WO2024016705A1 - 光学器件制造方法、镀膜方法及镀膜的非连续结构器件 - Google Patents

光学器件制造方法、镀膜方法及镀膜的非连续结构器件 Download PDF

Info

Publication number
WO2024016705A1
WO2024016705A1 PCT/CN2023/083606 CN2023083606W WO2024016705A1 WO 2024016705 A1 WO2024016705 A1 WO 2024016705A1 CN 2023083606 W CN2023083606 W CN 2023083606W WO 2024016705 A1 WO2024016705 A1 WO 2024016705A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
coated
complementary
attached
discontinuous
Prior art date
Application number
PCT/CN2023/083606
Other languages
English (en)
French (fr)
Inventor
谈顺毅
Original Assignee
上海慧希电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海慧希电子科技有限公司 filed Critical 上海慧希电子科技有限公司
Publication of WO2024016705A1 publication Critical patent/WO2024016705A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to the technical field of optical devices. Specifically, it relates to an optical device manufacturing method, a coating method and a coated discontinuous structure device. In particular, it preferably relates to an optical device and a manufacturing method.
  • the Chinese invention patent document with publication number CN114624843A discloses a method for manufacturing an optical device.
  • a mask body is used to cover the glue that overflows around the second device due to the second device being bonded to the first device, and the mask body is configured as
  • the part facing the front of the second device is a light-transmitting area, and other areas except the light-transmitting area are opaque areas, and the opaque area partially or completely covers the front of the first device.
  • the above-mentioned documents do not mention how to coat or stick the film.
  • non-coated optical surfaces will cause problems such as increased stray light/ghosting and reduced light transmittance.
  • the purpose of the present invention is to provide an optical device manufacturing method, a coating method and a coated discontinuous structure device.
  • a thin film is attached to a discontinuous structure of a device to be coated.
  • the film is attached to the discontinuous structure using a complementary structure that is complementary to the discontinuous structure;
  • the film is attached to the discontinuous structure using a complementary structure that is partially complementary to the discontinuous structure.
  • the complementary structure attaches the film to the discontinuous structure at one time.
  • non-continuous structure has multiple different and/or identical structural sequences.
  • the structural sequence of the complementary structure is complementary or partially complementary to the structural sequence of the non-continuous structure
  • the individually moving structures move in sequence, and the corresponding parts of the film are attached to the discontinuous structures one after another.
  • the complementary structure is pressed into the discontinuous structure through a specified angle.
  • the magnitude of the preset force applied to the film can be set and adjusted in real time.
  • the film length in one direction between the two ends of the film is greater than or equal to the sum of the side lengths of the discontinuous structures in the same direction;
  • the film area between the two ends of the film is greater than or equal to the sum of the surface areas of the coatings required for the discontinuous structure.
  • the film is set on one side of the surface of the device to be coated at a predetermined angle and a predetermined height before being attached.
  • the surface of the discontinuous structure is coated with adhesive.
  • the film and the discontinuous structure have different temperatures.
  • the film is attached to the discontinuous structure or the device to be coated through air pressure or hydraulic pressure.
  • attachment process is carried out in a low pressure or vacuum environment
  • the attachment process is carried out in an environment filled with designated gas.
  • a plurality of mutually independent discontinuous structures and complementary structures corresponding to the independent discontinuous structures are arranged on one piece of equipment, the complementary structures are moved simultaneously or successively, and the film is attached to the multiple mutually independent discontinuous structures. structurally.
  • one side of the film is first attached to an auxiliary film, and then the other side of the film is attached to the device to be coated through the auxiliary film.
  • complementary structure that is complementary or partially complementary to the surface type of the device to be coated, and the film and the auxiliary film are attached to the device to be coated through the complementary structure that is complementary or partially complementary to the surface type to be coated.
  • a preset force is exerted on the periphery of the auxiliary film.
  • the preset force applied to the auxiliary film can be set and adjusted in real time.
  • the film or auxiliary film is The preset force applied by the periphery is adjusted.
  • auxiliary film is arranged on one side of the surface of the device to be coated at a predetermined angle and a predetermined height before being attached.
  • the temperature of the film and the device to be coated are different;
  • the auxiliary film and the device to be coated have different temperatures.
  • auxiliary film is attached to the discontinuous structure or the device to be coated by air pressure or hydraulic pressure.
  • the attachment process is performed in a low pressure or vacuum environment
  • the attachment process is carried out in an environment filled with designated gas.
  • multiple devices to be coated and complementary structures complementary to the devices to be coated are arranged on one piece of equipment, and the complementary structures complementary to the devices to be coated are moved simultaneously or successively, and the auxiliary films are attached to the multiple devices to be coated;
  • auxiliary film Furthermore, a variety of films with different shapes and/or optical properties are attached to the auxiliary film.
  • an optical device manufacturing method including a discontinuous structure and an optical film;
  • the optical film is attached to a discontinuous structure surface or part of a discontinuous structure surface.
  • the film plays at least one role of increasing light reflectivity, increasing light transmittance, transmitting light with specific optical properties, reflecting light with specific optical properties, and absorbing light with specific optical properties.
  • the specific optical properties include: at least one of polarization, wavelength, energy, angle and phase of the light.
  • optical properties of the optical films in different areas on the discontinuous structure device are different.
  • Figure 1 is a process diagram of the complementary structure to attach the film to the discontinuous structure
  • Figure 2 is a process diagram of attaching a film to a discontinuous structure through partially complementary structures and air or liquid filling;
  • Figure 3 is a schematic diagram showing that one of the complementary structures has been pressed down to fit the corresponding film to the device, and the remaining parts have not yet been pressed down;
  • Figure 4 is a schematic diagram of the arrangement of complementary structures, thin films, and discontinuous structures
  • Figure 5 is a schematic diagram of the settings of glue injection holes, films, and discontinuous structures
  • Figure 6 is a schematic diagram of two complementary structures, films on the same device, and two film-coated surfaces on the same device;
  • Figure 7 is a schematic diagram in which the complementary structure is part of the optical structure, and the film is attached to the discontinuous structure and the glue is exposed and cured;
  • Figure 8 is a schematic diagram of cutting the film to be attached into the required shape and attaching it to an auxiliary film in advance;
  • Figure 9 is a schematic diagram of auxiliary films that need to be attached to different parts of multiple devices at the same time with the same and/or different films;
  • Figure 10 is a schematic diagram of multiple films attached to a strip/rollable auxiliary film
  • Figure 11 is a schematic diagram of making the auxiliary film into a strip shape and adding rollers and other devices to the clamping/transmission mechanism at both ends to streamline the entire production process.
  • Embodiment 1 of the present invention discloses a method for manufacturing an optical device.
  • the film 1 is attached to the discontinuous structure 3 of the device 2 to be coated.
  • a special film is attached to the discontinuous surface.
  • the device has multiple raised tooth-like structure surfaces (discontinuous surfaces).
  • the size of the tooth-like structure is about 0.5 to 2 mm (in most applications, the size of this discontinuous structure 3 can be between between a few microns and a few millimeters).
  • the film 1 is attached to the discontinuous structure 3 using a complementary structure 4 that is complementary to the discontinuous structure 3; or, the film 1 is attached to the discontinuous structure 3 using a complementary structure 4 that is partially complementary to the discontinuous structure 3.
  • Both ends of the film 1 with special functions are clamped above the device. Rollers or springs can also be added to the clamping system 5 so that the film 1 can be stretched when subjected to force from the device 2 to be coated or a tool with a complementary surface shape. or shrinkage, for example in clamping films 1
  • a spring is connected to the rear of the device. When the film 1 is stressed, the clamping device is affected by the tensile force of the film 1 and the spring stretches.
  • the device with a raised tooth-like structure is mounted on the machine table and moves as a whole in the direction of the mold with the complementary structure 4, or the complementary structure 4 can move, or both move together, and the film 1 is pushed into the mold with the complementary structure 4.
  • Tool each point on the film 1 can be attached to the structure simultaneously or successively at a certain angle) to realize the attachment of the film 1.
  • the complementary structure 4 allows the film 1 to be attached to the discontinuous structure 3 in one go. As shown in Figure 4, the complementary structure 4 attaches the film 1 to the discontinuous structure 3.
  • Discontinuous structure 3 exists in multiple different and/or identical structural sequences. For example, it is composed of multiple aspherical and planar structures with different parameters.
  • the structural sequence of the complementary structure 4 is complementary or partially complementary (part of the surface shape is the same as the discontinuous structure 3, and the other part is different) to the structural sequence of the discontinuous structure 3.
  • a plurality of individually moving structures 7 move in sequence, and the corresponding parts of the film 1 are attached to the discontinuous structure 3 one after another.
  • each tooth corresponds to a complementary structure 4 that moves alone, or several teeth correspond to a complementary structure 4 that moves alone.
  • the complementary structure 4 may be composed of multiple parts, as shown in Figure 3 (wherein the separately moving structure 7 in the complementary structure 4 has been pressed down to fit the corresponding film 1 to the device, and the remaining parts have not yet been pressed down). Press down each part in sequence.
  • the advantage of this is that the film layer on each tooth can be adjusted separately (the film layer can be adjusted after each part is pressed down, such as applying a certain force on both ends), which solves the problem of uneven film layers between teeth that are difficult to adjust. question.
  • the complementary structure 4 is pressed into the discontinuous structure 3 through a specified angle.
  • the discontinuous structure 3 has a symmetrical central axis.
