WO2024016239A1 - 光圈机构 - Google Patents

光圈机构 Download PDF

Info

Publication number
WO2024016239A1
WO2024016239A1 PCT/CN2022/106891 CN2022106891W WO2024016239A1 WO 2024016239 A1 WO2024016239 A1 WO 2024016239A1 CN 2022106891 W CN2022106891 W CN 2022106891W WO 2024016239 A1 WO2024016239 A1 WO 2024016239A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating ring
aperture
optical axis
diaphragm
swing
Prior art date
Application number
PCT/CN2022/106891
Other languages
English (en)
French (fr)
Inventor
宇野勝
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280002734.6A priority Critical patent/CN117859084A/zh
Priority to PCT/CN2022/106891 priority patent/WO2024016239A1/zh
Publication of WO2024016239A1 publication Critical patent/WO2024016239A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements

Definitions

  • the present invention relates to an aperture mechanism for a built-in camera or a small camera of a smart phone.
  • an object of the present invention is to provide an aperture mechanism that can downsize the structure used for the aperture and has a simple structure.
  • One embodiment of the present invention is an aperture mechanism including: a rotation drive unit including a rotating ring that rotates around an optical axis; and a drive source unit that generates driving force for rotating the rotating ring; and an aperture unit, It has a plurality of diaphragm plates arranged around the optical axis. The plurality of diaphragm plates are engaged with the rotating ring and swing by the rotation of the rotating ring.
  • the driving source part is provided with: a piezoelectric element that is deformed by energization; and a pressing part that is provided in a manner linked to the piezoelectric element, and is provided as It can be in contact with the rotating ring; the piezoelectric element is deformed by energization, so that the pressing part is pressed against the rotating ring by a force having a circumferential component, so that the rotating ring is rotated.
  • each of the plurality of diaphragm plates may be provided such that a portion on the radial outer side of the diaphragm portion that is the center of the swing is axially supported, and an edge portion on the front end side of the swing is formed.
  • a cutout portion is provided for expanding and reducing the opening area, and an engaging portion for engaging with the rotating ring is provided between the shaft-supported portion and the cutout portion.
  • the rotation track of the rotating ring and the swing track of each of the plurality of aperture plates can be in an intersecting relationship, and the engagement by the engaging portion is provided between the aperture plate and the aperture plate.
  • the convex portion of one of the rotating rings is combined with a concave portion provided on the other side, and the cross-sectional size of the concave portion is larger than the cross-sectional size of the convex portion.
  • the recessed portion may be configured to have an oval shape when viewed in the optical axis direction.
  • the drive source part may be provided so as to be able to come into contact with a radially outer peripheral surface of the rotating ring.
  • the aperture unit may be provided with an even number of the aperture plates, and the aperture plates located in front of the optical axis direction and the aperture plates located in the rear overlap each other during the swing.
  • the plates are arranged adjacent to each other in the circumferential direction.
  • a permanent magnet may be provided on the rotating ring, and a magnetic sensor may be provided on a radially outer side of the rotating ring.
  • another embodiment of the present invention is a lens module, which includes one or more lenses and the aperture mechanism described in any of the above embodiments.
  • FIG. 1 is an exploded perspective view schematically illustrating the structure of an aperture mechanism according to an embodiment of the present invention, in which the constituent components are disassembled and arranged in an optical axis direction.
  • FIG. 2 is a perspective view showing an assembled state of the aperture mechanism.
  • FIG. 3 is a perspective view showing the rotational drive part and the diaphragm part in the diaphragm mechanism as viewed from the bottom side.
  • FIG. 4 is a perspective view showing an open state of the diaphragm unit.
  • FIG. 5 is a perspective view showing the diaphragm state of the diaphragm unit.
  • FIG. 6 is a plan view showing a drive source portion of the rotation drive unit (as an aperture mechanism).
  • optical axis direction refers to the overall direction of the aperture mechanism 1 unless otherwise specified. That is, the direction in which the aperture mechanism 1 rotates relative to the direction of the optical axis is the circumferential direction. Furthermore, the direction orthogonal to the optical axis direction is the radial direction. In addition, “front” is a direction toward the subject in the optical axis direction, and “rear” is a direction toward the imaging element of the camera in the optical axis direction.
  • FIG. 1 An exploded view of the whole is shown in Figure 1 .
  • the upper part of the figure is the front in the direction of the optical axis, and the lower part is the rear in the direction of the optical axis.
  • the exploded but not shown part shown in the lower left corner of FIG. 1 is the lens driving mechanism X that receives the light focused by the aperture mechanism 1 .
  • the diaphragm mechanism 1 is arranged in the order from the front side (subject side) toward the lens driving mechanism X in the optical axis direction, and the rotation drive unit 2 , the diaphragm unit 3 , and the support plate 4 are arranged in the housing 6 .
  • the housing 6 also serves as the housing of the lens drive mechanism X.
  • the support plate 4 also serves as the lens driving mechanism X.
  • One set or one lens 7 among the plurality of lenses constituting the camera is provided inside the housing 6 and in front of the rotation drive unit 2.
  • the aperture mechanism 1 is provided in front of the lens driving mechanism X (the portion except the housing).
  • the lens driving mechanism X uses the autofocus function to move the cylindrical portion X1 as a part thereof back and forth in the optical axis direction.
  • the entire diaphragm mechanism 1 is also configured to move forward and backward in conjunction with (synchronous movement) the cylindrical portion X1.
  • the rotation drive unit 2 includes a rotation ring 21 that rotates in a direction R around an optical axis provided in the camera, and a drive source unit 22 that generates a driving force for rotating the rotation ring 21 .
  • the rotating ring 21 is rotated by the driving force of the driving source part 22 in a range in which the engaging protrusion 212 (described later) moves in the circumferential direction corresponding to the swing range of each diaphragm plate 31 for opening and closing the diaphragm unit 3 .
  • the rotating ring 21 may be configured to continuously rotate by a predetermined angle corresponding to the opening and closing of the aperture, or may be configured to rotate in multiple stages like a stepping motor.
  • the rotating ring 21 is arranged in an annular shape whose center in the optical axis direction coincides with the optical axis so that light (light corresponding to the subject input to the imaging element of the camera) passes through the center.
  • the cross-sectional shape in the radial direction of the rotating ring 21 is a rectangle.
  • the rear surface (lower surface in the figure) of the rotating ring 21 is formed with recessed portions 211 recessed forward (upper in the figure) at four places in the circumferential direction (corresponding to the number of aperture plates 31 to 31).
  • the rear surface of the recessed portion 211 is a flat surface and is in contact with the front surface of the second base portion 312 of each diaphragm plate 31 which is also a flat surface.
  • the outer circumferential surface 213 in the radial direction of the rotating ring 21 is spaced apart so as not to interfere with the first base portion 311 of each diaphragm plate 31 .
  • the circumferential size of the recessed portion 211 is formed larger than the swing range of the second base portion 312 of each diaphragm plate 31 .
  • the engaging protrusion 212 protrudes rearward (lower in the figure) from the recess 211 .
