WO2024014469A1 - 固体電解コンデンサ素子、固体電解コンデンサ及び固体電解コンデンサ素子の製造方法 - Google Patents

固体電解コンデンサ素子、固体電解コンデンサ及び固体電解コンデンサ素子の製造方法 Download PDF

Info

Publication number
WO2024014469A1
WO2024014469A1 PCT/JP2023/025689 JP2023025689W WO2024014469A1 WO 2024014469 A1 WO2024014469 A1 WO 2024014469A1 JP 2023025689 W JP2023025689 W JP 2023025689W WO 2024014469 A1 WO2024014469 A1 WO 2024014469A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrolytic capacitor
solid electrolytic
solid electrolyte
metal base
Prior art date
Application number
PCT/JP2023/025689
Other languages
English (en)
French (fr)
Inventor
利充 三田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2024014469A1 publication Critical patent/WO2024014469A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes

Definitions

  • the present invention relates to a solid electrolytic capacitor element, a solid electrolytic capacitor, and a method for manufacturing a solid electrolytic capacitor element.
  • Patent Document 1 discloses an anode foil having a first portion whose surface is etched and a second portion whose surface other than the first portion is not etched, and an anode foil formed on the surface of the first portion of the anode foil.
  • a capacitor element having a dielectric layer, a solid electrolyte layer formed on the surface of the dielectric layer, and a cathode extraction layer formed on a part of the surface of the solid electrolyte layer, the capacitor element having a first part and a second part.
  • a solid electrolytic capacitor is described in which the boundary between the cathode extraction layer and the vicinity of the boundary is covered with an insulating protective layer along with the end of the cathode extraction layer and the end of the solid electrolyte layer.
  • the present invention was made in order to solve the above problems, and an object of the present invention is to provide a solid electrolytic capacitor element that can suppress leakage current defects. Another object of the present invention is to provide a solid electrolytic capacitor including the solid electrolytic capacitor element described above. A further object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor element that can realize a solid electrolytic capacitor element that can suppress leakage current defects.
  • the solid electrolytic capacitor element of the present invention has a metal base layer and a porous layer on the metal base layer, a valve metal base having an anode terminal region and a cathode formation region, and a valve metal base having the porous layer in the cathode formation region.
  • a dielectric layer provided on the surface of the porous layer a solid electrolyte layer provided on the porous layer via the dielectric layer in the cathode formation region, and a conductive layer formed on the solid electrolyte layer.
  • layer, and a mask having a first portion and a second portion, the first portion partitioning the anode terminal region and the cathode forming region, and forming the porous hole through the dielectric layer or directly.
  • the second portion covers the solid electrolyte layer provided on the porous layer, and the mask does not cover the conductive layer.
  • the solid electrolytic capacitor of the present invention includes a plurality of solid electrolytic capacitor elements of the present invention.
  • the method for manufacturing a solid electrolytic capacitor element of the present invention comprises dividing an anode terminal region and a cathode forming region of the valve metal base on the porous layer of the valve metal base via a dielectric layer or directly. forming a first portion of a mask; after forming the first portion, forming a solid electrolyte layer on the porous layer via the dielectric layer in the cathode formation region; and forming the solid electrolyte layer on the porous layer through the dielectric layer. forming a second portion of the mask that covers the solid electrolyte layer.
  • a solid electrolytic capacitor element that can suppress leakage current defects.
  • a solid electrolytic capacitor including the solid electrolytic capacitor element described above can be provided.
  • a method for manufacturing a solid electrolytic capacitor element that can realize a solid electrolytic capacitor element that can suppress leakage current defects.
  • FIG. 1 is a plan view schematically showing an example of a solid electrolytic capacitor element according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the solid electrolytic capacitor element shown in FIG. 1 taken along line XX.
  • FIG. 3 is an enlarged cross-sectional view of a mask portion of the solid electrolytic capacitor element shown in FIG.
  • FIG. 4 is an enlarged cross-sectional view of a mask portion of a solid electrolytic capacitor element of a different form from the solid electrolytic capacitor element shown in FIG.
  • FIG. 5 is a schematic diagram showing an example of the process of forming the first portion of the mask on the porous layer of the valve metal base.
  • FIG. 6 is a schematic diagram showing an example of the process of forming a solid electrolyte layer.
  • FIG. 1 is a plan view schematically showing an example of a solid electrolytic capacitor element according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the solid electrolytic capacitor element shown in FIG
  • FIG. 7 is a schematic diagram showing an example of a step of immersing the valve metal base on which the first portion of the mask is formed in a treatment liquid containing a solid electrolyte.
  • FIG. 8 is a schematic diagram showing an example of the process of forming the second portion of the mask on the solid electrolyte layer.
  • FIG. 9 is a perspective view schematically showing an example of a solid electrolytic capacitor according to an embodiment of the present invention.
  • FIG. 10 is a cross-sectional view taken along line AA of the solid electrolytic capacitor shown in FIG.
  • FIG. 11 is a perspective view schematically showing another example of the solid electrolytic capacitor according to the embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of the solid electrolytic capacitor shown in FIG. 11 taken along line BB.
  • FIG. 13 is a perspective view schematically showing an example of the first portion of the exterior body, showing a state in which some of the through holes are seen through.
  • FIG. 14 is a plan view schematically showing an example of the workpiece.
  • FIG. 15 is a diagram schematically showing an example of a process of preparing a stacked body in which a plurality of solid electrolytic capacitor elements overlap each other.
  • FIG. 16 is a diagram schematically showing an example of the process of attaching the adhesive sheet to the first portion of the exterior body.
  • FIG. 17 is a diagram schematically showing an example of a process of supplying conductive paste onto an adhesive sheet.
  • FIG. 18A is a diagram schematically showing an example of a process of inserting a superimposed body into a through hole.
  • FIG. 18A is a diagram schematically showing an example of a process of inserting a superimposed body into a through hole.
  • FIG. 18B is a diagram schematically showing an example of a process of embedding the tip of each element in a conductive paste.
  • FIG. 18C is a diagram schematically showing an example of a process of filling a liquid material around each element inserted into a through hole.