  • a symmetry plane to which the central axis belongs divides the structure into two symmetrical parts.
  • the central axis of the complementary structure 4 and the central axis of the discontinuous structure 3 are located together in the symmetry plane and form A certain angle.
  • the length of the film in one direction between the two ends of the film 1 is greater than or equal to the sum of the side lengths in the same direction of the discontinuous structure 3; and/or, the film area between the two ends of the film 1 is greater than or equal to the surface area required for coating of the discontinuous structure 3 Sum.
  • the length, area, etc. of the attached film 1 can be controlled through rollers and other devices. After attachment, factors such as stress, temperature and humidity may cause the film 1 and the device to shrink or expand differently. This requires proper calculation of the shrinkage and expansion ranges of the two within the temperature range used before attachment. Before attaching, stretch the film 1 to the appropriate size and then attach.
  • the film 1 Before being attached, the film 1 is set at a predetermined angle and a predetermined height on the surface of the discontinuous structure 3 or the device to be coated 2 surface side.
  • the two ends of the mechanism that applies force to the film 1 may not be on the same horizontal plane.
  • the two ends of the part of the device to be filmed are of different heights.
  • the film can be set to an angle or curved surface consistent with the line connecting the two end points of the curved surface through the clamping mechanism before attaching. The angle of the tangent line at a certain point in the center makes it easy to attach.
  • the surface of the film is coated with adhesive.
  • a sticky glue layer can be attached to the back of the film 1 to adhere to the tooth-like structure (the glue layer is provided on the side of the film 1 close to the discontinuous structure 3).
  • the complementary structure 4 is removed and the excess portion of the film 1 is removed (eg, cut or laser cut).
  • the adhesive can be UV glue, heat-cured glue, etc., or refractive index matching liquid, etc. It can be coated on the surface before attaching the film, or it can be injected during or after attaching (there are glue injection holes 9 on the side or front of the device).
  • the side of the film 1 facing the tooth-like structure is not sticky, and curable liquid glue is first coated on the tooth-like structure.
  • the glue is cured (for example, by UV exposure). , or thermal curing, etc.).
  • the device is made of transparent material. The light transmittance of the device can be directly checked through optical detection equipment after being attached and before the glue is cured. Or in AR/VR lens applications, the aforementioned complementary structure 4 can also be transparent. The complementary structure 4 It is itself part of a complete device. Before the glue is cured, the flatness or other effects of the film 1 can be judged through the quality of the image reflected or transmitted by the film 1.
  • neither the film 1 nor the tooth-like structure can be sticky. After they are attached (pressed) flat through the complementary structure 4, voltage or high temperature is applied to the device or film 1, and they are bonded to each other through bonding. Together.
  • the above-mentioned glue can also be injected through the glue injection hole 9 (for example, the glue injection hole 9 can be opened on the side of the device) after the non-sticky film 1 (at least one side is not sticky) is attached to the tooth-like structure.
  • the aforementioned step of applying force at both ends or around the film 1 to adjust the film 1 can be performed before or after the glue injection.
  • the above-mentioned glue injection holes 9 can also be left empty or connected to evacuation equipment to discharge air bubbles between the film 1 and the device during the attachment process.
  • the film 1 is attached to the discontinuous structure 3 or the device 2 to be coated through air pressure or hydraulic pressure.
  • small holes can be opened on the surface of the device, and liquid, gas, or liquid and air can be pumped through the small holes.
  • the complementary structure 4 can have a certain gap 6 with the tooth-like structure (as shown in Figure 2), and the film 1 is flattened on the surface of the device to be coated using air pressure or hydraulic pressure by filling the gap 6 with air (such as nitrogen) or liquid.
  • the inflatable liquid can also apply force on both ends or around the membrane 1 to help adjust. Inflating or filling with liquid can be achieved by opening holes on the surface or side of the complementary structure 4 .
  • the film 1 When attached, the film 1 can be at a different temperature than the discontinuous structure 3 .
  • this can be achieved by placing the device on a machine with a temperature adjustment function.
  • the temperature of the device and the film layer can be different, so that the subsequent thermal expansion and contraction scales of different materials can be preprocessed according to the material characteristics.
  • the device is set to another temperature (e.g., 60°C or 0°C) by heating or cooling the device.
  • the attachment process takes place in a low pressure or vacuum environment. Alternatively, it can be performed in an environment filled with designated gas (special gas).
  • a functional film layer can be directly made on a film layer with a lower melting point. After being melted at high temperature, the functional film layer can be directly attached to the device.
  • a plurality of mutually independent non-continuous structures 3 and complementary structures 4 corresponding to the independent non-continuous structures 3 are arranged on one device, the complementary structures 4 are moved simultaneously or successively, and the film 1 is attached to the multiple mutually independent non-continuous structures 3 On structure 3.
  • the complementary structures 4 are moved simultaneously or successively, and the film 1 is attached to the multiple mutually independent non-continuous structures 3 On structure 3.
  • a preset force is applied around the film 1. Achieved through clamps, rollers and other tools.
  • a tool can be used to clamp the film 1 at both ends or around the edges.
  • the magnitude of the preset force exerted on the membrane 1 can be set and adjusted in real time.
  • springs, rollers, and dampers can be added to the tooling, and a tension gauge can be added to monitor the magnitude of the applied force.
  • the force exerted on the film 1 can be realized by adjusting mechanisms of the film 1 at both ends or around the film 1 .
  • the adjusting mechanism clamps the film 1 with a certain force to keep it flat without distortion or arching due to the pressure from the device or the complementary structure 4, which would adversely affect the adhesion.
  • the adjustment mechanism can also adjust the film 1 by applying tension after the device and the complementary structure 4 are pressed together, so that the film 1 can be attached more smoothly.
  • a directional film 1 such as a polarizing film
  • the relative direction of the film 1 and the device can also be dynamically adjusted (for example, by rotating around the vertical axis of the surface where the device and film 1 are attached).
  • the adjustment mechanism can include springs, dampers, rollers and other devices, which can stretch and control the length of the part of the film 1 pressed into the device, control the size of the applied force, and make adaptive adjustments to corresponding variables.
  • a spring is added to the clamping fixture to exert a tensile force on the film 1, or rollers are used at both ends to control the tensile force on the film 1.
  • the attached film 1 can be a polarization-selective film (such as a grating-based polarizing film, S light reflection, P light transmission or absorption), a wavelength-selective film (such as specific wavelength reflection, other wavelength transmission), angle-selective film etc. (for example, light reflection in certain angle ranges and light transmission in other angle ranges), or it can also be a combination of multiple layers of films 1 with different properties.
  • a polarization-selective film such as a grating-based polarizing film, S light reflection, P light transmission or absorption
  • a wavelength-selective film such as specific wavelength reflection, other wavelength transmission
  • angle-selective film etc. for example, light reflection in certain angle ranges and light transmission in other angle ranges
  • it can also be a combination of multiple layers of films 1 with different properties.
  • the corresponding complementary structure 4 can be removed after the coating is completed (it is not bonded to the film 1), or the complementary structure 4 itself can also be part of a complete device.
  • the complementary structure 4 is a transparent optical material, as shown in Figure 7 As shown in the figure, the complementary structure 4 in the figure is part of the optical complete optical device itself.
  • the thick black strip-shaped part between the two complementary structures 4 It is a mold used to control the middle part of the film 1 (it can also block UV light, and this part can also be removed).
  • a complete device complementary structure 4 is formed without removal.
  • the side of the film 1 facing the complementary structure 4 can be covered with an adhesive film layer, or the complementary structure 4 can be coated with glue (eg curable UV glue).
  • the glue can be applied in advance, or by opening glue holes 9 on the complementary structure 4 (for example, on the side of the complementary structure 4 or on the surface of the complementary structure 4 in Figures 5 and 6) between the complementary structure 4 and the surface of the complementary structure 4.
  • Film 1 is pressed and then glue is injected.
  • the full name of UV in English is Ultraviolet, and the Chinese translation is ultraviolet.
  • the film 1 is attached to a discontinuous structure.
  • the film 1 is attached to the discontinuous structure using a structure that is complementary or partially complementary to the discontinuous structure.
  • the complementary structure 4 allows the film 1 to be attached to the discontinuous structure in one go.
  • Discontinuous structures exist in the presence of multiple similar and/or identical structural sequences.
  • the one or more individually movable structures 7 move in sequence, and the film 1 is moved successively.
  • the corresponding parts are attached to the discontinuous structure.
  • the complementary structure 4 is pressed into the discontinuous structure at an angle.
  • Embodiment 2 of the present invention discloses a coating method. As shown in Figure 11, one side of the film 1 is first attached to an auxiliary film 10, and then the other side of the film 1 is attached to the device 2 to be coated through the auxiliary film 10. .
  • complementary structure 4 that is complementary or partially complementary to the surface type of the device 2 to be coated.
  • the film 1 and the auxiliary film 10 are attached to the device 2 to be coated. .
  • a preset force is applied around the auxiliary film 10 .
  • the preset force applied to the auxiliary film 10 can be set and adjusted in real time.
  • the size of the applied force can be adjusted by clamping the mold of the auxiliary film 10.
  • a tensile gauge can also be added to the mold to monitor the force in real time, or a visual inspection system (for example, above the transparent device to be filmed) can be added. Or add a camera below) to monitor the flatness of the film in real time, whether there are defects such as bubbles and wrinkles, as well as the intensity of transmitted/reflected light, imaging quality and other indicators, and make real-time adjustments to the film through the clamping tool.
  • the film 1 is attached or partially attached to the discontinuous structure 3 or the device to be coated 2, it is adjusted by applying a preset force around the periphery (both ends or one end or all around) of the film 1 or the auxiliary film 10.