  • the engaging protrusion 212 is formed into a cylindrical shape having a perfect circular cross-section.
  • the protruding position of the engaging protrusion 212 in the recess 211 is determined according to the swing range of each diaphragm plate 31 .
  • the engaging protrusion 212 of this embodiment is formed at a position offset from the circumferential center of the recessed portion 211 toward the end side.
  • the rotation drive unit 2 is pressed from the front by the pressing unit 5 (frame unit 51, sliding ring 52) to achieve positioning in the direction of the optical axis provided in the camera.
  • a plurality of (specifically, three) cylindrical pins 23 to 23 are embedded in the inner diameter portion of the rotating ring 21 .
  • Each pin 23 is in contact with the radially outer outer peripheral surface (not shown) of the limiting wall portion 511 provided on the inner peripheral side of the frame portion 51 .
  • the rotating ring 21 is positioned in the radial direction.
  • positioning in the optical axis direction is achieved by pressing the front surface of the rotating ring 21 from the front by the frame portion 51 via the sliding ring 52 .
  • the sliding ring 52 is an annular flat sheet, and its surface friction coefficient is smaller than that of other parts.
  • the permanent magnet 24 is embedded in the outer peripheral portion of the rotating ring 21 , and a magnetic sensor (not shown) that reacts with the magnetic force of the permanent magnet 24 such as a Hall sensor or an MR sensor is provided outside the rotating ring 21 . icon). Thereby, the rotation position of the rotating ring 21 can be detected. The detection results are sent to the control unit (not shown) of the smartphone or camera for use in aperture control.
  • the drive source part 22 includes a base part 221, a buffer part 222, a guide pin 223, a bracket 224, a first driving body 225, and a second driving body 226.
  • the base 221 and the like are shown in the upper part, and the driving bodies 225 and 226 are shown in the lower part.
  • the plate-shaped portion protruding from the side shown in FIG. 2 and others is the power supply substrate (FPC) 228 .
  • FPC power supply substrate
  • the first driving body 225 and the second driving body 226 respectively include: piezoelectric elements 2251 and 2261, which are deformed (specifically, elongated) by energization; , 2261 are provided in interlocking manner, and are provided so as to be in contact with the surface of the rotating ring 21 in the rotating driving part 2 (in this embodiment, the outer peripheral surface 213 of the rotating ring 21 in the radial direction).
  • the rotating ring 21 and the drive source part 22 can be arranged at the same position in the optical axis direction. Therefore, the drive-side component (drive source part 22) and the driven-side component (rotating ring 21) can be arranged compactly in the optical axis direction.
  • the rotating ring 21 and the drive source part 22 have substantially the same size in the optical axis direction. Therefore, it is avoided that the size in the optical axis direction is enlarged (thickened) in the state where the rotating ring 21 and the drive source part 22 are combined. Therefore, this embodiment can achieve downsizing in the optical axis direction compared to a structure in which the diaphragm unit 3 is driven by, for example, a motor, a gear, or the like. In addition, the structure can be simplified.
  • the base part 221 is a part fixed to the frame part 51.
  • the base 221 of this embodiment is formed in a bottomed cylindrical shape, and the internal bracket 224 is provided so as to be movable back and forth with respect to the base 221 (the entire aperture mechanism 1 is movable in the radial direction).
  • the symmetrical first driving body 225 and the second driving body 226 are fixed to the bracket 224 . That is, the drive source unit 22 integrally includes the first drive body 225 and the second drive body 226 .
  • the buffer part 222 is provided between the base part 221 and the bracket 224.
  • the buffer portion 222 expands and contracts as the bracket 224 moves.
  • the buffer portion 222 of this embodiment is composed of a rubber plate made of silicon or the like.
  • the guide pin 223 penetrates the base 221 along the optical axis direction.
  • An elongated hole 227 extending in the front-rear direction with respect to the base 221 is formed in the bracket 224 and the buffer portion 222, and the guide pin 223 penetrates the elongated hole 227. Therefore, the bracket 224 and the first driving body 225 and the second driving body 226 can move forward and backward relative to the base 221 within the formation range of the long hole 227 .
  • the first driving body 225 is located on one side of the rotating ring 21 in the circumferential direction.
  • the second driving body 226 is located on the other side of the rotating ring 21 in the circumferential direction.
  • the first driving body 225 and the second driving body 226 respectively include: piezoelectric elements 2251 and 2261, which are elongated by the energization of a positive voltage and shortened by the energization of a reverse voltage;
  • the piezoelectric elements 2251 and 2261 are provided in an interlocking manner, and are provided so as to be in contact with the surface of the rotating ring 21 (in this embodiment, the outer peripheral surface 213 ).
  • the pressing portions 2252 and 2262 of this embodiment are in contact with the outer peripheral surface 213 of the rotating ring 21 when the piezoelectric elements 2251 and 2261 are not energized.
  • they may also be configured to only press against the piezoelectric element 2251 , 2261 comes into contact when positive voltage is applied (during extension).
  • the piezoelectric elements 2251 and 2261 have a hexahedron (cuboid) shape and are fixed by being embedded in the bracket 224 .
  • the pressing portions 2252 and 2262 are plate-shaped and made of ceramic, and are bonded on one surface to the opposing surfaces of the piezoelectric elements 2251 and 2261 to be integrated.
  • the pressing parts 2252 and 2262 are not fixed to the bracket 224 and can move relative to the bracket 224 as the piezoelectric elements 2251 and 2261 expand and contract.
  • the front ends of the pressing parts 2252 and 2262 have enlarged parts 2253 and 2263 having an enlarged thickness dimension. That is, the main bodies of the pressing parts 2252 and 2262 and the enlarged parts 2253 and 2263 are formed integrally.
  • the cross-sectional shape of the enlarged portions 2253 and 2263 of this embodiment is circular.
  • the enlarged portions 2253 and 2263 are located on the outer peripheral surface 213 of the rotating ring 21 in an opposing manner.
  • the first driving body 225 and the second driving body 226 are provided opposite to each other.
  • the direction in which the first driving body 225 and the second driving body 226 face each other is along the circumferential direction of the aperture mechanism 1 .
  • the pressing portion 2252 of the first driving body 225 and the pressing portion 2262 of the second driving body 226 are formed such that one of the front ends facing the outer peripheral surface 213 of the rotating ring 21 is further apart than the base end.
  • the two pressing parts 2252 and 2262 are arranged in an inverted V shape as shown in FIG. 6 .
  • the elongation directions 2251M and 2261M when a positive voltage is applied to the piezoelectric elements 2251 and 2261 are the directions shown by the arrows in the figure, and are directions toward the symmetrical center of the two pressing parts 2252 and 2262 constituting the inverted V shape. .
  • the shortening direction when a reverse voltage is applied to the piezoelectric elements 2251 and 2261 is the direction opposite to the elongation direction.
  • the piezoelectric elements 2251 and 2261 return to the shape before expansion and contraction. As the piezoelectric elements 2251 and 2261 expand, the pressing parts 2252 and 2262 move in the same direction.
  • the pressing portions 2252 and 2262 can be driven at a frequency corresponding to the energization interval, and the pressing portions 2252 and 2262 (specifically, the expansion portions 2253 and 2263) can be intermittently driven at a period corresponding to the frequency.
  • the ground pushes against the rotating ring 21.
  • a reverse voltage it is not necessary to apply a reverse voltage to the piezoelectric elements 2251 and 2261, and only a positive voltage may be applied intermittently.
