WO2024021229A1 - 一种红土镍矿冶炼镍铁除铬的方法 - Google Patents

一种红土镍矿冶炼镍铁除铬的方法 Download PDF

Info

Publication number
WO2024021229A1
WO2024021229A1 PCT/CN2022/117476 CN2022117476W WO2024021229A1 WO 2024021229 A1 WO2024021229 A1 WO 2024021229A1 CN 2022117476 W CN2022117476 W CN 2022117476W WO 2024021229 A1 WO2024021229 A1 WO 2024021229A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromium
ore
ferronickel
laterite nickel
nickel ore
Prior art date
Application number
PCT/CN2022/117476
Other languages
English (en)
French (fr)
Inventor
余海军
李爱霞
谢英豪
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Priority to DE112022000437.1T priority Critical patent/DE112022000437T5/de
Priority to US18/225,101 priority patent/US20240035115A1/en
Publication of WO2024021229A1 publication Critical patent/WO2024021229A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/023Obtaining nickel or cobalt by dry processes with formation of ferro-nickel or ferro-cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/005Preliminary treatment of ores, e.g. by roasting or by the Krupp-Renn process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/12Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/32Obtaining chromium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the field of metallurgical technology, and particularly relates to a method for removing chromium from smelting ferronickel in laterite nickel ore.
  • nickel metal the most important element for smelting stainless steel and special steel
  • Traditional nickel metal production is mainly extracted from nickel sulfide ore, which accounts for 30% of the earth's nickel resources, and its production technology is mature.
  • nickel sulfide ore which accounts for 30% of the earth's nickel resources
  • its production technology is mature.
  • laterite nickel ore nickel oxide ore
  • Laterite nickel ore is a loose clay-like aggregate of oxides containing nickel, iron, magnesium, cobalt, silicon, aluminum and other elements formed by long-term geological processes in the nickel-containing olivine bedrock.
  • the iron contained in it is oxidized due to severe oxidation.
  • the +3 valence state causes its overall appearance to be reddish brown, so it is named laterite nickel ore.
  • the development of laterite nickel ore mainly includes fire route (mainly RKEF ferronickel process) and wet route (mainly high pressure acid leaching process).
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the present invention proposes a method for removing chromium from ferronickel in the smelting of laterite nickel ore. This method can improve the enrichment of chromium elements. While smelting laterite nickel ore to obtain ferronickel, the chromium impurities in the ferronickel are further removed and enriched. Collecting chromium elements protects the safety of the furnace and is also conducive to full utilization of chromium resources.
  • a method for removing chromium from ferronickel in laterite nickel ore smelting including the following steps:
  • step (2) After washing the solid obtained in step (1), the solid and liquid are separated to obtain a solid phase and washing water, and the solid phase is mixed with quicklime and a reducing agent to obtain a mixture;
  • step (3) The mixture obtained in step (2) is roasted and smelted in sequence to prepare a finished nickel iron product.
  • the solid content of the slurry is 10%-25%.
  • step (1) the solid content of the slurry is 15%-20%.
  • the ore obtained in step (1) is crushed and then subjected to shaking table gravity separation to separate chromium concentrate and tailings, and the tailings are returned to the ore washing process.
  • the chromium-containing filtrate and chromium concentrate can be sent to a chromium processing plant for processing.
  • step (1) the ore is crushed to a particle size less than 2 mm and then enters the shaker for gravity separation.
  • step (1) the ore is crushed to a particle size less than 1.5 mm and then enters the shaker for gravity separation.
  • step (1) when the shaker is reselected, the water flow rate of the shaker is 1-5L/min.
  • step (1) when the shaker is reselected, the water flow rate of the shaker is 3-4L/min.
  • the laterite nickel ore is washed and separated by a cylinder washer, a trough washer and a cyclone in sequence, wherein the ore is washed with water, and the cyclone is
  • the separation particle size is 0.05mm.
  • the mass ratio of the alkali solution, the bromate and the slurry is (0.5-1):(1-2):100.
  • step (1) during the oxidative leaching, the mass ratio of the alkali solution, the bromate and the slurry is (0.8-1):(1-1.5):100.
  • step (1) the oxidative leaching is performed under closed conditions, and the pressure of the oxygen is 1.5-4MPa.
  • step (1) the oxidative leaching is carried out under closed conditions, and the pressure of the oxygen is 2-3MPa.
  • the temperature of the oxidative leaching is 100-150°C, and the oxidative leaching time is 1-5 hours.
  • the temperature of the oxidative leaching is 110-130°C, and the oxidative leaching time is 2-4 hours.
  • the oxidative leaching is accompanied by stirring, and the stirring speed is 100-500 r/min.
  • step (1) the oxidative leaching is also accompanied by stirring, and the rotating speed of the stirring is 200-300 r/min.
  • the alkali solution is at least one of sodium hydroxide or potassium hydroxide.
  • the bromate is at least one of potassium bromate or sodium bromate.
  • the washing water obtained in step (2) is returned to step (1) for ore washing.
  • the mass ratio of the quicklime, the reducing agent and the solid phase is (2-10):(3-8):100.
  • step (2) the mass ratio of the quicklime, the reducing agent and the solid phase is (4-10):(4-8):100.
  • the reducing agent is at least one of anthracite or blue charcoal.
  • the mixture is granulated before roasting, and the particle size after granulation is 10-30 mm.
  • step (3) the mixture is granulated before roasting, and the particle size after granulation is 15-20 mm.
  • the roasting temperature is 600°C-1000°C, and the roasting time is 10-50 min.
  • the roasting temperature is 800°C-900°C, and the roasting time is 20-30 minutes.
  • the melting temperature is ⁇ 1500°C.
  • the melting temperature is ⁇ 1600°C.
  • a method for removing chromium from ferronickel in laterite nickel ore smelting includes the following steps:
  • step (3) After the reaction in step (2) is completed, use a filter press to separate solids and liquids to obtain chromium-containing filtrate and filter cake.
  • the chromium-containing filtrate and chromium concentrate are sent to the chromium processing plant;
  • the obtained washing liquid is sent to the ore washing process for ore washing, and the obtained solid enters the batching process;