  • the auxiliary film 10 is arranged at a predetermined angle and a predetermined height on one side of the surface of the discontinuous structure 3 or the device to be coated 2 before being attached.
  • the film 1 and the device to be coated 2 have different temperatures; and/or the auxiliary film 10 and the device to be coated 2 have different temperatures.
  • the auxiliary film 10 is attached to the discontinuous structure 3 or the device 2 to be coated by air pressure or hydraulic pressure.
  • the attachment process is carried out in an environment filled with designated gases, such as nitrogen, which can avoid reactions with oxygen during the curing process of some special glue materials or glues.
  • gases such as nitrogen
  • a material with a lower melting point can be selected as the auxiliary film 10.
  • the auxiliary film 10 can be melted during attachment and the functional film layer can be directly attached to the device.
  • a material whose auxiliary refractive index is the same as or similar to that of the device or functional film can be selected to make the auxiliary film 10 .
  • the attachment process is performed in a low pressure or vacuum environment.
  • a plurality of devices 2 to be coated and complementary structures 4 complementary to the devices 2 to be coated are arranged on one equipment, and the complementary structures 4 complementary to the devices 2 to be coated are moved simultaneously or successively, and the auxiliary film 10 is attached to the multiple devices 2 to be coated. on device 2.
  • multiple surfaces to be coated and complementary structures 4 complementary to the surfaces to be coated are arranged on one device, and the complementary structures 4 complementary to the surfaces to be coated are moved simultaneously or successively, and the auxiliary films 10 are attached to multiple surfaces to be coated. on the coated surface. This enables the function of attaching materials to multiple surfaces of a device at one time and attaching multiple devices at the same time.
  • the auxiliary film 10 is made into a roller shape, with the film 1 to be attached attached to it.
  • the equipment can load 3x3 devices at a time. After the attachment is completed, the next batch of devices is loaded and rotated at the same time. The roller can quickly complete the loading of film 1.
  • a variety of films 1 with different shapes and/or optical properties are attached to the auxiliary film 10 .
  • One advantage of this is that for some non-developable surfaces (surfaces that cannot be equivalently extended into a plane, such as spheres, aspheric surfaces, etc.), the film 1 can be approximately expanded into several parts (it can be broken on the plane) (continuous or overlapping), each part can be approximately fitted to a part of the curved surface, and ultimately the entire curved surface film can be applied without causing wrinkles of excess film 1 or gaps due to the absence of film 1 on the curved surface.
  • the present invention includes a coated optical structure and a manufacturing method thereof.
  • the film 1 to be attached is cut into the required plane shape and attached to an auxiliary film 10 in advance, as shown in Figure 8 .
  • the difference from the first embodiment is that after removing the complementary structure 4, you only need to remove the auxiliary film 10 by applying a certain force on both ends or the periphery of the auxiliary film 10 (the gap between the auxiliary film 10 and the attached film 1
  • the adhesive force is less than the adhesive force between the attached film 1 and the device, so it can be easily removed after being attached) without cutting the film 1.
  • the film 1 to be attached can also be made into a shape consistent with the surface to be attached.
  • the surface to be attached is an aspherical or free-form surface configuration, and the projected shape or approximation of the surface after unfolding on the plane can be calculated.
  • a plane or an approximate plane shape can be used for attachment (for an approximate plane , the film 1 can cover the curved surface and meet the flatness requirements after stretching or shrinking), and for a larger non-developable curved surface, it can be divided into multiple small developable or non-developable curved surfaces, and each small curved surface has a corresponding Plane or approximate plane expansion, these plane expansions can overlap or be intermittent on the same plane, and will be cut into multiple plane shapes corresponding to each curved surface part.
  • the film 1 is first attached to the auxiliary film 10 according to a specific position, and then transferred and attached to the device.
  • Another advantage of using the auxiliary film 10 is that attaching the film 1 to different parts of a device at the same time can be completed at one time (as shown in Figure 9), and there will be no waste of the attached film 1. It is also possible to attach different films 1 to different parts of the device at one time. For example, in Figure 9, one part (such as polarizing reflective film) and another part (such as anti-reflective film) use different films 1, or one part of Figure 8 and Figure 9 are different.
  • Adjacent film strips (which can correspond to the two surfaces of the same tooth on a discontinuous tooth structure device) use different films 1 (such as polarizing film and anti-reflection film), or they can also be partially adjacent as shown in Figure 8 and Figure 9
  • the strip film 1 part (can correspond to the two surfaces of the same tooth on the discontinuous tooth structure device) has film 1 and one without film 1 (such as polarizing film and no film), thereby achieving more diverse optical properties. It can also achieve the purpose of attaching the same film 1 to different parts of the device at one time.
  • auxiliary film 10 can also be made into a belt shape. By adding rollers and other devices to the clamping/transmission mechanism 8 at both ends, the entire production process can be streamlined. After one pressing, the machine can remove the film. 1. The bonded device is moved into the device to be processed.
  • the clamping mechanism moves the same auxiliary film 10, and the corresponding film 1 to be attached that has not yet been attached is moved in (for example, through a roller) and aligned with the device to be processed (can be fixed on The stroke of the material, or adding a visual detection system for alignment), press and adjust the complementary structure 4 to complete a batch of device attachment (if glue is used, exposure and other curing processes can also be added), and the aforementioned process is repeated.
  • the film laminating machine can be used with a machine that laminates the film 1 and the auxiliary film 10 (such as a roll or a sheet of film 1).
  • the film 1 is made into a preset shape through the stamping machine and attached to the auxiliary film 10) arranged in series, and the auxiliary film 10 with the film 1 pasted is directly input to the laminating machine through the roller, eliminating the need for intermediate links, thereby Production efficiency can be greatly improved.
  • one side of the film 1 is first attached to an auxiliary film 10, and then the other side is attached to the device 2 to be coated.
  • a certain force is exerted on the periphery of the film 1 or the auxiliary film 10 .
  • the force size can be set and adjusted in real time. After the film 1 is attached or partially attached to the discontinuous structure, it can still be adjusted by the force exerted by both ends or one end.
  • the length of the film in one direction between the two ends of the film 1 is greater than or equal to the sum of the side lengths of the discontinuous structures to be coated in the same direction, or the film area between the two ends of the film 1 is greater than or equal to the sum of the surface areas of the discontinuous structures to be coated.
  • the shrinkage of films and devices at different temperatures can be pre-calculated to set the relevant length or area.
  • the film 1 or the auxiliary film 10 is arranged at a certain angle and a certain height on one side of the surface of the discontinuous structure or device.
  • the film 1 is at a different temperature than the discontinuous structure or device when attached. Make film 1 stretch or shrink tighter and smoother through temperature difference Attached to the surface to be coated.
  • the auxiliary film 10 can use a material with a lower melting point. After a higher temperature is applied to the surface of the device 2 to be coated, the corresponding part of the auxiliary film 10 can be used as an adhesive to glue the film 1 to the surface to be coated. When using this method, the auxiliary film The refractive index of 10 is often close to or the same as the refractive index of the device 2 or film 1 to be coated.
  • the membrane 1 or the auxiliary membrane 10 can also be attached to the discontinuous structure or device by air pressure or hydraulic pressure.
  • the attachment process can be performed in an environment filled with special gases (such as nitrogen), or the attachment process can also be performed in a low pressure or vacuum environment.
  • Multiple independent discontinuous structures or multiple devices to be coated 2 are set up on one piece of equipment, as well as complementary or partially complementary structures, and the complementary structures 4 are moved simultaneously or successively to attach the film 1 or the auxiliary film 10 to multiple on mutually independent discontinuous structures or multiple devices 2 to be coated.
  • a variety of films 1 with different shapes and/or optical properties are attached to the auxiliary film 10 .
  • Embodiment 3 of the present invention discloses an optical device, which includes a discontinuous structural device with coating, and applies an optical device manufacturing method.
  • the discontinuous structural device includes a discontinuous structure 3 and an optical film.
  • the optical film is pasted on the surface of the discontinuous structure 3 or part of the surface of the discontinuous structure 3 .
  • the film 1 plays at least one role of increasing light reflectivity, increasing light transmittance, transmitting light with specific optical properties, reflecting light with specific optical properties, and absorbing light with specific optical properties.
  • the specific optical properties include: at least one of polarization, wavelength, energy, angle and phase of the light. For example, using a polarizing film such as a metal wire grid, its working angle for polarized light is much larger than that of traditional dielectric polarizing coatings.
  • the optical properties of the optical films in different areas on the discontinuous structure device are different.
  • the surface of the discontinuous structure 3 or part of the surface of the discontinuous structure 3 is covered with an optical film.
  • the film 1 plays at least one of the following functions: increasing light reflectivity, increasing light transmittance, transmitting light with specific optical properties, reflecting light with specific optical properties, and absorbing light with specific optical properties.
  • the specific optical properties include: at least one of polarization, wavelength, energy, angle, and phase of the light.
  • the optical properties of the film 1 in different areas on the discontinuous structure device can be different.
  • the present invention has the following beneficial effects:
  • the present invention coats discontinuous structures, which can reduce stray light/ghosting and improve light transmittance;
  • the present invention can solve the problem of difficult production of coating/filming on non-continuous structures and non-developable curved surfaces;
  • the present invention can complete the attachment of multiple devices through one pressing of the equipment, thereby improving production efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)

