid and improve the cooling performance.
  • the end 251 of the second dividing bar 25 is in the shape of a rounded corner connected by an intersection of inclined planes and transitioning into an arc.
  • At least one first separation bar 21 includes first ribs 24 provided at both ends of the first side 211 in the third direction Z. The first ribs 24 abut against the adjacent battery cells 1 . Then, the third direction Z intersects the first direction X.
  • the third direction Z is perpendicular to the first direction X.
  • the first ribs 24 at both ends of the first side 211 in the third direction Z are in contact with the adjacent battery cells 1.
  • the first ribs 24 have an interference fit with the adjacent battery cells 1, which can prevent the second
  • the refrigerant in one channel 221 leaks from both ends of the first side 211 in the third direction Z, and all the refrigerant flows in the first channel 221 as much as possible to improve the cooling efficiency of the battery cell 1 .
  • the number of the first ribs 24 provided at both ends of the first side 211 in the third direction Z may be one, two or more.
  • the first dividing bars 21 are all in the form of ribs, and the first ribs 24 are thinner than other ribs of the first dividing bars 21 .
  • At least one second separation bar 25 includes sixth ribs 26 provided at both ends of the second side 212 in the third direction Z.
  • the sixth ribs 26 abut against the adjacent battery cells 1 . Then, the third direction Z intersects the first direction X.
  • the third direction Z is perpendicular to the first direction X.
  • the sixth ribs 26 at both ends of the second side 212 in the third direction Z are in contact with the adjacent battery cells 1.
  • the sixth ribs 26 have an interference fit with the adjacent battery cells 1, which can prevent the second
  • the refrigerant in the channel 222 leaks from both ends of the second side 212 in the third direction Z, and all the refrigerant flows in the second channel 222 as much as possible to improve the cooling efficiency of the battery cell 1 .
  • the second partition bars 25 are all in the form of ribs, wherein the sixth rib 26 is thinner than the other ribs of the second partition bar 25 .
  • the power storage device 100 further includes a snap-on component 4 provided on the partition 2, and two adjacent partitions 2 are connected through the snap-on component 4.
  • the clamping component 4 is configured to hold the bottom of the battery cell 1 , see FIG. 24 .
  • the clamping component 4 extends in the first direction X or in the opposite direction to the first direction relative to the partition 2 .
  • Two adjacent separators 2 are connected through the snap-on assembly 4 and fix the battery cells 1 by snap-joining each other, which can improve the rigidity and safety of the power storage device 100 and alleviate the problem of weak structural strength of the power storage device 100 .
  • the clamping between two adjacent partitions 2 through the clamping assembly 4 can not only realize assembly foolproofing and assembly guidance, but also restrain the partitions 2 from each other, improve the stiffness of the power storage device 100, and ensure the storage of electricity.
  • the structural strength of the electrical device 100 is not only realize assembly foolproofing and assembly guidance, but also restrain the partitions 2 from each other, improve the stiffness of the power storage device 100, and ensure the storage of electricity. The structural strength of the electrical device 100.
  • the snap assembly 4 includes a bump and groove structure disposed at the bottom of the first side 211 of the divider 2 and a bump and groove structure disposed at the bottom of the second side 212 of the divider 2 .
  • the location where the bumps are provided at the bottom of the first side 211 of the partition 2 corresponds to the location where the grooves are provided at the bottom of the second side 212 of the partition 2 .
  • the bottom of side 212 is provided with bumps.
  • the protrusions provided on the bottom of the first side 211 of one partition 2 correspond to the grooves provided on the bottom of the second side 212 of the other partition 2 and engage with each other;
  • the groove provided at the bottom of the first side 211 of the partition 2 corresponds to the groove provided at the bottom of the second side 212 of the other partition 2 and engages with each other.
  • the matching and engaging form of the convex block and the groove includes the convex block being inserted into the groove.
  • the grooves may be replaced with notches.
  • the latch component 4 includes a protrusion 43 provided at the middle position of the bottom of the first side 211 , and a notch 42 provided at the middle position of the bottom of the second side 212 .
  • the bump 43 provided at the bottom of the first side 211 of one partition 2 is inserted into the notch 42 provided at the bottom of the second side 212 of the other partition 2, and the bump 43 is connected to the notch 42.
  • the notches 42 cooperate with each other and snap into place.
  • the clip component 4 also includes a second clip portion 45 and a fourth clip portion 47 provided at the bottom of the first side 211 , and a first clip portion 44 and a third clip portion provided at the bottom of the second side 212 .
  • Department 46 The second engaging part 45 is provided with a groove, and the corresponding first engaging part 44 is provided with a protrusion.
  • the second engaging portion 45 of one partition 2 matches the first engaging portion 44 of the other partition 2 .
  • the fourth engaging part 47 is provided with a bump, and the third engaging part 46 is provided with a groove. The fourth engaging portion 47 of one partition 2 and the third engaging portion 46 of the other partition 2 engage with each other.
  • the power storage device 100 further includes a limiting component 5
  • the limiting component 5 includes a first limiting component 51 .
  • the first limiting member 51 is provided on the partition 2 and contacts the top of the battery cell 1 .
  • the first limiting member 51 extends along the first direction X and is configured in a hook shape.
  • the first limiting member 51 is hook-shaped, which means that its outline includes a curve instead of a single straight line.
  • the snap-on component 4 is configured to hold the bottom of the battery cell 1.
  • the mating part is the bottom mating part a2, the first A limiting member 51 is provided on the top of the battery cell 1 and is in contact with the top of the battery cell 1.
  • the mating part is the top mating part a1.
  • the top mating part a1 and the bottom mating part a2 cooperate with each other.
  • the top and bottom of 1 are positioned to prevent the battery cell 1 from shaking.
  • the first limiting member 51 is configured in a hook shape, which enables the first limiting member 51 to have a certain degree of elasticity.
  • the first limiting member 51 can produce a certain deformation, which is beneficial to the battery cell. 1
  • the first limiting member 51 resumes its deformation, which can have a certain tightening effect on the battery cell 1, absorb assembly tolerances, facilitate the fixation of the battery cell 1, and prevent the battery cell from slipping. Body 1 shakes.
  • the limiting assembly 5 further includes a second limiting member 52 .
  • the power storage device 100 further includes two second limiting members 52 provided on the partition 2 , and the two second limiting members 52 are configured to be aligned between the two second limiting members 52 The battery cells 1 are limited, and one of the second limiting members 52 is provided with a second rib 521 that abuts the adjacent battery cell 1 .
  • a second limiter 52 is provided on both sides of the partition 2 respectively.
  • the two second limiters 52 cooperate to limit the battery cell 1 located between the two second limiters 52 and can be fixed.
  • the battery cell 1 prevents the battery cell 1 from shaking and increases the main frequency of the module.
  • One of the two second limiting members 52 is provided with a second rib 521.
  • the second limiting member 52 on the left side shown in Figure 21 is provided with a second rib 521.
  • the second rib 521 When installing the battery cell 1, one side of the battery cell 1 squeezes the second rib 521, causing the second rib 521 to deform, and the other side of the battery cell 1 contacts the corresponding second limiting member 52. After being installed in place, the second rib 521 restores a certain elastic deformation and contacts the battery cell 1.
  • the second rib 521 can absorb assembly tolerances, facilitate the fixation of the battery cell 1, and prevent the battery cell 1 from shaking.
  • the contact points between the two second limiting members 52 and the battery cell 1 respectively correspond to the first lateral fitting part b1 and the second lateral fitting part b2.
  • the first lateral fitting part b1 and the second side They cooperate with the matching portion b2 to limit the lateral position of the battery cell 1, prevent the battery cell 1 from shaking, and improve the rigidity of the module.
  • two second limiting members 52 are provided on the upper part of the partition 2, and one of the second limiting members 52 is provided with a second rib on a side adjacent to the battery cell 1.
  • the second rib 521 can be connected with the first rib 24 on the upper part of the first side 211 .
  • the second rib 521 can not only absorb the tolerance during assembly of the battery cell 1, but also cooperate with the first rib 24 to prevent the cooling channel from leaking refrigerant.
  • the side of the second limiting member 52 facing away from the battery cell 1 is configured as a groove structure, and the sealing member 10 can be filled in the groove structure.
  • the power storage device 100 further includes a side plate 3.
  • the side plate 3 is provided on the sides of at least two battery cells 1 and extends along the first direction X.
  • the side plate 3 is provided with Opening 31.
  • An opening 31 is provided on the side of the power storage device 100.
  • the refrigerant introduced through the opening 31 flows along the first channel 221 separated by the first partition strip 21.
  • the refrigerant flows in a direction perpendicular to the side of the power storage device 100, so that the battery cells can be cooled.
  • the opening 31 covers at least one partition 2 in the first direction X.
  • the side plate 3 is provided with an opening 31.
  • the opening 31 covers at least one partition 2 along the first direction X.
  • the opening 31 is aligned with at least one cooling channel formed on the partition 2 to improve the cooling effect.
  • the opening 31 covers at least two partitions along the first direction Part 2, the opening 31 covers a large area and can cover at least two cooling channels formed on the partition 2.
  • the refrigerant circulation area is large, which can reduce the requirements for manufacturing tolerances, and there will be no problem that the opening 31 is not aligned with the cooling channels due to manufacturing tolerances. , improve the cooling effect.
  • side plates 3 are respectively provided on both sides of at least two battery cells 1 , and the first dividing strip 21 extends between the side plates 3 on both sides of at least two battery cells 1 .
