WO2024018931A1 - 窒化ホウ素粉末の製造方法 - Google Patents

窒化ホウ素粉末の製造方法 Download PDF

Info

Publication number
WO2024018931A1
WO2024018931A1 PCT/JP2023/025319 JP2023025319W WO2024018931A1 WO 2024018931 A1 WO2024018931 A1 WO 2024018931A1 JP 2023025319 W JP2023025319 W JP 2023025319W WO 2024018931 A1 WO2024018931 A1 WO 2024018931A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
composition
molded body
nitride powder
firing
Prior art date
Application number
PCT/JP2023/025319
Other languages
English (en)
French (fr)
Inventor
駿 歌川
裕介 和久田
厚樹 五十嵐
聖治 小橋
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2024510387A priority Critical patent/JPWO2024018931A1/ja
Publication of WO2024018931A1 publication Critical patent/WO2024018931A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/22Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by pressing in moulds or between rollers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron

Definitions

  • the present disclosure relates to a method for producing boron nitride powder.
  • Boron nitride can be produced by (i) directly nitriding boron using nitrogen or ammonia, or (ii) reacting a boron compound such as boric acid or boron oxide with a nitrogen-containing compound such as melamine at high temperature. (iii) heating a boron compound and a carbon source to high temperature in a nitrogen atmosphere to reduce and nitride the boron compound.
  • Patent Document 1 proposes a technique for producing hexagonal boron nitride powder using a catalyst such as an oxygen-containing calcium compound in addition to a boron compound such as boric acid and a carbon source such as carbon black. .
  • Carbon-containing powder such as carbon black used in the method of producing boron nitride by reducing and nitriding boron oxide has a small particle size and bulk density, so it easily scatters. For this reason, especially when mass-producing, it is necessary to fully consider workability and working environment. Therefore, the present disclosure aims to provide a manufacturing method suitable for mass production of boron nitride powder.
  • One aspect of the present disclosure provides the following method for producing boron nitride powder.
  • a method for producing boron nitride powder comprising the steps of: obtaining a fired product containing boron nitride by firing in an atmosphere containing at least one selected from the group consisting of compounds; and pulverizing the fired product.
  • a molded body of the first composition is produced, and this molded body is fired. Therefore, the work is easier than when handling powder. Further, scattering of the carbon-containing powder can be suppressed. Moreover, since the molded body has a predetermined molding density, it is possible to sufficiently advance the reduction-nitriding reaction during firing while having shape retention properties. The fired product obtained by firing can be smoothly pulverized. Therefore, the above manufacturing method is suitable for mass production of boron nitride powder.
  • the manufacturing method of [1] above may be any of the following [2] to [5].
  • [2] The method for producing boron nitride powder according to [1], which comprises heating a second composition containing boric acid and carbon-containing powder to dehydrate the boric acid to obtain the first composition.
  • [3] The method for producing boron nitride powder according to [1] or [2], wherein the volume of the compact is 0.1 to 2.0 cm 3 .
  • [4] The method for producing boron nitride powder according to any one of [1] to [3], wherein the surface of the compact is a curved surface.
  • [5] The method for producing boron nitride powder according to any one of [1] to [4], wherein the first composition is molded using a rotary tabletting machine or a briquette roll to obtain the molded body.
  • the boric acid contained in the second composition is dehydrated to obtain the first composition containing boron oxide.
  • the boron oxide and carbon-containing powder contained in the first composition thus obtained are in sufficient contact with each other.
  • Such a first composition has sufficiently excellent moldability. For this reason, the molded body becomes more difficult to break, and the work becomes easier. Furthermore, since damage to the compact can be suppressed, the yield of boron nitride powder can be improved.
  • the molded body has an appropriate size, which makes the work easier. Furthermore, the reduction-nitriding reaction progresses even more smoothly into the inside of the molded body. Thereby, impurities such as carbon contained in the boron nitride powder can be sufficiently reduced. According to the manufacturing method of [4] above, the molded product becomes more difficult to break and becomes easier to work with. Moreover, the yield of boron nitride powder can be improved. According to the manufacturing method described in [5] above, molded bodies with excellent shape retention can be continuously produced, so boron nitride powder can be mass-produced sufficiently smoothly.
  • a manufacturing method suitable for mass production of boron nitride powder can be provided.
  • FIG. 1 is a diagram schematically showing an example of manufacturing equipment used in a method for manufacturing boron nitride powder.
  • 1 is a diagram schematically showing an example of a dehydration device used in a method for producing boron nitride powder.
  • FIG. 1 is a perspective view of a rotary tablet press, which is an example of a molding device used in a method for producing boron nitride powder.
  • FIG. 4 is an exploded view showing a part of the rotary tablet press of FIG. 3;
  • (A) is a sectional view showing the positions of an upper rod and a lower rod when the first composition is molded in a tableting cell.
  • (B) is a sectional view showing the positions of the upper rod and the lower rod when the molded body is taken out from the tableting cell onto the rotary disk.
  • It is a schematic diagram of the briquette roll which is another example of the shaping
  • (A) is a photograph of the molded article of the second composition
  • (B) is a photograph of the molded article of the first composition.
  • (A) is a photograph of a molded product of boric acid
  • (B) is a photograph of a molded product of acetylene black.
  • the method for producing boron nitride powder includes a dehydration step of heating a second composition containing boric acid and a carbon-containing powder to dehydrate the boric acid to obtain a first composition, and a second composition containing boron oxide and a carbon-containing powder.
  • the method includes a firing step for obtaining a fired product containing boron nitride by firing in an atmosphere, and a crushing step for pulverizing the fired product.
  • boric acid orthoboric acid, H 3 BO 3
  • H 3 BO 3 boron source
  • the boric acid (orthoboric acid, H 3 BO 3 ) contained in the second composition as a boron source may be in powder form (boric acid powder).
  • the carbon-containing powder contained in the second composition as a carbon source include amorphous carbon such as carbon black, activated carbon, and carbon fiber, crystalline carbon such as diamond, graphite, and nanocarbon, and pyrolyzed monomers or polymers.
  • Examples include pyrolytic carbon obtained by Examples of carbon black include acetylene black, thermal black, channel black, and furnace black.
  • the second composition may be in powder form.
  • the content of the carbon-containing powder relative to 100 parts by mass of boric acid may be 10 parts by mass or more, 15 parts by mass or more, and 20 parts by mass or more. You can.
  • the content of the carbon-containing powder relative to 100 parts by mass of boric acid may be 40 parts by mass or less, 35 parts by mass or less, and 30 parts by mass or less. There may be.
  • An example of the content of the carbon-containing powder based on 100 parts by mass of boric acid may be 10 to 40 parts by mass.
  • the second composition may contain components other than boric acid and carbon-containing powder.
  • Such components may include reaction accelerators.
  • the reaction accelerator may have the function of adjusting the melting point by reacting with boron oxide, for example.
  • Such reaction promoters include sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), sodium hydroxide (NaOH), potassium hydroxide (KOH), sodium tetraborate (Na 2 B 4 O 7 ), lithium tetraborate (Li 2 B 2 O 7 ), and the like.
  • the reaction accelerator may include an oxygen-containing calcium compound such as calcium oxide.
  • the content of the reaction accelerator with respect to 100 parts by mass of boric acid is 0.5 to 10 parts by mass.
  • the amount may be from 1 to 8 parts by weight, or from 2 to 5 parts by weight.
  • the second composition may contain components other than the above-mentioned components.
  • Such components include components that serve as nucleating agents for boron nitride production.
  • the nucleating agent include boron nitride.
  • components other than boric acid and carbon-containing powder in the second composition may be added to the second composition obtained in the dehydration step.
  • the second composition may be prepared by, for example, placing boric acid, carbon-containing powder, and other components added as necessary in a mixing device and mixing them.
  • a mixing device such as a Henschel mixer may be used.
  • the second composition prepared by mixing may be placed in a container and held in a tray dryer for drying.
  • the heating temperature of the second composition may be 150 to 300°C, or 200 to 280°C. If this heating temperature becomes too high, the boric acid will volatilize and the yield of the ultimately obtained boron nitride will tend to decrease. If this heating temperature becomes too low, the time required for dehydration of boric acid tends to increase, and the dehydration tends to become insufficient.
  • the heating time at the above heating temperature may be 5 to 20 hours, or 8 to 15 hours. This heating time may be adjusted depending on the mass of the second composition and the size of the container. Heating may be performed under atmospheric pressure or under reduced pressure.
  • a dehydration device that can heat boric acid, carbon-containing powder, and other components added as necessary while mixing may be used.
  • a dehydrating device mixing and heating can be performed in one device.
  • the heating time at the above heating temperature can be shortened.
  • Stirring can be performed using a stirring blade, a stirring blade, a stirring bar, or the like.
  • a ribbon blender may be used as such a dewatering device.
  • the heat source used to heat the second composition may include at least one selected from the group consisting of microwaves and heating medium. Since the second composition contains carbon-containing powder, the second composition can be heated efficiently with high uniformity by direct heating using microwave irradiation. Examples of the heating medium include steam and heating oil. The second composition may be heated by indirect heating using such a heating medium. Thereby, the second composition can be efficiently heated in a short time. A heating medium and microwave may be used together as a heat source. By performing both direct heating and indirect heating in this way, the second composition can be heated even more efficiently.
  • the first composition obtained by the dehydration step contains granular boron oxide and carbon-containing powder.
  • Examples of carbon-containing powders are as described above.
  • the first composition may be particulate and may include boric acid. However, from the viewpoint of increasing the production amount of boron nitride powder, the content of boric acid in the first composition is preferably lower.
  • the conversion rate of boric acid by the reaction of formula (1) above may be 80% by mass or more, 90% by mass or more, or 95% by mass or more.
  • the first composition may contain the reaction accelerator and/or nucleating agent described above. In addition, the above-mentioned reaction accelerator and/or nucleating agent may be added after the dehydration step.
  • the second composition may be pulverized and/or particle size adjusted by pulverization and/or classification.
  • a general pulverizer such as a hammer mill, a vibration mill, or a pulverizer may be used.
  • Classification may be performed by general methods such as sieving and air classification. At this time, it is desirable to adjust the amount on a 1 mm sieve to 10% by weight or less.
  • the first composition is molded to produce a molded body.
  • the working environment is improved and the filling and unloading operations into the firing boat can be carried out efficiently. That is, by producing a molded body, handling properties can be improved.
  • the molded body has a molded density of 1.0 to 1.6 g/cm 3 . This allows the reduction-nitridation reaction during firing to proceed sufficiently while maintaining shape retention. From the viewpoint of sufficiently increasing the strength of the molded body, the molding density of the molded body may be 1.1 g/cm 3 or more. From the viewpoint of smooth pulverization after firing, the compacted density of the compact may be 1.5 g/cm 3 or less.
  • the compacted density of the compact in this specification can be calculated from the measured values of the volume and mass of the compact. Specifically, in accordance with JIS Z 8807:2012 "Measurement method of density and specific gravity by geometric measurement", the volume calculated from the length of each side of the molded object (measured with calipers) and the electronic balance. It can be determined based on the measured mass of the nitride sintered body (see section 9 of JIS Z 8807:2012).
  • the volume of the compact may be 0.1 to 2.0 cm 3 , and may be 0.2 to 0.6 cm 3 .