  • FIG. 19 is a diagram schematically showing an example of a process of cutting the first portion of the exterior body around the through hole.
  • FIG. 20 is a graph showing the results of leakage current measurements for solid electrolytic capacitors of Examples and Comparative Examples.
  • the present invention is not limited to the following configuration, and can be modified and applied as appropriate without changing the gist of the present invention.
  • the present invention also includes a combination of two or more of the individual desirable configurations described below.
  • FIG. 1 is a plan view schematically showing an example of a solid electrolytic capacitor element according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the solid electrolytic capacitor element shown in FIG. 1 taken along line XX.
  • FIG. 3 is an enlarged cross-sectional view of a mask portion of the solid electrolytic capacitor element shown in FIG.
  • the outer peripheries of the valve metal base 10 and the solid electrolyte layer 30 covered with the conductive layer 40 are indicated by broken lines.
  • a solid electrolytic capacitor element 1 shown in FIGS. 1 to 3 includes a valve metal base having a metal base layer 11 and a porous layer 12 on the metal base layer 11, and having an anode terminal region 13 and a cathode forming region 14. 10, a dielectric layer 20 (see FIG. 3, not shown in FIGS. 1 and 2) provided on the surface of the porous layer 12 in the cathode formation region 14, and a dielectric layer 20 provided on the surface of the porous layer 12 in the cathode formation region 14.
  • the solid electrolyte layer 30 is provided on the porous layer 12 via the solid electrolyte layer 30, the conductive layer 40 is formed on the solid electrolyte layer 30, and the mask 50 has a first portion 51 and a second portion 52. .
  • the first portion 51 partitions the anode terminal region 13 and the cathode formation region 14 and contacts the porous layer 12 via the dielectric layer 20, and the second portion 52 is provided on the porous layer 12.
  • the mask 50 does not cover the conductive layer 40 .
  • the first portion 51 of the mask 50 partitions the anode terminal region 13 and the cathode forming region 14 and contacts the porous layer 12 via the dielectric layer 20, and the second portion 52 of the mask Since the mask 50 covers the solid electrolyte layer 30 provided on the solid electrolyte layer 12 but does not cover the conductive layer 40, the first portion 51 of the mask 50 is formed first, and then the cathode formation region 14 is formed.
  • a solid electrolyte layer 30 may be formed on the solid electrolyte layer 30, then a second portion 52 of the mask 50 may be formed, and then a conductive layer 40 may be formed on the solid electrolyte layer 30.
  • the conductive layer 40 can be prevented from coming into contact with the valve metal base 10 via the dielectric layer 20 at the thin film portion or defective portion. As a result, it is possible to suppress the occurrence of leakage current defects due to the contact.
  • the second portion 52 is at least 50 ⁇ m (more preferably 100 ⁇ m, and more It is preferable that the solid electrolyte layer 30 be covered up to a point distant from the solid electrolyte layer 30 (preferably 300 ⁇ m). That is, the width W of the second portion 52 when starting from the end 51a of the first portion 51 on the cathode formation region 14 side is preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more, and 300 ⁇ m or more. It is even more preferable that there be.
  • the second portion 52 covers the solid electrolyte layer 30 at a point beyond 500 ⁇ m (more preferably 300 ⁇ m, still more preferably 100 ⁇ m) from the end 51a of the first portion 51 on the cathode formation region 14 side. It is preferable not to. That is, the width W of the second portion 52 when starting from the end 51a of the first portion 51 on the cathode formation region 14 side is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and 100 ⁇ m or less. It is even more preferable that there be.
  • the second portion 52 covers at least a portion of the first portion 51.
  • a gap is generated between the first portion 51 and the second portion 52, and the thin film portion or defective portion of the solid electrolyte layer 30 is exposed in the gap, and the dielectric layer 20 is exposed in the exposed thin film portion or defective portion.
  • the conductive layer 40 can be prevented from coming into contact with the valve metal base 10 via the valve metal base 10 . That is, leakage current defects can be suppressed more effectively.
  • the thickness T1 of the solid electrolyte layer 30 near the first portion 51 may be smaller than the thickness T2 of the solid electrolyte layer 30 at the central portion of the solid electrolyte layer 30. In such a case, leakage current defects can be more effectively suppressed as described above.
  • the thickness T1 of the solid electrolyte layer 30 may be smaller than the thickness T2 of the solid electrolyte layer 30 on each main surface side of the valve metal base 10. Further, the solid electrolyte layer 30 extends from near one end of the valve metal base 10 (the farthest end from the mask 50) to the other end (the farthest end of the mask 50) on each main surface side of the valve metal base 10. The thickness may gradually become smaller toward the first portion 51).
  • FIG. 2 a case is shown in which the first portion 51 and the second portion 52 are provided on each main surface of the valve metal base 10, but the first portion 51 and the second portion 52 are It is preferable to provide it on at least one main surface of the metal base 10.
  • the valve metal base 10 has a pair of main surfaces facing each other and a plurality of (usually four) side surfaces connecting the pair of main surfaces, but since the area of the pair of main surfaces is large, the valve metal base By providing the first portion 51 and the second portion 52 on at least one main surface (more preferably each main surface) of the device 10, leakage current defects can be more effectively suppressed.
  • the first portion 51 and the second portion 52 be provided in an annular shape (for example, a square ring shape) so as to surround the valve metal base 10. That is, the first portion 51 and the second portion 52 are preferably provided on a pair of main surfaces and a pair of side surfaces of the valve metal base 10.
  • FIG. 3 shows a configuration in which the first portion 51 of the mask 50 is in contact with the porous layer 12 via the dielectric layer 20, the first portion 51 of the mask 50 is directly in contact with the porous layer 12. It may be in contact with 12.
  • FIG. 4 is an enlarged cross-sectional view of a mask portion of a solid electrolytic capacitor element of a different form from the solid electrolytic capacitor element shown in FIG. 2.
  • FIG. 4 shows a configuration in which the first portion 51 of the mask 50 is in direct contact with the porous layer 12 without intervening the dielectric layer 20. The rest of the structure is the same as the mask portion shown in FIG.
  • the effect achieved by providing the mask 50 is similar to the effect achieved in the solid electrolytic capacitor element of the form shown in FIGS. 2 and 3.