  • An opening 31 is provided on the side of the power storage device 100.
  • the refrigerant introduced through the opening 31 flows along the first channel 221 between the first partition strips 21.
  • the refrigerant flow direction is perpendicular to the side of the power storage device 100, which can cool the large surface of the battery cell. .
  • the side air inlet method has a shorter air inlet path, which reduces wind resistance, reduces pressure loss, and has a better cooling effect.
  • the side panel 3 includes a first beam 32 and a plurality of second beams 33 .
  • the first beam 32 extends along the first direction X.
  • a plurality of second beams 33 are staggeredly connected to the first beams 32 to form a plurality of openings 31 .
  • the side plate 3 includes a first beam 32 and a plurality of second beams 33 interlaced with the first beam 32, which increases the overall strength of the module.
  • the first beam 32 extends from the front end to the rear end of the power storage device 100. This structure can reduce the number of second beams 33 while meeting the strength requirements of the module, and reduce the impact on the lateral tolerance of the module. requirements, while reducing the weight of the module and reducing manufacturing costs.
  • the opening 31 is formed by the staggered connection of the first beam 32 and the second beam 33.
  • the drainage direction of the opening 31 is perpendicular to the side of the power storage device 100, so that the battery cells can be effectively cooled.
  • the opening 31 is formed by the staggered connection of the first beam 32 and the second beam 33.
  • the first beam 32 extends from the front end to the rear end of the power storage device 100. This structure can meet the module strength requirements while reducing the load of the second beam 33.
  • the number of openings 31 covers at least two first partition strips 21, and the refrigerant inflow area of the cooling channel is large, thereby improving the cooling effect of the battery cells.
  • the power storage device 100 further includes a sealing member 10 , which is disposed on a side of the side plate 3 adjacent to the battery cell 1 and avoids the opening 31 .
  • a seal 10 is provided on the side of the side plate 3 adjacent to the battery cell 1 to maintain the electrical gap between the side plate 3 and the battery cell 1 while preventing the side plate 3 from leaking refrigerant.
  • seal 10 includes foam.
  • the foam includes silicone rubber foam.
  • the power storage device 100 further includes a side plate 3 , a first plate 34 and a second plate 35 .
  • the side plates 3 are provided on the sides of at least two battery cells 1 and extend along the first direction X.
  • the first plate 34 is connected to the side plate 3 and contacts the bottom of the clamping component 4 .
  • the second plate 35 is connected to the side plate 3 and contacts the top of the first limiting member 51 .
  • the side plate 3 is provided on the sides of at least two battery cells 1 to limit each battery cell 1 from the sides of the at least two battery cells 1.
  • the first plate 34 is connected to the side plate 3 and is connected with the card.
  • the bottom of the connecting assembly 4 is in contact, so that the combination of the battery cell 1 and the separator 2 can be limited from the bottom.
  • the second plate 35 is connected to the side plate 3 and is in contact with the top of the first limiting member 51. The combination of the battery cell 1 and the separator 2 can be limited from the top.
  • the limiting component 5 further includes a third limiting member 53 , which is connected to the first limiting member 51 and extends along the second direction Y.
  • the power storage device 100 also includes a third plate 36.
  • the third plate 36 is connected to the second plate 35 and extends along the second direction Y. After the side plate 3 is installed, the third plate 36 abuts the third limiting member 53. .
  • the clamping component 4 includes a third rib 41 , and the third rib 41 abuts the first plate 34 .
  • the side plate 3 is provided on the sides of at least two battery cells 1 to limit each battery cell 1 from the sides of the at least two battery cells 1.
  • the first plate 34 is connected to the side plate 3 and is connected with the card.
  • the bottom of the connecting component 4 is in contact with the clamping component 4.
  • the clamping component 4 includes a third rib 41.
  • the first plate 34 squeezes the third rib 41 to deform the third rib 41.
  • the plate 35 is located on the top of the battery cell 1.
  • the third rib 41 recovers part of its deformation and contacts the first plate 34.
  • the third rib 41 has an interference fit with the first plate 34. , by providing the third rib 41, the assembly tolerance in the height direction of the battery cell can be absorbed, so that the poles of the battery cell are flush.
  • the power storage device 100 further includes two docking components 6 provided on the partition 2, and the two docking components 6 are configured to limit the battery cells 1 located between the two docking components 6, And the docking components 6 on the two adjacent partitions 2 are docked.
  • the two docking components 6 Cooperate with limiting the battery cell 1 located between the two second limiting members 52 to fix the battery cell 1, prevent the battery cell 1 from shaking, and increase the main frequency of the module.
  • one of the two docking components 6 is provided with a fourth rib 63 that abuts the adjacent battery cell 1 .
  • One of the two docking components 6 is provided with a fourth rib 63.
  • the left docking component 6 shown in Figure 21 is provided with a fourth rib 63.
  • the battery One side of the cell 1 squeezes the fourth rib 63, causing the fourth rib 63 to deform.
  • the fourth rib 63 returns to a certain position.
  • the fourth ribs 63 are used to elastically deform and contact the battery cell 1 to absorb assembly tolerances, facilitate the fixation of the battery cell 1 and prevent the battery cell 1 from shaking.
  • the contact points between the two docking components 6 and the battery cell 1 respectively correspond to the third lateral fitting portion d1 and the fourth lateral fitting portion d2, and the third lateral fitting portion d1 and the fourth lateral fitting portion respectively.
  • d2 cooperates with each other to limit the lateral position of the battery cell 1, preventing the shaking of the battery cell 1 and improving the rigidity of the module.
  • the top and bottom of the battery cell 1 are mutually limited by the top fitting part a1 and the bottom fitting part a2, and the two sides of the battery cell 1 are connected by the first lateral fitting part b1 and the second lateral fitting part b2, as well as the mutual cooperation limit of the third lateral matching part d1 and the fourth lateral matching part d2, which is conducive to the assembly guidance and fool-proof design between the battery cell 1 and the separator 2, which facilitates installation and speeds up production.
  • the rhythm can also ensure that the battery cells 2 are assembled in the separator 2 in a precise position without causing any shaking, thereby improving the rigidity of the module.
  • the first limiting member 51 is configured as a hook-shaped structure, which is elastic and deformable, and can improve the assembly firmness of the battery cell 1 from the top and bottom directions of the battery cell 1.
  • the second ribs 521 and the fourth The ribs 63 are elastic and can deform, which can improve the assembly firmness of the battery cell 2 from both sides of the battery cell 2.
  • the cooperation of the first limiter 51, the second rib 521 and the fourth rib 63 It can absorb the tolerances in the length, thickness and height directions of the battery cells 1, absorb the expansion force of the battery cells, and also alleviate the problem of refrigerant leakage from the separator 2.
  • two docking components 6 are provided at the lower part of the partition 2, and one of the docking components 6 is provided with a fourth rib 63 on a side adjacent to the battery cell 1.
  • the fourth rib The strip 63 may be connected to the first rib 24 provided at the lower part of the first side 211 .
  • fourth The ribs 63 can not only absorb the tolerance during assembly of the battery cell 1, but also cooperate with the first ribs 24 to prevent the cooling channel from leaking refrigerant.
  • the power storage device 100 further includes side plates 3 provided on both sides of at least two battery cells 1.
  • the side plates 3 extend along the first direction X; two butt-jointed At least one of the components 6 is provided with a fifth rib 64 that abuts the adjacent side panel 3 .
  • the side plate 3 is in contact with the fifth rib 64 to absorb assembly tolerances, which facilitates the side plate 3 to fix the battery cell 1 and the separator 2 and prevent the battery cell 1 and the separator 2 from shaking.
  • the docking assembly 6 includes a first docking part 61 and a second docking part 62, the first docking part 61 is provided on the top of the second docking part 62, The fourth rib 63 is provided on the side of the first connecting member 61 adjacent to the battery cell 1 , and the fifth rib 64 is provided on the side of the second connecting member 62 adjacent to the side plate 3 .
  • the first butting part 61 and the second joining part 62 have overlapping parts and mutually staggered parts in the first direction
  • the first butt-joining parts 61 of the partitions 2 are butt-jointed
  • the second butt-joint parts 62 of one partition 2 are butt-jointed with the second butt-joint parts 62 of the other partition 2 .
  • Some embodiments also provide an electrical device, which includes the electrical storage device 100 in any of the above embodiments.
  • the electric device may be a vehicle 200, such as a new energy vehicle.
  • the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or a range-extended vehicle, or the electric device may also be a drone or a ship.
  • a vehicle 200 includes an axle 201, wheels 202 connected to the axle 201, a motor 203, a controller 204 and a power storage device 100.
  • the motor 203 is used to drive the axle 201 to drive the wheels 202 to rotate.
  • the controller 204 is used to control the operation of the motor 203
  • the power storage device 100 can be disposed at the bottom, head or tail of the vehicle 200, and is used to provide electric energy for the operation of the motor 203 and other components in the vehicle.
  • the electric device provided by the embodiment of the present application includes the electric storage device 100 in any of the above embodiments, and has corresponding beneficial effects of the electric storage device 100, which will not be described again here.
  • the power storage device 100 includes a battery cell 1 , a separator 2 , a side plate 3 , a snap component 4 , a limiting component 5 , a docking component 6 and a seal 10 .
  • Battery single The body 1 is located between two adjacent partitions 2 .
  • the partitions 2 include a first side 211 adjacent to one of the battery cells 1 and a second side 212 adjacent to the other battery cell 1 .