  • the shape of the molded object is not particularly limited, and may be, for example, a prismatic shape, a cylindrical shape, a spherical shape, a tablet shape (biconvex lens shape), or an almond shape.
  • a shape whose "surface is composed of a curved surface” refers to a shape that does not have a flat surface, such as a spherical shape, for example. If the tablet shape and almond shape do not have a flat surface when visually observed, they fall under the category of "having a curved surface.”
  • the method for producing the molded body is not particularly limited, and various molding methods such as hydraulic press, cold isostatic press (CIP), rotary tablet press, briquette roll, etc. can be used.
  • various molding methods such as hydraulic press, cold isostatic press (CIP), rotary tablet press, briquette roll, etc.
  • CIP cold isostatic press
  • rotary tablet press e.g., rotary tablet press
  • briquette roll e.g., boron nitride powder can be smoothly mass-produced by using a rotary tablet press or a briquette roll.
  • the molded body is fired in an atmosphere containing at least one selected from the group consisting of nitrogen and nitrogen-containing compounds.
  • nitrogen boron oxide contained in the molded body is reduced and nitrided to produce boron nitride (BN) as shown in the following formula (2).
  • nitrogen-containing compounds include compounds that contain nitrogen as a constituent element and produce boron nitride when reacted with boron oxide and carbon-containing powder.
  • the nitrogen-containing compound may be, for example, ammonia.
  • the firing temperature of the compact may be 1800° C. or higher, or 1900° C. or higher from the viewpoint of promoting reductive nitridation of boron oxide.
  • the firing temperature of the molded body may be 2100° C. or lower, 2050° C. or lower, or 2000° C. or lower, from the viewpoint of suppressing yellow coloring of the boron nitride produced.
  • An example of the firing temperature of the molded body is 1850 to 2100°C.
  • the firing time of the molded body at the above firing temperature may be 0.5 to 30 hours, 2 to 20 hours, or 5 to 15 hours. This firing time may be adjusted depending on the mass of the molded body.
  • the molded body may be fired under pressure higher than atmospheric pressure.
  • the pressure when firing the molded body at the above firing temperature may be 0.25 MPaG or more, 0.30 MPaG or more, or even 0.50 MPaG or more, from the viewpoint of promoting the production of boron nitride. good.
  • the pressure when firing the molded body at the above firing temperature may be 5.0 MPaG or less, 3.0 MPaG or less, or 1.0 MPaG or less from the viewpoint of reducing manufacturing costs. "MPaG" in this specification indicates gauge pressure.
  • the firing step may be performed using a pressurized batch furnace capable of firing the molded body under pressure.
  • the molded body may be filled into a firing boat, for example, and the firing boat may be introduced into a pressurized batch furnace and fired.
  • the production amount of boron nitride powder can be increased because the molded body is nitrided and reduced in the firing process instead of the powdered first composition.
  • the load on the pressurized batch furnace can be reduced.
  • a fired product containing boron nitride (a boron nitride-containing composition) is obtained.
  • the fired product containing boron nitride obtained in the firing step may have the same external shape as the molded body.
  • Boron nitride powder can be obtained by performing a pulverizing step of pulverizing such a fired product.
  • general pulverizing equipment such as a hammer mill, a vibration mill, a pulverizer, etc. may be used.
  • particle size may be adjusted by sieving using an ultrasonic sieve or the like. In this way, boron nitride powder whose particle size has been adjusted can be obtained.
  • the boron nitride contained in the boron nitride powder may be hexagonal boron nitride. That is, it may be hexagonal boron nitride powder.
  • the content (purity) of boron nitride (BN) in the boron nitride powder may be 90% by mass or more, 95% by mass or more, or 98% by mass or more.
  • the boron nitride content can be calculated using the following formula (A) from the nitrogen content measured using an oxygen/nitrogen simultaneous analyzer.
  • an oxygen/nitrogen analyzer for example, an oxygen/nitrogen analyzer (trade name: EMGA-920) manufactured by Horiba, Ltd. can be used.
  • BN (mass%) N (mass%) x 1.772 (A)
  • the content of carbon in the boron nitride powder may be 0.5% by mass or less, 0.1% by mass or less, and 0.05% by mass or less.
  • Boron nitride powder with high boron nitride purity and low carbon content can be suitably used as a raw material for a sintered body.
  • the carbon content in the boron nitride powder can be measured using a carbon analyzer manufactured by LECO (trade name: IR-412) or the like.
  • the carbon content can be adjusted by changing the blending ratio of the boron source and the carbon-containing powder, the compacting density of the compact, the volume of the compact, or the conditions for reduction nitriding in the firing process.
  • the average particle diameter (median diameter, D50) of the boron nitride powder may be 3 to 40 ⁇ m, 5 to 30 ⁇ m, or 10 to 20 ⁇ m.
  • Such boron nitride powder can be suitably used as a raw material for a sintered body.
  • This average particle diameter can be adjusted by, for example, changing the firing conditions of the firing step, the conditions of pulverization of the fired product obtained in the firing step, or the opening of the sieve used for sieving.
  • the average particle diameter in this specification is determined based on the method described in JIS Z 8825:2013 "Particle diameter analysis - laser diffraction/scattering method".
  • the integrated value from small particle sizes is the whole.
  • the particle size when the particle size reaches 50% is the average particle size.
  • the BET specific surface area of the boron nitride powder may be from 0.5 to 5 m 2 /g, and may be from 0.7 to 3 m 2 /g.
  • Such boron nitride powder can be suitably used as a raw material for a sintered body.
  • This BET specific surface area can be adjusted by, for example, changing the amount of reaction accelerator and/or nucleating agent used, or the firing conditions of the firing step.
  • the BET specific surface area in this specification is measured by the BET single point method using nitrogen gas in accordance with the method described in JIS Z 8830:2013 "Method for measuring specific surface area of powder (solid) by gas adsorption". It is a value.
  • the method for manufacturing boron nitride powder described above may be performed using boron nitride powder manufacturing equipment 100 shown in FIG.
  • the manufacturing equipment 100 includes a dehydrator 10 that heats the second composition to dehydrate the boric acid to obtain the first composition, and a dehydrator 10 that molds the first composition to a molded density of 1.0 to 1.6 g/cm. 3.
  • the dehydration device 10 may perform the dehydration step, the molding device 20 may perform the molding step, the calcination device 30 may perform the calcination step, and the pulverization device 40 may perform the pulverization step.
  • the explanation content of each process is applied to each device, and therefore, redundant explanation will be omitted.
  • the dehydrator 10 can be one that can heat and dehydrate the second composition.
  • the dehydrator 10 may be one that dehydrates the boric acid by heating the second composition while it is standing still, or may have a function of stirring the second composition while heating it.
  • the dehydrator 10A shown in FIG. 2, which is an example of the dehydrator 10, includes a storage section 11 that stores a second composition containing boric acid and carbon-containing powder, and agitates the second composition that is stored in the storage section 11.
  • a stirring unit 12, a microwave oscillator 16 that irradiates the second composition in the housing unit 11 with microwaves, and a heating medium for heating the second composition in the housing unit 11 are supplied to the jacket unit 11a.
  • a heating medium supply section 15 is provided.
  • the heating medium may be, for example, heating oil, and the heating oil may be used in circulation.
  • the heat medium is not limited to heat medium oil, and may be, for example, steam (superheated steam) or the like.
  • the stirring section 12 includes stirring blades 12B (ribbon blades) and a motor 12A that rotationally drives the stirring blades 12B.
  • the stirring blade 12B which is rotationally driven by the motor 12A, mixes and stirs the second composition in the storage section 11.
  • the second composition may be prepared by introducing boric acid, carbon-containing powder, and other components into the storage section 11, and then mixing them in the stirring section 12 (stirring blade 12B). Thereafter, the second composition may be heated in the storage section 11 to obtain the first composition while continuing stirring by the stirring section 12 (stirring blades 12B).
  • the microwave oscillator 16 directly heats the second composition by irradiating it with microwaves to the second composition being stirred within the storage section 11 .
  • the heating medium supply section 15 supplies a heating medium to the jacket section 11a to indirectly heat the second composition.
  • the temperature of the second composition being stirred can be quickly raised to the target temperature.
  • variations in the temperature of the second composition can be reduced and the second composition can be heated with high uniformity.
  • dehydration of boric acid proceeds smoothly and uniformly, and boric acid can be sufficiently converted into boron oxide in a short time.
  • the components and heating conditions of the second composition are as described above.
  • the heating section of the dehydrator 10A in FIG. It has a medium supply section 15.
  • the heating section is not limited to such a configuration, and may include only one of the microwave oscillator 16 and the heating medium supply section 15, or may include a device different from the microwave oscillator 16 and the heating medium supply section 15. may have. Further, the second composition may be heated by the heating medium not through the jacket portion 11a but through a tube disposed within the housing portion 11.
  • the dehydrator 10A includes a cooling unit 18 that condenses moisture through heat exchange between a refrigerant and a moisture-containing gas produced by dehydration of boric acid contained in the second composition, and a flow connecting the storage unit 11 and the cooling unit 18.
  • a bag filter 17 is provided in the air passageway, and a gas suction part 19 that sucks gas is provided downstream of the bag filter 17 and the cooling part 18.
  • the gas in the storage section 11 containing moisture generated by dehydration of boric acid is sucked by the gas suction section 19, passes through the bag filter 17, and is introduced into the cooling section 18.
  • the bag filter 17 captures solids contained in the gas.
  • Cooling water is supplied to the cooling unit 18 as a refrigerant.
  • the gas is cooled by heat exchange between the cooling water and the gas, and moisture contained in the gas is condensed.
  • the condensed water obtained in the cooling section 18 is discharged from the cooling section 18.
  • the gas whose moisture content has been reduced by the cooling unit 18 is sucked into the gas suction unit 19 and then discharged to the outside of the system.
  • the gas suction unit 19 may be, for example, a vacuum pump. Note that it is not essential to provide the bag filter 17 and the cooling section 18.
  • a modified example of the dehydrator 10A may not include one or both of these.
  • the rotary tablet press 20A shown in FIG. 3, which is an example of the molding device 20, is arranged with a rotary disk 41 that rotates at a constant speed along the circumferential direction (in the direction of the arrow in the figure) and a rotary disk 41 sandwiched therebetween.
  • a pair of holding discs 43 and 46 that rotate in synchronization with the rotary disc 41 are provided.
  • the upper holding plate 43 holds a plurality of upper rods 45 (tableting rods) arranged at regular intervals along the circumferential direction
  • the lower holding plate 46 holds a plurality of lower rods arranged at regular intervals along the circumferential direction. Holds the rod 47 (tableting rod).
  • the upper rods 45 and lower rods 47 are omitted in FIG. 3, the upper rods 45 may be held in all the holding holes 45h, and the lower rods 47 may be held in all the holding holes 47h. It's good that it has been done.
  • a plurality of tableting cells 42 are formed in the rotary disk 41 along the circumferential direction. Above each tableting cell 42, an upper rod 45 (punch) having a tip 45A having an outer diameter equivalent to the inner diameter of the tableting cell 42 is arranged. A lower rod 47 (punch) having a tip 47A having an outer diameter equivalent to the inner diameter of the tableting cell 42 is arranged below each tableting cell 42.
  • the upper rod 45 is held by a holding plate 43 so as to be movable up and down
  • the lower rod 47 is held by a holding plate 46 so that it can be moved up and down.
  • a part of the rotary tablet press 20A is shown expanded, with the holding plates 43 and 46 omitted.
  • the circumferential direction is expanded to the horizontal direction.
  • a lifting mechanism 44 is connected to the upper rod 45.
  • a similar lifting mechanism (not shown) is also connected to the lower rod 47.
  • the upper rod 45 reciprocates once between the most lowered position and the highest raised position by the elevating mechanism 44, depending on the rotational position, while the rotary disk 41 (holding disk 43) makes one rotation.