  • the present invention's method for smelting ferronickel from laterite nickel ore separates the slurry and the ore through washing, and then oxidatively leaches the slurry, utilizing the strong oxidizing properties of bromate under alkaline conditions, and using oxygen as the The leaching conditions oxidize chromium trioxide and dissolve it in alkali to generate sodium chromate, and separate the chromium element, further reducing the chromium content of the raw materials during the smelting process of ferronickel, protecting the furnace, and reducing the content of impurity chromium in ferronickel. .
  • the reaction principle is as follows:
  • the method for removing chromium from laterite nickel ore smelting ferronickel of the present invention is to separate the slurry and ore through ore washing.
  • the chromium element in the slurry is extracted by oxidative leaching, so that the chromium element in the slurry can be extracted.
  • the chromium element is transferred to the leachate, and then solid-liquid separation is performed; on the other hand, the ore with higher chromium content is further crushed and gravity separated, and the high density of the chromium concentrate is used to separate and select, further reducing the chromium content of the tailings. , and return to the ore washing process for further utilization to avoid wastage of resources.
  • the method for removing chromium in the smelting of ferronickel from laterite nickel ore separates the laterite nickel ore to produce ferronickel while extracting the chromium element and reducing the chromium content in the finished ferronickel product; at the same time, The washing water used to wash the solid materials obtained by oxidation leaching is returned to be used for ore washing, which further saves water, realizes comprehensive utilization of resources, and improves the mining value of laterite nickel ore.
  • Figure 1 is a schematic process flow diagram of Embodiment 1 of the present invention.
  • a method for removing chromium from ferronickel in laterite nickel ore smelting includes the following steps:
  • step (3) After the reaction in step (2) is completed, use a filter press to separate solids and liquids to obtain chromium-containing filtrate and filter cake.
  • the chromium-containing filtrate and chromium concentrate are sent to the chromium processing plant;
  • the obtained washing liquid is sent to the ore washing process for ore washing, and the obtained solid enters the batching process;
  • a method for removing chromium from ferronickel in laterite nickel ore smelting including the following steps:
  • step (3) After the reaction in step (2) is completed, use a filter press to separate solids and liquids to obtain chromium-containing filtrate and filter cake.
  • the chromium-containing filtrate and chromium concentrate are sent to the chromium processing plant;
  • the obtained washing liquid is sent to the ore washing process for ore washing, and the obtained solid enters the batching process;
  • a method for removing chromium from ferronickel in laterite nickel ore smelting including the following steps:
  • step (3) After the reaction in step (2) is completed, use a filter press to separate solids and liquids to obtain chromium-containing filtrate and filter cake.
  • the chromium-containing filtrate and chromium concentrate are sent to the chromium processing plant;
  • the obtained washing liquid is sent to the ore washing process for ore washing, and the obtained solid enters the batching process;
  • Comparative Example 1 (The only difference from Example 1 is that high-pressure oxygen is not introduced during the oxidative leaching process of the slurry, and the other conditions remain unchanged.)
  • a method for removing chromium from ferronickel in laterite nickel ore smelting including the following steps:
  • step (3) After the reaction in step (2) is completed, use a filter press to separate solids and liquids to obtain chromium-containing filtrate and filter cake.
  • the chromium-containing filtrate and chromium concentrate are sent to the chromium processing plant;
  • the obtained washing liquid is sent to the ore washing process for ore washing, and the obtained solid enters the batching process;
  • Comparative Example 2 (The only difference from Example 2 is that high-pressure oxygen is not introduced during the oxidative leaching process of the slurry, and the other conditions remain unchanged.)
  • a method for removing chromium from ferronickel in laterite nickel ore smelting including the following steps:
  • step (3) After the reaction in step (2) is completed, use a filter press to separate solids and liquids to obtain chromium-containing filtrate and filter cake.
  • the chromium-containing filtrate and chromium concentrate are sent to the chromium processing plant;
  • the obtained washing liquid is sent to the ore washing process for ore washing, and the obtained solid enters the batching process;
  • Comparative Example 3 (The only difference from Example 3 is that high-pressure oxygen is not introduced during the oxidative leaching process of the slurry, and the other conditions remain unchanged.)
  • a method for removing chromium from ferronickel in laterite nickel ore smelting including the following steps:
  • step (3) After the reaction in step (2) is completed, use a filter press to separate solids and liquids to obtain chromium-containing filtrate and filter cake.
  • the chromium-containing filtrate and chromium concentrate are sent to the chromium processing plant;
  • the obtained washing liquid is sent to the ore washing process for ore washing, and the obtained solid enters the batching process;
  • a method for smelting ferronickel from laterite nickel ore including the following steps:
  • the quality of quicklime the quality of blue charcoal is 100:10:8, add quicklime and blue charcoal to the slurry for batching, and make pellets with a particle size of 20mm;
  • the proportion of Cr 2 O 3 in the chromium concentrate obtained by the chromium removal method for smelting ferronickel from laterite nickel ore of the present invention reaches more than 36.37%, achieving chromium enrichment and reducing the chromium content of the tailings. .
  • the concentration of Cr in the chromium-containing filtrate obtained by the chromium removal method for smelting ferronickel from laterite nickel ore of the present invention reaches more than 1.13g/kg, and the leaching rate reaches more than 93.4%, indicating that the chromium in the slurry is better separated.
  • chromium element thereby reducing the chromium content of the raw materials during the smelting process of ferronickel, protecting the furnace, and reducing the content of impurity chromium in ferronickel.
  • Example 1 compare Example 1 with Comparative Example 1, Example 2 with Comparative Example 2, and It can be seen from Example 3 and Comparative Example 3 that when high-pressure oxygen is not introduced during the oxidative leaching process of the slurry, the leaching of chromium elements in the slurry will be significantly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种红土镍矿冶炼镍铁除铬的方法,包括以下步骤:(1)将红土镍矿进行洗矿,分离得到矿浆和矿石,向所述矿浆中加入碱液及溴酸盐并通入氧气进行氧化浸出,然后进行固液分离,得到固料及含铬滤液;(2)将步骤(1)得到的固料洗涤后,固液分离,得到固相和洗水,将所述固相与生石灰及还原剂混合得到混合物;(3)将步骤(2)得到的混合物依次进行焙烧及熔炼,制备得到镍铁成品。该方法能提高铬元素的富集,在冶炼红土镍矿得到镍铁的同时进一步去除镍铁中的铬杂质,保护熔炉的安全。