  • a reverse voltage for example, when a positive voltage is applied to the piezoelectric element 2251 of the first driving body 225, a reverse voltage is simultaneously applied to the piezoelectric element 2261 of the second driving body 226. In this case, the piezoelectric element 2261 is shortened, so the pressing portion 2262 of the second driving body 226 is separated from the outer peripheral surface 213 of the rotating ring 21 .
  • the pressing portion 2262 is less likely to act as a resistance when the rotating ring 21 is rotated.
  • the application of a positive voltage to the piezoelectric element 2261 of the second driving body 226 is opposite to the above, and at the same time, a reverse voltage is applied to the piezoelectric element 2251 of the first driving body 225 .
  • the pressing of the outer peripheral surface of the rotating ring 21 by the pressing portions 2252 and 2262 has a circumferential component. Therefore, a force (friction force) in the circumferential direction can be applied to the rotating ring 21 during pushing. Therefore, the pressing parts 2252 and 2262 (the expanded parts 2253 and 2263) perform an operation of continuously kicking the rotating ring 21 in the circumferential direction according to the energization cycle. This causes the rotating ring 21 to rotate.
  • the outer peripheral surfaces of the rotating ring 21 at least the portions pressed by the pressing portions 2252 and 2262 have a constant curvature. Therefore, the rotational force of the rotating ring 21 generated by the pressing force of the pressing parts 2252 and 2262 can be made constant, and stable rotation can be achieved.
  • the aperture unit 3 has a plurality of diaphragm plates 31 to 31 each having the same shape.
  • the plurality of diaphragm plates 31 to 31 are engaged with the rotating ring 21 in the rotational driving unit 2, and are rotated by the rotating ring 21 to align with the optical axis. Swinging in the direction M in a plane with orthogonal directions, as the plurality of diaphragm plates 31 to 31 swing, it can expand (for example, the state of FIG. 3 and FIG. 4) and shrink (for example, the state of FIG. 5) for light to pass through.
  • the opening area of the opening O The plurality of diaphragm plates 31 to 31 are arranged around the optical axis. The opening O is formed to coincide with the optical axis.
  • the aperture unit 3 is composed of a plurality of, more specifically, an even number of aperture plates 31 to 31 (in this embodiment, four aperture plates 31 to 31 provided every 90 degrees in the circumferential direction).
  • the railing plates 31 to 31 slide with the swing and partially overlap. That is, the diaphragm unit 3 is disposed so that at least the portion of the diaphragm plate 31 that overlaps each other when swinging (the entire diaphragm plate 31 in this embodiment), the diaphragm plate 31 located in the front in the optical axis direction and the diaphragm plate located in the rear are arranged. 31 are adjacent in the circumferential direction.
  • the plurality of aperture plates 31 to 31 are arranged to be rotationally symmetrical when viewed in the optical axis direction.
  • Each of the plurality of aperture plates 31 to 31 (hereinafter simply referred to as “aperture plate 31") is formed into a substantially fan shape, and the main part (base end part) of the fan shape is provided with a first base part 311, and a second base part 311.
  • the second base 312 is adjacent to the second base 312 in the radial direction with the swing center of the first base 311 as the reference, and has a thickness smaller than that of the first base 311 .
  • a flat plate portion 313 is provided adjacent to the second base portion 312 in the radial direction and having a smaller thickness than the second base portion 312 .
  • the flat plate portion 313 is formed into a flat plate shape extending in a direction orthogonal to the optical axis direction. The flat plate portion 313 blocks light.
  • the aperture plate 31 located forward in the optical axis direction and the aperture plate 31 located rearward are arranged to be adjacent to each other in the circumferential direction.
  • such front-to-back arrangement of each diaphragm plate 31 is achieved by changing the thickness of the flange portion 81 provided in the shaft portion 8 .
  • the flange portion 81 is a disk-shaped portion protruding from the main body of the cylindrical shaft portion 8 in the radial direction of the shaft portion 8 .
  • the flange portion 81 is formed integrally with the main body of the shaft portion 8 .
  • the flange portion 81 is sandwiched between the rear surface of the first base portion 311 in the diaphragm plate 31 and the front surface of the support plate 4 .
  • the diaphragm plate 31 can be arranged relatively rearward. Then, by arranging the relatively thick flange portion 81B, the aperture plate 31 can be arranged relatively forward.
  • the shaft portion 8 By positioning the shaft portion 8 in this way, there is an advantage that the plurality of diaphragm plates 31 to 31 can be unified into the same shape.
  • the adjustment can also be made by changing the thickness of the first base portion 311 in the diaphragm plate 31 , or by providing steps or mounting spacers on the support plate 4 The front and rear positions of the diaphragm plate 31.
  • a front end side cutout portion 314 for expanding and reducing the opening area of the opening portion O is formed on an edge facing the optical axis of the swinging front end side of the diaphragm plate 31.
  • the front end side cutout portion 314 is provided on the optical axis side (radially inner side) of the diaphragm portion 3, and in this embodiment, the curvature is a portion cut into a certain circular shape.
  • the curvature of the front end side cutout 314 is set to become a perfect circle in a state where the opening O serving as the aperture space is expanded to the maximum, as shown in FIGS. 3 and 4 . Furthermore, when the plurality of diaphragm plates 31 to 31 are swung close to the optical axis, the opening area of the opening portion O is reduced by the proximity of the plurality of front end side cutout portions 314 .
  • One end of the second base 312 in the swing direction is formed with a proximal notch 3121 extending orthogonally to the optical axis direction. As shown in FIG. 5 , the edge of the flat plate portion 313 of the other aperture plate 31 enters the proximal notch. 3121, so that the adjacent diaphragm plates 31, 31 will not interfere with the swing.
  • the first base portion 311 of the diaphragm plate 31 is provided with an axis hole 3111 extending in the optical axis direction (see FIG. 1 ), and the axis portion 8 passes through the axis hole 3111.
  • the shaft portion 8 passes through the through hole 41 provided in the flat support plate 4, and the rear end portion is fixed to the support hole X2 of the lens driving mechanism X.
  • the diaphragm plate 31 swings in the direction M with the axis portion 8 passing through the axis hole 3111 as the center.
  • the driving force for swinging is transmitted from the rotating ring 21 .
  • the second base 312 is provided with an engaging hole 315 as an engaging portion that engages with the rotating ring 21 .
  • the engaging hole 315 penetrates the second base 312 along the optical axis direction.
  • An engaging hole 315 is provided between the shaft-supported portion and the front end side cutout 314 .
  • the rotation trajectory (direction R) of the rotating ring 21 is not completely consistent with the swing trajectory (direction M) of each diaphragm plate 31, and there is a cross relationship when viewed in the optical axis direction.
  • the engagement by the engagement portion (engagement hole 315) is performed by a protrusion provided on one of the diaphragm plate 31 and the rotation ring 21 (in the present embodiment, the engagement protrusion 212 of the rotation ring 21). It is combined with a recess provided on the other side (in this embodiment, the engagement hole 315 of each diaphragm plate 31) whose cross-sectional dimension perpendicular to the optical axis direction is larger than the cross-section of the convex part.
  • the size absorbs the deviation between the swing trajectory and the rotation trajectory accompanying the rotation of the rotating ring.
  • the engagement hole 315 serving as the recessed portion has an oval shape when viewed in the optical axis direction.