  • Each lower rod 47 also moves back and forth between the lowest position and the highest position by an elevating mechanism (not shown) depending on the rotational position during one rotation of the rotary plate 41 (holding plate 46). do.
  • the rotary tabletting machine 20A includes a hopper 50 that supplies a powdered first composition 52 onto a rotary disk 41, and a hopper 50 that guides the first composition 52 supplied from the hopper 50 to the rotary disk 41 to a tableting cell 42.
  • a feeder 57 for filling the first composition 52 into the tableting cell 42 is provided.
  • the lower rod 47 is in the lowest position.
  • a predetermined amount of the first composition 52 filled into the tableting cell 42 by the feeder 57 is pushed up by the tip 47A of the lower rod 47 inserted into the tableting cell 42 from below, and It is pushed down by the tip 45A of the upper rod 45 inserted into the tableting cell 42 from above the cell 42.
  • the tip 45A of the upper rod 45 and the tip 47A of the lower rod 47 press the first composition 52 in the tableting cell 42 in directions facing each other.
  • the first composition is compressed and molded within the tableting cell 42.
  • the upper rod 45 is retracted upward, as shown in FIG. 5(B).
  • the molded body 54 is pushed out from the tableting cell 42 onto the rotary disk 41 by the lower rod 47.
  • the tableting cells 42 on the rotary disk 41 are collected in a tray (not shown) provided around the outer periphery of the rotary disk 41. In this way, a tablet-shaped molded body 54 can be continuously manufactured.
  • the end surface 45r of the distal end portion 45A of the upper rod 45 and the end surface 47r of the distal end portion 47A of the lower rod 47 each have a concave surface formed of a curved surface.
  • the surface of the mold in contact with the molded body 54 is not a flat surface but a curved surface. Therefore, the upper surface 54r and lower surface 54s of the molded body 54 become convex surfaces composed of curved surfaces. Therefore, when the distal end portion 47A of the lower rod 47 pushes out the molded body 54 from the tableting cell 42 onto the rotary disk 41, it is possible to suppress the molded body 54 from being damaged due to elastic recovery.
  • the first composition 52 is molded by biaxial compression to obtain a molded body 54 having a curved surface (convex surface and circumferential surface).
  • molded bodies 54 with excellent shape retention can be continuously produced in large quantities.
  • the molded body 54 includes a circumferential surface and a pair of convex surfaces (upper surface 54r, lower surface 54s).
  • the molded body 54 having such a shape is difficult to break and has excellent handling properties. Therefore, the rotary tablet press 20A is particularly suitable for manufacturing boron nitride powder on an industrial scale.
  • the method for producing the molded body is not limited to using such a rotary tablet press 20A.
  • a briquette roll 20B in FIG. 6, which is another example of the forming device 20, includes a pair of roll bodies 61 and 62 arranged side by side so that their rotation axes are parallel to each other.
  • a plurality of recesses 64 are provided on the peripheral surfaces of the roll bodies 61 and 62.
  • the surface 64r of the recess 64 is formed of a curved surface. That is, the surface of the mold that comes into contact with the molded body 55 has a curved surface.
  • the roll body 61 is supported so as to be rotatable clockwise, and the roll body 62 is supported so as to be rotatable counterclockwise.
  • a guide plate 65 is provided above the roll bodies 61 and 62 to guide the powdered first composition 52 between the roll bodies 61 and 62.
  • the first composition 52 passes through the guide plate 65 and is supplied between the roll bodies 61 and 62.
  • the first composition 52 supplied between the roll bodies 61 and 62 fills the recess 64 and is compressed while being sandwiched between the roll bodies 61 and 62.
  • the compressed first composition 52 is molded into a molded body 55.
  • the molded body 55 is compressed and molded within a pair of mutually opposing recesses 64 . Therefore, the molded body 55 has an almond shape, and the surface 55r of the molded body 55 is a curved surface.
  • the molded body 55 having such a shape is difficult to break and has excellent handling properties.
  • the molded body 55 is guided out from the recess 64 by utilizing the elastic recovery of the molded body 55.
  • the briquette roll 20B is also particularly suitable for producing boron nitride powder on an industrial scale.
  • the method for producing the molded body is not limited to using such a briquette roll 20B.
  • the firing device 30 in FIG. 1 is a device in which the first composition is fired in an atmosphere containing at least one selected from the group consisting of nitrogen and a nitrogen-containing compound, so that a reaction such as that shown in formula (2) above proceeds, for example. That's fine.
  • the firing device 30 may be, for example, a normal batch furnace or a pressurized batch furnace that can perform firing while pressurizing. Further, a continuous furnace such as a pusher type tunnel furnace may be used.
  • the molded body of the first composition obtained in the molding device 20 is fired to obtain a fired product containing boron nitride.
  • the crushing device 40 for example, a hammer mill, a pulverizer, etc. can be used.
  • the manufacturing facility 100 may include a device for adjusting the particle size of the boron nitride powder.
  • Such devices include crushing devices, sieving devices, and the like. Examples of the crushing device include a Henschel mixer.
  • the compact of the first composition is reduced and nitrided and pulverized to obtain boron nitride powder.
  • the yield of boron nitride powder can be increased compared to the case where boron nitride powder is obtained by reducing and nitriding the molded body of the second composition and pulverizing it.
  • boron nitride is generated by the reaction according to the following equation (3).
  • Table 1 shows the amount of boron nitride produced calculated from the stoichiometric ratio when 100 kg of the raw material is used in each of the above formulas (2) and (3).
  • the reaction of formula (2) above can significantly increase the amount of boron nitride (boron nitride powder) obtained than the reaction of formula (3). Therefore, when the processing capacity of the firing device 30 is a bottleneck in the production of boron nitride powder, by using boron oxide instead of boric acid as the boron source (by introducing the dehydration device 10), boron nitride Powder production can be significantly improved. Further, the load on the firing device 30 can be reduced. Therefore, the boron nitride powder production equipment 100 and the above-described boron nitride powder production method are particularly useful for production on an industrial scale. However, the boron nitride powder production equipment 100 and the above-described boron nitride powder production method are not limited to production on an industrial scale.
  • the present disclosure is not limited to the above embodiments.
  • it is not essential to perform a dehydration process or to provide the dehydration device 10.
  • the first composition obtained by the dehydration step has excellent moldability. Therefore, the production of the molded body and the subsequent workability can be sufficiently improved.
  • Example 1 A second composition was prepared by mixing boric acid powder, acetylene black (powder), and sodium carbonate powder using a Henschel mixer. The mixing ratio was 25 parts by mass of acetylene black and 3 parts by mass of sodium carbonate powder to 100 parts by mass of boric acid powder.
  • This second composition was placed in a box-shaped container (filling volume: 6000 cm 3 ), and the box-shaped container was placed in a shelf dryer.
  • the boric acid was dehydrated by holding it for 12 hours in a tray dryer whose temperature was adjusted to 250° C. under atmospheric pressure to obtain a first composition.
  • the obtained first composition was crushed for 10 minutes using a Henschel mixer.
  • the conversion rate of H 3 BO 3 according to the above formula (1) was determined from the respective masses of the second composition and the first composition.
  • the first composition was passed through a 1 mm sieve, and the weight ratio on the sieve to the entire first composition was measured. The results were as shown in Table 2.
  • the first composition was molded using a rotary tablet press having the structure shown in FIGS. 3 to 5 as a molding device.
  • the load during molding was 10 kN, and the temperature was room temperature (about 20° C.).
  • the shape, volume and molding density of the obtained molded body were as shown in Table 2.
  • the compacted density was calculated from the measured values of the volume and mass of the compact. Specifically, in accordance with JIS Z 8807:2012 "Measurement method of density and specific gravity by geometric measurement", the volume calculated from the length of each side of the molded object (measured with calipers) and the electronic balance. It was determined based on the measured mass of the nitride sintered body (see section 9 of JIS Z 8807:2012).
  • the "tablet shape” in the table is a shape like the molded body 54 in FIG. 5, and the “almond shape” is a shape like the molded body 55 in FIG.
  • a box-shaped carbon firing boat (filling volume: 3000 cm 3 ) was filled with the molded body.
  • the filling density was measured from the filling volume and filling mass of the molded body in the firing boat.
  • the results were as shown in Table 2.
  • a firing boat filled with compacts was placed in a pressurized batch furnace. The molded body was fired at 1800 to 2000° C. for 10 hours in a nitrogen atmosphere pressurized to 0.8 MPaG. In this way, boron oxide was subjected to reductive nitridation to obtain a fired body containing boron nitride.
  • the nitrogen content in the boron nitride powder was measured using an oxygen/nitrogen analyzer (trade name: EMGA-920). Then, the boron nitride content in the boron nitride powder was determined using the above formula (A). The results were as shown in Table 2. The boron nitride was confirmed to be hexagonal boron nitride from the results of XRD. The carbon content in the boron nitride powder was measured using a carbon analyzer manufactured by LECO (trade name: IR-412). The results were as shown in Table 2.
  • Example 2 Boron nitride powder was produced in the same manner as in Example 1, except that the load in the molding process was changed as shown in Table 2. Each evaluation was performed in the same manner as in Example 1. The results were as shown in Table 2.
  • Example 5 A dehydration step was performed in the same manner as in Example 1 to obtain a first composition.
  • a molded body was produced using a briquette roll having a structure as shown in FIG. The load and temperature during molding were as shown in Table 3.
  • a firing process was performed in the same manner as in Example 1.
  • Each evaluation was performed in the same manner as in Example 1. The results were as shown in Table 3.
  • Example 1 The powdered first composition was filled into the same firing boat as in Example 1 without performing the molding step. The firing process and the crushing process were performed in the same manner as in Example 1, except that this firing boat was used. Each evaluation was performed in the same manner as in Example 1. The results were as shown in Table 3.
  • Example 2 A dehydration step was performed in the same manner as in Example 1 to obtain a first composition.
  • the first composition was uniaxially press-molded using a hydraulic press to produce a molded body.
  • the load and temperature during molding were as shown in Table 3.
  • a firing process was performed in the same manner as in Example 1.
  • Each evaluation was performed in the same manner as in Example 1. The results were as shown in Table 3.
  • Examples 1 to 5 the firing process was performed using the molded body produced in the molding process.
  • Tables 2 and 3 show the packing density of the molded bodies (powder in Comparative Example 1) filled in the firing boat and the relative values of the packing density based on Comparative Example 1.
  • the molded bodies of Examples 1 to 5 were able to have a sufficiently higher packing density in the firing boat than the powdered first composition of Comparative Example 1.
  • the boron nitride content in the boron nitride powders finally obtained in Examples 1 to 5 was sufficiently high, and the carbon content was sufficiently low. From these results, it was confirmed that Examples 1 to 5 are suitable for mass production of boron nitride powder.
  • the second composition and the first composition used in Example 1 were each press-molded (uniaxial pressure, molding pressure: 111 MPaG) to produce a molded body.
  • the molded article of the second composition shown in FIG. 7(A) had shape retention properties, the corners of the molded article tended to be easily damaged.
  • the molded article of the first composition shown in FIG. 7(B) had excellent shape retention.
  • the molded density of the molded article of the first composition was 1.29 g/cm 3 . From this, it was confirmed that the first composition containing boron oxide obtained by dehydrating boric acid had better moldability than the second composition.
  • a manufacturing method suitable for mass production of boron nitride powder can be provided.
  • Lower rod, 52 First composition, 50... Hopper, 54, 55... Molded body, 54r... Upper surface, 54s... Lower surface, 55r, 64r... Surface, 57... Feeder, 61, 62... Roll body, 64... Recessed portion, 65... Guide plate, 100... Manufacturing equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