Description

一种红土镍矿冶炼镍铁除铬的方法 技术领域
本发明属于冶金技术领域,特别涉及一种红土镍矿冶炼镍铁除铬的方法。
背景技术
随着全球不锈钢和特殊钢的广泛应用,造成冶炼不锈钢和特殊钢的最主要元素-镍金属的供应短缺,价格飞涨。传统的镍金属生产主要从占地球镍资源30%的硫化镍矿中提取,其生产工艺成熟。但经过近百年连续开采,目前储量不足,资源呈现危机。为此,人们将目光投向了占地球镍资源70%的红土镍矿(氧化镍矿),从红土镍矿中提取镍金属。
红土镍矿是含镍橄榄石基岩经长期地质作用而形成的疏松黏土状含镍、铁、镁、钴、硅、铝等元素氧化物的聚合体,其中含有的铁元素因氧化严重而呈+3价态,致其外观整体呈现红褐色,故得名为红土镍矿。目前,红土镍矿的开发主要有火法路线(主要为RKEF镍铁工艺)和湿法路线(主要为高压酸浸工艺)。
由于红土镍矿常伴生有Cr 2O 3成分,而铬的熔点很高,在采用火法路线时,使得融化后的铁水粘度大,含镍铬铁水不能顺利流出,造成冻炉、毁炉的严重后果。全世界多家企业和研究机构对于红土镍矿经高炉一步法冶炼镍铁的工艺研究进行了很久,但至今没有成功的报道。而湿法冶炼尤其是高压酸浸会对使用的设备造成腐蚀,此外红土镍矿中伴生尖晶石类型的铬铁矿也对设备具有强烈的磨蚀作用,因而红土镍矿采用湿法冶炼时需要采用昂贵的耐腐蚀设备,增加了设备成本,而且会带来不可预知的安全风险。
因此,无论是湿法路线还是火法路线,红土镍矿都需要进一步除铬,即通过除铬工艺从红土镍矿中除去铬铁矿。然而,在实际冶炼过程中,铬作为重要金属元素多被抛弃,无法实现资源的综合利用,尤其是火法工艺中,镍铁的冶炼对其中的铬含量有进一步的要求(铬含量不大于0.1%)。因此,亟需一种能够将红土镍矿冶炼过程中去除铬的工艺,并能在除铬的过程中还可以获得合格的铬精矿,实现资源综合利用,有利于对铬资源的充分利用。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种红土镍矿冶炼镍铁除铬的方法,该方法能提高铬元素的富集,在冶炼红土镍矿得到镍铁的同时进一步去除镍铁中的铬杂质,并富集铬元素,保护熔炉的安全,也有利于对铬资源的充分利用。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种红土镍矿冶炼镍铁除铬的方法,包括以下步骤:
(1)将红土镍矿进行洗矿,分离得到矿浆和矿石,向所述矿浆中加入碱液及溴酸盐并通入氧气进行氧化浸出,然后进行固液分离,得到固料及含铬滤液;
(2)将步骤(1)得到的固料洗涤后,固液分离,得到固相和洗水,将所述固相与生石灰及还原剂混合得到混合物;
(3)将步骤(2)得到的混合物依次进行焙烧及熔炼,制备得到镍铁成品。
优选的,步骤(1)中,所述矿浆的固含量为10%-25%。
进一步优选的,步骤(1)中,所述矿浆的固含量为15%-20%。
优选的,步骤(1)得到的所述矿石经破碎后,进入摇床重选,分离得到铬精矿和尾矿,将所述尾矿返回至洗矿工序。
优选的,所述含铬滤液及铬精矿可送至铬加工厂进行处理。
优选的,步骤(1)中,所述矿石经破碎至粒径小于2mm后进入摇床重选。
进一步优选的,步骤(1)中,所述矿石经破碎至粒径小于1.5mm后进入摇床重选。
优选的,步骤(1)中,所述摇床重选时,所述摇床的水流流速为1-5L/min。
进一步优选的,步骤(1)中,所述摇床重选时,所述摇床的水流流速为3-4L/min。
优选的,步骤(1)中,所述红土镍矿依次经圆筒洗矿机、槽式洗矿机以及旋流器进行洗矿分离,其中所述洗矿采用水洗,所述旋流器的分离粒度为0.05mm。
优选的,步骤(1)中,所述氧化浸出时,所述碱液、所述溴酸盐与所述矿浆的质量比为(0.5-1):(1-2):100。
进一步优选的,步骤(1)中,所述氧化浸出时,所述碱液、所述溴酸盐与所述矿浆的质量比为(0.8-1):(1-1.5):100。
优选的,步骤(1)中,所述氧化浸出是在密闭条件下进行,所述氧气的压力为1.5-4MPa。
进一步优选的,步骤(1)中,所述氧化浸出是在密闭条件下进行,所述氧气的压力为2-3MPa。
优选的,步骤(1)中,所述氧化浸出的温度为100-150℃,氧化浸出的时间为1-5h。
进一步优选的,步骤(1)中,所述氧化浸出的温度为110-130℃,氧化浸出的时间为2-4h。
优选的,步骤(1)中,所述氧化浸出还伴随着搅拌,所述搅拌的转速为100-500r/min。
进一步优选的,步骤(1)中,所述氧化浸出还伴随着搅拌,所述搅拌的转速为200-300r/min。
优选的,步骤(1)中,所述碱液为氢氧化钠或氢氧化钾中的至少一种。
优选的,步骤(1)中,所述溴酸盐为溴酸钾或溴酸钠中的至少一种。
优选的,步骤(2)得到的所述洗水返回至步骤(1)中用于洗矿。
优选的,步骤(2)中,所述生石灰、所述还原剂与所述固相的质量比为(2-10):(3-8):100。