  • the valve metal base 10 is a thin film (foil) having a rectangular shape in plan view, and preferably has a rectangular shape (strip shape) in plan view having a pair of long sides and a pair of short sides. Valve metal base 10 functions as anode 60 of solid electrolytic capacitor element 1 .
  • planar view means viewed from the normal direction of the main surface of the valve metal base.
  • the valve metal base 10 includes a metal base layer 11 and a porous layer 12 provided with a plurality of recesses. Therefore, each main surface of the valve metal base 10 is porous. This increases the surface area of the valve metal base 10. Note that the case is not limited to the case where both main surfaces of the valve action metal base 10 are porous (porous layer 12), and only one of both main faces of the valve action metal base 10 is porous (porous layer 12). It may be.
  • the metal base layer 11 is a core part of the valve metal base 10, and as shown in FIG. 2, its thickness is approximately constant.
  • the valve metal base 10 is made of a valve metal such as a single metal such as aluminum, tantalum, niobium, titanium, or zirconium, or an alloy containing these metals.
  • a valve metal such as a single metal such as aluminum, tantalum, niobium, titanium, or zirconium, or an alloy containing these metals.
  • An oxide film can be formed on the surface of the valve metal.
  • the valve metal base 10 only needs to be composed of a metal base layer and a porous layer provided on at least one main surface of the metal base layer, and may be formed by etching the surface of metal foil, metal foil, etc.
  • a material in which a porous fine powder sintered body is formed on the surface of the material can be appropriately used.
  • the dielectric layer 20 is here provided on the surface of the porous layer 12 of the valve metal base 10 (see FIG. 3).
  • the dielectric layer 20 is provided on the entire valve metal base 10 except for one end surface 11a of the metal base layer 11 (see FIG. 2).
  • the valve metal base 10 is provided entirely on the valve metal base 10 except for one end surface 11a of the metal base layer 11 (see FIG. 2) and directly under the first portion 51 of the mask 50.
  • the dielectric layer 20 only needs to be provided on at least one of both main surfaces of the valve metal base 10, excluding at least the end surface 11a.
  • the dielectric layer 20 is preferably constituted by an oxide film provided on the surface of the porous layer 12 of the valve metal base 10.
  • the dielectric layer 20 is made of aluminum oxide.
  • the aluminum oxide is formed by anodizing the surface of the valve metal base.
  • the mask 50 is an insulating member provided along one side 10a (preferably the short side) of the valve metal base 10, and separates the anode 60 and cathode 70 of the solid electrolytic capacitor element 1. Insulation between the anode 60 and cathode 70 of 1 is ensured.
  • the valve metal base 10 is divided into an anode terminal region 13 and a cathode formation region 14 by the first portion 51 of the mask 50 .
  • the mask 50 is provided linearly (extends in a band shape) along the side 10a of the valve metal base 10.
  • the mask 50 (first portion 51) is placed at a predetermined distance from the side 10a of the valve metal base 10, but may be placed up to the side 10a.
  • the end face located on the side 10a of the valve metal base 10 corresponds to the anode terminal region 13.
  • the mask 50 is provided on the pair of main surfaces and the pair of side surfaces of the valve metal base 10 with the dielectric layer 20 interposed therebetween. It may be provided on at least one of the pair of main surfaces (however, the main surface on which the dielectric layer 20 is provided).
  • the mask 50 includes a first portion 51 that contacts the porous layer 12 via the dielectric layer 20 and a second portion 52 that covers the solid electrolyte layer 30 provided on the porous layer 12.
  • the first portion 51 mainly functions as an insulating mask that partitions the anode terminal region 13 and the cathode formation region 14 and prevents the solid electrolyte layer 30 from entering the anode terminal region 13, and the second portion 52 It mainly functions as a protective mask that covers and protects the thin film portions and defective portions of the solid electrolyte layer 30. Further, the application area of the conductive layer 40 is limited by the second portion 52 .
  • the second portion 52 covers only a portion of the solid electrolyte layer 30, particularly only a portion of the solid electrolyte layer 30 adjacent to the first portion 51.
  • the first portion 51 of the mask 50 is preferably provided so as to fill a plurality of pores (recesses) of the valve metal base 10 (porous layer 12). .
  • the first portion 51 of the mask 50 covers a part of the outer surface of the dielectric layer 20, and the pores (recesses) of the porous layer 12 that are not filled with the first portion 51 of the mask 50 may exist.
  • the first portion 51 of the mask 50 exists continuously from the portion filled with the pores of the porous layer 12 toward the opposite side of the metal base layer 11, and is connected to the first portion 51 of the mask 50.
  • the solid electrolyte layer 30 does not exist between the outermost surface 12a of the porous layer 12 (the outermost surface of the porous layer 12, see the thick broken line in FIGS. 3 and 4). However, if a plurality of pores in the porous layer 12 that are not filled with the first portion 51 of the mask 50 exist on the metal base layer 11 side, even if those pores are filled with the solid electrolyte layer 30. good.
  • the second portion 52 of the mask 50 further covers the solid electrolyte layer 30 that covers the outermost surface 12a of the porous layer 12. That is, a solid electrolyte exists in a layered manner between the second portion 52 of the mask 50 and the outermost surface 12a of the porous layer 12, and the second portion 52 of the mask 50 The pores (recesses) of layer 12) are not filled.
  • the mask 50 (first portion 51 and second portion 52) is made of an insulating material.
  • the mask 50 is formed, for example, by applying a mask material such as a composition containing an insulating resin.
  • the insulating resin include polyphenylsulfone (PPS), polyethersulfone (PES), cyanate ester resin, fluororesin (tetrafluoroethylene, tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer, etc.), and soluble polyimide.
  • examples include compositions made of siloxane and epoxy resins, polyimide resins, polyamideimide resins, and derivatives or precursors thereof.
  • the first portion 51 and the second portion 52 of the mask 50 may be formed from the same insulating material, or may be formed from mutually different insulating materials. Note that in the former case, an interface as shown in FIGS. 3 and 4 does not need to exist between the first portion 51 and the second portion 52. Also in this case, the part that contacts the porous layer 12 directly or through the dielectric layer 20 is the first part 51, and the part that covers the solid electrolyte layer 30 provided on the porous layer 12 is the second part 52. shall be.