Abstract

一种光学器件制造方法、镀膜方法及镀膜的非连续结构器件,将薄膜(1)贴附在待镀膜器件(2)的非连续结构(3)上。对非连续结构(3)进行镀膜,可以减少杂散光/鬼影,提高透光率。

Description

光学器件制造方法、镀膜方法及镀膜的非连续结构器件 技术领域
本发明涉及光学器件的技术领域,具体地,涉及一种光学器件制造方法、镀膜方法及镀膜的非连续结构器件,尤其是,优选的涉及一种光学器件及制造方法。
背景技术
随着光学应用的发展,对于小体积的光学设备(例如AR/VR设备)的需求日益增长,在非连续结构上镀膜成为光学加工的一个难点,目前的非连续结构上(例如菲涅尔镜的齿面)往往并不镀膜。此外,对于复杂的光学薄膜(例如光栅类薄膜),在平面上使用光刻、纳米压印等方法制造会比在曲面上制造简单的多,但如何将上述膜层贴附到曲面上是一个技术难点。
公开号为CN114624843A的中国发明专利文献公开了一种光学器件制作方法,采用掩膜体将因第二器件粘接在第一器件上使第二器件周边溢出的胶覆盖并将掩膜体配置为正对所述第二器件正面的部分为透光区域,除所述透光区域之外的其他区域为不透光区域,所述不透光区域部分或全部与第一器件的正面覆盖。但上述文献没有提及如何镀膜或贴膜的问题。
针对上述中的相关技术,非镀膜的光学面会带来杂散光/鬼影增多,透光率下降等问题。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种光学器件制造方法、镀膜方法及镀膜的非连续结构器件。
根据本发明的实施例提供的一种光学器件制造方法,将薄膜贴附在待镀膜器件的非连续结构上。
进一步地,使用与所述非连续结构互补的互补结构将所述薄膜贴附在所述非连续结构上;
或者,
使用与所述非连续结构部分互补的互补结构将所述薄膜贴附在所述非连续结构上。
进一步地,所述互补结构一次性将所述薄膜贴附在所述非连续结构上。
进一步地,所述非连续结构存在多个不同和/或相同的结构序列。
进一步地,所述互补结构的结构序列互补或者部分互补所述非连续结构的结构序列;
所述互补结构的结构序列中存在一个或多个单独移动的结构;
所述单独移动的结构依次移动,先后将所述薄膜对应部分贴附在所述非连续结构上。
进一步地,所述互补结构通过指定角度压入所述非连续结构。
进一步地,所述薄膜周边施加有预设力。
进一步地,对所述薄膜施加的预设力的大小能够设置和实时调整。
进一步地,所述薄膜两端之间一个方向的膜长度大于等于所述非连续结构同方向上的边长之和;
和/或,
所述薄膜两端之间的膜面积大于等于所述非连续结构所需镀膜的表面面积之和。
进一步地,所述薄膜贴附之前通过预定角度和预定高度设置在所述待镀膜器件表面一侧。
进一步地,所述非连续结构表面涂覆有粘合剂。
进一步地,贴附时,所述薄膜与所述非连续结构温度不同。
进一步地,通过气压或液压,将所述薄膜贴附在所述非连续结构或待镀膜器件上。
进一步地,所述贴附过程在低气压或真空环境中进行;
或者,
所述贴附过程在充填指定气体环境中进行。
进一步地,在一台设备上设置多个相互独立的所述非连续结构和与独立的非连续结构对应的互补结构,同时或先后移动互补结构,将薄膜贴附在多个相互独立的非连续结构上。
根据本发明提供的一种镀膜方法,所述薄膜一面先贴附在一辅助薄膜上,再通过辅助薄膜将所述薄膜的另一面贴附在待镀膜器件上。
进一步地,存在与待镀膜器件的待镀膜面型互补或部分互补的互补结构,通过与待镀膜面型互补或部分互补的互补结构,将所述薄膜和辅助薄膜贴附在待镀膜器件上。
进一步地,所述辅助薄膜周边施加有预设力。
进一步地,对所述辅助薄膜施加的预设力大小能够设置和实时调整。
进一步地,所述薄膜贴附或部分贴附在所述待镀膜器件之后,通过薄膜或辅助薄膜 周边施加的预设力进行调整。
进一步地,所述辅助薄膜贴附之前通过预定角度和预定高度设置在所述待镀膜器件表面一侧。
进一步地,贴附时,所述薄膜与所述待镀膜器件温度不同;
和/或,
所述辅助薄膜与所述待镀膜器件温度不同。
进一步地,通过气压或液压,将所述辅助薄膜贴附在所述非连续结构或待镀膜器件上。
进一步地,所述贴附过程在低气压或真空环境中进行;
或者,
所述贴附过程在充填指定气体环境中进行。
进一步地,在一台设备上设置多个待镀膜器件及与待镀膜器件互补的互补结构,同时或先后移动与待镀膜器件互补的互补结构,将辅助薄膜贴附在多个待镀膜器件上;
和/或,
在一台设备上设置多个待镀膜表面及与待镀膜表面互补的互补结构,同时或先后移动与待镀膜表面互补的互补结构,将辅助薄膜贴附在多个待镀膜表面上。
进一步地,所述辅助薄膜上贴附多种形状和/或光学性质不同的薄膜。
根据本发明提供的一种镀膜的非连续结构器件,应用光学器件制造方法,包括非连续结构和光学薄膜;
所述光学薄膜贴覆于非连续结构表面或部分非连续结构表面。
进一步地,所述薄膜起增加光线反射率、增加光线透射率、透射特定光学性质的光线、反射特定光学性质的光线和吸收特定光学性质的光线其中至少一个作用。
进一步地,所述特定光学性质包括:光线的偏振性、波长、能量、角度和相位至少其中之一。
进一步地,该非连续结构器件上不同区域的光学薄膜的光学性质不同。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为互补结构将薄膜贴附在非连续结构上的过程图;
图2为通过部分互补结构和充气或充液将薄膜贴附在非连续结构上的过程图;
图3为其中一个互补结构已下压将对应薄膜与器件贴合,其余部分还未下压的示意图;
图4为互补结构、薄膜、及非连续结构设置的示意图;
图5为注胶孔、薄膜、及非连续结构设置的示意图;
图6为同一设备上的两个互补结构、薄膜、同一器件上两个贴膜面的示意图;
图7为互补结构为光学结构一部分,且将薄膜贴附在非连续结构上并曝光固化胶水的示意图;
图8为将需要贴附的薄膜裁剪成所需形状预先贴附在一辅助薄膜的示意图;
图9为对于多个器件不同部分需同时贴附相同和/或不同薄膜的辅助薄膜示意图;
图10为多个薄膜贴附在带状/可卷起辅助薄膜示意图;
图11为将辅助薄膜做成带状,通过在两端夹持/传送机构中增加滚轮等器件,将整个生产过程流水线化的示意图。
附图标记:
薄膜1                    夹持系统5                 注胶孔9
待镀膜器件2              间隙6                     辅助薄膜10
非连续结构3              单独移动的结构7           第一薄膜11
互补结构4                夹持/传送机构8            第二薄膜12
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
本发明实施例一公开了一种光学器件制造方法,如图1和图2所示,将薄膜1贴附在待镀膜器件2的非连续结构3上。具体为,在非连续的面型上贴附上特殊薄膜。如图1所示,器件具有多个凸起的齿状结构表面(非连续表面),本例中齿状结构尺寸约为0.5~2毫米(大多应用中这种非连续结构3的尺寸可以在几微米至几毫米之间)。
使用与非连续结构3互补的互补结构4将薄膜1贴附在非连续结构3上;或者,使用与非连续结构3部分互补的互补结构4将薄膜1贴附在非连续结构3上。具有特殊功能的薄膜1两端被夹持在器件上方,夹持系统5内还可以添加滚轮或弹簧,使得薄膜1受到来自与待镀膜器件2或互补面型的制具的力时可以拉伸或收缩,例如在夹持薄膜1 器件的后方连接弹簧,当薄膜1受力时夹持器件受薄膜1拉力影响,弹簧拉伸。具有凸起齿状结构的器件装在机台上整体向具有互补结构4的制具的方向移动或者也可以是互补结构4移动或两者共同移动,将薄膜1顶入具有互补结构4的制具(薄膜1上各点可以同时或成一定角度先后贴附到结构上),实现薄膜1贴附。
互补结构4可以一次性将薄膜1贴附在非连续结构3上。如图4所示,互补结构4将薄膜1贴附在非连续结构3上。
非连续结构3存在多个不同和/或相同的结构序列。例如由多个参数不同的非球面及平面结构组成。互补结构4的结构序列互补或者部分互补(面型的部分与非连续结构3相同,另一部分不相同)非连续结构3的结构序列。互补结构4的结构序列中存在一个或多个单独移动的结构7。多个单独移动的结构7依次移动,先后将薄膜1对应部分贴附在非连续结构3上。例如在菲涅尔镜的应用中,每一个齿对应一个单独移动的互补结构4,或者几个齿对应一个单独移动的互补结构4。