进一步优选的,步骤(2)中,所述生石灰、所述还原剂与所述固相的质量比为(4-10):(4-8):100。
优选的,步骤(2)中,所述还原剂为无烟煤或兰炭中的至少一种。
优选的,步骤(3)中,所述混合物在进行焙烧前还进行了造粒,造粒后的粒径大小为10-30mm。
进一步优选的,步骤(3)中,所述混合物在进行焙烧前还进行了造粒,造粒后的粒径大小为15-20mm。
优选的,步骤(3)中,所述焙烧的温度为600℃-1000℃,所述焙 烧的时间为10-50min。
进一步优选的,步骤(3)中,所述焙烧的温度为800℃-900℃,所述焙烧的时间为20-30min。
优选的,步骤(3)中,所述熔炼的温度≥1500℃。
进一步优选的,步骤(3)中,所述熔炼的温度≥1600℃。
优选的,一种红土镍矿冶炼镍铁除铬的方法,包括如下步骤:
(1)取红土镍矿作为原矿依次经圆筒洗矿机、槽式洗矿机以及旋流器进行洗矿分离,得到矿浆和矿石;洗矿采用水洗,旋流器分离粒度为0.05mm;控制矿浆的固含量为15%-20%;矿浆进入氧化浸出工序,矿石经进一步破碎后,控制出料粒径在1.5mm以下,并进入摇床重选,控制摇床水流流速为3-4L/min,分离得到铬精矿和尾矿,尾矿则返回至洗矿工序;
(2)按照氢氧化钠:溴酸盐(溴酸钾/钠):矿浆的质量比为(0.8-1):(1-1.5):100向矿浆中加入氢氧化钠、溴酸盐(溴酸钾/钠),并通入氧气,氧气压力为2-3MPa,并在密闭条件下加热至110-130℃,反应2-4h,搅拌转速为200-300r/min;
(3)等步骤(2)反应结束后,采用压滤机固液分离,得到含铬滤液和滤饼,含铬滤液与铬精矿送至铬加工厂;
(4)采用清水对滤饼进一步洗涤并压滤,得到的洗液送至洗矿工序进行洗矿,得到的固体进入配料工序;
(5)按照生石灰:还原剂:步骤(4)所得固体的质量比为(4-10):(4-8):100进行配料,并制成粒径为15-20mm的球团;还原剂为无烟煤、兰炭中的至少一种;
(6)将球团在回转窑中进行焙烧,焙烧温度为800℃-900℃,焙烧时间为20-30min;
(7)将焙烧后的球团置于电炉中进行熔炼,熔炼温度≥1600℃,制备得到镍铁成品。
本发明的有益效果是:
(1)本发明红土镍矿冶炼镍铁除铬的方法通过洗矿分离矿浆与矿石 后,再对矿浆进行氧化浸出,利用溴酸盐在碱性条件下较强的氧化性,同时采用氧气作为浸出条件,使三氧化二铬氧化并溶于碱,生成铬酸钠,而分离铬元素,进一步降低了镍铁冶炼过程中原料的铬含量,保护了熔炉,降低了镍铁中杂质铬的含量。反应原理如下:
氧化浸出:
5Cr 2O 3+14NaOH+6NaBrO 3→10Na 2CrO 4+3Br 2+7H 2O
6NaOH+3Br 2→5NaBr+NaBrO 3+3H 2O
4NaBr+O 2+2H 2O=4NaOH+2Br 2
2Cr 2O 3+8NaOH+3O 2→4Na 2CrO 4+4H 2O;
(2)本发明红土镍矿冶炼镍铁除铬的方法通过洗矿分离矿浆与矿石后,一方面针对矿浆中铬含量低的特点采用氧化浸出的方式提取矿浆中的铬元素,使矿浆中的铬元素转移至浸出液中,然后进行固液分离;另一方面对含铬较高的矿石进一步破碎并进行重选,利用铬精矿密度大的特点分离选出,进一步降低尾矿的含铬量,并返回至洗矿工序进一步利用,避免资源的浪费。
(3)本发明红土镍矿冶炼镍铁除铬的方法通过对红土镍矿进行分离处理,制取镍铁的同时,提取了铬元素,并降低了镍铁成品中的铬含量;同时,将对氧化浸出得到的固料进行洗涤的洗水返回用于洗矿,进一步节省了水量,实现了资源的综合利用,提高了红土镍矿的开采价值。
附图说明
图1为本发明实施例1的工艺流程示意图。
具体实施方式
下面结合具体实施例对本发明做进一步的说明,其中实施例1-3及对比例1-4用到的红土镍矿的粒度及组分情况如表1所示,其中产率是指相关粒径在整体中的占比。
表1:红土镍矿的粒度组分情况
粒级/mm 产率/% Ni Fe MgO Al 2O 3 Cr 2O 3 Co SiO 2
≥10 0.51 1.31 7.09 30.76 2.92 0.5 0.02 39.37
10>x≥3 0.75 0.6 18.34 17.84 6.68 1.2 0.07 32.08
3>x≥2 0.31 0.43 17.51 19.37 6.09 1.26 0.06 35.56
2>x≥1 0.6 0.32 12.6 22.14 5.7 1.24 0.06 39.43
1>x≥0.55 0.72 0.37 10.5 24.07 6.3 1.82 0.13 10.92
0.55>x≥0.2 2.57 0.66 13.33 19.9 9.84 5.53 0.31 32.12
0.2>x≥0.1 0.71 0.75 17.73 14.87 14.43 10.74 0.32 21.88
0.1>x≥0.05 3.01 0.93 23.88 10.85 12.91 7.91 0.34 18.51