酸化ホウ素及び炭素含有粉末を含む第1組成物を成形して、成形密度が1.0~1.6g/cmの成形体を得る工程と、成形体を、窒素及び窒素含有化合物からなる群より選ばれる少なくとも一つを含む雰囲気中で焼成して窒化ホウ素を含む焼成物を得る工程と、焼成物を粉砕する工程と、を有する、窒化ホウ素粉末の製造方法を提供する。

Description

窒化ホウ素粉末の製造方法
 本開示は、窒化ホウ素粉末の製造方法に関する。
 窒化ホウ素の製造方法としては、(i)ホウ素を窒素又はアンモニア等を用いて直接窒化する方法、(ii)ホウ酸、酸化ホウ素等のホウ素化合物と、メラミン等の含窒素化合物とを高温で反応させる方法、(iii)窒素雰囲気下、ホウ素化合物とカーボン源とを高温に加熱して、ホウ素化合物を還元窒化する方法が知られている。例えば、特許文献1では、ホウ酸等のホウ素化合物と、カーボンブラック等のカーボン源に加えて、含酸素カルシウム化合物等の触媒を用いて、六方晶窒化ホウ素粉末を製造する技術が提案されている。
特開2015-212217号公報
 ホウ素の酸化物を還元窒化して窒化ホウ素を製造する方法で用いられるカーボンブラック等の炭素含有粉末は、粒径及びかさ密度が小さいために、飛散しやすい。このため、特に量産化する場合には、作業性及び作業環境を十分に考慮する必要がある。そこで、本開示では、窒化ホウ素粉末の量産に適した製造方法を提供することを目的とする。
 本開示の一側面は、以下の窒化ホウ素粉末の製造方法を提供する。
 [1]酸化ホウ素及び炭素含有粉末を含む第1組成物を成形して、成形密度が1.0~1.6g/cmの成形体を得る工程と、上記成形体を、窒素及び窒素含有化合物からなる群より選ばれる少なくとも一つを含む雰囲気中で焼成して窒化ホウ素を含む焼成物を得る工程と、上記焼成物を粉砕する工程と、を有する、窒化ホウ素粉末の製造方法。
 上記[1]の製造方法では、第1組成物の成形体を作製し、この成形体を焼成している。このため、粉末を取り扱う場合よりも作業がし易い。また、炭素含有粉末の飛散を抑制することができる。また、上記成形体は、所定の成形密度を有していることから、保形性を有しつつ、焼成時の還元窒化反応を十分に進行させることができる。そして、焼成によって得られる焼成物は、円滑に粉砕することができる。よって、上記製造方法は、窒化ホウ素粉末の量産に適している。
 上記[1]の製造方法は、以下の[2]~[5]のいずれかであってもよい。
 [2]ホウ酸と炭素含有粉末とを含む第2組成物を加熱して上記ホウ酸を脱水し上記第1組成物を得る工程を有する、[1]に記載の窒化ホウ素粉末の製造方法。
 [3]上記成形体の体積が0.1~2.0cmである、[1]又は[2]に記載の窒化ホウ素粉末の製造方法。
 [4]上記成形体の表面は曲面で構成される、[1]~[3]のいずれか一つに記載の窒化ホウ素粉末の製造方法。
 [5]上記第1組成物を回転式打錠機又はブリケットロールを用いて成形し上記成形体を得る、[1]~[4]のいずれか一つに記載の窒化ホウ素粉末の製造方法。
 上記[2]の製造方法によれば、第2組成物に含まれるホウ酸を脱水して酸化ホウ素を含む第1組成物を得ている。このようにして得られる第1組成物に含まれる酸化ホウ素と炭素含有粉末とは十分に接触している。このような第1組成物は、十分に優れた成形性を有する。このため、成形体が一層破損し難くなり、作業が一層し易くなる。また、成形体の破損を抑制できるため、窒化ホウ素粉末の歩留まりを向上することができる。
 上記[3]の製造方法によれば、成形体が適度なサイズを有することから作業がし易くなる。また、還元窒化反応が成形体の内部まで一層円滑に進行する。これによって、窒化ホウ素粉末に含まれる炭素等の不純物を十分に低減することができる。上記[4]の製造方法によれば、成形体が一層破損し難くなり、作業がし易くなる。また、窒化ホウ素粉末の歩留まりを向上することができる。上記[5]の製造方法によれば、保形性に優れる成形体を連続的に生産できるため、窒化ホウ素粉末を十分円滑に量産することができる。
 窒化ホウ素粉末の量産に適した製造方法を提供することができる。
窒化ホウ素粉末の製造方法に用いられる製造設備の一例を模式的に示す図である。 窒化ホウ素粉末の製造方法に用いられる脱水装置の一例を模式的に示す図である。 窒化ホウ素粉末の製造方法に用いられる成形装置の一例である回転式打錠機の斜視図である。 図3の回転式打錠機の一部を展開して示す図である。 (A)は、打錠セルにおいて第1組成物が成形されるときの上ロッドと下ロッドの位置を示す断面図である。(B)は、打錠セルから回転盤上に成形体が取り出されるときの上ロッドと下ロッドの位置を示す断面図である。 窒化ホウ素粉末の製造方法に用いられる成形装置の別の例であるブリケットロールの模式図である。 (A)は、第2組成物の成形体の写真であり、(B)は、第1組成物の成形体の写真である。 (A)は、ホウ酸の成形体の写真であり、(B)は、アセチレンブラックの成形体の写真である。
 以下、場合により図面を参照して、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用い、場合により重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す符号の向きを基準とする。さらに、図面の寸法比率は図示の比率に限られるものではない。本明細書において、「~」の記号で示される数値範囲は、下限値及び上限値を含む。すなわち、「x~y」で示される数値範囲は、x以上且つy以下を意味する。
 窒化ホウ素粉末の製造方法は、ホウ酸と炭素含有粉末とを含む第2組成物を加熱してホウ酸を脱水して第1組成物を得る脱水工程と、酸化ホウ素及び炭素含有粉末を含む第1組成物を成形して、成形密度が1.0~1.6g/cmの成形体を得る成形工程と、成形体を、窒素及び窒素含有化合物からなる群より選ばれる少なくとも一つを含む雰囲気中で焼成して窒化ホウ素を含む焼成物を得る焼成工程と、焼成物を粉砕する粉砕工程と、を有する。
 脱水工程では、第2組成物にホウ素源として含まれるホウ酸(オルトホウ酸、HBO)の脱水を行う。このときの脱水反応は、以下の式(1)で表される。
  2HBO → B + 3HO   (1)
 第2組成物にホウ素源として含まれるホウ酸(オルトホウ酸、HBO)は、粉末状(ホウ酸粉末)であってよい。第2組成物に炭素源として含まれる炭素含有粉末としては、例えば、カーボンブラック、活性炭、カーボンファイバー等の非晶質炭素、ダイヤモンド、グラファイト、ナノカーボン等の結晶性炭素、モノマー又はポリマーを熱分解して得られる熱分解炭素等が挙げられる。カーボンブラックとしては、アセチレンブラック、サーマルブラック、チャンネルブラック、及びファーネスブラック等が挙げられる。第2組成物がこのような炭素含有粉末を含むことによって、酸化ホウ素(B)が固まって塊状となることを抑制することができる。これによって、成形工程以降を円滑に行うことができる。
 第2組成物は粉末状であってよい。窒化ホウ素の生成を十分に進行させる観点から、ホウ酸100質量部に対する炭素含有粉末の含有量は、10質量部以上であってよく、15質量部以上であってよく、20質量部以上であってもよい。窒化ホウ素粉末に残留する炭素を低減する観点から、ホウ酸100質量部に対する炭素含有粉末の含有量は、40質量部以下であってよく、35質量部以下であってよく、30質量部以下であってもよい。ホウ酸100質量部に対する炭素含有粉末の含有量の一例は、10~40質量部であってよい。
 第2組成物は、ホウ酸と炭素含有粉末以外の成分を含んでもよい。そのような成分としては、反応促進剤を含んでもよい。反応促進剤は、例えば、酸化ホウ素と反応して融点を調節する機能を有するものであってもよい。そのような反応促進剤としては、炭酸ナトリウム(NaCO)、炭酸カリウム(KCO)、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、四ホウ酸ナトリウム(Na)、四ホウ酸リチウム(Li)等が挙げられる。また、反応促進剤は、酸化カルシウム等の含酸素カルシウム化合物を含んでもよい。
 窒化ホウ素の生成を十分に促進させつつ窒化ホウ素粉末に残留する反応促進剤の量を低減する観点から、ホウ酸100質量部に対する反応促進剤の含有量は、0.5~10質量部であってよく、1~8質量部であってよく、2~5質量部であってもよい。
 第2組成物は、上述の成分以外の成分を含んでもよい。そのような成分としては、窒化ホウ素生成の核剤となる成分が挙げられる。核剤としては、窒化ホウ素等が挙げられる。なお、第2組成物におけるホウ酸と炭素含有粉末以外の成分は、脱水工程で得られる第2組成物に添加してもよい。核剤を用いることによって、窒化ホウ素粉末に含まれる窒化ホウ素の粒子の粒径の均一性を向上することができる。
 第2組成物は、例えば、ホウ酸、炭素含有粉末、及び必要に応じて添加されるその他の成分を、混合装置に入れて混合して調製してもよい。混合装置としては、ヘンシェルミキサ等の混合装置を用いてもよい。混合によって調製した第2組成物を容器に入れて、棚型乾燥機内に保持して乾燥を行ってもよい。第2組成物の加熱温度は、150~300℃であってよく、200~280℃であってよい。この加熱温度が高くなり過ぎると、ホウ酸が揮発して最終的に得られる窒化ホウ素の収率が低下する傾向にある。この加熱温度が低くなり過ぎると、ホウ酸の脱水に要する時間が長くなる傾向、及び、脱水が不十分になる傾向がある。上記加熱温度における加熱時間は、5~20時間であってよく、8~15時間であってもよい。この加熱時間は、第2組成物の質量及び容器のサイズに応じて調節してもよい。加熱は、大気圧下で行ってもよいし、減圧下で行ってもよい。