  • the first side 211 of the partition 2 is provided with a first partition bar 21
  • the second side 212 of the partition 2 is provided with a second partition bar 25 .
  • a cooling channel is formed between both sides of the battery cell 1 and the adjacent partition 2 .
  • the first side 211 of the partition 2 is provided with the first partition 21
  • the second side 212 of the partition 2 is flat
  • one side of the battery cell 1 is in contact with the second side 212 of one of the partitions 2
  • the battery A cooling channel is formed between the other side of the unit 1 and the first side 211 of the other partition 2 .
  • the side plate 3 is provided on the side of the battery cell 1.
  • the side plate 3 includes a first beam 32 and a plurality of second beams 33.
  • the plurality of second beams 33 are staggered with the first beams 32 to form a plurality of openings 31.
  • the opening 31 communicates with the corresponding cooling channel.
  • the snap-in component 4 is provided at the bottom of the divider 2 .
  • the snap-in component 4 is used to hold the bottom of the battery cell 1 .
  • the limiting component 5 is disposed on the top and upper sides of the partition 2 , and is used to limit the top and upper sides of the battery cell 1 .
  • the docking components 6 are provided on both sides of the lower part of the partition 2 , and are used to limit the positions of the lower sides of the battery cells 1 .
  • the sealing member 10 is provided on the side of the side plate 3 adjacent to the battery cell 1 and avoids the opening 31 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例提供一种蓄电装置及用电装置。其中,蓄电装置包括:沿第一方向依次排布的至少两个电池单体;以及分隔件,设于相邻两个所述电池单体之间;所述分隔件包括邻近其中一个所述电池单体的第一侧面,所述第一侧面设有至少一个第一分隔条,所述第一分隔条、所述第一侧面和所述电池单体之间围合形成至少一个第一通道。本申请实施例通过第一分隔条分隔形成冷却通道的方式,分隔件老化后,第一分隔条不易变形,冷却通道的形状及流通面积不会发生改变,冷却效率不会降低,延长了电池单体的使用寿命,缓解了分隔件老化变形,冷却效率降低的问题。

Description

蓄电装置及用电装置
相关申请的交叉引用
本申请要求享有于2022年07月29日提交的名称为“蓄电装置及用电装置”的中国专利申请202221989960.1的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种蓄电装置及用电装置。
背景技术
在一些相关技术中,蓄电装置的相邻两个电池单体之间设置隔板,隔板与电池单体之间形成冷却通道,隔板老化变形后,导致冷却通道冷却效果减弱。
发明内容
本申请的一些实施例提出一种蓄电装置及用电装置,用于缓解冷却效果减弱的问题。
本申请的一些实施例提供了一种蓄电装置,包括:沿第一方向依次排布的至少两个电池单体;以及分隔件,设于相邻两个所述电池单体之间;所述分隔件包括邻近其中一个所述电池单体的第一侧面,所述第一侧面设有至少一个第一分隔条,所述第一分隔条、所述第一侧面和所述电池单体之间围合形成至少一个第一通道。
通过第一分隔条分隔形成冷却通道的方式,分隔件老化后,第一 分隔条不易变形,冷却通道的形状及流通面积不易发生改变,缓解了分隔件老化变形,导致冷却效果减弱的问题。
在一些实施例中,所述第一分隔条与邻近的所述电池单体抵接。
第一分隔条与邻近的电池单体抵接,可将分隔件与电池单元之间的空间分隔为至少两个第一通道,可利用冷媒在第一通道内的流动控制电池单体的温升。
在一些实施例中,所述第一分隔条包括与所述电池单体抵接的抵接面,所述抵接面为平面。
第一分隔条与电池单体抵接的抵接面为平面,能够增大第一分隔条与电池单体的抵接面积,使电池单体的换热面受力均匀,提高电池单体的循环寿命。
在一些实施例中,所述分隔件包括邻近另一个所述电池单体的第二侧面,所述第二侧面设有至少一个第二分隔条,所述第二分隔条、所述第二侧面和所述电池单体之间围合形成至少一个第二通道。
分隔件的第一侧面和第二侧面均设有分隔条,且均通过分隔条分隔冷却通道,能够对电池单体的两个侧面进行换热降温,电池单体双面冷却,降温均匀,电池单体间温差小,温度均衡。
在一些实施例中,所述第二分隔条与邻近的所述电池单体抵接。
分隔件的第一侧面的第一分隔条与邻近的电池单体抵接,第二侧面的第二分隔条与邻近的电池单体抵接,能够使电池单体的换热面受力均匀,提高电池单体的循环寿命。
在一些实施例中,至少一个所述第一通道与一所述第二通道在所述第一方向上连通。
冷媒流体在第一通道、第二通道和第一通道至第二通道之间流动,能够进一步提高电池单体的冷却效果和循环寿命。
在一些实施例中,所述分隔件包括邻近另一个所述电池单体的第二侧面,所述第二侧面与邻近的所述电池单体抵接。
分隔件的第一侧面设置有至少一个第一分隔条,至少一个第一分隔条与邻近的电池单体抵接,分隔件的第二侧面没有设置分隔条,第二侧面直接与邻近的电池单体抵接,也就是分隔件的一面设置冷却通道,另一面与电池单体大面紧贴,增大了电池单体的受力面积,缓解了电池单体受力不均,循环寿命降低的问题。
在一些实施例中,所述第一分隔条沿第二方向延伸,所述第二方向与所述第一方向相交。
第一分隔条沿第二方向延伸,对应的,第一通道沿第二方向延伸,冷媒沿第一通道流动对电池单体进行冷却,能够提高电池单体的冷却效率。
在一些实施例中,所述第一分隔条的其中一个端部被构造成由沿所述第二方向延伸的斜面交汇连接且弧形过渡的角状。
第一分隔条的端部被构造为由斜面交汇连接且弧形过渡的角状,能够很大程度降低冷媒进入通道时的阻力,能够降低冷媒流体压损,提升冷却性能。
在一些实施例中,所述至少一个第一分隔条包括设于所述第一侧面在第三方向上的两端部的第一筋条,所述第一筋条与邻近的所述电池单体抵接,所述第三方向与所述第一方向相交。
第一侧面在第三方向上的两端部的第一筋条均与邻近的电池单体抵接,第一筋条与邻近的电池单体过盈配合,能够防止第一通道内的冷媒从第一侧面在第三方向上的两端部漏出,尽可能使冷媒全部在第一通道内流动,以提高电池单体的冷却效率。
在一些实施例中,蓄电装置还包括设于所述分隔件的卡接组件, 相邻两个所述分隔件通过所述卡接组件连接,所述卡接组件被配置为托住所述电池单体的底部。
相邻两个分隔件通过卡接组件连接,且通过相互卡接的方式固定住电池单体,能够提高蓄电装置的刚度和安全性,缓解蓄电装置结构强度弱的问题。
在一些实施例中,蓄电装置还包括设于所述分隔件且与所述电池单体的顶部抵接的第一限位件,所述第一限位件沿所述第一方向延伸,且被构造为弯钩形。
第一限位件被构造为弯钩状,能够使第一限位件具有一定的弹性,在安装电池单体时,第一限位件能够产生一定的形变,利于电池单体的安装,在电池单体安装完成后,第一限位件恢复形变,能够对电池单体具有一定的抵紧作用,吸收装配公差,利于电池单体的固定,防止电池单体晃动。
在一些实施例中,蓄电装置还包括设于所述分隔件的两个第二限位件,所述两个第二限位件被配置为对位于所述两个第二限位件之间的所述电池单体进行限位,且其中一个所述第二限位件上设有与邻近的所述电池单体抵接的第二筋条。
在分隔件的两侧分别设有一个第二限位件,两个第二限位件配合对位于两个第二限位件之间的电池单体进行限位,能够固定电池单体,防止电池单体晃动,提升模组主频。
在一些实施例中,蓄电装置还包括:侧板,所述侧板设于所述至少两个电池单体的侧部,且沿所述第一方向延伸,所述侧板上设有开口。