0.05>x 90.82 1.14 43.38 1.16 7.43 2.35 0.08 6.71
合计 100 1.1 40.96 2.65 7.66 2.63 0.1 8.71
实施例1:
一种红土镍矿冶炼镍铁除铬的方法,如图1所示,包括如下步骤:
(1)取红土镍矿作为原矿依次经圆筒洗矿机、槽式洗矿机以及旋流器进行洗矿,分离得到矿浆和矿石;洗矿采用水洗,旋流器分离粒度为0.05mm;控制矿浆的固含量为20%;矿浆进入氧化浸出工序,矿石经进一步破碎后,控制出料粒径在1.5mm以下,并进入摇床重选,控制摇床水流流速为4L/min,分离得到铬精矿和尾矿,尾矿则返回至洗矿工序;
(2)按照氢氧化钠:溴酸钠:矿浆的质量比为1:1.5:100向矿浆中加入氢氧化钠、溴酸钠,并通入氧气,氧气压力为3MPa,并在密闭条件下加热至130℃,反应2h,搅拌转速为200r/min;
(3)等步骤(2)反应结束后,采用压滤机固液分离,得到含铬滤液和滤饼,含铬滤液与铬精矿送至铬加工厂;
(4)采用清水对滤饼进一步洗涤并压滤,得到的洗液送至洗矿工序进行洗矿,得到的固体进入配料工序;
(5)按照生石灰:兰炭:步骤(4)所得固体的质量比为10:8:100进行配料,并制成粒径为20mm的球团;
(6)将球团在回转窑中进行焙烧,焙烧温度为900℃,焙烧时间为20min;
(7)将焙烧后的球团置于电炉中进行熔炼,熔炼温度1600℃,制备得到镍铁成品。
实施例2:
一种红土镍矿冶炼镍铁除铬的方法,包括如下步骤:
(1)取红土镍矿作为原矿依次经圆筒洗矿机、槽式洗矿机以及旋流器进行洗矿,分离得到矿浆和矿石;洗矿采用水洗,旋流器分离粒度 为0.05mm;控制矿浆的固含量为18%;矿浆进入氧化浸出工序,矿石经进一步破碎后,控制出料粒径在1.5mm以下,并进入摇床重选,控制摇床水流流速为3.5L/min,分离得到铬精矿和尾矿,尾矿则返回至洗矿工序;
(2)按照氢氧化钠:溴酸钠:矿浆的质量比为0.9:1.3:100向矿浆中加入氢氧化钠、溴酸钠,并通入氧气,氧气压力为2.5MPa,并在密闭条件下加热至120℃,反应3h,搅拌转速为250r/min;
(3)等步骤(2)反应结束后,采用压滤机固液分离,得到含铬滤液和滤饼,含铬滤液与铬精矿送至铬加工厂;
(4)采用清水对滤饼进一步洗涤并压滤,得到的洗液送至洗矿工序进行洗矿,得到的固体进入配料工序;
(5)按照生石灰:兰炭:步骤(4)所得固体的质量比为7:6:100进行配料,并制成粒径为17mm的球团;
(6)将球团在回转窑中进行焙烧,焙烧温度为850℃,焙烧时间为25min;
(7)将焙烧后的球团置于电炉中进行熔炼,熔炼温度1700℃,制备得到镍铁成品。
实施例3:
一种红土镍矿冶炼镍铁除铬的方法,包括如下步骤:
(1)取红土镍矿作为原矿依次经圆筒洗矿机、槽式洗矿机以及旋流器进行洗矿,分离得到矿浆和矿石;洗矿采用水洗,旋流器分离粒度为0.05mm;控制矿浆的固含量为15%;矿浆进入氧化浸出工序,矿石经进一步破碎后,控制出料粒径在1.5mm以下,并进入摇床重选,控制摇床水流流速为3L/min,分离得到铬精矿和尾矿,尾矿则返回至洗矿工序;
(2)按照氢氧化钠:溴酸钾:矿浆的质量比为0.8:1:100向矿浆中加入氢氧化钠、溴酸钾,并通入氧气,氧气压力为2MPa,并在密闭条件下加热至110℃,反应4h,搅拌转速为300r/min;
(3)等步骤(2)反应结束后,采用压滤机固液分离,得到含铬滤 液和滤饼,含铬滤液与铬精矿送至铬加工厂;
(4)采用清水对滤饼进一步洗涤并压滤,得到的洗液送至洗矿工序进行洗矿,得到的固体进入配料工序;
(5)按照生石灰:无烟煤:步骤(4)所得固体的质量比为4:4:100进行配料,并制成粒径为15mm的球团;
(6)将球团在回转窑中进行焙烧,焙烧温度为800℃℃,焙烧时间为30min;
(7)将焙烧后的球团置于电炉中进行熔炼,熔炼温度1800℃,制备得到镍铁成品。
对比例1:(与实施例1的区别仅在于在对矿浆的氧化浸出过程中不通入高压氧气,其余条件不变。)
一种红土镍矿冶炼镍铁除铬的方法,包括如下步骤:
(1)取红土镍矿作为原矿依次经圆筒洗矿机、槽式洗矿机以及旋流器进行洗矿,分离得到矿浆和矿石;洗矿采用水洗,旋流器分离粒度为0.05mm;控制矿浆的固含量为20%;矿浆进入氧化浸出工序,矿石经进一步破碎后,控制出料粒径在1.5mm以下,并进入摇床重选,控制摇床水流流速为4L/min,分离得到铬精矿和尾矿,尾矿则返回至洗矿工序;
(2)按照氢氧化钠:溴酸钠:矿浆的质量比为1:1.5:100向矿浆中加入氢氧化钠、溴酸钠,并在密闭条件下加热至130℃,反应2h,搅拌转速为200r/min;
(3)等步骤(2)反应结束后,采用压滤机固液分离,得到含铬滤液和滤饼,含铬滤液与铬精矿送至铬加工厂;