  • the long radial direction of the ellipse can be a direction orthogonal to the rotation direction R (circumferential direction) of the rotating ring 21 , or a direction orthogonal to the swing direction M of each aperture plate 31 . Furthermore, it is not necessary to be strictly orthogonal, just roughly orthogonal.
  • the engaging hole 315 By forming the engaging hole 315 in an oblong shape, a clearance can be generated between the engaging protrusion 212 and the engaging hole 315 , thereby absorbing the rotation trajectory (direction R) of the rotating ring 21 and the swing trajectory of each diaphragm plate 31 (direction M).
  • the plurality of aperture plates 31 to 31 swing uniformly (in a rotationally symmetrical relationship). Furthermore, by overlapping the front-end side cutouts 314 of each of the plurality of diaphragm plates 31 to 31 in the swing direction, the opening O serving as the diaphragm space formed in line with the optical axis can be made as shown in FIG. 3 . There is a change between the enlarged to the maximum state shown in Figure 4 and the minimized state shown in Figure 5 .
  • the present embodiment is a diaphragm mechanism 1 that includes the rotational drive unit 2 including the rotating ring 21 that rotates around the optical axis, and the driving source unit 22 that generates driving force for rotating the rotating ring 21; and the aperture unit 3 has a plurality of diaphragm plates 31 to 31 arranged around the optical axis.
  • the plurality of diaphragm plates 31 to 31 are engaged with the rotating ring 21 and swing by the rotation of the rotating ring 21, As the plurality of diaphragm plates 31 to 31 swing, the opening area through which light passes can be expanded and contracted.
  • the driving source part 22 is provided with: piezoelectric elements 2251 and 2261, which are deformed by energization; and a pressing force.
  • the portions 2252 and 2262 are provided in conjunction with the piezoelectric elements 2251 and 2261, and are provided to be in contact with the rotating ring 21, and deform the piezoelectric elements 2251 and 2261 by energizing, thereby using The force of the circumferential component presses the pressing portions 2252 and 2262 toward the rotating ring 21 , thereby rotating the rotating ring 21 .
  • the diaphragm plates 31 to 31 are oscillated by the rotating ring 21 rotated by the piezoelectric elements 2251 and 2261. According to the oscillation, the opening area of the opening O through which light passes can be expanded and contracted.
  • each of the plurality of diaphragm plates 31 to 31 may be provided such that a portion on the radial outer side of the diaphragm portion 3 that is the center of the swing is pivotally supported, and on the front end side of the swing, A front end side cutout 314 for expanding and contracting the opening area is formed on the edge, and an engaging portion (engaging hole 315) that engages with the rotating ring 21 is provided in the shaft-supported portion. and the front end side cutout 314 .
  • the opening area through which light passes can be enlarged and reduced using the distal end side cutout 314, and the engaging portion (engagement) provided between the portion supported by the axis as the center of the swing and the distal end side cutout 314 can be used.
  • the hole 315) receives the rotational force of the rotating ring 21 for the swing of the diaphragm plate 31.
  • the rotation trajectory (direction R) of the rotating ring 21 intersects the swing trajectory (direction M) of each of the plurality of diaphragm plates 31 to 31, and the engaging portion (
  • the engagement with the engaging hole 315 is performed by a convex portion (the engaging protrusion 212 of the rotating ring 21 ) provided on one of the diaphragm plate 31 and the rotating ring 21 and a recessed portion (the diaphragm) provided on the other side.
  • the cross-sectional size of the recessed portion (the engaging hole 315) is larger than the cross-sectional size of the convex portion (the engaging protrusion 212), so as to absorb the rotation accompanying the rotation of the rotating ring 21.
  • the deviation between the swing trajectory and the rotation trajectory is performed by a convex portion (the engaging protrusion 212 of the rotating ring 21 ) provided on one of the diaphragm plate 31 and the rotating ring 21 and a recessed portion (the diaphragm) provided on the other side.
  • the driving force can be transmitted from the rotating ring 21 to the diaphragm plate 31 by utilizing the concave and convex engagement that can absorb deviations.
  • the recess (engagement hole 315) may be formed into an oblong shape when viewed in the optical axis direction.
  • the deviation between the rotation trajectory (direction R) of the rotating ring 21 and the swing trajectory (direction M) of the diaphragm plate 31 can be absorbed by the oblong recessed portion (engagement hole 315).
  • the drive source portion 22 may be provided so as to be able to come into contact with the outer peripheral surface 213 in the radial direction of the rotating ring 21 .
  • the rotating ring 21 and the drive source part 22 can be arranged at the same position in the optical axis direction.
  • the diaphragm unit 3 can be provided with an even number of the diaphragm plates 31 to 31 , and the diaphragm plate 31 located in the front in the optical axis direction and the diaphragm plate 31 located in the rear overlap each other during the swing.
  • the aperture plates 31 are arranged adjacent to each other in the circumferential direction.
  • the diaphragm plates 31 and 31 adjacent in the circumferential direction are shifted forward and backward in the optical axis direction, so that interference due to swinging can be prevented.
  • a permanent magnet may be provided on the rotating ring 21
  • a magnetic sensor may be provided on a radially outer side of the rotating ring 21 .
  • the rotation position of the rotating ring 21 can be detected with a simple structure.
  • the opening area of the opening portion O through which light passes can be enlarged and reduced using the rotating ring 21, the drive source part 22, and the plurality of diaphragm plates 31 to 31. Therefore, it is possible to use The structure of the aperture is miniaturized and the aperture mechanism 1 with a simple structure can be improved.
  • the rotation drive unit 2 is provided forward in the optical axis direction, and the aperture unit 3 is provided rearward.
  • the rotation drive unit 2 may be provided at the rear in the optical axis direction, and the aperture unit 3 may be provided at the front.
  • the pressing of the rotating ring 21 by the drive source part 22 can also be performed on the surface (front surface, rear surface) of the rotating ring 21 on the optical axis direction side. In addition, it can also be performed on the inner peripheral surface of the rotating ring 21 in the radial direction.
  • the rotating ring 21 has a shape in which the dimensions in the optical axis direction and the radial direction are constant over the entire circumference, and the curvature is constant over the entire circumference.
  • the rotating ring 21 may not be in the shape of a ring connected over the entire circumference, but may be in the shape of a ring with a part missing (C-shaped, etc.).
  • it may not be ring-shaped but may be frame-shaped.
  • the diaphragm unit 3 of the above-mentioned embodiment is composed of an even number, that is, four diaphragm plates 31 to 31 .
  • the number of aperture plates 31 may be two or three, and may be five or more.
  • the diaphragm unit 3 may be composed of an odd number of diaphragm plates 31 to 31 .
  • the front end side cutout portion 314 is a portion cut into a circular shape with a constant curvature.
  • the shape of the front end side cutout portion 314 is not limited to this, and may be a linear portion (including a curved shape) or a curved linear portion with a non-constant curvature.
  • the opening area of the opening portion formed by the plurality of aperture plates 31 to 31 can be enlarged and reduced according to the overlapping state of the plurality of aperture plates 31 to 31, the shape of the front end side cutout portion 314 will not be affected. limited.
  • the engagement protrusion 212 of the rotation ring 21 and the engagement hole 315 of the diaphragm plate 31 are combined.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diaphragms For Cameras (AREA)