  • the mask material can be applied by, for example, screen printing, roller transfer, dispenser, inkjet printing, etc.
  • the solid electrolytic capacitor element 1 includes a solid electrolyte layer 30 provided on the dielectric layer 20 and a conductive layer 40 provided on the solid electrolyte layer 30. functions as a cathode 70. Further, the cathode 70 is provided on the dielectric layer 20 in the cathode forming region 14 of the valve metal base 10 defined by the first portion 51 of the mask 50 .
  • the solid electrolyte layer 30 is provided on the dielectric layer 20. As shown in FIGS. 3 and 4, the solid electrolyte layer 30 is preferably provided so as to fill a plurality of pores (recesses) of the valve metal base 10 (porous layer 12). However, it is sufficient that a part of the outer surface of the dielectric layer 20 is covered by the solid electrolyte layer 30, and even if there are pores (recesses) in the porous layer 12 that are not filled with the solid electrolyte layer 30, good.
  • the solid electrolyte layer 30 is provided on the dielectric layer 20 in the cathode formation region 14 of the valve metal base 10 defined by the first portion 51 of the mask 50.
  • the material constituting the solid electrolyte layer 30 for example, conductive polymers such as polypyrroles, polythiophenes, and polyanilines are used. Among these, polythiophenes are preferred, and poly(3,4-ethylenedioxythiophene) called PEDOT is particularly preferred. Further, the conductive polymer may contain a dopant such as polystyrene sulfonic acid (PSS).
  • PSS polystyrene sulfonic acid
  • the solid electrolyte layer 30 is formed by applying a conductive material such as poly(3,4-ethylenedioxythiophene) to the surface of the dielectric layer 20 using a liquid containing a polymerizable monomer such as 3,4-ethylenedioxythiophene. It is formed by a method of forming a polymeric film of a polymer, or a method of applying a dispersion of a conductive polymer such as poly(3,4-ethylenedioxythiophene) to the surface of the dielectric layer 20 and drying it. .
  • a conductive material such as poly(3,4-ethylenedioxythiophene)
  • the outer layer that covers the entire dielectric layer 20.
  • the inner layer can be formed by, for example, a dipping method, electrolytic polymerization, sponge transfer, screen printing, dispenser printing, inkjet printing, or the like.
  • the outer layer can be formed by, for example, a dipping method, electrolytic polymerization, sponge transfer, screen printing, dispenser printing, inkjet printing, etc.
  • the conductive layer 40 is provided on the solid electrolyte layer 30.
  • the conductive layer 40 covers substantially the entire solid electrolyte layer 30 except for the region covered by the second portion 52 of the mask 50 and is in contact with the second portion 52 of the mask 50 .
  • the conductive layer 40 may be placed so as to cover at least a portion of the second portion 52 of the mask 50, or may be placed in front of the second portion 52 of the mask 50 without contacting the second portion 52 of the mask 50. It may be arranged up to
  • the conductive layer 40 has a substantially constant thickness.
  • the conductive layer 40 includes, for example, a carbon layer or a cathode conductor layer. Further, the conductive layer 40 may be a composite layer in which a cathode conductor layer is provided on the outer surface of a carbon layer, or a mixed layer containing carbon and cathode conductor layer material.
  • the carbon layer is formed, for example, by a method in which a carbon paste containing carbon particles and resin is applied to the surface of the solid electrolyte layer 30 and dried.
  • the carbon paste can be applied by, for example, a dipping method, sponge transfer, screen printing, spray coating, dispenser, inkjet printing, etc.
  • the cathode conductor layer is formed, for example, by a method in which a conductive paste containing metal particles such as gold, silver, copper, platinum, etc. and a resin is applied to the surface of the solid electrolyte layer or carbon layer and dried.
  • the cathode conductor layer is preferably a silver layer.
  • the conductive paste can be applied by, for example, a dipping method, sponge transfer, screen printing, spray coating, dispenser, inkjet printing, etc.
  • a method for manufacturing the solid electrolytic capacitor element 1 will be described below. In the following example, a method for simultaneously manufacturing a plurality of solid electrolytic capacitor elements using a large valve metal substrate will be described.
  • FIG. 5 is a schematic diagram showing an example of the process of forming the first portion of the mask on the porous layer of the valve metal base.
  • the anode terminal region 13 and the cathode formation region 14 of the valve metal base 10A are placed on the porous layer (not shown) of the valve metal base 10A via a dielectric layer (not shown).
  • a first portion 51 of the mask 50 is formed to partition the area.
  • valve action metal base 10A having a metal base layer (not shown) and a porous layer on the metal base layer is cut by laser processing, punching, etc., so that the plurality of element parts 15 are cut. and the support portion 16.
  • Each element portion 15 has a rectangular shape and protrudes from the support portion 16.
  • the first portion 51 of the mask 50 is formed on both main surfaces and both side surfaces of the element section 15 along the short sides of each element section 15.
  • the first portion 51 of the mask 50 is formed by applying a mask material such as a composition containing an insulating resin by screen printing, roller transfer, dispenser, inkjet printing, etc., for example.
  • a mask material such as a composition containing an insulating resin by screen printing, roller transfer, dispenser, inkjet printing, etc.
  • the insulating resin include polyphenylsulfone (PPS), polyethersulfone (PES), cyanate ester resin, fluororesin (tetrafluoroethylene, tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer, etc.), and soluble polyimide.
  • examples include compositions made of siloxane and epoxy resins, polyimide resins, polyamideimide resins, and derivatives or precursors thereof.
  • valve metal base 10A is anodized to form an oxide film that will become a dielectric layer on the surface of the valve metal base 10A (porous layer).
  • an oxide film is also formed on the side surface of the element portion 15 cut by laser processing, punching, or the like.
  • the first portion 51 of the mask 50 is dielectric. It comes into direct contact with the porous layer without going through the body layer.
  • a chemically formed foil on which an oxide of a valve metal has already been formed may be used as the valve metal base 10A.
  • an oxide film is formed on the side surface of the cut element portion 15 by anodizing the valve metal base 10A after cutting.