蓄电装置的侧面设置开口,开口引入的冷媒沿第一分隔条分隔的第一通道流动,冷媒流入方向垂直蓄电装置的侧面,能够使电池单体得到冷却。
在一些实施例中,所述开口在沿所述第一方向上覆盖至少一个所述分隔件。
侧板上设有开口,开口在沿第一方向上覆盖至少一个分隔件,开口至少对准一个分隔件上形成的冷却通道,提高冷却效果。
在一些实施例中,所述至少两个电池单体的两侧部分别设有所述侧板,所述第一分隔条在所述至少两个电池单体的两侧部的所述侧板之间延伸。
蓄电装置的侧面设置开口,开口引入的冷媒沿第一分隔条之间的第一通道流动,冷媒流入方向垂直蓄电装置的侧面,能够使电池单体大面得到冷却。
在一些实施例中,蓄电装置还包括:密封件,所述密封件设于所述侧板邻近所述电池单体的一侧,且避让所述开口。
侧板邻近电池单体的一侧设置密封件,保持了侧板与电池单体之间的电气间隙,同时避免侧板漏冷媒。
在一些实施例中,蓄电装置还包括:侧板,设于所述至少两个电池单体的侧部,且沿所述第一方向延伸;第一板,连接于所述侧板,且与所述卡接组件的底部抵接;以及第二板,连接于所述侧板,且与所述第一限位件的顶部抵接。
侧板设于至少两个电池单体的侧部,从至少两个电池单体的侧部对各电池单体进行限位,第一板连接于侧板,且与卡接组件的底部抵接,能够从底部对电池单体与分隔件形成的组合进行限位,第二板连接于侧板,且与第一限位件的顶部抵接,能够从顶部对电池单体与分隔件形成的组合进行限位。
在一些实施例中,所述卡接组件包括与所述第一板抵接的第三筋条。
在安装侧板的过程中,第一板挤压第三筋条,使第三筋条变形,在第二板位于电池单体的顶部,抵接第一限位件后,第三筋条恢复部分形变,与第一板抵接,第三筋条与第一板过盈配合,通过设置第三筋条能够吸收电池单体高度方向的装配公差,使电池单体的极柱平齐。
在一些实施例中,蓄电装置还包括设于所述分隔件的两个对接组件,所述两个对接组件被配置为对位于所述两个对接组件之间的所述电池单体进行限位,且相邻两个所述分隔件上的所述对接组件对接。
通过在分隔件的两侧分别设有一个对接组件,两个对接组件配合对位于两个第二限位件之间的电池单体进行限位,能够固定电池单体,防止电池单体晃动,提升模组主频。
在一些实施例中,所述两个对接组件的其中之一设有与邻近的所述电池单体抵接的第四筋条。
在安装电池单体时,电池单体的一侧挤压第四筋条,使第四筋条产生形变,在电池单体的另一侧与对应的对接组件安装到位后,第四筋条恢复一定的弹性形变,与电池单体抵接,利用第四筋条可以吸收装配公差,利于电池单体的固定,防止电池单体晃动。
在一些实施例中,蓄电装置还包括设于所述至少两个电池单体的两侧部的侧板,所述侧板沿所述第一方向延伸;所述两个对接组件的至少之一设有与邻近的所述侧板抵接的第五筋条。
侧板与第五筋条抵接,吸收装配公差,利于侧板固定电池单体以及分隔件,防止电池单体和分隔件的晃动。
本申请的一些实施例还提供了一种用电装置,其包括上述的蓄电装置。
用电装置包括上述的蓄电装置,相应的具备蓄电装置的有益效果。
基于上述技术方案,本申请至少具有以下有益效果:
在一些实施例中,通过第一分隔条分隔形成冷却通道的方式,分隔件老化后,第一分隔条不易变形,冷却通道的形状及流通面积不易发生改变,缓解了分隔件老化变形,导致冷却效果减弱的问题。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一些实施例公开的一种车辆的结构示意图;
图2是本申请一些实施例公开的一种蓄电装置的结构示意图;
图3是本申请一些实施例公开的电池单体与分隔件组合后的示意图;
图4是图2的主视示意图;
图5是图3的主视示意图;
图6是本申请一些实施例公开的分隔件的第一侧面的第一视角的示意图;
图7是本申请一些实施例公开的分隔件的第一侧面的第二视角的示意图;
图8是图6的主视示意图;
图9是图8的第一局部结构A的放大示意图;
图10是图8的第二局部结构B的放大示意图;
图11是本申请一些实施例公开的分隔件的第二侧面的示意图;
图12是图11的主视示意图;
图13是本申请一些实施例公开的分隔件的第一侧视示意图;
图14是本申请一些实施例公开的分隔件的第二侧视示意图;
图15是本申请另一些实施例公开的分隔件的第二侧面的示意图;
图16是图15的主视示意图;
图17是本申请另一些实施例公开的分隔件的第一侧视示意图;
图18是本申请另一些实施例公开的分隔件的第二侧视示意图;
图19是本申请一些实施例公开的分隔件的俯视示意图;
图20是本申请一些实施例公开的分隔件的仰视示意图;
图21是本申请一些实施例公开的分隔件与电池单体装配后的主视示意图;
图22是本申请一些实施例公开的分隔件、电池单体和侧板装配后的示意图;
图23是图22的第三局部结构C的放大示意图;
图24是本申请一些实施例公开的分隔件与电池单体装配后的仰视示意图;
图25是本申请一些实施例公开的分隔件与相关技术中的“弓”字形隔板的循环容量保持率的对比图。
在附图中,附图并未按照实际的比例绘制。
标记说明:1-电池单体;2-分隔件;21-第一分隔条;211-第一侧面;212-第二侧面;213-抵接面;214-第一分隔条的端部;221-第一通 道;222-第二通道;23-框架;24-第一筋条;25-第二分隔条;251-第二分隔条的端部;26-第六筋条;3-侧板;31-开口;32-第一梁;33-第二梁;34-第一板;35-第二板;36-第三板;4-卡接组件;41-第三筋条;42-缺口;43-凸块;44-第一卡接部;45-第二卡接部;46-第三卡接部;47-第四卡接部;5-限位组件;51-第一限位件;52-第二限位件;521-第二筋条;53-第三限位件;6-对接组件;61-第一对接件;62-第二对接件;63-第四筋条;64-第五筋条;7-顶板;8-端板;9-中板;10-密封件;100-蓄电装置;200-车辆;201-车桥;202-车轮;203-马达;204-控制器;X-第一方向;Y-第二方向;Z-第三方向。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言, 可视具体情况理解上述术语在本申请中的具体含义。
目前,从市场形势的发展来看,蓄电装置的应用越加广泛。蓄电装置不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着蓄电装置应用领域的不断扩大,其市场的需求量也在不断地扩增。
在一些相关技术中,蓄电装置包括至少两个电池单体,相邻两个电池单体之间设置隔板,为了对电池单体进行限位,且还要使电池单体与隔板之间形成冷却通道,隔板的一部分部位与其中一邻近的电池单体抵接,隔板的另一部分部位与另一邻近的电池单体抵接,隔板没有与电池单体抵接的部位形成冷却通道,因此,隔板一般为“弓”字形隔板。
发明人发现:“弓”字形隔板两侧的受力部位不对称,“弓”字形隔板老化后由于两侧部位受力不对称容易产生变形,造成冷却通道的形状及流通面积发生改变,使冷却效果减弱。
基于此,本申请实施例提供了一种蓄电装置,包括:沿第一方向依次排布的至少两个电池单体;以及分隔件,设于相邻两个电池单体之间;分隔件包括邻近其中一个电池单体的第一侧面,第一侧面设有至少一个第一分隔条,第一分隔条、第一侧面和电池单体之间围合形成至少一个第一通道。
通过第一分隔条分隔形成冷却通道的方式,分隔件老化后,第一分隔条不易变形,冷却通道的形状及流通面积不易发生改变,缓解了分隔件老化变形,导致冷却效果减弱的问题。
本申请的蓄电装置100可用于用电装置,可为用电装置提供电能,用电装置可以是手机、便携式设备、笔记本电脑、电瓶车、电动汽车、轮船、航天器、电动玩具和电动工具等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等,电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等,电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝 土振动器和电刨。
用电装置还可以是车辆200,例如新能源车辆,新能源车辆可以是纯电动车辆、混合动力车辆或增程式车辆等;或者用电装置也可以是无人机或轮船等。
参考图1,车辆200包括车桥201、连接于车桥201的车轮202、马达203、控制器204和蓄电装置100,马达203用于驱动车桥201带动车轮202转动,控制器204用于控制马达203工作,蓄电装置100可以设置在车辆200的底部、头部或尾部,用于为马达203以及车辆中其它部件的工作提供电能。
参考图2至图4,蓄电装置100包括至少两个电池单体1、分隔件2、侧板3、顶板7和端板8。至少两个电池单体1沿第一方向X依次排布,相邻两个电池单体1之间设置分隔件2。端板8设于至少两个电池单体1的位于第一方向X的端部,侧板3设于至少两个电池单体1的位于第二方向Y的侧部,且侧板3沿第一方向X延伸,顶板7设于至少两个电池单体1的位于第三方向Z的顶部。
本申请中的第一方向X与蓄电装置100的长度方向一致。电池单体1沿第一方向X的尺寸为电池单体1的厚度尺寸。第三方向Z与蓄电装置100的高度方向一致。其中,蓄电装置100的高度方向为顶部与底部之间的方向,蓄电装置100的顶部为设有端盖的部位,端盖上设有电子端子,蓄电装置100的底部为与顶部相对的一端。电池单体1沿第三方向Z的尺寸为电池单体1的高度尺寸。第一方向X与第三方向Z垂直,第二方向Y垂直于第一方向X与第三方向Z形成的平面。电池单体1沿第二方向Y的尺寸为电池单体的长度尺寸。
参考图5,在一些实施例中,蓄电装置100还可以包括中板9,至少两个电池单体1平均分为两组,中板9设于两组电池单体1之间。
参考图5,一些实施例提供了一种蓄电装置100,其包括沿第一方向X依次排布的至少两个电池单体1。