Abstract

一种光圈机构(1),具备:旋转驱动部(2),其具备围绕光轴旋转的旋转环(21)、以及产生使旋转环(21)旋转的驱动力的驱动源部(22);以及光圈部(3),其具备围绕光轴配置的多个光阑板(31~31),多个光阑板(31~31)与旋转环(21)卡合,并通过旋转环(21)的旋转而摆动,随着多个光阑板(31~31)的摆动,能够扩大和缩小供光线通过的开口面积,驱动源部(22)具备:压电元件,其通过通电而变形;以及推压部,其以与压电元件联动的方式设置,且设置为能够与旋转环(21)抵接,通过通电使压电元件变形,从而通过具有周向分量的力将推压部向旋转环(21)推压,以使旋转环(21)旋转。

Description

光圈机构 技术领域
本发明涉及用于智能手机内置摄像头、小型摄像头的光圈机构。
背景技术
作为现有技术,例如,举出了日本特开2011-90028号公报中记载的光圈机构。在该现有技术中,由于构成为利用杠杆使光圈动作,因此结构复杂。
发明内容
发明要解决的问题
鉴于此,本发明的课题在于,提供一种能够将用于光圈的结构小型化、且结构简单的光圈机构。
用于解决问题的方案
本发明的一种实施方式为一种光圈机构,其具备:旋转驱动部,其具备围绕光轴旋转的旋转环、以及产生使所述旋转环旋转的驱动力的驱动源部;以及光圈部,其具有围绕光轴配置的多个光阑板,所述多个光阑板与所述旋转环卡合,并通过所述旋转环的旋转而摆动,随着所述多个光阑板的摆动,能够扩大和缩小供光线通过的开口面积;所述驱动源部具备:压电元件,其通过通电而变形;以及推压部,其以与所述压电元件联动的方式设置,且设置为能够与所述旋转环抵接;通过通电使所述压电元件变形,从而通过具有周向分量的力将所述推压部向所述旋转环推压,以使所述旋转环旋转。
另外,能够设置为所述多个光阑板中的每一个,在所述光圈部的径外侧中,作为所述摆动的中心的部分被轴支承,在所述摆动的前端侧的缘部形成有用于进行所述开口面积的扩大和缩小的切口部,与所述旋转环卡合的卡合部设置于所述被轴支承的部分与所述切口部之间。
另外,能够设置为所述旋转环的旋转轨迹与所述多个光阑板中的每一个的摆动轨迹呈交叉关系,由所述卡合部进行的卡合由设置于所述光阑板与所述旋转环中的一方的凸部和设置于另一方的凹部的组合进行,所述凹部的横截面尺寸大于所述凸部的横截面尺寸。
另外,能够设置为所述凹部在光轴方向上观察为长圆形。
另外,能够设置为所述驱动源部设置为能够与所述旋转环的径向上的外周面抵接。
另外,能够设置为所述光圈部具有偶数个的所述光阑板,对于在所述摆动时相互重叠的部分,位于光轴方向的前方的所述光阑板与位于后方的所述光阑板以在周向上相邻的方式配置。
另外,能够设置为在所述旋转环上设置有永磁铁,在所述旋转环的径外侧设置有磁传感器。
另外,本发明的另一种实施方式为一种镜头模组,其包括一个或多个透镜以及上述任一实施方式所述的光圈机构。
附图说明
图1是示意性地表示本发明的一实施方式的光圈机构的结构,分别分解构成部件并在光轴方向上排列表示的爆炸立体图。
图2是表示所述光圈机构的组装状态的立体图。
图3是从底面侧观察的表示所述光圈机构中旋转驱动部和光圈部的立体图。
图4是表示所述光圈部的打开状态的立体图。
图5是表示所述光圈部的光圈状态的立体图。
图6是表示所述旋转驱动部的驱动源部的俯视图(作为光圈机构)。
具体实施方式
参照附图对本发明的一个实施方式的光圈机构1进行说明。以下说明中的“光轴方向”、“周向”、“径向”、“径内”、“径外”只要没有特别说明,就表示光圈机构1整体的方向。也就是说,光圈机构1相对于光轴方向绕转的方向为周向。并且,与光轴方向正交的方向为径向。另外,“前方”设为在光轴方向上朝向被摄体的方向,“后方”设为在光轴方向上朝向摄像头的摄像元件的方向。
图1中示出了整体的爆炸图。图示上方为光轴方向的前方,下方为光轴方向的后方。图1的左下方示出的、分解但未示出的部分为接收由光圈机构1聚焦的光线的透镜驱动机构X。此外,由于透镜驱动机构X与本发明没有直接关系,因此除了必要的事项以外,以下不进行详细的说明。光圈机构1构成为,在光轴方向上从前侧(被摄体侧)朝向透镜驱动机构X,按照旋转驱动部2、光圈部3、支撑板4的顺序配置,他们设置于壳体6内。壳体6兼用作透镜驱动机构X的壳体。另外,支撑板4兼用作透镜驱动机构X。在壳体6的内侧、旋转驱动部2的前方设置有构成摄像头的多个透镜中的一组或者一片 透镜7。
光圈机构1设置于透镜驱动机构X(除壳体之外的部分)的前方。透镜驱动机构X通过自动对焦功能,作为其一部分的筒体部X1沿光轴方向前后移动。光圈机构1整体也构成为与筒体部X1联动(同步移动)地前后移动。通过如此将光圈机构1构成为与透镜驱动机构X联动,与自动对焦功能无关而固定设置的结构相比,提高了摄像头的光学特性(具体而言是MTF)。
旋转驱动部2具备在围绕设置于摄像头的光轴的方向R上旋转的旋转环21、以及产生使旋转环21旋转的驱动力的驱动源部22。在卡合突起212(后述)对应于用于开闭光圈部3的各光阑板31的摆动范围在周向上移动的范围内,旋转环21受到驱动源部22的驱动力进行旋转。旋转环21可以构成为无极旋转与光圈的开闭对应的预定角度量,也可以构成为像步进马达那样多级旋转。旋转环21配置为在光轴方向上的中心与光轴一致的圆环状,以使光线(输入到摄像头所具有的摄像元件中的与被摄体对应的光)通过中心。
在本实施方式中,旋转环21的径向的截面形状设为长方形。旋转环21的后表面(图示下表面)在周向的四个地方(与光阑板31~31的片数一致)形成有向前方(图示上方)凹陷的凹部211。凹部211的后表面设为平面,与在各光阑板31的第二基部312中同样设为平面的前表面抵接。另外,旋转环21的径向上的外周面213以不与各光阑板31的第一基部311干涉的方式隔开间隔设置。凹部211的周向尺寸形成为大于各光阑板31的第二基部312的摆动范围。如图3所示,卡合突起212从凹部211向后方(图示下方)突出。卡合突起212设为横截面形状为正圆的圆柱状。凹部211中的卡合突起212的突出位置根据各光阑板31的摆动范围而定。本实施方式的卡合突起212形成于从凹部211的周向中央向端部侧偏移的位置。
旋转驱动部2被按压部5(框部51,滑动环52)从前方按压,实现在设置于摄像头中的光轴方向上的定位。旋转环21的内径部嵌入有多个(具体而言为3个)圆柱状的销23~23。各销23抵接于设置在框部51的内周侧的限位壁部511的径外侧的外周面(未图示)。由此,实现旋转环21在径向上的定位。另外,通过旋转环21的前表面经由滑动环52被框部51从前方按压,从而实现在光轴方向上的定位。滑动环52为圆环状的平坦的片材,表面的摩擦系数小于其他零件。通过在旋转环21的前表面与滑动环52之间产生滑动,能够在不阻碍旋转环21在周向上的旋转的情况下顺畅地旋转。
另外,如图2所示,旋转环21的外周部嵌入有永磁铁24,在旋转环21的外部且径外侧设置有霍尔传感器、MR传感器等与永磁铁24的磁力反应的磁传感器(未图示)。由此,能够检测旋转环21的旋转位置。检测结果被发送到智能手机或者摄像头的控制部(未图示),用于光圈的控制。
如图6所示,驱动源部22具备基部221、缓冲部222、导向销223、托架224、第一驱动体225以及第二驱动体226。此外,在图6中,在上方图示基部221等,在下方图示各驱动体225、226。另外,图2等所示的突出于侧方的板状的部分为供电用基板(FPC)228。第一驱动体225、第二驱动体226分别具备:压电元件2251、2261,其通过通电而变形(具体而言为伸长);以及推压部2252、2262,其以与压电元件2251、2261联动的方式设置,且设置为能够与旋转驱动部2中的旋转环21的表面(在本实施方式中旋转环21的径向上的外周面213)抵接。在本实施方式中,能够在光轴方向上相同位置配置旋转环21和驱动源部22。因此,能够将驱动侧的部件(驱动源部22)和从动侧的部件(旋转环21)在光轴方向上紧凑地配置。另外,旋转环21和驱动源部22在光轴方向上成为大致相同的尺寸。因此,避免了在旋转环21与驱动源部22组合的状态下光轴方向尺寸扩大(变厚)的情况。因此,本实施方式与利用例如马达和齿轮等驱动光圈部3的结构相比,能够实现光轴方向尺寸的小型化。另外,能够简化结构。