  • a chemically formed foil is used as the valve metal base 10A, the first portion 51 of the mask 50 comes into contact with the porous layer via the dielectric layer.
  • FIG. 6 is a schematic diagram showing an example of the process of forming a solid electrolyte layer.
  • FIG. 7 is a schematic diagram showing an example of a step of immersing the valve metal base on which the first portion of the mask is formed in a treatment liquid containing a solid electrolyte.
  • the solid electrolyte layer 30 is formed on the porous layer via the dielectric layer in the cathode formation region 14.
  • the processing liquid 80 is immersed in the processing liquid 80 containing the solid electrolyte from the tip side until it contacts the first portion 51 of the mask 50. It is impregnated into the porous layer of the valve metal base 10A. Note that the processing liquid 80 is supplied to a processing tank 85. After being immersed for a predetermined time, the element portion 15 is pulled up from the processing liquid 80 and dried at a predetermined temperature and for a predetermined time.
  • the solid electrolyte layer 30 is formed by repeating immersion in the treatment liquid 80, pulling up, and drying a predetermined number of times.
  • the treatment liquid 80 containing the solid electrolyte for example, a dispersion of a conductive polymer such as polypyrroles, polythiophenes, polyanilines, etc. is used.
  • a conductive polymer film can be formed by applying a conductive polymer dispersion to the outer surface of the dielectric layer 20 and drying it.
  • a liquid containing a polymerizable monomer for example, 3,4-ethylenedioxythiophene and an oxidizing agent may be used.
  • a conductive polymer film can be formed by chemical polymerization by attaching a liquid containing a polymerizable monomer to the outer surface of the dielectric layer 20. This conductive polymer film becomes the solid electrolyte layer 30.
  • FIG. 8 is a schematic diagram showing an example of the process of forming the second portion of the mask on the solid electrolyte layer.
  • the second portion 52 of the mask 50 that covers the solid electrolyte layer 30 is formed. More specifically, the second portion 52 of the mask 50 is formed on both main surfaces and both side surfaces of the element portion 15 along the first portion 51 of the mask 50 .
  • the second portion 52 of the mask 50 By forming the second portion 52 of the mask 50, even if the solid electrolyte layer 30 is thin and defects occur near the first portion 51 of the mask 50, the thin film portion or defective portion can be masked before forming the conductive layer 40. 50 can be covered and protected by a second portion 52. Therefore, occurrence of leakage current defects as described above can be suppressed.
  • the second portion 52 of the mask 50 is formed by applying a mask material such as a composition containing an insulating resin by screen printing, roller transfer, a dispenser, inkjet printing, etc., for example.
  • a mask material such as a composition containing an insulating resin
  • the insulating resin include polyphenylsulfone (PPS), polyethersulfone (PES), cyanate ester resin, fluororesin (tetrafluoroethylene, tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer, etc.), and soluble polyimide.
  • examples include compositions made of siloxane and epoxy resins, polyimide resins, polyamideimide resins, and derivatives or precursors thereof.
  • a carbon layer is formed in the cathode forming region 14 by applying carbon paste to the surface of the solid electrolyte layer 30 and drying it.
  • a carbon layer is formed by immersing the element portion 15 in carbon paste, pulling it up, and drying it.
  • the carbon paste may be applied by, for example, sponge transfer, screen printing, spray coating, dispenser, inkjet printing, or the like.
  • the carbon paste is a conductive paste containing carbon particles as a conductive component and a resin component such as an epoxy resin or a phenol resin.
  • a cathode conductor layer is formed in the cathode forming region 14 by applying a conductive paste to the surface of the carbon layer and drying it.
  • the cathode conductor layer is formed by immersing the element portion 15 in a conductive paste, pulling it up, and drying it.
  • the conductive paste may be applied by, for example, sponge transfer, screen printing, spray coating, dispenser, inkjet printing, or the like.
  • the conductive paste for forming the cathode conductor layer include those containing metal particles as a conductive component and a resin component such as an epoxy resin or a phenol resin. Examples of the metal particles include gold, silver, copper, and platinum.
  • a silver paste containing silver particles as a conductive component is suitable as the conductive paste for forming the cathode conductor layer.
  • valve metal base 10A is cut to separate the element portion 15 to form a rectangular valve metal base 10A.
  • FIG. 9 is a perspective view schematically showing an example of a solid electrolytic capacitor according to an embodiment of the present invention.
  • a solid electrolytic capacitor 100A shown in FIG. 9 includes a plurality of solid electrolytic capacitor elements 1 sealed with a sealing material to form a sealing body 160, and a lead frame 170 connected to the anode of the solid electrolytic capacitor elements 1. and a lead frame 180 connected to the cathode of the solid electrolytic capacitor element 1.
  • L indicates the length direction (longitudinal direction) of the solid electrolytic capacitor 100A
  • W indicates the width direction
  • T indicates the height direction.
  • the length direction L, width direction W, and height direction T are orthogonal to each other.
  • the longitudinal direction of the solid electrolytic capacitor is also the longitudinal direction of the lead frame.
  • FIG. 10 is a cross-sectional view taken along line AA of the solid electrolytic capacitor shown in FIG.
  • a solid electrolytic capacitor 100A shown in FIG. 10 includes the plurality of solid electrolytic capacitor elements 1 described above, a lead frame 170 connected to a valve metal base 10 that functions as an anode 60 of the solid electrolytic capacitor element 1, and a solid electrolytic capacitor element 1.
  • the device includes a lead frame 180 connected to a conductive layer 40 that functions as a cathode 70 of the first embodiment, and a sealing body 160 made of a sealing material.
  • the sealing body 160 seals the plurality of solid electrolytic capacitor elements 1.
  • the sealing body 160 is formed to cover the entirety of each solid electrolytic capacitor element 1, a portion of the lead frame 170, and a portion of the lead frame 180.
  • Examples of the material of the sealing body 160 (sealing material) include epoxy resin.
  • the solid electrolytic capacitor element 1 includes the valve metal base 10, the dielectric layer (not shown), the solid electrolyte layer 30, the conductive layer 40, and the mask 50.