参考图5,蓄电装置100还包括分隔件2,分隔件2设于相邻两个电池单体1之间。参考图6至图8,分隔件2包括邻近其中一个电池单体 1的第一侧面211,第一侧面211设有至少一个第一分隔条21,第一分隔条21、第一侧面211和电池单体1之间围合形成至少一个第一通道221。
分隔件2用于分隔相邻的两个电池单体1。第一侧面211为分隔件2邻近其中一个电池单体1的一个侧面。第一分隔条21设于第一侧面211,用于划分第一侧面211与电池单体1之间的空间,以用于形成第一通道221。第一通道221为用于对电池单体1进行冷却的冷却通道,冷媒在第一通道221通过,用于对电池单体1进行冷却,也就是相邻电池单体1间采用能够提供冷却作用的分隔件2成组,分隔件2与电池单元1之间形成有可通冷媒的冷却通道结构,可利用冷媒的流动控制电池单体的温升。此处的冷媒包括气态冷媒或液态冷媒。
本申请实施例通过第一分隔条21分隔形成冷却通道的方式,分隔件2老化后,第一分隔条21不易变形,冷却通道的形状及流通面积不易发生改变,缓解了分隔件老化变形导致蓄电装置100冷却效果减弱的问题。
在一些实施例中,第一分隔条21与邻近的电池单体1抵接。
第一分隔条21与邻近的电池单体1抵接,可将分隔件2与电池单元1之间的空间分隔为至少两个第一通道221,可利用冷媒在第一通道221内的流动控制电池单体的温升。
在一些实施例中,第一侧面211设有至少两个第一分隔条21,至少两个第一分隔条21与邻近的电池单体1抵接。
至少两个第一分隔条21与邻近的电池单体1抵接,能够使电池单体1的换热面受力均匀,避免电池单体循环过程中电解液分布不均,极化增大的问题,提高了电池单体的循环寿命。此处,电池单体1的换热面为电池单体1的长度和高度形成的面。
相邻两个第一分隔条21之间的距离不固定,可以根据电池单体1沿第一方向X的尺寸,分隔件2沿第一方向X的尺寸,以及相邻两个电池单体1在第一方向X上的距离确定。通过优化相邻两个第一分隔条21之间的距离,能够优化电池单体1的换热面的受力分布,提高冷却效率和电池单体的循环寿命。
参考图8和图9,在一些实施例中,第一分隔条21包括与电池单体1抵接的抵接面213,抵接面213为平面。
第一分隔条21与电池单体1抵接的抵接面213为平面,能够增大第一分隔条21与电池单体1的抵接面积,使电池单体1的换热面受力均匀,提高电池单体的循环寿命。
参考图11和图12,在一些实施例中,分隔件2包括邻近另一个电池单体1的第二侧面212,第二侧面212设有至少一个第二分隔条25,第二分隔条25、第二侧面212和电池单体1之间围合形成至少一个第二通道222。
第二通道222为用于对电池单体1进行冷却的冷却通道,本申请实施例通过第二分隔条25分隔形成冷却通道的方式,分隔件2老化后,第二分隔条25不易变形,冷却通道的形状及流通面积不会发生改变,冷却效率不会降低,延长了电池单体的使用寿命,缓解了分隔件2老化变形,冷却效率降低的问题。
分隔件2的第一侧面211和第二侧面212均设有分隔条,且均通过分隔条分隔冷却通道,能够对电池单体1的两个侧面进行换热降温,电池单体1双面冷却,降温均匀,电池单体间温差小,温度均衡。
分隔件2的第一侧面211和第二侧面212上的分隔条在分隔件2老化后,不容易变形,冷却通道的形状及流通面积不会发生改变,冷却效率不会降低,延长了电池单体的使用寿命,缓解了分隔件2老化变形,冷却效率降低的问题。
在一些实施例中,第二分隔条25与邻近的电池单体1抵接。
分隔件2的第一侧面211的第一分隔条21与邻近的电池单体1抵接,第二侧面212的第二分隔条25与邻近的电池单体1抵接,能够使电池单体1的换热面受力均匀,提高电池单体的循环寿命。
参考图23,分隔件2的第一侧面211的第一分隔条21与邻近的电池单体1抵接,第二侧面212的第二分隔条25与邻近的电池单体1抵接,该分隔件2与相关技术中的“弓”字形隔板相比,电池单体的循环容量保持率高,电池单体循环寿命显著改善。
在一些实施例中,第二侧面212设有至少两个第二分隔条25,也就是,第二侧面212设有多个第二分隔条25。第一侧面211设有至少两个第一分隔条21,也就是第一侧面211设有多个第一分隔条21。
多个第二分隔条25与多个第一分隔条21的数量一致,且每一个第二分隔条25对应与一第一分隔条21对称设置,能够使分隔件2两侧的受力均衡,缓解分隔件2老化变形,改善分隔件2老化变形带来风冷效率降低的问题。
在一些实施例中,至少一个第一通道221与一第二通道222在第一方向X上连通。
第一通道211位于分隔件2的第一侧面211,第二通道222位于分隔件2的第二侧面212,至少一个第一通道221与一第二通道222在第一方向X上连通,也就是冷却通道在第一方向X上贯通,能够既降低流体阻力,提高电池单体1的冷却效果和循环寿命。
在一些实施例中,多个第二分隔条25与多个第一分隔条21的数量一致,且每一个第二分隔条25对应与一第一分隔条21对称设置,每个第一通道211对应与一第二通道222在第一方向X上连通,分隔件2为镂空结构,冷媒流体在第一通道211、第二通道222和第一通道211至第二通道222之间流动,能够进一步提高电池单体1的冷却效果和循环寿命。
参考图15至图18,在另一些实施例中,分隔件2包括邻近另一个电池单体1的第二侧面212,第二侧面212与邻近的电池单体1抵接。
分隔件2的第二侧面212没有设置分隔条,第二侧面212直接与邻近的电池单体1抵接。
分隔件2设于相邻两个电池单体1之间,相应的也是两个分隔件2之间设置电池单体1,电池单体1可以设置在两个分隔件2之间的中间位置,或者,电池单体1靠近其中一个分隔件2。在两个分隔件2之间的距离一定的情况下,其中一个分隔件2的第二侧面212与电池单体1抵接,那么另一个分隔件2的第一侧面211与该电池单体1之间的距离增大,此时,第一侧面211设置的至少一个第一分隔条21分隔的第一通道221的通流面积增大,冷却效率提高。
在两个分隔件2与两个分隔件2之间的电池单体1组成的组合结构中,电池单体1靠近其中一个分隔件2的设置方式,相对于电池单体1在两个分隔件2中间的设置方式,能够扩大单侧冷却通道的横截面积,降低流体阻力,解决冷却通道横向距离太小时,压损过大的问题。
分隔件2的第一侧面211设置有至少一个第一分隔条21,至少一个第一分隔条21与邻近的电池单体1抵接,分隔件2的第二侧面212没有设置分隔条,第二侧面212直接与邻近的电池单体1抵接,也就是分隔件2的一面设置冷却通道,另一面与电池单体大面紧贴,增大了电池单体1的受力面积,缓解了电池单体1受力不均,循环寿命降低的问题。
在分隔件2的第一实施例中,在分隔件2的第一侧面211设置至少一个第一分隔条21,至少一个第一分隔条21与邻近的电池单体1抵接,分隔件2的第二侧面212设置至少一个第二分隔条25,至少一个第二分隔条25与邻近的电池单体1抵接。在分隔件2的第一实施例中,分隔件2双侧均有冷却通道,能够对电池单体1的双侧进行冷却,冷却效率高,且冷却通道随分隔件2的老化其冷却效率没有明显降低,同时分隔件2可以吸收电池单体膨胀力。
在分隔件2的第二实施例中,在分隔件2的第一侧面211设置至少一个第一分隔条21,至少一个第一分隔条21与邻近的电池单体1抵接,分隔件2的第二侧面212没有设置分隔条,第二侧面212与邻近的电池单体1抵接。在分隔件2的第二实施例中,单侧冷却通道的横截面积扩大,流体阻力降低,冷却通道随分隔件2的老化其冷却效率没有明显降低,同时分隔件2可以吸收电池单体膨胀力。
在一些实施例中,第一分隔条21沿第二方向Y延伸,第二方向Y与第一方向X相交。
可选地,第二方向Y与第一方向X垂直。
第一分隔条21沿第二方向Y延伸,对应的,第一通道221沿第二方向Y延伸,冷媒沿第一通道221流动对电池单体1进行冷却,能够提高电池单体1的冷却效率。
在一些实施例中,分隔件2的第一侧面211设置有至少两个第一 分隔条21,多个第一分隔条21分隔形成的多个第一通道221在电池单体1的换热面上依次排布,能够提高电池单体1的冷却效率和冷却均匀度。
在一些实施例中,第二分隔条25沿第二方向Y延伸,第二方向Y与第一方向X相交。
可选地,第二方向Y与第一方向X垂直。
第二分隔条25沿第二方向Y延伸,对应的,第二通道222沿第二方向Y延伸,冷媒沿第二通道222流动对电池单体1进行冷却,能够提高电池单体1的冷却效率。
在一些实施例中,分隔件2的第二侧面212设置有至少两个第二分隔条25,多个第二分隔条25分隔形成的多个第二通道222在电池单体1的换热面上依次排布,能够提高电池单体1的冷却效率和冷却均匀度。
在一些实施例中,第一分隔条21的其中一个端部214被构造成由沿第二方向Y延伸的斜面交汇连接且弧形过渡的角状。
在一些实施例中,第一分隔条21的另一个端部214被构造成由沿第二方向Y的反方向延伸的斜面交汇连接且弧形过渡的角状。
第一分隔条21具有两个端部214,第一分隔条21的两个端部214对应于第一通道221的进口和出口,第一分隔条21的端部214被构造为由斜面交汇连接且弧形过渡的角状,能够很大程度降低冷媒进入通道时的阻力,第一通道221的进口和出口的阻力减小,能够降低冷媒流体压损,提升冷却性能。
参考图9,在一些实施例中,第一分隔条21的端部214为由斜面交汇连接且弧形过渡的圆角状。
在一些实施例中,第二分隔条25的其中一个端部251被构造成由沿第二方向Y延伸的斜面交汇连接且弧形过渡的角状。
在一些实施例中,第二分隔条25的另一个端部251被构造成由沿第二方向Y延伸的斜面交汇连接且弧形过渡的角状。
第二分隔条25具有两个端部251,第二分隔条25的两个端部251对应于第二通道222的进口和出口,第二分隔条25的端部251被构造为由斜面交汇连接且弧形过渡的角状,能够很大程度降低冷媒进入通道时 的阻力,第二通道222的进口和出口的阻力减小,能够降低冷媒流体压损,提升冷却性能。