基部221是固定于框部51的部分。本实施方式的基部221形成为有底的筒状,在内部托架224设置为能够以基部221为基准前后移动(光圈机构1整体能够向径向移动)。在托架224固定有对称形状的第一驱动体225以及第二驱动体226。也就是说,驱动源部22一体地具备第一驱动体225以及第二驱动体226。缓冲部222设置于基部221与托架224之间。缓冲部222随着托架224的移动进行伸缩。本实施方式的缓冲部222由硅等制成的橡胶板构成。导向销223以沿着光轴方向的方式贯穿基部221。托架224以及缓冲部222上形成有以基部221为基准在前后方向上延伸的长孔227,导向销223贯穿该长孔227。因此托架224和第一驱动体225以及第二驱动体226能够相对于基部221在长孔227的形成范围内前后移动。
第一驱动体225位于旋转环21的周向的一方侧。第二驱动体226位于旋转环21的周向的另一方侧。第一驱动体225、第二驱动体226分别具备:压电元件2251、2261,其通过正电压的通电而伸长,通过逆电压的通电而缩短;以及推压部2252、2262,其以与压电元件2251、2261联动的方式设置,且设置为能够与旋转环21的表面(在本实施方式中外周面213)抵接。本实施方式的推压部2252、2262如图所示,在压电元件2251、2261未通电的状态下与旋转环21的外周面213抵接,但还可以构成为仅在向 压电元件2251、2261进行正电压的通电时(伸长时)抵接。
压电元件2251、2261为六面体(长方体)形状,且以嵌入托架224的方式固定。推压部2252、2262为由陶瓷形成的板状,一面粘接在各压电元件2251、2261中相互对置的面上而成为一体。此外,推压部2252、2262不固定在托架224上,能够随着压电元件2251、2261的伸缩而相对于托架224移动。推压部2252、2262的前端具有厚度尺寸扩大的扩大部2253、2263。也就是说,推压部2252、2262的主体与扩大部2253、2263形成为一体。本实施方式的扩大部2253、2263的截面形状设为圆形。扩大部2253、2263以对置的方式位于旋转环21的外周面213。
第一驱动体225与第二驱动体226对置地设置。第一驱动体225与第二驱动体226对置的方向是沿着光圈机构1的周向。第一驱动体225所具备的推压部2252与第二驱动体226所具备的推压部2262相互形成为,与旋转环21的外周面213对置的前端的一方比基端更远离。两推压部2252、2262如图6所示配置为倒V字形状。向压电元件2251、2261施加正电压时的伸长方向2251M、2261M为图上的箭头所示的方向,是朝向构成所述倒V字形状的两推压部2252、2262的对称中心的方向。向压电元件2251、2261施加逆电压时的缩短方向为与所述伸长方向相反的方向。此外,若停止通电,则压电元件2251、2261回到伸缩前的形状。通过压电元件2251、2261的伸长,推压部2252、2262向同方向移动。通过周期性地进行通电,能够以与通电间隔对应的频率驱动推压部2252、2262,并以该频率对应的周期将推压部2252、2262(具体而言为扩大部2253、2263)间歇性地向旋转环21推压。
此外,对压电元件2251、2261施加逆电压不是必须的,也可以仅间歇性地施加正电压。关于施加逆电压,例如,在向第一驱动体225的压电元件2251施加正电压时,同时向第二驱动体226的压电元件2261施加逆电压。这样的话压电元件2261缩短,因此第二驱动体226的推压部2262从旋转环21的外周面213分离。由此,与推压部2262保持与旋转环21的外周面213抵接的情况相比,推压部2262难以成为使旋转环21旋转时的阻力。向第二驱动体226的压电元件2261施加正电压的情况与上述相反,同时向第一驱动体225的压电元件2251施加逆电压。
随着压电元件2251、2261的伸长,推压部2252、2262(扩大部2253、2263)对旋转环21的外周面的推压成为具有周向分量。因此,能够在推压时将朝向周向的力(摩擦力)作用于旋转环21。因此,推压部2252、2262(扩大部2253、2263)进行在周向上根据通电周期连续踢旋转环21的动作。由此使旋转环21旋转。在旋转环21的外周面中,至少推压部2252、2262推压的部分设为恒定曲率。因此,能够使由推压部2252、2262的推压力产生的旋转环21的旋转力恒定,能够实现稳定的旋转。
光圈部3具有分别为同一形状的多个光阑板31~31,多个光阑板31~31与旋转驱动部2中的旋转环21卡合,并通过旋转环21旋转,在与光轴方向正交的平面内即方向M上摆动,随着多个光阑板31~31的摆动,能够扩大(例如图3、图4的状态)以及缩小(例如图5的状态)供光线通过的开口部分O的开口面积。多个光阑板31~31围绕光轴配置。开口部分O形成为与光轴一致。
光圈部3由多个、更详细而言由偶数个光阑板31~31(在本实施方式中,为在周向上每90度设置的4片光阑板31~31)构成,多个光阑板31~31随着摆动而滑动,并部分地重叠。也就是说,光圈部3配置为,至少对于在摆动时相互重叠的部分(在本实施方式中整个光阑板31),位于光轴方向的前方的光阑板31与位于后方的光阑板31在周向上相邻。多个光阑板31~31设置为在光轴方向上观察旋转对称。通过光圈部3的开口形状变化,能够根据摄像头自身、或者摄像头搭载设备(智能手机等)具有的控制部所设定的光圈值用4片光阑板31~31来扩大和缩小开口部分O的开口面积。
多个光阑板31~31中的每一个(以下,简称为“光阑板31”)设为大致扇形状,扇形状的主要部分(基端部分)设置有第一基部311,以及第二基部312,该第二基部312在以第一基部311的摆动中心为基准的径外方向上相邻、且厚度尺寸小于第一基部311。并且,设置有在第二基部312的径外方向上相邻、且厚度尺寸小于第二基部312的平板部313。平板部313设为在与光轴方向正交的方向上延伸的平板状。该平板部313遮挡光线。
在此,如上所述,位于光轴方向的前方的光阑板31与位于后方的光阑板31以在周向上相邻的方式配置。在本实施方式中,这种各光阑板31的前后配置通过改变设置于轴部8中的凸缘部81的厚度来实现。凸缘部81为从圆柱状的轴部8的主体向轴部8的径外方向突出的圆板状的部分。凸缘部81与轴部8的主体一体地形成。凸缘部81夹在光阑板31中的第一基部311的后表面与支撑板4的前表面之间。如图2所示,通过配置相对薄的凸缘部81A,能够将光阑板31配置在相对后方。然后,通过配置相对厚的凸缘部81B,能够将光阑板31配置在相对前方。通过如此由轴部8进行位置调整,具有能够将多个光阑板31~31统一为同一形状的优点。此外,除了由轴部8的凸缘部81进行的调整之外,还可以通过改变光阑板31中的第一基部311的厚度,或者在支撑板4上设置台阶或安装垫片,来调整光阑板31的前后位置。
在光阑板31的摆动的前端侧中面向光轴的缘部形成有用于进行开口部分O的开口面积的扩大和缩 小的前端侧切口部314。前端侧切口部314设置于光圈部3的光轴侧(径内侧),在本实施方式中曲率为被切成一定圆形状的部分。前端侧切口部314的曲率设定为,如图3以及图4所示,在作为光圈空间的开口部分O扩大到最大的状态下成为正圆。并且,在多个光阑板31~31以靠近光轴的方式摆动时,通过多个前端侧切口部314接近,开口部分O的开口面积缩小。
第二基部312的摆动方向的一端形成有与光轴方向正交延伸的基端侧切口部3121,如图5所示,其他光阑板31的平板部313的缘部进入基端侧切口部3121,从而相邻的光阑板31,31不会随着摆动而干涉。