  • the valve metal base 10 has a metal base layer 11 and a porous layer 12 on the metal base layer 11, and has an anode terminal region 13 and a cathode forming region 14.
  • the mask 50 has a first portion 51 that contacts the porous layer 12 directly or through a dielectric layer, and a second portion 52 that covers the solid electrolyte layer 30 provided on the porous layer 12 and is conductive. Layer 40 is not covered.
  • valve metal bases 10 of each solid electrolytic capacitor element 1 are gathered together by the lead frame 170 and pulled out of the sealing material (sealing body 160).
  • each solid electrolytic capacitor element 1 On the cathode formation region 14 side, the conductive layer 40 of each solid electrolytic capacitor element 1 is electrically connected, further electrically connected to the lead frame 180, and drawn out of the sealing material (sealing body 160). It will be done.
  • FIG. 11 is a perspective view schematically showing another example of the solid electrolytic capacitor according to the embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of the solid electrolytic capacitor shown in FIG. 11 taken along line BB.
  • the length direction (longitudinal direction) of the solid electrolytic capacitor 100B and the element body 110 is indicated by L
  • the width direction is indicated by W
  • the height direction is indicated by T.
  • the length direction L, width direction W, and height direction T are orthogonal to each other.
  • a solid electrolytic capacitor 100B shown in FIGS. 11 and 12 has a substantially rectangular parallelepiped outer shape.
  • Solid electrolytic capacitor 100B includes an element body 110, a first external electrode 130, and a second external electrode 140.
  • the element body 110 includes a solid electrolytic capacitor element 1 (hereinafter sometimes simply abbreviated as "element 1”), and includes a superimposed body 101 in which a plurality of elements 1 are stacked on top of each other. Furthermore, the element body 110 includes an exterior body 120 and a current collecting electrode 102. Note that the number of elements 1 included in the superimposed body 101 is not particularly limited as long as it is 2 or more, and can be set as appropriate.
  • the element body 110 has an approximately rectangular parallelepiped outer shape.
  • the element body 110 has a first main surface 110a and a second main surface 110b facing each other in the height direction T, a first side surface 110c and a second side surface 110d facing each other in the width direction W, and a first side surface 110c and a second side surface 110d facing each other in the length direction L. It has a first end surface 110e and a second end surface 110f.
  • the element body 110 has a substantially rectangular parallelepiped outer shape, but the corners and ridges may be rounded.
  • the corner portion is a portion where three sides of the element body 110 intersect, and the ridgeline portion is a portion where two sides of the element body 110 intersect.
  • the first external electrode 130 is formed on the first end surface 110e of the element body 110
  • the second external electrode 140 is formed on the second end surface 110f of the element body 110.
  • a plurality of elements 1 are arranged one on top of the other in the height direction T.
  • the extending direction of each of the plurality of elements 1 is substantially parallel to the first main surface 110a and the second main surface 110b of the element body 110.
  • Elements 1 adjacent to each other in the height direction T may be bonded to each other via a conductive adhesive (not shown).
  • the solid electrolytic capacitor element 1 includes the valve metal base 10, the dielectric layer (not shown), the solid electrolyte layer 30, the conductive layer 40, and the mask 50.
  • the valve metal base 10 has a metal base layer 11 and a porous layer 12 on the metal base layer 11, and has an anode terminal region 13 and a cathode forming region 14.
  • the mask 50 has a first portion 51 that contacts the porous layer 12 directly or through a dielectric layer, and a second portion 52 that covers the solid electrolyte layer 30 provided on the porous layer 12 and is conductive. Layer 40 is not covered.
  • the exterior body 120 seals the plurality of elements 1. That is, a stacked body 101 of a plurality of elements 1 is embedded in the exterior body 120. Further, the exterior body 120 seals the current collecting electrode 102.
  • the exterior body 120 has a first portion 121 containing a first resin material and a second portion 122 containing a second resin material.
  • the first portion 121 has a tube structure (for example, a square tube structure) having a through hole 123, and accommodates a plurality of elements 1 (superimposed bodies 101) in the through hole 123.
  • the second portion 122 exists within a through hole 123 in which a plurality of elements 1 (superimposed body 101) are housed.
  • square tube structure refers to a structure in which the outer circumferential surface of the tube structure includes four planes, and two adjacent planes among the four planes intersect (preferably orthogonally) each other.
  • the shape of the through hole 123 is not particularly limited.
  • the second portion 122 is filled in a through hole 123 in which a plurality of elements 1 (superimposed body 101) are housed. That is, the second portion 122 is filled inside the first portion 121 and around the plurality of elements 1 (superimposed body 101). Note that here, the state in which the second portion 122 is filled in the through hole 123 in which the plurality of elements 1 (superimposed body 101) is housed means that the second portion 122 is inside the first portion 121.
  • the space around the plurality of elements 1 (superimposed body 101) may or may not be completely filled.
  • a few air bubbles may remain in the second portion 122, a slight gap may remain between the second portion 122 and the first portion 121, or a small amount of air bubbles may remain in the second portion 122.
  • a slight gap may remain between and at least one element 1.
  • the first resin material may be the same material as the second resin material, but is preferably a different material from the second resin material.
  • the first resin material of the first portion 121 is preferably an injection moldable resin, and specifically, PPS (polyphenylene sulfide), LCP (liquid crystal polymer), PBT (polybutylene terephthalate), polyimide, polyamide, etc.
  • Thermoplastic resins are preferred.
  • the first resin material may contain fillers such as silica particles, alumina particles, and metal particles, and fibers such as ceramic fibers as reinforcing materials.
  • the second resin material for the second portion 122 is preferably a thermosetting resin such as epoxy resin, silicone resin, or urethane resin.
  • the second resin material may contain fillers such as silica particles, alumina particles, and metal particles, and fibers such as ceramic fibers as reinforcing materials.
  • the current collecting electrode 102 is electrically connected to the plurality of cathodes 70 of the plurality of elements 1.
  • the current collecting electrode 102 is exposed on the first end surface 110e of the element body 110, and is provided at least in a portion of the element body 110 on the first end surface 110e side. Further, the current collecting electrode 102 is formed in a thick shape at a position recessed from the first end surface 110e.