(4)采用清水对滤饼进一步洗涤并压滤,得到的洗液送至洗矿工序进行洗矿,得到的固体进入配料工序;
(5)按照生石灰:兰炭:步骤(4)所得固体的质量比为10:8:100进行配料,并制成粒径为20mm的球团;
(6)将球团在回转窑中进行焙烧,焙烧温度为900℃,焙烧时间为20min;
(7)将焙烧后的球团置于电炉中进行熔炼,熔炼温度1600℃,制备得到镍铁成品。
对比例2:(与实施例2的区别仅在于在对矿浆的氧化浸出过程中不通入高压氧气,其余条件不变。)
一种红土镍矿冶炼镍铁除铬的方法,包括如下步骤:
(1)取红土镍矿作为原矿依次经圆筒洗矿机、槽式洗矿机以及旋流器进行洗矿,分离得到矿浆和矿石;洗矿采用水洗,旋流器分离粒度为0.05mm;控制矿浆的固含量为18%;矿浆进入氧化浸出工序,矿石经进一步破碎后,控制出料粒径在1.5mm以下,并进入摇床重选,控制摇床水流流速为3.5L/min,分离得到铬精矿和尾矿,尾矿则返回至洗矿工序;
(2)按照氢氧化钠:溴酸钠:矿浆的质量比为0.9:1.3:100向矿浆中加入氢氧化钠、溴酸钠,并在密闭条件下加热至120℃,反应3h,搅拌转速为250r/min;
(3)等步骤(2)反应结束后,采用压滤机固液分离,得到含铬滤液和滤饼,含铬滤液与铬精矿送至铬加工厂;
(4)采用清水对滤饼进一步洗涤并压滤,得到的洗液送至洗矿工序进行洗矿,得到的固体进入配料工序;
(5)按照生石灰:兰炭:步骤(4)所得固体的质量比为7:6:100进行配料,并制成粒径为17mm的球团;
(6)将球团在回转窑中进行焙烧,焙烧温度为850℃,焙烧时间为25min;
(7)将焙烧后的球团置于电炉中进行熔炼,熔炼温度1700℃,制备得到镍铁成品。
对比例3:(与实施例3的区别仅在于在对矿浆的氧化浸出过程中不通入高压氧气,其余条件不变。)
一种红土镍矿冶炼镍铁除铬的方法,包括如下步骤:
(1)取红土镍矿作为原矿依次经圆筒洗矿机、槽式洗矿机以及旋流器进行洗矿,分离得到矿浆和矿石;洗矿采用水洗,旋流器分离粒度 为0.05mm;控制矿浆的固含量为15%;矿浆进入氧化浸出工序,矿石经进一步破碎后,控制出料粒径在1.5mm以下,并进入摇床重选,控制摇床水流流速为3L/min,分离得到铬精矿和尾矿,尾矿则返回至洗矿工序;
(2)按照氢氧化钠:溴酸钾:矿浆的质量比为0.8:1:100向矿浆中加入氢氧化钠、溴酸钾,并在密闭条件下加热至110℃,反应4h,搅拌转速为300r/min;
(3)等步骤(2)反应结束后,采用压滤机固液分离,得到含铬滤液和滤饼,含铬滤液与铬精矿送至铬加工厂;
(4)采用清水对滤饼进一步洗涤并压滤,得到的洗液送至洗矿工序进行洗矿,得到的固体进入配料工序;
(5)按照生石灰:无烟煤:步骤(4)所得固体的质量比为4:4:100进行配料,并制成粒径为15mm的球团;
(6)将球团在回转窑中进行焙烧,焙烧温度为800℃℃,焙烧时间为30min;
(7)将焙烧后的球团置于电炉中进行熔炼,熔炼温度1800℃,制备得到镍铁成品。
对比例4:
一种红土镍矿冶炼镍铁的方法,包括如下步骤:
(1)取红土镍矿作为原矿依次经圆筒洗矿机、槽式洗矿机以及旋流器进行洗矿,分离得到矿浆和矿石;洗矿采用水洗,旋流器分离粒度为0.05mm;控制矿浆的固含量为15%;
(2)按照步骤(1)所得矿浆中的固体质量:生石灰质量:兰炭质量为100:10:8在矿浆中加入生石灰及兰炭进行配料,并制成粒径为20mm的球团;
(3)将球团在回转窑中进行焙烧,焙烧温度为850℃,焙烧时间为25min;
(4)将焙烧后的球团置于电炉中进行熔炼,熔炼温度1800℃,制备得到镍铁成品。
试验例:
1.分别检测实施例1-3得到的铬精矿及对比例4矿石中的化学成分,检测结果如表2。
表2:化学成分检测结果(%)
  Ni Fe MgO Al 2O 3 Cr 2O 3 Co SiO 2
实施例1 0.12 14.97 13.03 28.37 36.37 0.25 0.29
实施例2 0.12 15.23 12.89 28.48 36.63 0.24 0.30
实施例3 0.15 15.01 12.54 28.26 36.87 0.26 0.28
对比例4矿石 0.67 13.98 14.28 8.11 4.39 0.23 21.45
由表2可知,本发明红土镍矿冶炼镍铁除铬的方法得到的铬精矿中Cr 2O 3的占比达到36.37%以上,达到了铬的富集,降低了尾矿的含铬量。
2.分别检测实施例1-3及对比例1-3得到的含铬滤液中的铬元素浓度,检测结果如表3。
表3:含铬滤液中的铬元素浓度
  Cr(g/kg) 浸出率/%
实施例1 1.59 99.3
实施例2 1.38 95.7
实施例3 1.13 93.4
对比例1 0.91 56.8
对比例2 0.78 54.1
对比例3 0.61 50.4