在一些实施例中,第二分隔条25的端部251为由斜面交汇连接且弧形过渡的圆角状。
在一些实施例中,至少一个第一分隔条21包括设于第一侧面211在第三方向Z上的两端部的第一筋条24,第一筋条24与邻近的电池单体1抵接,第三方向Z与第一方向X相交。
可选地,第三方向Z与第一方向X垂直。
第一侧面211在第三方向Z上的两端部的第一筋条24均与邻近的电池单体1抵接,第一筋条24与邻近的电池单体1过盈配合,能够防止第一通道221内的冷媒从第一侧面211在第三方向Z上的两端部漏出,尽可能使冷媒全部在第一通道221内流动,以提高电池单体1的冷却效率。
第一侧面211在第三方向Z上的两端部的第一筋条24的设置数量可以为一根,两根或两根以上。
可选地,第一分隔条21均采用筋条的形式,第一筋条24比第一分隔条21的其他筋条细。
在一些实施例中,至少一个第二分隔条25包括设于第二侧面212在第三方向Z上的两端部的第六筋条26,第六筋条26与邻近的电池单体1抵接,第三方向Z与第一方向X相交。
可选地,第三方向Z与第一方向X垂直。
第二侧面212在第三方向Z上的两端部的第六筋条26与邻近的电池单体1抵接,第六筋条26与邻近的电池单体1过盈配合,能够防止第二通道222内的冷媒从第二侧面212在第三方向Z上的两端部漏出,尽可能使冷媒全部在第二通道222内流动,以提高电池单体1的冷却效率。
可选地,第二分隔条25均采用筋条的形式,其中,第六筋条26比第二分隔条25的其他筋条细。
参考图7、图11和图15,在一些实施例中,蓄电装置100还包括设于分隔件2的卡接组件4,相邻两个分隔件2通过卡接组件4连接, 卡接组件4被配置为托住电池单体1的底部,参考图24。
卡接组件4相对于分隔件2向第一方向X延伸或向第一方向的反方向延伸。
相邻两个分隔件2通过卡接组件4连接,且通过相互卡接的方式固定住电池单体1,能够提高蓄电装置100的刚度和安全性,缓解蓄电装置100结构强度弱的问题。
相邻两个分隔件2之间通过卡接组件4卡接的形式,既能够实现装配防呆与装配导向,又能够使分隔件2之间相互约束,提升蓄电装置100的刚度,保证蓄电装置100的结构强度。
在一些实施例中,卡接组件4包括设置在分隔件2的第一侧面211底部的凸块和凹槽结构,以及设置在分隔件2的第二侧面212的底部的凸块和凹槽结构。分隔件2的第一侧面211底部设置凸块的位置对应分隔件2的第二侧面212的底部设置凹槽,分隔件2的第一侧面211底部设置凹槽的位置对应分隔件2的第二侧面212的底部设置凸块。
相邻两个分隔件2中,其中一个分隔件2的第一侧面211的底部设置的凸块对应与另一个分隔件2的第二侧面212的底部设置的凹槽相互配合卡接;其中一个分隔件2的第一侧面211的底部设置的凹槽对应与另一个分隔件2的第二侧面212的底部设置的凹槽相互配合卡接。凸块与凹槽的配合卡接形式包括凸块插入凹槽内。
在一些实施例中,凹槽可采用缺口替代。
参考图19和图20,卡接组件4包括设于第一侧面211的底部中间位置的凸块43,以及设于第二侧面212的底部中间位置的缺口42。
相邻两个分隔件2中,其中一个分隔件2的第一侧面211的底部设置的凸块43对应插入另一个分隔件2的第二侧面212的底部设置的缺口42中,凸块43与缺口42相互配合卡接。
卡接组件4还包括设于第一侧面211的底部的第二卡接部45和第四卡接部47,以及设于第二侧面212的底部的第一卡接部44和第三卡接部46。第二卡接部45设有凹槽,对应的第一卡接部44设有凸块。其中一个分隔件2的第二卡接部45与另一个分隔件2的第一卡接部44相互配 合卡接。第四卡接部47设有凸块,第三卡接部46设有凹槽。其中一个分隔件2的第四卡接部47与另一个分隔件2的第三卡接部46相互配合卡接。
在一些实施例中,蓄电装置100还包括限位组件5,限位组件5包括第一限位件51。
在一些实施例中,第一限位件51设于分隔件2且与电池单体1的顶部抵接,第一限位件51沿第一方向X延伸,且被构造为弯钩形。
第一限位件51为弯钩状,表示其轮廓线包括曲线,而不是单一的直线。
参考图11、图15和图21,相邻两个分隔件2通过卡接组件4连接,卡接组件4被配置为托住电池单体1的底部,该配合部位为底部配合部位a2,第一限位件51设于电池单体1的顶部,且与电池单体1的顶部抵接,该配合部位为顶部配合部位a1,顶部配合部位a1与底部配合部位a2相互配合,对电池单体1的顶部和底部进行定位,防止电池单体1晃动。
第一限位件51被构造为弯钩状,能够使第一限位件51具有一定的弹性,在安装电池单体1时,第一限位件51能够产生一定的形变,利于电池单体1的安装,在电池单体1安装完成后,第一限位件51恢复形变,能够对电池单体1具有一定的抵紧作用,吸收装配公差,利于电池单体1的固定,防止电池单体1晃动。
参考图12和图16,在一些实施例中,限位组件5还包括第二限位件52。
在一些实施例中,蓄电装置100还包括设于分隔件2的两个第二限位件52,两个第二限位件52被配置为对位于两个第二限位件52之间的电池单体1进行限位,且其中一个第二限位件52上设有与邻近的电池单体1抵接的第二筋条521。
在分隔件2的两侧分别设有一个第二限位件52,两个第二限位件52配合对位于两个第二限位件52之间的电池单体1进行限位,能够固定电池单体1,防止电池单体1晃动,提升模组主频。
两个第二限位件52的其中一个第二限位件52上设有第二筋条521,例如图21中显示的左侧的第二限位件52上设有第二筋条521,在安装电池单体1时,电池单体1的一侧挤压第二筋条521,使第二筋条521产生形变,在电池单体1的另一侧与对应的第二限位件52安装到位后,第二筋条521恢复一定的弹性形变,与电池单体1抵接,利用第二筋条521可以吸收装配公差,利于电池单体1的固定,防止电池单体1晃动。
参考图21,两个第二限位件52与电池单体1的抵接处分别对应第一侧向配合部b1和第二侧向配合部b2,第一侧向配合部b1和第二侧向配合部b2相互配合,对电池单体1的侧向进行限位,防止电池单体1的晃动,提升模组刚度。
参考图8和图9,在一些实施例中,两个第二限位件52设于分隔件2的上部,其中一个第二限位件52邻近电池单体1的一侧设有第二筋条521,第二筋条521可以与第一侧面211上部的第一筋条24连接。第二筋条521既可以吸收电池单体1装配时的公差,且还可以与第一筋条24配合,防止冷却通道漏冷媒。
在一些实施例中,第二限位件52背离电池单体1的一侧被构造为凹槽结构,该凹槽结构内可以填充密封件10。
参考图2,在一些实施例中,蓄电装置100还包括侧板3,侧板3设于至少两个电池单体1的侧部,且沿第一方向X延伸,侧板3上设有开口31。
蓄电装置100的侧面设置开口31,开口31引入的冷媒沿第一分隔条21分隔的第一通道221流动,冷媒流入方向垂直蓄电装置100的侧面,能够使电池单体得到冷却。
在一些实施例中,开口31在沿第一方向X上覆盖至少一个分隔件2。
侧板3上设有开口31,开口31在沿第一方向X上覆盖至少一个分隔件2,开口31至少对准一个分隔件2上形成的冷却通道,提高冷却效果。
在一些实施例中,开口31在沿第一方向X上覆盖至少两个分隔 件2,开口31覆盖面积大,能够覆盖至少两个分隔件2上形成的冷却通道,冷媒流通面积大,能够降低对制造公差要求,不会因制造公差产生开口31没有对准冷却通道的问题,提高冷却效果。
在一些实施例中,至少两个电池单体1的两侧部分别设有侧板3,第一分隔条21在至少两个电池单体1的两侧部的侧板3之间延伸。
蓄电装置100的侧面设置开口31,开口31引入的冷媒沿第一分隔条21之间的第一通道221流动,冷媒流入方向垂直蓄电装置100的侧面,能够使电池单体大面得到冷却。
另外,侧面进风的方式相对于底部进风的方式,进风的路径更短,降低风阻,减小压损,冷却效果更好。
参考图4,在一些实施例中,侧板3包括第一梁32和多个第二梁33。
第一梁32沿第一方向X延伸。多个第二梁33与第一梁32交错连接,以形成多个开口31。
侧板3包括第一梁32,以及与第一梁32交错连接的多个第二梁33,增加了模组的整体强度。
在一些实施例中,第一梁32从蓄电装置100的前端延伸至后端,此结构能在满足模组强度要求的同时,减少第二梁33的个数,降低对模组横向公差的要求,同时减轻模组的重量,降低制造成本。
开口31由第一梁32与第二梁33交错连接形成,开口31引流方向垂直蓄电装置100的侧面,能够使电池单体得到有效冷却。
开口31由第一梁32与第二梁33交错连接形成,第一梁32从蓄电装置100的前端延伸至后端,此结构能在满足模组强度要求的同时,减少第二梁33的个数,使开口31覆盖至少两个第一分隔条21,冷却通道的冷媒流入面积大,提高电池单体的冷却效果。
在一些实施例中,蓄电装置100还包括密封件10,密封件10设于侧板3邻近电池单体1的一侧,且避让开口31。
侧板3邻近电池单体1的一侧设置密封件10,保持了侧板3与电池单体1之间的电气间隙,同时避免侧板3漏冷媒。
在一些实施例中,密封件10包括泡棉。可选地,泡棉包括硅橡胶泡棉。
参考图22,在一些实施例中,蓄电装置100还包括侧板3、第一板34和第二板35。
侧板3设于至少两个电池单体1的侧部,且沿第一方向X延伸。第一板34连接于侧板3,且与卡接组件4的底部抵接。第二板35连接于侧板3,且与第一限位件51的顶部抵接。
侧板3设于至少两个电池单体1的侧部,从至少两个电池单体1的侧部对各电池单体1进行限位,第一板34连接于侧板3,且与卡接组件4的底部抵接,能够从底部对电池单体1与分隔件2形成的组合进行限位,第二板35连接于侧板3,且与第一限位件51的顶部抵接,能够从顶部对电池单体1与分隔件2形成的组合进行限位。