 変形例では、ホウ酸、炭素含有粉末、及び必要に応じて添加されるその他の成分を、混合しながら加熱することが可能な脱水装置を用いてもよい。このような脱水装置を用いれば、混合と加熱を一つの装置で行うことができる。また、上記加熱温度における加熱時間を短縮することができる。攪拌は、攪拌翼、攪拌羽根又は攪拌子等を用いて行うことができる。このような脱水装置として、例えばリボンブレンダを用いてもよい。
 第2組成物の加熱に用いる熱源は、マイクロ波及び熱媒からなる群より選ばれる少なくとも一つを含んでよい。第2組成物は炭素含有粉末を含むことから、マイクロ波を照射する直接加熱によって、第2組成物を高い均一性で効率よく加熱することができる。熱媒としては、スチーム及び熱媒油等が挙げられる。このような熱媒を用いた間接加熱によって第2組成物を加熱してもよい。これによって、第2組成物を短時間で効率よく加熱することができる。熱源として熱媒とマイクロ波を併用してもよい。このように直接加熱と間接加熱の両方を行うことによって、第2組成物をさらに効率よく加熱することができる。
 脱水工程によって得られる第1組成物は、粒状の酸化ホウ素と炭素含有粉末を含む。炭素含有粉末の例は上述したとおりである。第1組成物は、粒状であってよく、ホウ酸を含んでもよい。ただし、窒化ホウ素粉末の生産量を増やす観点から、第1組成物におけるホウ酸の含有率は、低い方が好ましい。上記式(1)の反応によるホウ酸の転化率は、80質量%以上であってよく、90質量%以上であってよく、95質量%以上であってもよい。第1組成物は、上述の反応促進剤及び/又は核剤を含んでいてもよい。なお、上述の反応促進剤及び/又は核剤は、脱水工程の後に添加してもよい。
 第1工程の後、粉砕及び/又は分級によって、第2組成物の微粉化及び/又は粒度調整を行ってもよい。粉砕には、例えば、ハンマーミル、振動ミル、パルベライザ等の一般的な粉砕装置を用いてもよい。分級は、篩い分け、気流分級等の一般的な方法で行ってもよい。このとき、1mm篩上が10重量%以下となるように調整することが望ましい。
 成形工程では、第1組成物を成形して成形体を作製する。成形体を作製することによって、作業環境が向上するとともに、焼成ボートへの充填作業及び取り出し作業を効率よく行うことができる。すなわち、成形体を作製することによって、ハンドリング性を向上することができる。また、焼成工程で使用される焼成装置のサイズを小さくしたり、焼成ボートに充填する際の充填密度を大きくしたりすることができる。これによって、焼成工程における処理量を増やして、窒化ホウ素粉末の収量を増やすことができる。
 成形体の成形密度は、1.0~1.6g/cmである。これによって、保形性を維持しつつ、焼成時の還元窒化反応を十分に進行させることができる。成形体の強度を十分に高くする観点から、成形体の成形密度は、1.1g/cm以上であってもよい。焼成後の粉砕を円滑にする観点から、成形体の成形密度は、1.5g/cm以下であってもよい。
 本明細書における成形体の成形密度は、成形体の体積及び質量の測定値から算出することができる。具体的には、JIS Z 8807:2012の「幾何学的測定による密度及び比重の測定方法」に準拠し、成形体の各辺の長さ(ノギスにより測定)から計算した体積と、電子天秤により測定した窒化物焼結体の質量に基づいて求めることができる(JIS Z 8807:2012の9項参照)。
 作業性を向上する観点、及び、成形体の還元窒化を十分に促進する観点から、成形体の体積は、0.1~2.0cmであってよく、0.2~0.6cmであってもよい。成形体の形状は特に限定されず、例えば、角柱形状、円柱形状、球形状、錠剤形状(両凸レンズ形状)、又は、アーモンド形状であってよい。「表面が曲面で構成される」形状とは、例えば、球形状のように、平面を有しない形状のことをいう。錠剤形状及びアーモンド形状も目視して平面を有しなければ、「表面が曲面で構成される」形状に該当する。
 成形体の作製方法は、特に限定されず、油圧プレス、冷間静水圧プレス(CIP)、回転式打錠機、ブリケットロール等の種々の成形方法を用いることができる。上述の成形方法のうち、回転式打錠機、又はブリケットロールを用いれば、窒化ホウ素粉末を円滑に量産することができる。
 焼成工程では、窒素及び窒素含有化合物からなる群より選ばれる少なくとも一つを含む雰囲気中で成形体を焼成する。窒素を含む雰囲気中で成形体を焼成すると、成形体に含まれる酸化ホウ素が下記式(2)に示すとおり還元窒化されて窒化ホウ素(BN)が生成する。
  B+3C+N→ 2BN+3CO   (2)
 窒素含有化合物としては、構成元素として窒素を含み、酸化ホウ素及び炭素含有粉末と反応として窒化ホウ素を生成するものが挙げられる。窒素含有化合物は、例えばアンモニアであってよい。
 成形体の焼成温度は、酸化ホウ素の還元窒化を促進する観点から1800℃以上であってよく、1900℃以上であってもよい。成形体の焼成温度は、生成する窒化ホウ素が黄色に着色するのを抑制する観点から、2100℃以下であってよく、2050℃以下であってよく、2000℃以下であってもよい。成形体の焼成温度の一例は、1850~2100℃である。
 成形体の上記焼成温度における焼成時間は、0.5~30時間であってよく、2~20時間であってよく、5~15時間であってもよい。この焼成時間は、成形体の質量に応じて調節してもよい。
 成形体の焼成は、大気圧よりも高い圧力下で行ってもよい。成形体を上記焼成温度で焼成するときの圧力は、窒化ホウ素の生成を促進する観点から、0.25MPaG以上であってよく、0.30MPaG以上であってよく、0.50MPaG以上であってもよい。成形体を上記焼成温度で焼成するときの圧力は、製造コストを低減する観点から、5.0MPaG以下であってよく、3.0MPaG以下であってよく、1.0MPaG以下であってもよい。本明細書における「MPaG」はゲージ圧力を示す。
 焼成工程は、加圧下で成形体を焼成することが可能な加圧バッチ炉を用いて行ってよい。焼成工程では、成形体を例えば焼成ボートに充填し、当該焼成ボートを加圧バッチ炉に導入して焼成してもよい。焼成ボートへの充填容積に制限がある場合、焼成工程では粉末状の第1組成物ではなく成形体を窒化還元することから、窒化ホウ素粉末の生産量を多くすることができる。或いは、加圧バッチ炉の負荷を低減することができる。焼成工程では、窒化ホウ素を含む焼成物(窒化ホウ素含有組成物)を得る。
 焼成工程で得られる窒化ホウ素を含む焼成物は、成形体と同じ外形を有していてよい。このような焼成物を粉砕する粉砕工程を行って窒化ホウ素粉末を得ることができる。粉砕には、ハンマーミル、振動ミル、パルベライザ等の一般的な粉砕装置を用いてもよい。粉砕工程では、超音波篩等を用いて篩い分けを行って、粒度調整を行ってもよい。このようにして、粒度調整がなされた窒化ホウ素粉末を得ることができる。窒化ホウ素粉末に含まれる窒化ホウ素は、六方晶窒化ホウ素であってよい。すなわち、六方晶窒化ホウ素粉末であってよい。
 窒化ホウ素粉末における窒化ホウ素(BN)の含有率(純度)は、90質量%以上であってよく、95質量%以上であってよく、98質量%以上であってよい。窒化ホウ素の含有率は、酸素/窒素同時分析装置を用いて測定した窒素の含有率より以下の式(A)を用いて算出することができる。酸素/窒素同時分析装置としては、例えば、株式会社堀場製作所製の酸素・窒素分析装置(商品名:EMGA-920)等を用いることができる。
  BN(質量%)=N(質量%)×1.772  (A)
 窒化ホウ素粉末における炭素の含有率は、0.5質量%以下であってよく、0.1質量%以下であってよく、0.05質量%以下であってもよい。窒化ホウ素の純度が高く、且つ、炭素の含有率が低い窒化ホウ素粉末は、焼結体の原料として好適に用いることができる。窒化ホウ素粉末における炭素の含有率は、LECO社製炭素分析装置(商品名:IR-412)等によって測定することができる。炭素の含有率は、ホウ素源と炭素含有粉末の配合比、成形体の成形密度、成形体の体積、又は、焼成工程における還元窒化の条件を変えることによって調整することができる。
 窒化ホウ素粉末の平均粒子径(メディアン径、D50)は、3~40μmであってよく、5~30μmであってよく、10~20μmであってもよい。このような窒化ホウ素粉末は、焼結体の原料として好適に用いることができる。この平均粒子径は、例えば、焼成工程の焼成条件、焼成工程で得られる焼成物の粉砕の条件、或いは篩い分けに用いる篩の目開きを変えることで調整することができる。本明細書における平均粒子径は、JIS Z 8825:2013「粒子径解析-レーザー回折・散乱法」に記載の方法に基づいて求められる。上記方法に基づいて測定された、横軸を対数目盛の粒子径[μm]、縦軸を頻度[体積%]として示される粒子径分布(累積分布)において、小粒径からの積算値が全体の50%に達したときの粒子径が平均粒子径である。
 窒化ホウ素粉末のBET比表面積は、0.5~5m/gであってよく、0.7~3m/gであってもよい。このような窒化ホウ素粉末は、焼結体の原料として好適に用いることができる。このBET比表面積は、例えば、反応促進剤及び/又は核剤の使用量、或いは、焼成工程の焼成条件を変えることで調整することができる。本明細書におけるBET比表面積は、JIS Z 8830:2013「ガス吸着による粉体(固体)の比表面積測定方法」に記載の方法に準拠し、窒素ガスを使用してBET一点法により測定される値である。
 上述の窒化ホウ素粉末の製造方法は、図1の窒化ホウ素粉末の製造設備100を用いて行ってもよい。製造設備100は、第2組成物を加熱してホウ酸を脱水し第1組成物を得る脱水装置10と、第1組成物を成形して、成形密度が1.0~1.6g/cmである成形体を作製する成形装置20と、窒素及び窒素含有化合物からなる群より選ばれる少なくとも一つを含む雰囲気中で成形体を焼成して窒化ホウ素を含む焼成物を得る焼成装置30と、焼成物を粉砕して、窒化ホウ素粉末(BN粉末)を得る粉砕装置40とを備える。