互补结构4可以由多个部分组成,如图3所示(其中互补结构4中单独移动的结构7已下压将对应薄膜1与器件贴合,其余部分还未下压)。各个部分按顺序先后下压。这么做的好处是可以分别调整每个齿上的膜层(每个部分下压后都可以对膜层做调整,例如两端施加一定的力),解决齿之间膜层不平整难以调整的问题。
互补结构4通过指定角度压入非连续结构3。例如和曲面某一点的切线平行的角度。再例如非连续结构3具有对称的中轴,中轴所属的一个对称平面将结构分成两个对称的部分,互补结构4的中轴与非连续结构3的中轴共同位于对称平面内,并成一定夹角。压入时互补结构4先有一点与非连续结构3接触,然后慢慢减小中轴的夹角,直到完全贴合。
薄膜1两端之间一个方向的膜长度大于等于非连续结构3同方向上的边长之和;和/或,薄膜1两端之间的膜面积大于等于非连续结构3所需镀膜的表面面积之和。例如可以通过滚轮等器件控制贴附薄膜1的长短、面积等。贴附后由于应力和温度湿度等因素,可能导致薄膜1和器件的收缩或膨胀不一,这就需要在贴附之前就妥当计算在使用的温度范围内两者的收缩和膨胀范围,在贴附前就按合适的尺寸拉伸薄膜1后贴附。或者还可以利用收缩和膨胀不同的特性,将平面的薄膜1平整的贴附在一些不可展曲面上(薄膜1在曲面上多余的褶皱部分收缩从而实现平整贴附,或薄膜1膨胀,填补曲面上缺失的部分空缺。)
薄膜1贴附之前通过预定角度和预定高度设置在非连续结构3表面或待镀膜器件2 表面一侧。对薄膜1施加力的机构两端可以不在同一水平面上,例如器件待贴膜部分两端高低不一,可以在贴附前通过夹持机构将膜设置成与曲面两端点连线一致的角度或曲面中某一点切线的角度,从而方便贴附。
薄膜表面涂覆有粘合剂。具体为,薄膜1背面可以附有具有粘性的胶层,从而粘附在齿状结构上(胶层设置在薄膜1靠近非连续结构3的一面)。待贴膜完毕后将互补结构4移除并去除(例如剪切或激光切割)薄膜1多余部分即可。粘合剂可以是UV胶,热固化的胶水等,也可以是折射率匹配液等。可以贴膜前先行涂覆在表面上,也可以是贴附过程中或贴附后从注入(器件侧面或正面有注胶孔9)。
或者,薄膜1面对齿状结构一侧不具有粘性,而在齿状结构上先涂覆可固化的液态胶水,将薄膜1贴附在齿状结构上之后,再固化胶水(例如用UV曝光,或热固化等)。这么做的一个好处是如果贴附过程中薄膜1并未完全平整的贴附在器件表面,则在胶水固化前还可以通过在薄膜1两端或四周施加一定的力来调整。一般器件为透明材料制成,贴附后固化胶水前可以通过光学检测设备直接检查器件的透光率,或者在AR/VR类镜片应用中,前述互补结构4也可以是透明的,互补结构4本身就是完整器件的一部分,在固化胶水之前可以透过薄膜1反射或透射所成像的质量来判断薄膜1贴附的平整度或其它效果。
或者,薄膜1和齿状结构也可以都不具有粘性,在通过互补结构4将其贴附(压合)平整后对器件或薄膜1加电压或高温,通过键合的方式使其粘合在一起。
或者,上述胶水也可以是在不具有粘性的薄膜1(至少一侧不具粘性)贴附在齿状结构上之后再通过注胶孔9(例如注胶孔9可以开在器件侧边上)注入,前述在薄膜1两端或四周施加作用力调整薄膜1的步骤在注胶之前或之后都可以进行。上述注胶孔9还可以空置或接驳抽正空的设备,用以将在贴附过程中薄膜1和器件之间的气泡排出。
或者,通过气压或液压,将薄膜1贴附在非连续结构3或待镀膜器件2上。例如,可以在器件表面开有小孔,通过小孔注液、注气或抽液抽气。互补结构4可以与齿状结构具有一定的间隙6(如图2所示),通过在间隙6内充气(如充氮气)或充液使用气压或液压将薄膜1压平在待覆膜器件表面,充气充液同时还可以在薄膜1两端或四周施加作用力来帮助调节。充气或充液可以通过在互补结构4表面或侧面开孔实现。
贴附时,薄膜1可以与非连续结构3温度不同。例如,可以通过器件放置在具有调温功能的机台上来实现。贴膜时可以使器件和膜层温度不同,从而根据材料特性对后续由于不同材料间不同的热胀冷缩尺度做预处理。例如可以将环境温度设为1个值(例如 25℃),而通过对器件加温或降温将器件设置在另一个温度(例如60℃或0℃)。贴附过程在低气压或真空环境中进行。或者也可以在填充指定气体(特殊气体)的环境中进行。例如在氮气环境中进行,可以避免一些胶水固化时与空气(氧气)产生反应。温度控制可以通过机台对器件加温实现,或者也可以在薄膜1周边改变环境温度来实现控制薄膜1的温度。一些应用中可以把功能性的膜层直接制作在熔点较低的膜层上,通过高温熔解后直接可以将功能性膜层贴附在器件上。
在一台设备上设置多个相互独立的非连续结构3和与独立的非连续结构3对应的互补结构4,同时或先后移动互补结构4,将薄膜1贴附在多个相互独立的非连续结构3上。这样可以实现一次上料贴合一个器件上的多个不同面,以及一次上料贴附多个器件。即一次操作即可完成对多个面和/或多个器件的贴膜,大大提高生产效率。
如图5所示,薄膜1周边施加有预设力。通过夹具、滚轮等等制具实现。例如可以使用制具在两端或四周夹持住薄膜1。对薄膜1施加的预设力的大小能够设置和实时调整。例如可以在制具中加入弹簧、滚轮、阻尼器的器件,还可以加入拉力计来监控所施加力的大小。
此例中对于薄膜1施加的力可以是通过在薄膜1两端或四周的薄膜1调节机构实现的。调节机构以一定的力夹持薄膜1,使其保持平整,不会由于受到器件或互补结构4的压力而产生扭曲,拱起等会对贴附产生不良影响的问题。调节机构也可以在器件和互补结构4压合在一起后通过施加拉力来调节薄膜1,使其贴附的更为平整。对于具有方向性的薄膜1(例如偏振类薄膜),还可以动态调整薄膜1与器件的相对方向(例如绕器件与薄膜1贴附表面的垂轴旋转来调整)。调节机构中可以包含弹簧、阻尼器、滚轮等器件,能够伸缩控制薄膜1压入器件部分的长短,能够控制施加力的大小,并对相应变量做适应调节。例如夹持的夹具后加弹簧,从而对薄膜1施加拉力,或者两端通过滚轮来控制薄膜1受到的拉力。
贴附的薄膜1可以是偏振选择性薄膜(例如基于光栅类的偏振膜,S光反射,P光透射或吸收)、波长选择性薄膜(例如特定波长反射,其余波长透射)、角度选择性薄膜等(例如某些角度范围内的光反射,其余角度范围的光透射),或者也可以是多层具有不同性质的薄膜1组合。
相应的互补结构4可以在覆膜完毕后去除(本身并未与薄膜1粘合),或者互补结构4本身也可以是完整器件的一部分,例如互补结构4是透明的光学材料,如图7所示,图中互补结构4是光完整学器件本身的一部分,两个互补结构4间粗黑的长条状部 分是用于控制中间部分薄膜1的制具(还可以遮挡UV光,此部分也可去除),覆膜完毕后即组成完整器件互补结构4无需移除。在这种情况下,薄膜1面向互补结构4的一侧可以覆有具有粘性的膜层,或者在互补结构4上涂覆上胶水(例如可固化的UV胶)。胶水的涂覆可以是预先涂覆的,也可以是通过在互补结构4上开注胶孔9(例如在图5和图6中的互补结构4侧面或者互补结构4表面)在互补结构4与薄膜1压合后再注胶。UV英文全称为Ultraviolet,中文译文为紫外线。
本实施例将薄膜1贴附在不连续结构上。使用与不连续结构互补或部分互补的结构将薄膜1贴附在不连续结构上。互补结构4可以一次性将薄膜1贴附在不连续结构上。不连续结构存在多个相似和/或相同的结构序列。存在与结构序列互补或部分互补的结构序列,互补或部分互补的结构序列中也可以存在一个或多个可单独移动的结构7,一个或多个单独移动的结构7依次移动,先后将薄膜1对应部分贴附在不连续结构上。互补结构4以一定角度压入不连续结构。
本发明实施例二公开了一种镀膜方法,如图11所示,薄膜1一面先贴附在一辅助薄膜10上,再通过辅助薄膜10将薄膜1的另一面贴附在待镀膜器件2上。
存在与待镀膜器件2的待镀膜面型互补或部分互补的互补结构4,通过与待镀膜面型互补或部分互补的互补结构4,将薄膜1和辅助薄膜10贴附在待镀膜器件2上。
辅助薄膜10周边施加有预设力。对辅助薄膜10施加的预设力大小能够设置和实时调整。例如通过夹持辅助薄膜10的制具来调整施加力的大小,在制具中还可以加入拉力计的器件对力的大小进行实时监测,或者加入视觉检测系统(例如在透明的待贴膜器件上方或下方加入摄像头),实时监测贴膜的平整度,有无气泡、褶皱等缺陷、以及透射/反射光的强度,成像质量等指标,并通过夹持的制具对贴膜做实时调整。