由表3可知,本发明红土镍矿冶炼镍铁除铬的方法得到的含铬滤液中Cr的浓度达到1.13g/kg以上,浸出率达到了93.4%以上,说明较好的分离出了矿浆中的铬元素,从而降低了镍铁冶炼过程中原料的铬含量,保护了熔炉,降低了镍铁中杂质铬的含量,同时分别对比实施例1与对比例1、实施例2与对比例2、实施例3与对比例3可知,当在对矿浆的氧化浸出过程中不通入高压氧气时,对矿浆中铬元素的浸出会大幅下降。
3.分别测试实施例1-3及对比例1-4得到的镍铁成品中的铬元素含量,检测结果如表4。
表4:镍铁成品中的铬元素含量
  Cr/%
实施例1 0.006
实施例2 0.034
实施例3 0.053
对比例1 0.14
对比例2 0.077
对比例3 0.12
对比例4 0.23
由表4可知,本发明红土镍矿冶炼镍铁除铬的方法得到的镍铁成品中Cr的浓度低于0.053%,同时分别对比实施例1与对比例1、实施例2与对比例2、实施例3与对比例3可知,当在对矿浆的氧化浸出过程中不通入高压氧气时,会导致最终镍铁成品中的铬元素含量上升。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种红土镍矿冶炼镍铁除铬的方法,其特征在于:包括以下步骤:
    (1)将红土镍矿进行洗矿,分离得到矿浆和矿石,向所述矿浆中加入碱液及溴酸盐并通入氧气进行氧化浸出,然后进行固液分离,得到固料及含铬滤液;
    (2)将步骤(1)得到的固料洗涤后,固液分离,得到固相和洗水,将所述固相与生石灰及还原剂混合得到混合物;
    (3)将步骤(2)得到的混合物依次进行焙烧及熔炼,制备得到镍铁成品。
  2. 根据权利要求1所述的一种红土镍矿冶炼镍铁除铬的方法,其特征在于:步骤(1)中,所述矿浆的固含量为10%-25%。
  3. 根据权利要求1所述的一种红土镍矿冶炼镍铁除铬的方法,其特征在于:步骤(1)得到的所述矿石经破碎后,进入摇床重选,分离得到铬精矿和尾矿,将所述尾矿返回至洗矿工序。
  4. 根据权利要求1所述的一种红土镍矿冶炼镍铁除铬的方法,其特征在于:步骤(1)中,所述氧化浸出时,所述碱液、所述溴酸盐与所述矿浆的质量比为(0.5-1):(1-2):100。
  5. 根据权利要求1所述的一种红土镍矿冶炼镍铁除铬的方法,其特征在于:步骤(1)中,所述氧化浸出是在密闭条件下进行,所述氧气的压力为1.5-4MPa。
  6. 根据权利要求1所述的一种红土镍矿冶炼镍铁除铬的方法,其特征在于:步骤(1)中,所述氧化浸出的温度为100-150℃,氧化浸出的时间为1-5h。
  7. 根据权利要求1所述的一种红土镍矿冶炼镍铁除铬的方法,其特征在于:步骤(2)得到的所述洗水返回至步骤(1)中用于洗矿。
  8. 根据权利要求1所述的一种红土镍矿冶炼镍铁除铬的方法,其特征在于:步骤(2)中,所述生石灰、所述还原剂与所述固相的质量比为(2-10):(3-8):100。
  9. 根据权利要求1所述的一种红土镍矿冶炼镍铁除铬的方法,其特征在于:步骤(3)中,所述焙烧的温度为600℃-1000℃,所述焙烧的时间为10-50min。
  10. 根据权利要求1所述的一种红土镍矿冶炼镍铁除铬的方法,其特征在于:步骤(3)中,所述熔炼的温度≥1500℃。
PCT/CN2022/117476 2022-07-29 2022-09-07 一种红土镍矿冶炼镍铁除铬的方法 WO2024021229A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112022000437.1T DE112022000437T5 (de) 2022-07-29 2022-09-07 Verfahren zum herstellen von ferronickel und entfernen von chrom aus nickel-laterit-erz
US18/225,101 US20240035115A1 (en) 2022-07-29 2023-07-21 Method for producing ferronickel and removing chromium from nickel laterite ore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210906191.2A CN115216644A (zh) 2022-07-29 2022-07-29 一种红土镍矿冶炼镍铁除铬的方法
CN202210906191.2 2022-07-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/225,101 Continuation US20240035115A1 (en) 2022-07-29 2023-07-21 Method for producing ferronickel and removing chromium from nickel laterite ore