 脱水装置10で上記脱水工程を行い、成形装置20で上記成形工程を行い、焼成装置30で上記焼成工程を行い、粉砕装置40で上記粉砕工程を行ってよい。各工程の説明内容は、各装置に適用されるため、重複する説明を省略する。脱水装置10は、第2組成物を加熱して脱水可能なものを用いることができる。脱水装置10は、第2組成物を静置した状態で加熱してホウ酸を脱水するものであってよいし、第2組成物を加熱しながら攪拌する機能を有するものであってもよい。
 脱水装置10の一例である図2の脱水装置10Aは、ホウ酸と炭素含有粉末とを含む第2組成物を収容する収容部11と、収容部11に収容される第2組成物を攪拌する攪拌部12と、収容部11内の第2組成物に対してマイクロ波を照射するマイクロ波発振器16と、収容部11内の第2組成物を加熱するための熱媒をジャケット部11aに供給する熱媒供給部15と、を備える。熱媒は、例えば熱媒油であってよく、熱媒油は循環使用してもよい。なお、熱媒は熱媒油に限定されず、例えばスチーム(過熱蒸気)等であってもよい。
 収容部11としては、ジャケット部11aを備える反応槽を用いることができる。攪拌部12は、攪拌翼12B(リボン翼)と攪拌翼12Bを回転駆動するモータ12Aとを有する。モータ12Aによって回転駆動される攪拌翼12Bは、収容部11内の第2組成物を混合及び攪拌する。収容部11に、ホウ酸、炭素含有粉末及びその他の成分を導入した後、攪拌部12(攪拌翼12B)でこれらを混合して第2組成物を調製してよい。その後、攪拌部12(攪拌翼12B)による攪拌を継続しながら、第2組成物を収容部11内で加熱して第1組成物を得てもよい。
 収容部11内で攪拌されている第2組成物に対して、マイクロ波発振器16はマイクロ波を照射して第2組成物を直接加熱する。また、熱媒供給部15はジャケット部11aに熱媒を供給して第2組成物を間接加熱する。これによって、攪拌中の第2組成物を早期に目標温度まで昇温することができる。また、第2組成物の温度のばらつきを低減し、高い均一性で第2組成物を加熱することができる。これによって、ホウ酸の脱水が円滑且つ均一に進行し、短時間で、ホウ酸を酸化ホウ素に十分に転化することができる。なお、第2組成物の含有成分及び加熱条件は、上述したとおりである。
 図2の脱水装置10Aの加熱部は、攪拌部12によって攪拌されている第2組成物を直接加熱するマイクロ波発振器16と、攪拌部12によって攪拌されている第2組成物を間接加熱する熱媒供給部15を有する。加熱部は、このような構成に限定されず、マイクロ波発振器16及び熱媒供給部15の一方のみを有していてもよいし、マイクロ波発振器16及び熱媒供給部15とは異なる機器を有していてもよい。また、熱媒による第2組成物の加熱は、ジャケット部11aを介してではなく、収容部11内に配置されるチューブを介して行ってもよい。
 脱水装置10Aは、第2組成物に含まれるホウ酸の脱水によって生じる水分を含むガスと冷媒との熱交換によって水分を凝縮させる冷却部18と、収容部11と冷却部18とを接続する流路にバグフィルタ17と、バグフィルタ17及び冷却部18の下流に、ガスを吸引するガス吸引部19と、を備える。ホウ酸の脱水によって生じた水分を含む収容部11内のガスは、ガス吸引部19によって吸引され、バグフィルタ17を通過して冷却部18に導入される。バグフィルタ17ではガス中に含まれる固形分が捕捉される。
 冷却部18には、冷媒として冷却水が供給されている。冷却部18では、この冷却水とガスとの熱交換によってガスが冷却され、ガスに含まれる水分が凝縮する。冷却部18で得られた凝縮水は、冷却部18より排出される。冷却部18によって水分が低減されたガスはガス吸引部19に吸引された後、系外に排出される。このようにガス吸引部19で吸引することによって、収容部11内を大気圧未満にして脱水を促進することができる。したがって、脱水工程に要する時間を一層短縮することができる。ガス吸引部19は、例えば真空ポンプであってよい。なお、バグフィルタ17及び冷却部18を備えることは必須ではない。脱水装置10Aの変形例ではこれらの一方又は両方を備えていなくてもよい。
 成形装置20の一例である図3の回転式打錠機20Aは、円周方向(図中の矢印方向)に沿って一定速度で回転する回転盤41と、回転盤41を挟むようにして配置され、回転盤41と同期して回転する一対の保持盤43,46と、を備える。上側の保持盤43は、円周方向に沿って一定の間隔で並ぶ複数の上ロッド45(打錠ロッド)を保持し、下側の保持盤46は、円周方向に沿って並ぶ複数の下ロッド47(打錠ロッド)を保持する。なお、図3では、一部の上ロッド45及び下ロッド47を省略しているが、全ての保持孔45hに上ロッド45が保持されていてよく、全ての保持孔47hに下ロッド47が保持されていてよい。
 回転盤41には、円周方向に沿って複数の打錠セル42(臼)が形成されている。各打錠セル42の上方には、打錠セル42の内径と同等の外径を有する先端部45Aを有する上ロッド45(杵)が配置されている。各打錠セル42の下方には、打錠セル42の内径と同等の外径を有する先端部47Aを有する下ロッド47(杵)が配置されている。
 図3に示すように、上ロッド45は保持盤43によって昇降可能に保持され、下ロッド47は保持盤46によって昇降可能に保持される。図4には、保持盤43,46を省略して回転式打錠機20Aの一部を展開して示す。図4では、円周方向を横方向に展開して示している。この図4に示すように、上ロッド45には昇降機構44が接続されている。下ロッド47にも同様の昇降機構(不図示)が接続されている。
 上ロッド45は、回転盤41(保持盤43)が一回転する間に、回転位置に応じて昇降機構44によって最も下降した位置と最も上昇した位置との間を一往復する。各下ロッド47も、回転盤41(保持盤46)が一回転する間に、回転位置に応じて図示しない昇降機構(不図示)によって最も下降した位置と最も上昇した位置との間を一往復する。
 回転式打錠機20Aは、回転盤41上に粉末状の第1組成物52を供給するホッパ50と、ホッパ50から回転盤41に供給された第1組成物52を打錠セル42に案内して打錠セル42に第1組成物52を充填するフィーダ57を備えている。打錠セル42に第1組成物52が充填されるとき、下ロッド47は最も下降した位置にある。フィーダ57によって打錠セル42に充填された所定量の第1組成物52は、打錠セル42の下方から打錠セル42に挿入される下ロッド47の先端部47Aによって押し上げられるとともに、打錠セル42の上方から打錠セル42に挿入される上ロッド45の先端部45Aによって押し下げられる。
 図5(A)に示すように、上ロッド45の先端部45Aと下ロッド47の先端部47Aとは互いに対向する方向に向かって打錠セル42内の第1組成物52を押圧する。これによって第1組成物は打錠セル42内で圧縮されて成形される。第1組成物52が圧縮されて成形体54が得られた後、図5(B)に示すように、上ロッド45が上方に退避する。成形体54は、下ロッド47によって打錠セル42から回転盤41上に押し出される。回転盤41上の打錠セル42は、回転盤41の外周に設けられる図示しないトレイに回収される。このようにして錠剤形状を有する成形体54を連続的に製造することができる。
 図5(A)及び図5(B)に示すように、上ロッド45の先端部45Aの端面45r及び下ロッド47の先端部47Aの端面47rは、それぞれ、曲面で構成される凹面を呈している。すなわち、成形体54に接する型の表面は平面ではなく曲面で構成されている。このため、成形体54の上面54rと下面54sは、曲面で構成される凸面となる。したがって、下ロッド47の先端部47Aが成形体54を打錠セル42から回転盤41上に押し出す際に、弾性回復に伴って成形体54が破損することを抑制することができる。
 回転式打錠機20Aでは、二軸圧縮によって第1組成物52を成形し、表面が曲面(凸面及び円周面)で構成される成形体54を得ている。回転式打錠機20Aを用いることによって、保形性に優れる成形体54を連続して大量に製造することができる。また、成形体54は、円周面と一対の凸面(上面54r,下面54s)によって構成される。このような形状を有する成形体54は破損し難く、ハンドリング性に優れる。このため、回転式打錠機20Aは、工業スケールでの窒化ホウ素粉末の製造に特に好適である。ただし、成形体の作製方法は、このような回転式打錠機20Aを用いることに限定されない。
 成形装置20の別の例である図6のブリケットロール20Bは、回転軸が互いに平行になるように並んで配置される一対のロール体61,62を備える。ロール体61,62の周面には、複数の凹部64が設けられている。凹部64の表面64rは曲面で構成されている。すなわち、成形体55に接触する型の表面は曲面で構成されている。ロール体61は時計回りに回転可能に支持され、ロール体62は反時計回りに回転可能に支持される。ロール体61,62の上方には、粉状の第1組成物52をロール体61,62の間に案内する案内板65を有する。
 第1組成物52は、案内板65を通過して、ロール体61,62の間に供給される。ロール体61,62の間に供給された第1組成物52は、凹部64に充填されるとともにロール体61,62の間に挟まれて圧縮される。圧縮された第1組成物52は成形されて成形体55となる。成形体55は、互いに対向する一対の凹部64内で圧縮されて成形される。したがって、成形体55はアーモンド形状を有し、成形体55の表面55rは曲面で構成される。このような形状を有する成形体55は破損し難く、ハンドリング性に優れる。ブリケットロール20Bでは、成形体55の弾性回復を利用して凹部64から成形体55が導出される。このため、脱型時の破損を十分に抑制することができる。このため、ブリケットロール20Bも、工業スケールでの窒化ホウ素粉末の製造に特に好適である。ただし、成形体の作製方法は、このようなブリケットロール20Bを用いることに限定されない。