薄膜1贴附或部分贴附在非连续结构3或待镀膜器件2之后,通过薄膜1或辅助薄膜10周边(两端或一端或四周)施加的预设力进行调整。
辅助薄膜10贴附之前通过预定角度和预定高度设置在非连续结构3或待镀膜器件2表面一侧。
贴附时,薄膜1与待镀膜器件2温度不同;和/或,辅助薄膜10与待镀膜器件2温度不同。通过气压或液压,将辅助薄膜10贴附在非连续结构3或待镀膜器件2上。贴附过程在充填指定气体环境中进行,例如氮气,可以避免某些特殊胶材或胶水固化过程中与氧气产生反应。在一些应用中,可以选择熔点较低的材料做辅助薄膜10,通过将器件的温度设的较高,贴附时可以辅助薄膜10熔解后直接将功能性膜层贴附在器件上。 这种情况下可以选择辅折射率与器件或功能性薄膜相同或相近的材料制作辅助薄膜10。或者贴附过程在低气压或真空环境中进行。
在一台设备上设置多个待镀膜器件2及与待镀膜器件2互补的互补结构4,同时或先后移动与待镀膜器件2互补的互补结构4,将辅助薄膜10贴附在多个待镀膜器件2上。和/或,在一台设备上设置多个待镀膜表面及与待镀膜表面互补的互补结构4,同时或先后移动与待镀膜表面互补的互补结构4,将辅助薄膜10贴附在多个待镀膜表面上。从而实现一次上料贴附一个器件的多个表面,以及同时贴附多个器件的功能。
例如图9所示,辅助薄膜10上贴有3个第一薄膜11和3个第二薄膜12,设备一次上料3个待贴膜器件,第一薄膜11和第二薄膜12的材料/性质可以不同,设备一次性下压互补器件,一次即可完成3个器件的贴膜。或者也可以是如图10所示,辅助薄膜10制成滚筒状,上面贴有需贴附的薄膜1,设备可以一次上料3x3个器件,完成贴附后上料下一批器件,同时转动滚轮,即可快速完成薄膜1的上料。
辅助薄膜10上贴附多种形状和/或光学性质不同的薄膜1。这么做的一个好处是对于一些不可展曲面(无法将表面等效扩展成平面的曲面,如球面、非球面等),可以将薄膜1其近似的展开成几个部分(在平面上可以是断续或重叠的),每个部分都能近似的贴合在曲面的一部分上,最终整个曲面贴膜能够达到不产生多余薄膜1的褶皱或曲面上没有薄膜1而产生空缺。
本发明包含镀膜的光学结构,及其制造方法。此例中将需要贴附的薄膜1裁剪成所需平面形状预先贴附在一辅助薄膜10上,如图8所示。通过调节机构将需贴附的薄膜1移动到预设位置,按照实施例一中的方法将需贴附的薄膜1贴附在器件上。与实施例一的区别在于,将互补结构4移除后只需通过在辅助薄膜10两端或周边施加一定的力将辅助薄膜10移除即可(辅助薄膜10与贴附薄膜1之间的粘力小于贴附薄膜1与器件之间的粘力,所以贴附后可以轻易移除),而无需再裁剪薄膜1。
此外,还可以将需要贴附的薄膜1制作成与待贴附表面一致的形状,例如待贴附表面为非球面或自由曲面构型,可以计算其表面展开后在平面上的投影形状或近似的形状,对于可展曲面或面积较小的不可展曲面(数学上无法展开成平面的曲面,如球面,非球面等),可以用一个平面或近似的平面形状来进行贴附(对于近似平面,薄膜1拉伸或收缩后能够覆盖曲面且满足平整度的要求),而对于面积较大的不可展曲面,可以将其分成多个小的可展或不可展曲面,各个小曲面分别有对应的平面或近似平面展开,这些平面展开在同一平面上可以重叠也可以断续,将裁剪成对应各曲面部分的多个平面形状 的薄膜1按特定位置先贴附在辅助薄膜10上,再转移贴附到器件上。使用辅助薄膜10还有一个好处是对于一个器件不同部分需同时贴附薄膜1可以一次完成(如图9所示),并且不会造成需贴附薄膜1的浪费。还可以实现一次在器件不同部分贴附不同薄膜1,例如图9中一部分(如偏振反射膜)与另一部分(如增反膜)采用不同的薄膜1,或者如图8和图9中一部分相邻的膜条(可对应不连续齿状结构器件上同一齿的两个表面)采用不同薄膜1(如偏振膜和增透膜),或者也可以是如图8和图9中一部分相邻的条状薄膜1部分(可对应不连续齿状结构器件上同一齿的两个表面)一个有薄膜1,一个无薄膜1(如偏振膜和不贴膜),从而实现更多样的光学特性。还可以实现一次贴附在器件不同部分贴附相同薄膜1的目的。
这么做的另一个好处是,可以将所有需贴附的薄膜1都预先贴附在同一辅助薄膜10上,如图9、图10和图11所示,通过制具及机台一次压合就可以对多个器件完成贴附,提高生产效率。此外,如图11所示,还可以将辅助薄膜10做成带状,通过在两端夹持/传送机构8中增加滚轮等器件,将整个生产过程流水线化,一次压合后机台移出薄膜1贴合完毕的器件,移入待加工器件,同时夹持机构移动同一辅助薄膜10,将对应含有尚未贴附的待贴附薄膜1移入(例如通过滚轮)并对准待加工器件(可以固定上料的行程,或者加入视觉检测系统来对位),与互补结构4压合并调节后完成一批次器件贴附(如采用胶水,还可以增加曝光等固化过程),并重复前述过程。这么做省去薄膜1夹持机构每次贴合都需重新上下料薄膜1的步骤,贴膜机台可以与将薄膜1与辅助薄膜10贴合的机台(例如一卷或制成一张张的薄膜1通过冲压机台制作成预设型状并贴附在辅助薄膜10上)串联布置,将贴完薄膜1的辅助薄膜10直接通过滚轮输入到贴膜机台上,省去中间环节,从而可以大大提高生产效率。
本实施例薄膜1一面先贴附在一辅助薄膜10上,再将另一面贴附在待镀膜器件2上。存在与待镀膜器件2的待镀膜面面型互补的结构,通过互补结构4将薄膜1及辅助薄膜10贴附在待镀膜器件2上。薄膜1或辅助薄膜10周边施加有一定的力。力大小可设置,可实时调整。薄膜1贴附或部分贴附在不连续结构之后,仍可以通过两端或一端施加的力进行调整。薄膜1两端之间一个方向的膜长度大于等于待镀膜的不连续结构同方向上的边长之和,或薄膜1两端之间的膜面积大于等于待镀膜的不连续结构表面面积之和。可以预先计算薄膜及器件在不同温度下的收缩率来设置相关长度或面积。薄膜1或辅助薄膜10贴附之前以一定角度一定高度设置在不连续结构或器件表面一侧。贴附时薄膜1与不连续结构或器件温度不同。通过温差使薄膜1伸展或收缩更紧密和平滑的 贴附在待镀膜表面上。
或者辅助薄膜10可以使用熔点较低的材料,对待镀膜器件2表面施加较高温度后辅助薄膜10相应部分可以作为粘合剂将薄膜1胶合在待镀膜表面上,采用这种方法时,辅助薄膜10的折射率往往与待镀膜器件2或薄膜1的折射率相近或相同。
对于某些薄膜1,还可以通过施加电压用键合的方式使其贴附在待镀膜表面上。
还可以通过气压或液压将薄膜1或辅助薄膜10贴附在不连续结构或器件上。贴附过程可以在充特殊气体的环境中进行(例如充氮气),或者贴附过程也可以在低气压或真空环境中进行或者也。在一台设备上设置多个相互独立不连续结构或多个待镀膜器件2,及与其互补或部分互补的结构,同时或先后移动互补结构4,将薄膜1或辅助薄膜10贴附在多个相互独立的不连续结构或多个待镀膜器件2上。辅助薄膜10上贴附多种形状和/或光学性质不同的薄膜1。
本发明实施例三公开了一种光学器件,包括镀膜的非连续结构器件,应用光学器件制造方法,该非连续结构器件包括非连续结构3和光学薄膜。光学薄膜贴覆于非连续结构3表面或部分非连续结构3表面。薄膜1起增加光线反射率、增加光线透射率、透射特定光学性质的光线、反射特定光学性质的光线和吸收特定光学性质的光线至少一个作用。特定光学性质包括:光线的偏振性、波长、能量、角度和相位至少其中之一。例如使用金属线栅类的偏振薄膜,其对偏振光的工作角度远大于传统介质偏振镀膜。该非连续结构器件上不同区域的光学薄膜的光学性质不同。
本实施例非连续结构3表面或部分非连续结构3表面贴覆有光学薄膜。薄膜1起如下作用的至少其中之一:增加光线反射率、增加光线透射率、透射特定光学性质的光线,反射特定光学性质的光线,吸收特定光学性质的光线。特定光学性质包括:光线的偏振性,波长,能量,角度,相位的至少其中之一。非连续结构器件上不同区域薄膜1的光学性质可以不同。
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
与现有技术相比,本发明具有如下的有益效果:
1、本发明对非连续结构进行镀膜,可以减少杂散光/鬼影,提高透光率;
2、本发明可以解决非连续结构以及不可展曲面表面镀膜/贴膜生产困难的问题;
3、本发明通过设备一次压合就可以对多个器件完成贴附,提高生产效率。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (30)