  • each cathode 70 on the first external electrode 130 side is embedded in the current collecting electrode 102, thereby creating a gap between each cathode 70 and the current collecting electrode 102. Electrical connection is ensured.
  • the current collecting electrode 102 is a composite material of a conductive component (conductive material) and a resin component (resin material).
  • the conductive component preferably contains as a main component an elemental metal such as silver, copper, nickel, or tin, or an alloy containing at least one of these metals.
  • the resin component preferably contains epoxy resin, phenol resin, etc. as a main component.
  • the current collecting electrode 102 can be formed using, for example, a conductive paste such as silver paste.
  • the first external electrode 130 is provided on the first end surface 110e of the element body 110.
  • the first external electrode 130 is provided from the first end surface 110e of the element body 110 to each of the first main surface 110a, the second main surface 110b, the first side surface 110c, and the second side surface 110d. There is.
  • the first external electrode 130 is electrically connected to the current collecting electrode 102 exposed from the element body 110 at the first end surface 110e. That is, the first external electrode 130 is electrically connected to each cathode 70 via the current collecting electrode 102.
  • the current collecting electrode 102 is present in a through hole 123 in which a plurality of elements 1 (superimposed body 101) are accommodated, and the current collecting electrode 102 and the first portion 121 of the exterior body 120 are connected to the first portion 121 of the element body 110. Since one end surface 110e is formed, the first external electrode 130 can be formed on this first end surface 110e. Therefore, electrical connection between the first external electrode 130 and the current collecting electrode 102 is easy, and the first external electrode 130 can be formed with a small thickness.
  • the first external electrode 130 may have a so-called sputtered film formed by a sputtering method.
  • the material of the sputtered film include Ni, Sn, Ag, Cu, and Ag.
  • the first external electrode 130 may have a so-called vapor deposited film formed by a vapor deposition method.
  • the material of the deposited film include Ni, Sn, Ag, and Cu.
  • the film thickness of the first external electrode 130 may be thinner than that of the second external electrode 140. good.
  • the film thickness of the first external electrode 130 is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 5 ⁇ m or more and 50 ⁇ m or less, and even more preferably 10 ⁇ m or more and 30 ⁇ m or less.
  • the second external electrode 140 is provided on the second end surface 110f of the element body 110.
  • the second external electrode 140 is provided from the second end surface 110f of the element body 110 to each of the first main surface 110a, the second main surface 110b, the first side surface 110c, and the second side surface 110d. There is.
  • the second external electrode 140 is electrically connected to the anode 60 of the element 1 exposed from the element body 110 at the second end surface 110f.
  • the second external electrode 140 may be directly or indirectly connected to the anode 60 at the second end surface 110f of the element body 110.
  • At least one of the first external electrode 130 and the second external electrode 140 may have a resin electrode layer containing a conductive component and a resin component.
  • the conductive component preferably contains as a main component an elemental metal such as silver, copper, nickel, or tin, or an alloy containing at least one of these metals.
  • the resin component preferably contains epoxy resin, phenol resin, etc. as a main component.
  • the resin electrode layer can be formed using, for example, a conductive paste such as silver paste.
  • At least one of the first external electrode 130 and the second external electrode 140 may have a so-called plating layer formed by a plating method.
  • the plating layer include a zinc/silver/nickel layer, a silver/nickel layer, a nickel layer, a zinc/nickel/gold layer, a nickel/gold layer, a zinc/nickel/copper layer, a nickel/copper layer, and the like.
  • a copper plating layer, a nickel plating layer, and a tin plating layer are provided in this order (or excluding some of the plating layers) on these plating layers.
  • At least one of the first external electrode 130 and the second external electrode 140 may have a resin electrode layer and a plating layer.
  • the first external electrode 130 may include a resin electrode layer connected to the current collecting electrode 102 and an outer plating layer provided on the surface of the resin electrode layer.
  • the first external electrode 130 also includes an inner plating layer connected to the current collecting electrode 102, a resin electrode layer provided to cover the inner plating layer, and an outer plating layer provided on the surface of the resin electrode layer.
  • the second external electrode 140 may include a resin electrode layer connected to the anode 60 and an outer plating layer provided on the surface of the resin electrode layer.
  • the second external electrode 140 also includes an inner plating layer connected to the anode 60, a resin electrode layer provided to cover the inner plating layer, and an outer plating layer provided on the surface of the resin electrode layer. It may have.
  • the solid electrolytic capacitor 100A shown in FIGS. 9 and 10 connects lead frames 170 and 180 to a plurality of solid electrolytic capacitor elements 1, and then molds the plurality of solid electrolytic capacitor elements by resin molding such as compression molding or transfer molding. It can be manufactured by sealing the periphery of 1 with a sealing material to form a sealed body 160.
  • the solid electrolytic capacitor 100B shown in FIGS. 11 and 12 can be manufactured by the following method. In the following example, a method for simultaneously manufacturing a plurality of solid electrolytic capacitor elements using a large valve metal substrate will be described.
  • FIG. 13 is a perspective view schematically showing an example of the first portion of the exterior body, showing a state where some of the through holes are seen through.
  • a first portion 221 of the exterior body 220 (a member that will become the first portion 121 of the exterior body 120) containing the above-described first resin material and having a plurality of through holes 223 is prepared.
  • the first portion 221 is a flat plate having a predetermined thickness and a rectangular shape in a plan view, and a plurality of through holes 223 are provided vertically and horizontally. Each through hole 223 is provided in a direction perpendicular to the main surface of the first portion 221, and both ends thereof are open.
  • the first portion 221 can be made by injection molding.
  • the first resin material used for the first portion 221 is preferably an injection moldable resin, and specifically, PPS (polyphenylene sulfide), LCP (liquid crystal polymer), PBT (polybutylene terephthalate), polyimide, Thermoplastic resins such as polyamide are preferred.
  • the first resin material may contain fillers such as silica particles, alumina particles, and metal particles, and fibers such as ceramic fibers as reinforcing materials.
  • Each inner corner of each through hole 223 of the first portion 221 may be rounded or cornered (forming an inclined surface).
  • FIG. 14 is a plan view schematically showing an example of the workpiece.