Publications (1)

Publication Number Publication Date
WO2024021229A1 true WO2024021229A1 (zh) 2024-02-01

Family

ID=83614536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117476 WO2024021229A1 (zh) 2022-07-29 2022-09-07 一种红土镍矿冶炼镍铁除铬的方法

Country Status (2)

Country Link
CN (1) CN115216644A (zh)
WO (1) WO2024021229A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101139642A (zh) * 2007-10-25 2008-03-12 金川集团有限公司 一种红土镍矿产出的粗镍铁的精炼方法
CN101864523A (zh) * 2009-04-15 2010-10-20 中国科学院过程工程研究所 利用氢氧化钠碱熔法处理低品位红土镍矿的清洁生产工艺
CN103449522A (zh) * 2012-06-01 2013-12-18 中国科学院过程工程研究所 一种含铬废渣生产铬酸盐的方法
CN104512930A (zh) * 2013-09-30 2015-04-15 湖北振华化学股份有限公司 一种液相催化氧化铬铁矿生产铬酸盐的方法
US20150284820A1 (en) * 2013-02-12 2015-10-08 Sumitomo Metal Mining Co., Ltd. Hydrometallurgical process for nickel oxide ore
CN109402377A (zh) * 2017-08-18 2019-03-01 湖北振华化学股份有限公司 一种控制返渣组成氧化焙烧提铬的方法
CN111498916A (zh) * 2020-06-03 2020-08-07 中国恩菲工程技术有限公司 红土镍矿制备氢氧化镍钴过程中去除六价铬的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI496894B (zh) * 2009-04-30 2015-08-21 World Resources Co 自開採礦石及其它含金屬原料材料回收金屬及金屬化合物之方法
JP5445777B2 (ja) * 2010-07-28 2014-03-19 住友金属鉱山株式会社 低品位ニッケル酸化鉱石からのフェロニッケル製錬原料の製造方法
AU2012376440B2 (en) * 2012-04-06 2016-12-08 Sumitomo Metal Mining Co., Ltd. Method for recovering chromite, and method for wet smelting of nickel oxide ore
CN111560524B (zh) * 2020-06-15 2021-06-22 中国科学院过程工程研究所 一种抑制钒渣钒铬共提过程的循环液中铬酸钠还原的方法
CN112080636B (zh) * 2020-08-17 2022-11-15 广东邦普循环科技有限公司 一种利用红土镍矿生产电池级硫酸镍盐的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101139642A (zh) * 2007-10-25 2008-03-12 金川集团有限公司 一种红土镍矿产出的粗镍铁的精炼方法
CN101864523A (zh) * 2009-04-15 2010-10-20 中国科学院过程工程研究所 利用氢氧化钠碱熔法处理低品位红土镍矿的清洁生产工艺
CN103449522A (zh) * 2012-06-01 2013-12-18 中国科学院过程工程研究所 一种含铬废渣生产铬酸盐的方法
US20150284820A1 (en) * 2013-02-12 2015-10-08 Sumitomo Metal Mining Co., Ltd. Hydrometallurgical process for nickel oxide ore
CN104512930A (zh) * 2013-09-30 2015-04-15 湖北振华化学股份有限公司 一种液相催化氧化铬铁矿生产铬酸盐的方法
CN109402377A (zh) * 2017-08-18 2019-03-01 湖北振华化学股份有限公司 一种控制返渣组成氧化焙烧提铬的方法
CN111498916A (zh) * 2020-06-03 2020-08-07 中国恩菲工程技术有限公司 红土镍矿制备氢氧化镍钴过程中去除六价铬的方法

Also Published As

Publication number Publication date
CN115216644A (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
WO2020019917A1 (zh) 一种从褐铁型红土镍矿中回收铁、钪、铝的方法
CN109110826B (zh) 一种电池级硫酸镍的生产方法
WO2017185946A1 (zh) 一种处理低品位红土镍矿的方法及其选矿方法
WO2019174103A1 (zh) 一种红土镍矿硫酸浸出液和硅胶螯合树脂提纯生产硫酸镍钴的方法
CN101921914B (zh) 一种铜钴矿浸出液的除铁工艺
CN101230422A (zh) 一种从红土镍矿中富集镍及联产铁红的方法
CN104498718A (zh) 硬质合金磨削料的处理方法
CN112662896B (zh) 一种钛矿制备富钛料的方法
CN106065435A (zh) 一种处理钒渣的方法与系统
CN107090551B (zh) 一种钒钛磁铁矿的直接提钒的方法
WO2022160493A1 (zh) 一种粗制镍铁合金的回收方法和应用
CN113265532B (zh) 一种镍铁合金湿法浸出镍氨溶液的方法和应用
CN103911514B (zh) 废旧硬质合金磨削料的回收处理方法
CN109097562A (zh) 一种红土镍矿选择性硫化焙烧的方法
WO2020019919A1 (zh) 一种从红土镍矿酸浸液中均相沉淀分离铁铝的方法
CN103276219B (zh) 一种处理红土镍矿还原焙烧镍铁废渣的清洁生产方法
CN109628744B (zh) 一种从含钨硬质合金废料中回收钨和钴的方法
CN106065436A (zh) 一种处理钒渣的方法与系统
CN103882235A (zh) 从铜冶炼废渣中梯级回收铁、铜及贵金属的方法
CN105568001A (zh) 一种钴合金和氧化钴矿联合高压酸浸的方法
CN104232882A (zh) 氧化镍矿高温氯化挥发回收镍钴铁的工艺
CN108559838A (zh) 红土镍矿混合冶炼制备镍铁合金的方法
CN105568000A (zh) 一种含钴硫化物和水钴矿联合高压酸浸的方法
CN104805310A (zh) 一种含高价钴氧化物原料浸出钴的方法
WO2024021229A1 (zh) 一种红土镍矿冶炼镍铁除铬的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112022000437

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952670

Country of ref document: EP

Kind code of ref document: A1