  1. 一种光学器件制造方法,其特征在于,将薄膜(1)贴附在待镀膜器件(2)的非连续结构(3)上。
  2. 根据权利要求1所述的光学器件制造方法,其特征在于,使用与所述非连续结构(3)互补的互补结构(4)将所述薄膜(1)贴附在所述非连续结构(3)上;
    或者,
    使用与所述非连续结构(3)部分互补的互补结构(4)将所述薄膜(1)贴附在所述非连续结构(3)上。
  3. 根据权利要求2所述的光学器件制造方法,其特征在于,所述互补结构(4)一次性将所述薄膜(1)贴附在所述非连续结构(3)上。
  4. 根据权利要求1所述的光学器件制造方法,其特征在于,所述非连续结构(3)存在多个不同和/或相同的结构序列。
  5. 根据权利要求4所述的光学器件制造方法,其特征在于,所述互补结构(4)的结构序列互补或者部分互补所述非连续结构(3)的结构序列;
    所述互补结构(4)的结构序列中存在一个或多个单独移动的结构(7);
    所述单独移动的结构(7)依次移动,先后将所述薄膜(1)对应部分贴附在所述非连续结构(3)上。
  6. 根据权利要求2所述的光学器件制造方法,其特征在于,所述互补结构(4)通过指定角度压入所述非连续结构(3)。
  7. 根据权利要求1所述的光学器件制造方法,其特征在于,所述薄膜(1)周边施加有预设力。
  8. 根据权利要求7所述的光学器件制造方法,其特征在于,对所述薄膜(1)施加的预设力的大小能够设置和实时调整。
  9. 根据权利要求1所述的光学器件制造方法,其特征在于,所述薄膜(1)两端之间一个方向的膜长度大于等于所述非连续结构(3)同方向上的边长之和;
    和/或,
    所述薄膜(1)两端之间的膜面积大于等于所述非连续结构(3)所需镀膜的表面面积之和。
  10. 根据权利要求1所述的光学器件制造方法,其特征在于,所述薄膜(1)贴附之 前通过预定角度和预定高度设置在所述待镀膜器件(2)表面一侧。
  11. 根据权利要求1所述的光学器件制造方法,其特征在于,所述非连续结构(3)表面涂覆有粘合剂。
  12. 根据权利要求1所述的光学器件制造方法,其特征在于,贴附时,所述薄膜(1)与所述非连续结构(3)温度不同。
  13. 根据权利要求1所述的光学器件制造方法,其特征在于,通过气压或液压,将所述薄膜(1)贴附在所述非连续结构(3)或待镀膜器件(2)上。
  14. 根据权利要求1所述的光学器件制造方法,其特征在于,所述贴附过程在低气压或真空环境中进行;
    或者,
    所述贴附过程在充填指定气体环境中进行。
  15. 根据权利要求2所述的光学器件制造方法,其特征在于,在一台设备上设置多个相互独立的所述非连续结构(3)和与独立的非连续结构(3)对应的互补结构(4),同时或先后移动互补结构(4),将薄膜(1)贴附在多个相互独立的非连续结构(3)上。
  16. 一种镀膜方法,其特征在于,所述薄膜(1)一面先贴附在一辅助薄膜(10)上,再通过辅助薄膜(10)将所述薄膜(1)的另一面贴附在待镀膜器件(2)上。
  17. 根据权利要求16所述的镀膜方法,其特征在于,存在与待镀膜器件(2)的待镀膜面型互补或部分互补的互补结构(4),通过与待镀膜面型互补或部分互补的互补结构(4),将所述薄膜(1)和辅助薄膜(10)贴附在待镀膜器件(2)上。
  18. 根据权利要求16所述的镀膜方法,其特征在于,所述辅助薄膜(10)周边施加有预设力。
  19. 根据权利要求18所述的镀膜方法,其特征在于,对所述辅助薄膜(10)施加的预设力大小能够设置和实时调整。
  20. 根据权利要求18所述的镀膜方法,其特征在于,所述薄膜(1)贴附或部分贴附在所述待镀膜器件(2)之后,通过薄膜(1)或辅助薄膜(10)周边施加的预设力进行调整。
  21. 根据权利要求16所述的镀膜方法,其特征在于,所述辅助薄膜(10)贴附之前通过预定角度和预定高度设置在所述待镀膜器件(2)表面一侧。
  22. 根据权利要求16所述的镀膜方法,其特征在于,贴附时,所述薄膜(1)与所述待镀膜器件(2)温度不同;
    和/或,
    所述辅助薄膜(10)与所述待镀膜器件(2)温度不同。
  23. 根据权利要求16所述的镀膜方法,其特征在于,通过气压或液压,将所述辅助薄膜(10)贴附在所述非连续结构(3)或待镀膜器件(2)上。
  24. 根据权利要求16所述的镀膜方法,其特征在于,所述贴附过程在低气压或真空环境中进行;
    或者,
    所述贴附过程在充填指定气体环境中进行。
  25. 根据权利要求17所述的镀膜方法,其特征在于,在一台设备上设置多个待镀膜器件(2)及与待镀膜器件(2)互补的互补结构(4),同时或先后移动与待镀膜器件(2)互补的互补结构(4),将辅助薄膜(10)贴附在多个待镀膜器件(2)上;
    和/或,
    在一台设备上设置多个待镀膜表面,及与待镀膜表面互补的互补结构(4),同时或先后移动与待镀膜表面互补的互补结构(4),将辅助薄膜(10)贴附在多个待镀膜表面上。
  26. 根据权利要求16所述的镀膜方法,其特征在于,所述辅助薄膜(10)上贴附多种形状和/或光学性质不同的薄膜(1)。
  27. 一种镀膜的非连续结构器件,其特征在于,应用权利要求1-15任一所述的光学器件制造方法,包括非连续结构(3)和光学薄膜;
    所述光学薄膜贴覆于非连续结构(3)表面或部分非连续结构(3)表面。
  28. 根据权利要求27所述的镀膜的非连续结构器件,其特征在于,所述薄膜(1)起增加光线反射率、增加光线透射率、透射特定光学性质的光线、反射特定光学性质的光线和吸收特定光学性质的光线其中至少一个作用。
  29. 根据权利要求28所述的镀膜的非连续结构器件,其特征在于,所述特定光学性质包括:光线的偏振性、波长、能量、角度和相位至少其中之一。
  30. 根据权利要求27所述的镀膜的非连续结构器件,其特征在于,该非连续结构器件上不同区域的光学薄膜的光学性质不同。
PCT/CN2023/083606 2022-07-19 2023-03-24 光学器件制造方法、镀膜方法及镀膜的非连续结构器件 WO2024016705A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210848450.0A CN115144937A (zh) 2022-07-19 2022-07-19 光学器件制造方法、镀膜方法及镀膜的非连续结构器件
CN202210848450.0 2022-07-19