在一些实施例中,限位组件5还包括第三限位件53,第三限位件53连接于第一限位件51,且沿第二方向Y延伸。蓄电装置100还包括第三板36,第三板36连接于第二板35,且沿第二方向Y延伸,侧板3安装完成后,第三板36与第三限位件53抵接。
参考图22和图23,在一些实施例中,卡接组件4包括第三筋条41,第三筋条41与第一板34抵接。
侧板3设于至少两个电池单体1的侧部,从至少两个电池单体1的侧部对各电池单体1进行限位,第一板34连接于侧板3,且与卡接组件4的底部抵接,卡接组件4包括第三筋条41,在安装侧板的过程中,第一板34挤压第三筋条41,使第三筋条41变形,在第二板35位于电池单体1的顶部,抵接第一限位件51后,第三筋条41恢复部分形变,与第一板34抵接,第三筋条41与第一板34过盈配合,通过设置第三筋条41能够吸收电池单体高度方向的装配公差,使电池单体的极柱平齐。
在一些实施例中,蓄电装置100还包括设于分隔件2的两个对接组件6,两个对接组件6被配置为对位于两个对接组件6之间的电池单体1进行限位,且相邻两个分隔件2上的对接组件6对接。
通过在分隔件2的两侧分别设有一个对接组件6,两个对接组件 6配合对位于两个第二限位件52之间的电池单体1进行限位,能够固定电池单体1,防止电池单体1晃动,提升模组主频。
在一些实施例中,两个对接组件6的其中之一设有与邻近的电池单体1抵接的第四筋条63。
两个对接组件6的其中一个对接组件6上设有第四筋条63,例如图21中显示的左侧的对接组件6上设有第四筋条63,在安装电池单体1时,电池单体1的一侧挤压第四筋条63,使第四筋条63产生形变,在电池单体1的另一侧与对应的对接组件6安装到位后,第四筋条63恢复一定的弹性形变,与电池单体1抵接,利用第四筋条63可以吸收装配公差,利于电池单体1的固定,防止电池单体1晃动。
参考图21,两个对接组件6与电池单体1的抵接处分别对应第三侧向配合部d1和第四侧向配合部d2,第三侧向配合部d1和第四侧向配合部d2相互配合,对电池单体1的侧向进行限位,防止电池单体1的晃动,提升模组刚度。
电池单体1的顶部和底部之间通过顶部配合部位a1与底部配合部位a2相互配合限位,电池单体1的两侧部之间通过第一侧向配合部b1和第二侧向配合部b2,以及第三侧向配合部d1和第四侧向配合部d2的相互配合限位,即有利于电池单体1和分隔件2之间的装配导向及防呆设计,便于安装,加快生产节奏,又能够使电池单体2在分隔件2内的装配有定位,不产生晃动,提升模组刚度。
第一限位件51被构造为弯钩形结构,具有弹性,可变形,能够从对电池单体1的顶部和底部方向提高电池单体1的装配牢固性,第二筋条521以及第四筋条63均具有弹性,可产生变形,能够从电池单体2的两侧提高电池单体的装配牢固性,第一限位件51、第二筋条521以及第四筋条63的配合,可以吸收电池单体1的长度、厚度和高度方向的公差,吸收电池单体膨胀力,且还可以缓解分隔件2漏冷媒的问题。
参考图8和图10,在一些实施例中,两个对接组件6设于分隔件2的下部,其中一个对接组件6邻近电池单体1的一侧设有第四筋条63,第四筋条63可以与设于第一侧面211下部的第一筋条24连接。第四 筋条63既可以吸收电池单体1装配时的公差,且还可以与第一筋条24配合,防止冷却通道漏冷媒。
参考图22和图23,在一些实施例中,蓄电装置100还包括设于至少两个电池单体1的两侧部的侧板3,侧板3沿第一方向X延伸;两个对接组件6的至少之一设有与邻近的侧板3抵接的第五筋条64。
侧板3与第五筋条64抵接,吸收装配公差,利于侧板3固定电池单体1以及分隔件2,防止电池单体1和分隔件2的晃动。
参考图6、图7、图11和图15,在一些实施例中,对接组件6包括第一对接件61和第二对接件62,第一对接件61设于第二对接件62的顶部,第四筋条63设于第一对接件61邻近电池单体1的一侧,第五筋条64设于第二对接件62邻近侧板3的一侧。
第一对接件61和第二对接件62在第一方向X上具有重叠部位,以及相互错开的部位,相邻两个分隔件2中,其中一个分隔件2的第一对接件61与另一个分隔件2的第一对接件61对接,其中一个分隔件2的第二对接件62与另一个分隔件2的第二对接件62对接。
一些实施例还提供了一种用电装置,其包括上述任一实施例中的蓄电装置100。
用电装置可以是车辆200,例如新能源车辆,新能源车辆可以是纯电动车辆、混合动力车辆或增程式车辆等;或者用电装置也可以是无人机或轮船等。
参考图1,在一些实施例中,车辆200包括车桥201、连接于车桥201的车轮202、马达203、控制器204和蓄电装置100,马达203用于驱动车桥201带动车轮202转动,控制器204用于控制马达203工作,蓄电装置100可以设置在车辆200的底部、头部或尾部,用于为马达203以及车辆中其它部件的工作提供电能。
本申请实施例提供的用电装置包括上述任一实施例中的蓄电装置100,相应的具备蓄电装置100的有益效果,在此不再赘述。
在一优选或可选实施例中,蓄电装置100包括电池单体1、分隔件2、侧板3、卡接组件4、限位组件5、对接组件6和密封件10。电池单 体1位于相邻两个分隔件2之间,分隔件2包括邻近其中一个电池单体1的第一侧面211和邻近另一个电池单体1的第二侧面212。分隔件2的第一侧面211设置第一分隔条21,分隔件2的第二侧面212设置第二分隔条25,电池单体1的双侧与邻近的分隔件2之间均形成冷却通道。或者,分隔件2的第一侧面211设置第一分隔条21,分隔件2的第二侧面212为平面,电池单体1的一侧与其中一个分隔件2的第二侧面212抵接,电池单体1的另一侧与另一个分隔件2的第一侧面211之间形成冷却通道。侧板3设于电池单体1的侧部,侧板3包括第一梁32和多个第二梁33,多个第二梁33与第一梁32交错连接,以形成多个开口31,开口31与对应的冷却通道连通。卡接组件4设于分隔件2的底部,相邻两个分隔件2通过卡接组件4连接,且卡接组件4用于托住电池单体1的底部。限位组件5设于分隔件2的顶部和上部两侧,限位组件5用于对电池单体1的顶部和上部两侧进行限位。对接组件6设于分隔件2的下部两侧,对接组件6用于对电池单体1的下部两侧进行限位。密封件10设于侧板3邻近电池单体1的一侧,且避让开口31。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (23)

  1. 一种蓄电装置,包括:
    沿第一方向(X)依次排布的至少两个电池单体(1);以及
    分隔件(2),设于相邻两个所述电池单体(1)之间;所述分隔件(2)包括邻近其中一个所述电池单体(1)的第一侧面(211),所述第一侧面(211)设有至少一个第一分隔条(21),所述第一分隔条(21)、所述第一侧面(211)和所述电池单体(1)之间围合形成至少一个第一通道(221)。
  2. 根据权利要求1所述的蓄电装置,其中所述第一分隔条(21)与邻近的所述电池单体(1)抵接。
  3. 根据权利要求2所述的蓄电装置,其中所述第一分隔条(21)包括与所述电池单体(1)抵接的抵接面(213),所述抵接面(213)为平面。
  4. 根据权利要求1至3任一项所述的蓄电装置,其中所述分隔件(2)包括邻近另一个所述电池单体(1)的第二侧面(212),所述第二侧面(212)设有至少一个第二分隔条(25),所述第二分隔条(25)、所述第二侧面(212)和所述电池单体(1)之间围合形成至少一个第二通道(222)。
  5. 根据权利要求4所述的蓄电装置,其中所述第二分隔条(25)与邻近的所述电池单体(1)抵接。
  6. 根据权利要求4或5所述的蓄电装置,其中至少一个所述第一通道(221)与一所述第二通道(222)在所述第一方向(X)上连通。
  7. 根据权利要求1至6任一项所述的蓄电装置,其中所述分隔件(2)包括邻近另一个所述电池单体(1)的第二侧面(212),所述第二 侧面(212)与邻近的所述电池单体(1)抵接。
  8. 根据权利要求1至7任一项所述的蓄电装置,其中所述第一分隔条(21)沿第二方向(Y)延伸,所述第二方向(Y)与所述第一方向(X)相交。
  9. 根据权利要求8所述的蓄电装置,其中所述第一分隔条(21)的其中一个端部(214)被构造成由沿所述第二方向(Y)延伸的斜面交汇连接且弧形过渡的角状。
  10. 根据权利要求1至9任一项所述的蓄电装置,其中所述至少一个第一分隔条(21)包括设于所述第一侧面(211)在第三方向(Z)上的两端部的第一筋条(24),所述第一筋条(24)与邻近的所述电池单体(1)抵接,所述第三方向(Z)与所述第一方向(X)相交。
  11. 根据权利要求1至10任一项所述的蓄电装置,还包括设于所述分隔件(2)的卡接组件(4),相邻两个所述分隔件(2)通过所述卡接组件(4)连接,所述卡接组件(4)被配置为托住所述电池单体(1)的底部。
  12. 根据权利要求1至11任一项所述的蓄电装置,还包括设于所述分隔件(2)且与所述电池单体(1)的顶部抵接的第一限位件(51),所述第一限位件(51)沿所述第一方向(X)延伸,且被构造为弯钩形。
  13. 根据权利要求1至12任一项所述的蓄电装置,还包括设于所述分隔件(2)的两个第二限位件(52),所述两个第二限位件(52)被配置为对位于所述两个第二限位件(52)之间的所述电池单体(1)进行限位,且其中一个所述第二限位件(52)上设有与邻近的所述电池单体(1)抵接的第二筋条(521)。
  14. 根据权利要求1至13任一项所述的蓄电装置,还包括:侧板(3),所述侧板(3)设于所述至少两个电池单体(1)的侧部,且沿所 述第一方向(X)延伸,所述侧板(3)上设有开口(31)。
  15. 根据权利要求14所述的蓄电装置,其中所述开口(31)在沿所述第一方向(X)上覆盖至少一个所述分隔件(2)。