 図1の焼成装置30は、窒素及び窒素含有化合物からなる群より選ばれる少なくとも一つを含む雰囲気中で、第1組成物を焼成して例えば上記式(2)のような反応が進行する装置であればよい。焼成装置30は、例えば、通常のバッチ炉であってよく、加圧しながら焼成することが可能な加圧バッチ炉であってもよい。また、プッシャー式トンネル炉等の連続炉であってもよい。焼成装置30では、成形装置20で得られた第1組成物の成形体を焼成して、窒化ホウ素を含む焼成物を得る。
 粉砕装置40としては、例えば、ハンマーミル、パルベライザ等を用いることができる。製造設備100は、粉砕装置40に加えて、窒化ホウ素粉末の粒度を調整するための装置を備えていてもよい。そのような装置としては、解砕装置、及び篩い分け装置等が挙げられる。解砕装置としてはヘンシェルミキサ等が挙げられる。
 窒化ホウ素粉末の製造設備100における焼成装置30では第1組成物の成形体を還元窒化して粉砕し窒化ホウ素粉末を得る。焼成装置30の設備能力に制限がある場合に、第2組成物の成形体を還元窒化して粉砕し窒化ホウ素粉末を得る場合に比べて、窒化ホウ素粉末の収量を増やすことができる。例えば、ホウ酸を脱水することなく成形し還元窒化すると、以下の式(3)による反応で窒化ホウ素が生成する。
  HBO+3/2C+1/2N→BN+3/2CO+3/2HO  (3)
 上記式(2),式(3)のそれぞれの場合において、原料100kg用いたときに、化学量論比から算出される窒化ホウ素の生成量を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、上記式(2)の反応の方が、式(3)の反応よりも、得られる窒化ホウ素(窒化ホウ素粉末)の量を大幅に増やすことができる。このため、焼成装置30の処理能力が窒化ホウ素粉末の製造のボトルネックとなっている場合に、ホウ素源としてホウ酸ではなく酸化ホウ素を用いること(脱水装置10を導入すること)によって、窒化ホウ素粉末の生産量を大幅に向上することができる。また、焼成装置30の負荷を低減することができる。このため、窒化ホウ素粉末の製造設備100、及び上述の窒化ホウ素粉末の製造方法は、工業スケールでの製造に特に有用である。ただし、窒化ホウ素粉末の製造設備100及び上述の窒化ホウ素粉末の製造方法は、工業スケールでの製造に限定されるものではない。
 以上、本開示の実施形態を説明したが、本開示は上記実施形態に何ら限定されるものではない。例えば、脱水工程を行うこと、又は、脱水装置10を備えることは必須ではない。ただし、脱水工程(脱水装置10)によって得られる第1組成物は成形性に優れる。このため、成形体の作製及びそれ以降の作業性を十分に向上することができる。
 実施例、比較例及び参考例を参照して本開示の内容をより詳細に説明するが、本開示は下記の実施例に限定されるものではない。
(実施例1)
<脱水工程>
 ホウ酸粉末、アセチレンブラック(粉末)、及び炭酸ナトリウム粉末を、ヘンシェルミキサを用いて混合して第2組成物を調製した。混合比は、ホウ酸粉末100質量部に対して、アセチレンブラック25質量部、及び、炭酸ナトリウム粉末3質量部とした。この第2組成物を箱型容器(充填容積:6000cm)に入れ、当該箱型容器を棚型乾燥機に入れた。大気圧下、250℃に温度調節された棚型乾燥機内で12時間保持して、ホウ酸の脱水を行って第1組成物を得た。得られた第1組成物をヘンシェルミキサで10分間解砕した。第2組成物と第1組成物のそれぞれの質量から、上記式(1)によるHBOの転化率を求めた。第1組成物を1mm篩に通して、第1組成物全体に対する篩上の重量比率を測定した。その結果は表2に示すとおりであった。
<成形工程>
 成形装置として図3~図5に示すような構造を有する回転式打錠機を用いて、第1組成物の成形を行った。成形の際の荷重は10kN、温度は室温(約20℃)であった。得られた成形体の形状、成形体の体積及び成形密度は、表2に示すとおりであった。成形密度は、成形体の体積及び質量の測定値から算出した。具体的には、JIS Z 8807:2012の「幾何学的測定による密度及び比重の測定方法」に準拠し、成形体の各辺の長さ(ノギスにより測定)から計算した体積と、電子天秤により測定した窒化物焼結体の質量に基づいて求めた(JIS Z 8807:2012の9項参照)。表中の「錠剤形状」とは、図5の成形体54のような形状であり、「アーモンド形状」とは、図6の成形体55のような形状である。
<焼成工程>
 箱型の炭素製の焼成ボート(充填容積:3000cm)に成形体を充填した。焼成ボートにおける成形体の充填容積と充填質量とから、充填密度を測定した。その結果は、表2に示すとおりであった。加圧バッチ炉内に、成形体が充填された焼成ボートを設置した。0.8MPaGに加圧された窒素雰囲気中で、成形体を1800~2000℃で10時間焼成した。このようにして、酸化ホウ素の還元窒化を行って窒化ホウ素を含む焼成体を得た。
<粉砕工程>
 焼成体を瑪瑙乳鉢で粉砕した後、目開き63μmの篩を通して窒化ホウ素粉末(BN粉末、篩下物)を得た。
 酸素・窒素分析装置(商品名:EMGA-920)を用いて、窒化ホウ素粉末における窒素の含有率を測定した。そして、上記式(A)によって窒化ホウ素粉末における窒化ホウ素の含有率を求めた。その結果は、表2に示すとおりであった。窒化ホウ素は、XRDの結果から六方晶窒化ホウ素であることが確認された。窒化ホウ素粉末における炭素の含有率を、LECO社製炭素分析装置(商品名:IR-412)を用いて測定した。その結果は、表2に示すとおりであった。
(実施例2~4)
 成形工程における荷重を表2に示すとおりに変更したこと以外は、実施例1と同じ手順で窒化ホウ素粉末を製造した。実施例1と同様にして各評価を行った。結果は表2に示すとおりであった。
(実施例5)
 実施例1と同じ手順で脱水工程を行って第1組成物を得た。図6に示すような構造を有するブリケットロールを用いて成形体を作製した。成形の際の荷重及び温度は表3に示すとおりであった。このようにして得られた成形体を用いて、実施例1と同じ手順で焼成工程を行った。実施例1と同様にして各評価を行った。結果は表3に示すとおりであった。
(比較例1)
 成形工程を行わず、粉末状の第1組成物を、実施例1と同じ焼成ボートに充填した。この焼成ボートを用いたこと以外は、実施例1と同じ手順で焼成工程及び粉砕工程を行った。実施例1と同様にして各評価を行った。結果は表3に示すとおりであった。
(比較例2)
 実施例1と同じ手順で脱水工程を行って第1組成物を得た。油圧プレス装置を用いて第1組成物の一軸加圧成形を行って成形体を作製した。成形の際の荷重及び温度は表3に示すとおりであった。このようにして得られた成形体を用いて、実施例1と同じ手順で焼成工程を行った。実施例1と同様にして各評価を行った。結果は表3に示すとおりであった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例1~5では、成形工程で作製した成形体を用いて焼成工程を行った。成形体を焼成ボートへ充填する作業は、粉末を充填する場合に比べて極めて円滑に進めることができた。また、作業環境も十分良好に維持することができた。表2及び表3には、焼成ボートに充填された成形体(比較例1は粉末)の充填密度と、比較例1を基準とする充填密度の相対値を示した。実施例1~5の成形体は、比較例1の粉末状の第1組成物よりも、焼成ボートへの充填密度を十分に大きくすることができた。また、実施例1~5で最終的に得られた窒化ホウ素粉末における窒化ホウ素の含有率は十分に高く、炭素の含有率は十分に低かった。これらの結果から、実施例1~5は窒化ホウ素粉末の量産に適していることが確認された。
 比較例2では、成形体を作製しているため作業性は良好であったものの、最終的に得られる窒化ホウ素粉末における炭素の含有量が実施例1~5よりも高かった。この要因としては、成形体の内部において還元窒化が十分に進行しなかったことが考えられる。実施例1~5では、優れた作業性を実現しつつ高純度の窒化ホウ素粉末を量産することができた。
(参考例1)
 実施例1で用いた第2組成物と第1組成物を、それぞれプレス成形(一軸加圧、成形圧:111MPaG)して成形体を作製した。図7(A)に示す第2組成物の成形体は保形性を有していたものの、成形体の角部が破損し易い傾向になった。これに対し、図7(B)に示す第1組成物の成形体は、優れた保形性を有していた。第1組成物の成形体の成形密度は、1.29g/cmであった。このことから、第2組成物よりも、ホウ酸を脱水して得られる酸化ホウ素を含む第1組成物の方が成形性に優れることが確認された。
 第2組成物及び第1組成物と同じ条件で、第2組成物の原料として用いたホウ酸とアセチレンブラックをそれぞれプレス成形した。図8(A)に示すとおり、ホウ酸は優れた成形性を有していた。一方、図8(B)に示すようにアセチレンブラックは成形が困難であった。このように、アセチレンブラックの成形は困難であるものの、第1組成物が成形性に優れる要因としては、溶融した酸化ホウ素がアセチレンブラックの空隙内を埋めることによって、粒子同士が凝集し易くなっていることが考えられる。
 窒化ホウ素粉末の量産に適した製造方法を提供することができる。
 10,10A…脱水装置、11…収容部、11a…ジャケット部、12…攪拌部、12A…モータ、12B…攪拌翼、15…熱媒供給部、16…マイクロ波発振器、17…バグフィルタ、18…冷却部、19…ガス吸引部、20…成形装置、20A…回転式打錠機、20B…ブリケットロール、30…焼成装置、40…粉砕装置、41…回転盤、42…打錠セル、43,46…保持盤、44…昇降機構、45…上ロッド、45A,47A…先端部、45h,47h…保持孔、45r,47r…端面、47…下ロッド、52…第1組成物、50…ホッパ、54,55…成形体、54r…上面、54s…下面、55r,64r…表面、57…フィーダ、61,62…ロール体、64…凹部、65…案内板、100…製造設備。