在光圈部3的径外侧(光圈部3整体的径外侧)中,作为所述摆动的中心的部分被轴支承。因此,光阑板31的摆动的前端侧位于光圈部3的径内侧。光阑板31的第一基部311设置有沿光轴方向延伸的轴孔3111(参照图1),轴部8穿过轴孔3111。轴部8穿过设置于平板状的支撑板4的贯穿孔41,后端部固定于透镜驱动机构X的支撑孔X2。由此,光阑板31以穿过轴孔3111的轴部8为中心在方向M上摆动。用于摆动的驱动力从旋转环21传递。
第二基部312设置有作为与旋转环21卡合的卡合部的卡合孔315。该卡合孔315沿着光轴方向贯穿第二基部312。卡合孔315设置在所述被轴支承的部分与前端侧切口部314之间。
其中,旋转环21的旋转轨迹(方向R)与各光阑板31的摆动轨迹(方向M)不完全一致,在光轴方向上观察呈交叉关系。其中,由所述卡合部(卡合孔315)进行的卡合由设置于光阑板31与旋转环21中的一方的凸部(在本实施方式中旋转环21的卡合突起212)与设置于另一方的凹部(在本实施方式中各光阑板31的卡合孔315)的组合进行,所述凹部的与光轴方向正交的横截面尺寸大于所述凸部的横截面尺寸,吸收伴随所述旋转环的旋转的所述摆动轨迹与所述旋转轨迹之间的偏差。在本实施方式中,如图4以及图5所示,作为所述凹部的卡合孔315在光轴方向上观察为长圆形。所述长圆形的长径向能够设为与旋转环21的旋转方向R(周向)正交的方向,或者,与各光阑板31的摆动方向M正交的方向。此外,不需要严格正交,只要大致正交即可。通过如此卡合孔315为长圆形,能够在卡合突起212与卡合孔315之间产生游隙,因此能够吸收旋转环21的旋转轨迹(方向R)与各光阑板31的摆动轨迹(方向M)之间的偏差。
多个光阑板31~31均匀(在旋转对称的关系下)摆动。并且,根据多个光阑板31~31中的每一个的前端侧切口部314在摆动方向上的重叠,能够使与光轴一致地形成的作为光圈空间的开口部分O,在如图3、图4所示的扩大到最大的状态和图5所示的缩小到最小的状态之间变化。
如上所述,本实施方式是一种光圈机构1,具备:旋转驱动部2,其具备围绕光轴旋转的旋转环21、以及产生使所述旋转环21旋转的驱动力的驱动源部22;以及光圈部3,其具有围绕光轴配置的多个光阑板31~31,多个光阑板31~31与所述旋转环21卡合,并通过所述旋转环21的旋转而摆动,随着所述多个光阑板31~31的摆动,能够扩大和缩小供光线通过的开口面积,所述驱动源部22具备:压电元件2251、2261,其通过通电而变形;以及推压部2252、2262,其以与所述压电元件2251、2261联动的方式设置,且设置为能够与所述旋转环21抵接,通过通电使所述压电元件2251、2261变形,从而用具有周向分量的力将所述推压部2252、2262向所述旋转环21推压,由此使所述旋转环21旋转。
根据该结构,通过由压电元件2251、2261而旋转的旋转环21使光阑板31~31摆动,随着该摆动,能够扩大和缩小供光线通过的开口部分O的开口面积。
另外,能够设置为所述多个光阑板31~31中的每一个,在所述光圈部3的径外侧中,作为所述摆动的中心的部分被轴支承,在所述摆动的前端侧中的缘部形成有用于进行所述开口面积的扩大和缩小的前端侧切口部314,与所述旋转环21卡合的卡合部(卡合孔315)设置于所述被轴支承的部分与所述前端侧切口部314之间。
根据该结构,能够用前端侧切口部314扩大和缩小供光线通过的开口面积,能够用设置于作为摆动的中心的被轴支承的部分与前端侧切口部314之间的卡合部(卡合孔315),为了光阑板31的摆动而接受旋转环21的旋转力。
另外,能够设置为所述旋转环21的旋转轨迹(方向R)与所述多个光阑板31~31中的每一个的摆动轨迹(方向M)呈交叉关系,由所述卡合部(卡合孔315)进行的卡合由设置于所述光阑板31与所述旋转环21中的一方的凸部(旋转环21的卡合突起212)和设置于另一方的凹部(光阑板31的卡合孔315)的组合进行,所述凹部(卡合孔315)的横截面尺寸大于所述凸部(卡合突起212)的横截面尺寸,吸收伴随所述旋转环21的旋转的所述摆动轨迹与所述旋转轨迹之间的偏差。
根据该结构,利用能够吸收偏差的凹凸卡合,能够从旋转环21向光阑板31传递驱动力。
另外,能够设置为所述凹部(卡合孔315)在光轴方向上观察为长圆形。
根据该结构,能够利用长圆形的凹部(卡合孔315)吸收旋转环21的旋转轨迹(方向R)与光阑板31的摆动轨迹(方向M)之间的偏差。
另外,能够设置为所述驱动源部22设置为能够与所述旋转环21的径向上的外周面213抵接。
根据该结构,能够在光轴方向上的相同位置配置旋转环21和驱动源部22。
另外,能够设置为所述光圈部3具有偶数个的所述光阑板31~31,对于在所述摆动时相互重叠的部分,位于光轴方向的前方的所述光阑板31与位于后方的所述光阑板31以在周向上相邻的方式配置。
根据该结构,使在周向上相邻的光阑板31、31在光轴方向的前后上错开,因此能够不因摆动而干涉。
另外,能够设置为在所述旋转环21上设置有永磁铁,在所述旋转环21的径外侧设置有磁传感器。
根据该结构,能够以简单的结构检测旋转环21的旋转位置。
根据如上构成的本实施方式的光圈机构1,能够用旋转环21、驱动源部22、以及多个光阑板31~31扩大和缩小供光线通过的开口部分O的开口面积,因此能够将用于光圈的结构小型化,并且能够提高结构简单的光圈机构1。
本实施方式如上所述,但本发明不限于上述方式,能够在本发明的主旨范围内进行适当的设计变更。另外,本发明的作用效果也不限于上述实施方式中描述的内容。即,此次公开的实施方式在所有方面都是示例而不是对本发明的限制。本发明的范围由权利要求书而不是上述说明限定。另外,本发明的范围旨在包含在与权利要求书等同的含义以及范围内的所有变更。
例如,在本实施方式中,在光轴方向的前方设置有旋转驱动部2,在后方设置有光圈部3。但是不限于此,还可以在光轴方向的后方设置有旋转驱动部2,在前方设置有光圈部3。
另外,由驱动源部22进行的旋转环21的推压还能够在旋转环21的光轴方向侧的面(前表面、后表面)进行。另外,还能够在旋转环21的径向上的内周面进行。
另外,旋转环21设为在整周上恒定光轴方向以及径向的尺寸,且曲率在整周上恒定的形状。但不限于此,只要是至少接受由驱动源部22进行的推压的部分的周面的曲率恒定即可。因此,旋转环21也可以不是在整周上连接的环状,而是一部分缺失的环状(C字状等)。另外,还可以不是环状而是框状。
另外,上述实施方式的光圈部3由偶数即4片光阑板31~31构成。然而,光阑板31的片数也可以是2片或者3片,另外,还可以是5片以上。另外,还可以由奇数的光阑板31~31构成光圈部3。
另外,在上述实施方式的光圈部3中,前端侧切口部314为切成曲率恒定的圆形状的部分。然而,前端侧切口部314的形状不限于此,还可以是切成直线状(包括弯曲的形状)或者曲率不恒定的弯曲线状的部分。另外,只要是根据多个光阑板31~31的重叠情况,能够扩大和缩小由多个光阑板31~31形成的开口部分的开口面积的结构,前端侧切口部314的形状就不被限定。
另外,在上述实施方式中,由旋转环21的卡合突起212与光阑板31的卡合孔315的组合构成。然而还可以是与之相反,在旋转环21形成凹部或孔,在光阑板31形成凸部从而二者卡合的结构。
附图标记说明:
1:光圈机构
2:旋转驱动部
21:旋转环
212:凸部、卡合突起
213:外周面
22:驱动源部
2251:压电元件
2252:推压部
2261:压电元件
2262:推压部
24:永磁铁
3:光圈部
31:光阑板
3111:轴孔
314:切口部、前端侧切口部
315:卡合部、凹部、卡合孔
4:支撑板
5:按压部
6:壳体
7:透镜
8:轴部
X:透镜驱动机构
M:光阑板的摆动方向
R:旋转环的旋转方向
O:光圈部的开口部分