  16. 根据权利要求14或15所述的蓄电装置,其中所述至少两个电池单体(1)的两侧部分别设有所述侧板(3),所述第一分隔条(21)在所述至少两个电池单体(1)的两侧部的所述侧板(3)之间延伸。
  17. 根据权利要求14至16任一项所述的蓄电装置,还包括:密封件(10),所述密封件(10)设于所述侧板(3)邻近所述电池单体(1)的一侧,且避让所述开口(31)。
  18. 根据权利要求12所述的蓄电装置,还包括:
    侧板(3),设于所述至少两个电池单体(1)的侧部,且沿所述第一方向(X)延伸;
    第一板(34),连接于所述侧板(3),且与所述卡接组件(4)的底部抵接;以及
    第二板(35),连接于所述侧板(3),且与所述第一限位件(51)的顶部抵接。
  19. 根据权利要求18所述的蓄电装置,其中所述卡接组件(4)包括与所述第一板(34)抵接的第三筋条(41)。
  20. 根据权利要求1至19任一项所述的蓄电装置,还包括设于所述分隔件(2)的两个对接组件(6),所述两个对接组件(6)被配置为对位于所述两个对接组件(6)之间的所述电池单体(1)进行限位,且相邻两个所述分隔件(2)上的所述对接组件(6)对接。
  21. 根据权利要求20所述的蓄电装置,其中所述两个对接组件(6)的其中之一设有与邻近的所述电池单体(1)抵接的第四筋条(63)。
  22. 根据权利要求20或21所述的蓄电装置,还包括设于所述至少两 个所述电池单体(1)的两侧部的侧板(3),所述侧板(3)沿所述第一方向(X)延伸;所述两个对接组件(6)的至少之一设有与邻近的所述侧板(3)抵接的第五筋条(64)。
  23. 一种用电装置,包括根据权利要求1至22任一项所述的蓄电装置。
PCT/CN2023/101707 2022-07-29 2023-06-21 蓄电装置及用电装置 WO2024021942A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221989960.1U CN218385615U (zh) 2022-07-29 2022-07-29 蓄电装置及用电装置
CN202221989960.1 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024021942A1 true WO2024021942A1 (zh) 2024-02-01

Family

ID=84962461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101707 WO2024021942A1 (zh) 2022-07-29 2023-06-21 蓄电装置及用电装置

Country Status (2)

Country Link
CN (1) CN218385615U (zh)
WO (1) WO2024021942A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218385615U (zh) * 2022-07-29 2023-01-24 宁德时代新能源科技股份有限公司 蓄电装置及用电装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277085A (ja) * 2007-04-27 2008-11-13 Sanyo Electric Co Ltd パック電池
JP2012094456A (ja) * 2010-10-28 2012-05-17 Sanyo Electric Co Ltd 電源装置
CN102687310A (zh) * 2010-04-17 2012-09-19 株式会社Lg化学 电池单体组件
CN105322214A (zh) * 2014-07-30 2016-02-10 株式会社杰士汤浅国际 蓄电装置
CN106233497A (zh) * 2014-04-25 2016-12-14 三洋电机株式会社 电池组及具有电池组的车辆
WO2020054228A1 (ja) * 2018-09-11 2020-03-19 三洋電機株式会社 電源装置
US20200194750A1 (en) * 2017-07-24 2020-06-18 Sanyo Electric Co., Ltd. Battery system and vehicle equipped with battery system
CN212209703U (zh) * 2020-06-29 2020-12-22 蜂巢能源科技有限公司 用于电池模组的风冷板和电池模组
US20210288363A1 (en) * 2016-08-29 2021-09-16 Sanyo Electric Co., Ltd. Power supply device
CN218385615U (zh) * 2022-07-29 2023-01-24 宁德时代新能源科技股份有限公司 蓄电装置及用电装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277085A (ja) * 2007-04-27 2008-11-13 Sanyo Electric Co Ltd パック電池
CN102687310A (zh) * 2010-04-17 2012-09-19 株式会社Lg化学 电池单体组件
JP2012094456A (ja) * 2010-10-28 2012-05-17 Sanyo Electric Co Ltd 電源装置
CN106233497A (zh) * 2014-04-25 2016-12-14 三洋电机株式会社 电池组及具有电池组的车辆
CN105322214A (zh) * 2014-07-30 2016-02-10 株式会社杰士汤浅国际 蓄电装置
US20210288363A1 (en) * 2016-08-29 2021-09-16 Sanyo Electric Co., Ltd. Power supply device
US20200194750A1 (en) * 2017-07-24 2020-06-18 Sanyo Electric Co., Ltd. Battery system and vehicle equipped with battery system
WO2020054228A1 (ja) * 2018-09-11 2020-03-19 三洋電機株式会社 電源装置
CN212209703U (zh) * 2020-06-29 2020-12-22 蜂巢能源科技有限公司 用于电池模组的风冷板和电池模组
CN218385615U (zh) * 2022-07-29 2023-01-24 宁德时代新能源科技股份有限公司 蓄电装置及用电装置

Also Published As

Publication number Publication date
CN218385615U (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
WO2024021942A1 (zh) 蓄电装置及用电装置
US8329330B2 (en) Power supply device with battery cell cooling mechanism and vehicle including the same
WO2023185691A1 (zh) 水冷板组件、水冷系统、电池及其箱体以及用电装置
WO2024031413A1 (zh) 电池以及用电装置
WO2023227076A1 (zh) 热管理部件、电池以及用电装置
WO2024051044A1 (zh) 冷却结构、电池及用电装置
CN217158519U (zh) 电池和用电设备
CN117941126A (zh) 电池单体、电池及用电设备
JP7434360B2 (ja) 電池、電気装置及び電池の製造方法及び製造システム
US20230327264A1 (en) Battery module, battery, power consumption device, and method and device for producing battery
WO2023160030A1 (zh) 箱体、电池、用电装置以及制备电池的装置
WO2024021293A1 (zh) 热管理部件、电池以及用电装置
CN114388958B (zh) 电池的箱体、电池及用电装置
WO2023060714A1 (zh) 电池、用电设备、制造电池的方法和设备
KR20240049622A (ko) 배터리 및 전기 장치
JP2024510687A (ja) 電池、電力消費機器、電池の製造方法及び機器
WO2024065769A1 (zh) 电池及用电装置
CN217507531U (zh) 电池及用电装置
CN220122067U (zh) 电池及用电设备
CN216958410U (zh) 电池模组隔板及电池模组
CN217719809U (zh) 电池以及用电装置
WO2024021070A1 (zh) 电池的箱体、电池以及用电装置
CN220456509U (zh) 换热板、电池及用电装置
CN215578803U (zh) 一种电池模组、电池及用电装置
WO2023004724A1 (zh) 换热构件及其制造方法和制造系统、电池以及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845155

Country of ref document: EP

Kind code of ref document: A1