 

Claims (5)

  1.  酸化ホウ素及び炭素含有粉末を含む第1組成物を成形して、成形密度が1.0~1.6g/cmの成形体を得る工程と、
     前記成形体を、窒素及び窒素含有化合物からなる群より選ばれる少なくとも一つを含む雰囲気中で焼成して窒化ホウ素を含む焼成物を得る工程と、
     前記焼成物を粉砕する工程と、を有する、窒化ホウ素粉末の製造方法。
  2.  ホウ酸と炭素含有粉末とを含む第2組成物を加熱して前記ホウ酸を脱水し前記第1組成物を得る工程を有する、請求項1に記載の窒化ホウ素粉末の製造方法。
  3.  前記成形体の体積が0.1~2.0cmである、請求項1又は2に記載の窒化ホウ素粉末の製造方法。
  4.  前記成形体の表面は曲面で構成される、請求項1又は2に記載の窒化ホウ素粉末の製造方法。
  5.  前記第1組成物を回転式打錠機又はブリケットロールを用いて成形し前記成形体を得る、請求項1又は2に記載の窒化ホウ素粉末の製造方法。

     
PCT/JP2023/025319 2022-07-20 2023-07-07 窒化ホウ素粉末の製造方法 WO2024018931A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024510387A JPWO2024018931A1 (ja) 2022-07-20 2023-07-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022115651 2022-07-20
JP2022-115651 2022-07-20

Publications (1)

Publication Number Publication Date
WO2024018931A1 true WO2024018931A1 (ja) 2024-01-25

Family

ID=89617783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025319 WO2024018931A1 (ja) 2022-07-20 2023-07-07 窒化ホウ素粉末の製造方法

Country Status (2)

Country Link
JP (1) JPWO2024018931A1 (ja)
WO (1) WO2024018931A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10203806A (ja) * 1997-01-20 1998-08-04 Shin Etsu Chem Co Ltd 窒化硼素粉末の製造方法
JPH11171511A (ja) * 1997-12-15 1999-06-29 Shin Etsu Chem Co Ltd 六方晶窒化硼素粉末及びその製造方法
JP2016160134A (ja) * 2015-03-02 2016-09-05 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法
JP2019116401A (ja) * 2017-12-27 2019-07-18 昭和電工株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びにそれを用いた組成物及び放熱材
WO2022071245A1 (ja) * 2020-09-30 2022-04-07 デンカ株式会社 六方晶窒化ホウ素粉末、及び焼結体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10203806A (ja) * 1997-01-20 1998-08-04 Shin Etsu Chem Co Ltd 窒化硼素粉末の製造方法
JPH11171511A (ja) * 1997-12-15 1999-06-29 Shin Etsu Chem Co Ltd 六方晶窒化硼素粉末及びその製造方法
JP2016160134A (ja) * 2015-03-02 2016-09-05 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法
JP2019116401A (ja) * 2017-12-27 2019-07-18 昭和電工株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びにそれを用いた組成物及び放熱材
WO2022071245A1 (ja) * 2020-09-30 2022-04-07 デンカ株式会社 六方晶窒化ホウ素粉末、及び焼結体の製造方法

Also Published As

Publication number Publication date
JPWO2024018931A1 (ja) 2024-01-25

Similar Documents

Publication Publication Date Title
JP7358331B2 (ja) 窒化ケイ素粉末の製造方法
CN100404463C (zh) 基于低氧化铌的烧结体
US8859446B2 (en) α alumina sintered body for production of sapphire single crystal
WO2015194552A1 (ja) 窒化ケイ素粉末、窒化ケイ素焼結体及び回路基板、ならびに窒化ケイ素粉末の製造方法
US20070014682A1 (en) Conversion of high purity silicon powder to densified compacts
JP2006188411A (ja) 窒化ホウ素の製造方法
CN109641802B (zh) 成形六方氮化硼体、经热处理的六方氮化硼体及其制备方法
CN102757223A (zh) 一种稀土硼化物/碳化硼复合中子吸收材料及其制备方法
JP7048055B2 (ja) 高純度炭酸カルシウム焼結体及びその製造方法、並びに高純度炭酸カルシウム多孔質焼結体及びその製造方法
WO2024018931A1 (ja) 窒化ホウ素粉末の製造方法
RU2493098C1 (ru) Способ получения заготовок из мелкозернистого графита
JPWO2012060285A1 (ja) 珪砂造粒体およびその製造方法
WO2024018933A1 (ja) 窒化ホウ素粉末の製造方法
Peddarasi et al. Mechanochemical effect on synthesis and sintering behavior of MgAl2O4 spinel
US10829417B2 (en) Formed hexagonal boron nitride body, hexagonal boron nitride granulates for making the same, and process for producing the same
US7175685B1 (en) Dry conversion of high purity ultrafine silicon powder to densified pellet form for silicon melting applications
CN114751748B (zh) 高强致密的类洋葱碳块材及其制备方法
JP3571163B2 (ja) 窒化アルミニウムの製造方法
JP2525432B2 (ja) 常圧焼結窒化硼素系成形体
US20110044842A1 (en) Dry conversion of high purity ultrafine silicon powder to densified pellet form for silicon melting applications
JPS62207703A (ja) 窒化アルミニウム粉末の製造方法
WO2017209096A1 (ja) 炭酸カルシウム焼結体の製造方法
JPH05148032A (ja) 結晶質窒化珪素粉末の製造法
WO2024195605A1 (ja) 窒化ケイ素仮焼体及びその製造方法、並びに、窒化ケイ素粉末の製造方法
CN109761609A (zh) 一种高抗热震性石墨电极的制造工艺及其生产装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2024510387

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842856

Country of ref document: EP

Kind code of ref document: A1