Publications (1)

Publication Number Publication Date
WO2024016705A1 true WO2024016705A1 (zh) 2024-01-25

Family

ID=83412473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083606 WO2024016705A1 (zh) 2022-07-19 2023-03-24 光学器件制造方法、镀膜方法及镀膜的非连续结构器件

Country Status (2)

Country Link
CN (1) CN115144937A (zh)
WO (1) WO2024016705A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115144937A (zh) * 2022-07-19 2022-10-04 上海慧希电子科技有限公司 光学器件制造方法、镀膜方法及镀膜的非连续结构器件

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5232637A (en) * 1992-01-21 1993-08-03 Corning Incorporated Ophthalmic lens method
US20010028950A1 (en) * 2000-04-05 2001-10-11 Kenichi Chujo Molded resin laminate and method for producing the same
CN1664624A (zh) * 2004-03-05 2005-09-07 株式会社有泽制作所 透镜、透射屏及用于制造该透镜的方法
CN101253425A (zh) * 2005-08-29 2008-08-27 松下电器产业株式会社 衍射光学元件及制造方法、使用衍射光学元件的摄像装置
CN102067023A (zh) * 2009-05-15 2011-05-18 日东电工株式会社 光学显示装置的制造系统以及制造方法
CN102809777A (zh) * 2011-06-03 2012-12-05 住友化学株式会社 带保护膜的导光板的制造方法
CN107589565A (zh) * 2016-07-08 2018-01-16 株式会社Lg化学 用于制造显示单元的系统和方法
CN207105800U (zh) * 2017-06-23 2018-03-16 昇印光电(昆山)股份有限公司 光学薄膜及电子产品壳体
CN112204878A (zh) * 2018-06-04 2021-01-08 住友电气工业株式会社 用于聚光器光伏设备的菲涅耳透镜、聚光器光伏系统、以及制造用于聚光器光伏设备的菲涅耳透镜的方法
CN115144937A (zh) * 2022-07-19 2022-10-04 上海慧希电子科技有限公司 光学器件制造方法、镀膜方法及镀膜的非连续结构器件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204725866U (zh) * 2015-02-10 2015-10-28 华南理工大学 一种在制备表面具有凹陷结构的光学薄膜中使用的装置
CN106873201A (zh) * 2017-04-21 2017-06-20 京东方科技集团股份有限公司 贴附装置
CN109754713A (zh) * 2017-11-03 2019-05-14 阳程科技股份有限公司 曲面贴合装置及其贴合方法
CN109959980B (zh) * 2017-12-26 2020-09-08 清华大学 疏水镜子以及使用该疏水镜子的汽车
CN211309077U (zh) * 2019-11-29 2020-08-21 深圳市承熹机电设备有限公司 内曲面贴膜装置
CN112684529A (zh) * 2020-12-28 2021-04-20 上海慧希电子科技有限公司 光学器件、系统及光学设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5232637A (en) * 1992-01-21 1993-08-03 Corning Incorporated Ophthalmic lens method
US20010028950A1 (en) * 2000-04-05 2001-10-11 Kenichi Chujo Molded resin laminate and method for producing the same
CN1664624A (zh) * 2004-03-05 2005-09-07 株式会社有泽制作所 透镜、透射屏及用于制造该透镜的方法
CN101253425A (zh) * 2005-08-29 2008-08-27 松下电器产业株式会社 衍射光学元件及制造方法、使用衍射光学元件的摄像装置
CN102067023A (zh) * 2009-05-15 2011-05-18 日东电工株式会社 光学显示装置的制造系统以及制造方法
CN102809777A (zh) * 2011-06-03 2012-12-05 住友化学株式会社 带保护膜的导光板的制造方法
CN107589565A (zh) * 2016-07-08 2018-01-16 株式会社Lg化学 用于制造显示单元的系统和方法
CN207105800U (zh) * 2017-06-23 2018-03-16 昇印光电(昆山)股份有限公司 光学薄膜及电子产品壳体
CN112204878A (zh) * 2018-06-04 2021-01-08 住友电气工业株式会社 用于聚光器光伏设备的菲涅耳透镜、聚光器光伏系统、以及制造用于聚光器光伏设备的菲涅耳透镜的方法
CN115144937A (zh) * 2022-07-19 2022-10-04 上海慧希电子科技有限公司 光学器件制造方法、镀膜方法及镀膜的非连续结构器件

Also Published As

Publication number Publication date
CN115144937A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2024016705A1 (zh) 光学器件制造方法、镀膜方法及镀膜的非连续结构器件
US7462305B2 (en) Optical sheet manufacturing method and optical sheet
US20230089314A1 (en) Curved reflective polarizer
KR100538298B1 (ko) 차광성층을 갖춘 렌티큘라 렌즈시트 및 그 제조방법
WO2022105909A1 (zh) 镜片的膜片贴合方法
JP5471494B2 (ja) 光学素子シートの連続両面形成方法、およびその光学素子シート形成装置
JP7549091B2 (ja) 光源ユニット、光学ユニット、及び光源ユニットの製造方法
JP4023294B2 (ja) レンチキュラーレンズシートの製造方法
US8034263B2 (en) Multi-layer panel and method of manufacturing such a panel
JP2005161528A (ja) プラスチック積層体及びその製造方法
KR20160123671A (ko) 다층 구조의 렌즈 및 그 렌즈 제조 방법
EP4111245A1 (en) Preserving in-plane function of polarization laminates in a forming process
US11897182B2 (en) Resin laminated optical body and method for manufacturing the same
JP2018168342A (ja) 粘着シートおよび積層体
CA2129366C (en) A method of backscreen fabrication using pre-coated material
JP3084462B2 (ja) 透過型スクリーン
JP5908272B2 (ja) 偏光変換素子及びこれを用いた投影装置
JP2008515624A (ja) 塗工フィルム及びその製造方法
JP3485620B2 (ja) フレネルプレートの製造方法
WO2023199988A1 (ja) 光学機能性フィルム、光学積層体、成形体、光学部品の製造方法、光学部品、仮想現実表示装置、光学フィルムおよび成形方法
JP2013114248A (ja) スクリーン及びスクリーンの製造方法
US20050286253A1 (en) Lightweight, stiff curved reflector and method for manufacturing same
TW201740179A (zh) 一種投影螢幕的製作方法及相關投影螢幕
CN115103772A (zh) 将功能性膜层压到光学制品上的方法以及光学制品
JP5296964B2 (ja) 表示パネル用の光学シート及び表示パネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841780

Country of ref document: EP

Kind code of ref document: A1