Claims (8)

  1. 一种光圈机构,其特征在于,具备:
    旋转驱动部,其具备围绕光轴旋转的旋转环、以及产生使所述旋转环旋转的驱动力的驱动源部;以及
    光圈部,其具备围绕光轴配置的多个光阑板,所述多个光阑板与所述旋转环卡合,并通过所述旋转环的旋转而摆动,随着所述多个光阑板的摆动,能够扩大和缩小供光线通过的开口面积,
    所述驱动源部具备:压电元件,其通过通电而变形;以及推压部,其以与所述压电元件联动的方式设置,且设置为能够与所述旋转环抵接,通过通电使所述压电元件变形,从而通过具有周向分量的力将所述推压部向所述旋转环推压,以使所述旋转环旋转。
  2. 根据权利要求1所述的光圈机构,其特征在于,
    所述多个光阑板中的每一个,
    在所述光圈部的径外侧中,作为所述摆动的中心的部分被轴支承,
    在所述摆动的前端侧的缘部形成有用于进行所述开口面积的扩大和缩小的切口部,
    与所述旋转环卡合的卡合部设置于所述被轴支承的部分与所述切口部之间。
  3. 根据权利要求2所述的光圈机构,其特征在于,
    所述旋转环的旋转轨迹与所述多个光阑板中的每一个的摆动轨迹呈交叉关系,
    由所述卡合部进行的卡合由设置于所述光阑板与所述旋转环中的一方的凸部和设置于另一方的凹部的组合进行,所述凹部的横截面尺寸大于所述凸部的横截面尺寸。
  4. 根据权利要求3所述的光圈机构,其特征在于,
    所述凹部在光轴方向上观察为长圆形。
  5. 根据权利要求1~4中任一项所述的光圈机构,其特征在于,
    所述驱动源部设置为能够与所述旋转环的径向上的外周面抵接。
  6. 根据权利要求1~5中任一项所述的光圈机构,其特征在于,
    所述光圈部具有偶数个的所述光阑板,
    对于在所述摆动时相互重叠的部分,位于光轴方向的前方的所述光阑板与位于后方的所述光阑板以在周向上相邻的方式配置。
  7. 根据权利要求1~6中任一项所述的光圈机构,其特征在于,
    在所述旋转环上设置有永磁铁,在所述旋转环的径外侧设置有磁传感器。
  8. 一种镜头模组,其特征在于,包括:
    一个或多个透镜;
    根据权利要求1~7中任一项所述的光圈机构。
PCT/CN2022/106891 2022-07-20 2022-07-20 光圈机构 WO2024016239A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280002734.6A CN117859084A (zh) 2022-07-20 2022-07-20 光圈机构
PCT/CN2022/106891 WO2024016239A1 (zh) 2022-07-20 2022-07-20 光圈机构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/106891 WO2024016239A1 (zh) 2022-07-20 2022-07-20 光圈机构

Publications (1)

Publication Number Publication Date
WO2024016239A1 true WO2024016239A1 (zh) 2024-01-25

Family

ID=89616665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106891 WO2024016239A1 (zh) 2022-07-20 2022-07-20 光圈机构

Country Status (2)

Country Link
CN (1) CN117859084A (zh)
WO (1) WO2024016239A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662473A (zh) * 2012-03-07 2015-05-27 新加坡国立大学 用于光学系统的mems可变光阑和用于调节其孔径大小的方法
CN107462963A (zh) * 2017-08-11 2017-12-12 南京航空航天大学 一种压电驱动的可变光阑调光装置及方法
CN207232479U (zh) * 2017-08-11 2018-04-13 南京航空航天大学 一种压电驱动的可变光阑调光装置
CN109061983A (zh) * 2018-09-06 2018-12-21 福建福光股份有限公司 具有四档能量调节功能的可见光镜头及其工作方法
CN110568607A (zh) * 2019-08-02 2019-12-13 南京航空航天大学 一种压电驱动的一体式光阑
CN111295620A (zh) * 2017-12-19 2020-06-16 株式会社日东 光阑装置和透镜镜筒

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662473A (zh) * 2012-03-07 2015-05-27 新加坡国立大学 用于光学系统的mems可变光阑和用于调节其孔径大小的方法
CN107462963A (zh) * 2017-08-11 2017-12-12 南京航空航天大学 一种压电驱动的可变光阑调光装置及方法
CN207232479U (zh) * 2017-08-11 2018-04-13 南京航空航天大学 一种压电驱动的可变光阑调光装置
CN111295620A (zh) * 2017-12-19 2020-06-16 株式会社日东 光阑装置和透镜镜筒
CN109061983A (zh) * 2018-09-06 2018-12-21 福建福光股份有限公司 具有四档能量调节功能的可见光镜头及其工作方法
CN110568607A (zh) * 2019-08-02 2019-12-13 南京航空航天大学 一种压电驱动的一体式光阑

Also Published As

Publication number Publication date
CN117859084A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
US9000654B2 (en) Ultrasonic motor and lens driving apparatus
CN102576182B (zh) 光圈装置
WO2024016239A1 (zh) 光圈机构
JP2008134283A (ja) カメラ用絞り装置
JP5473366B2 (ja) 光量調節装置及び撮像装置
JP6345026B2 (ja) 絞り装置及びそれを有するレンズ装置及び撮像装置
JP2019020686A (ja) レンズ装置および撮像装置
JP2000304996A (ja) レンズ鏡筒およびこれを備えた光学機器
JP6942979B2 (ja) レンズ鏡筒
JP4796714B2 (ja) レンズ駆動装置
KR20090119989A (ko) 렌즈 구동 장치
JP6918502B2 (ja) 羽根駆動装置
JPH02807A (ja) レンズ鏡筒
JP4460872B2 (ja) マクロ撮影装置
JPH07218801A (ja) レンズ鏡筒
JP2008224949A (ja) レンズ鏡胴
JP5251399B2 (ja) 絞り装置およびレンズ鏡筒
JP4323867B2 (ja) 光量調節装置及び撮像装置
JP2000284160A (ja) レンズ鏡胴
WO2022070855A1 (ja) レンズ鏡筒および撮像装置
JP7382176B2 (ja) 絞り調整装置、レンズ鏡筒及び光学機器
JP2006330572A (ja) レンズ繰り出し装置
JP2017116642A (ja) 光量調整装置およびこれを用いたレンズ鏡筒、光学機器
JP2009086303A (ja) カメラ用絞り装置
JP3573537B2 (ja) カメラの駆動装置用パルスモータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002734.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951516

Country of ref document: EP

Kind code of ref document: A1