  • a workpiece 210 is prepared in which element parts 212 (a plurality of solid electrolytic capacitor elements 1) are connected in a strip shape at regular intervals to a band-shaped holding part 211.
  • a mask 50 is formed in each element portion 212.
  • the workpiece 210 can be created by the method described in the above-mentioned method for manufacturing a solid electrolytic capacitor element.
  • the first portion 221 described above has approximately rectangular parallelepiped-shaped through holes 223 with the same number and pitch as the elements 1 of the strip-shaped workpiece 210, and is provided with a plurality of rows of such through holes 223. There is.
  • FIG. 15 is a diagram schematically showing an example of the process of preparing a stacked body in which a plurality of solid electrolytic capacitor elements overlap each other.
  • a plurality of workpieces 210 each having a plurality of strip-shaped elements 1 are prepared, and a predetermined number of workpieces 210 are bundled together so that the plurality of elements 1 are overlapped, and held together using a clamp or the like. Fix with a jig (not shown).
  • a plurality of superimposed bodies 101 in which a plurality of elements 1 are overlapped with each other are created. Note that the plurality of superimposed bodies 101 are arranged in a line (a line arranged in a direction perpendicular to the paper surface of FIG. 15).
  • FIG. 16 is a diagram schematically showing an example of the process of attaching the adhesive sheet to the first portion of the exterior body.
  • an adhesive sheet 250 (hereinafter sometimes simply abbreviated as "sheet 250") is attached to the first portion 221 so as to close the first opening 223a of each through hole 223. paste. That is, an adhesive sheet 250 is attached to the entire surface of one side of the first portion 221 to close one side of each through hole 223. This makes it possible to easily expose the current collecting electrode 102 on the first end surface 110e of the element body 110 by peeling off the sheet 250 after sealing.
  • each through hole 223 only needs to have a first opening 223a (lower opening) covered, and instead of pasting the adhesive sheet 250, for example, the first portion 221 can be placed on a flat base.
  • the first opening 223a may be covered by arranging the first opening 223a.
  • FIG. 17 is a diagram schematically showing an example of the process of supplying conductive paste onto an adhesive sheet.
  • a sheet is inserted from the second opening 223b (upper opening) of each through hole 223.
  • a conductive paste 230 is provided on top of the conductive paste 250 .
  • conductive paste 230 is applied onto sheet 250 within each through hole 223 .
  • the conductive paste 230 include those containing metal particles as a conductive component and a resin component such as an epoxy resin or a phenol resin.
  • the metal particles include silver, copper, nickel, and tin.
  • a silver paste containing silver particles as a conductive component is suitable as the conductive paste 230.
  • FIG. 18A is a diagram schematically showing an example of the process of inserting the stacked body into the through hole.
  • FIG. 18B is a diagram schematically showing an example of a process of embedding the tip of each element in a conductive paste.
  • FIG. 18C is a diagram schematically showing an example of a process of filling a liquid material around each element inserted into a through hole.
  • the fixed plurality of works 210 are moved relative to the first portion 221, and the superimposed body 101 is inserted into the through holes 223 in the same row from the second opening 223b. do.
  • the elements 1 can be inserted into the first portion 221 in units of strips.
  • Productivity can be significantly improved compared to inserting the superimposed bodies 101 into the first portion 221 one by one or one by one.
  • the conductive paste 230 is spread out with the tip of each element 1, that is, the tip of the cathode 70, and the tip of the cathode 70 of each element 1 is embedded in the conductive paste 230. . That is, the conductive paste 230 is connected to all the elements 1.
  • the conductive paste 230 is hardened by heating, for example, on the sheet 250.
  • the current collecting electrode 102 is formed in a state where at least the tip of the cathode 70 of each element 1 is embedded in the current collecting electrode 102 (see FIG. 12).
  • the area around each element 1 inserted into each through hole 223, that is, the gap between adjacent elements 1 and the gap between the superimposed body 101 and the first portion 221, is Fill with liquid material 222.
  • the liquid material 222 is injected into each through hole 223 using a dispenser or the like, and the liquid material 222 is filled around each element 1 by performing vacuum defoaming.
  • the liquid material 222 is also filled between the adjacent masks 50, but if the adjacent masks 50 are in contact with each other, the liquid material 222 does not need to be filled between them. Further, the viscosity of the liquid material 222 may be lowered by heating during injection or vacuum defoaming.
  • the liquid material 222 includes the above-mentioned second resin material (but in liquid form before hardening).
  • the resin contained in the liquid second resin material is preferably a thermosetting resin such as epoxy resin, silicone resin, or urethane resin.
  • the liquid second resin material may contain fillers such as silica particles, alumina particles, and metal particles, and fibers such as ceramic fibers as reinforcing materials.
  • the liquid material 222 before curing has a viscosity of 100 Pa ⁇ s or less at 25°C. If the viscosity is 100 Pa ⁇ s or less, it can be easily filled by simply defoaming and heating in a vacuum oven, so productivity can be increased.
  • the viscosity of the liquid material 222 before curing at 25° C. is more preferably 30 Pa ⁇ s or less, and even more preferably 5 Pa ⁇ s or less.
  • the liquid material 222 leaks from the gap between the first portion 221 and the sheet 250 after being filled with the liquid material 222 and before being heated and cured.
  • the viscosity is preferably not too low to avoid problems. More specifically, the viscosity of the liquid material 222 before curing is usually 0.01 Pa ⁇ s or more, preferably 0.1 Pa ⁇ s or more, and more preferably 0.3 Pa ⁇ s at 25°C. That's all.
  • the liquid material 222 filled in each through hole 223 is cured.
  • the liquid material 222 is heated and hardened in a vacuum oven to form the second portion 222a of the exterior body 220 (the portion that will become the second portion 122 of the exterior body 120).
  • a few air bubbles may remain in the second portion 222a, which is the cured product of the liquid material 222.
  • a slight gap may remain between the second portion 222a and the first portion 221 and/or between the second portion 222a and at least one element 1.
  • the sheet 250 is peeled off from the first portion 221.
  • the current collecting electrode 102 to which each element 1 is connected is exposed on the peeled surface, and this peeled surface becomes the first end surface 110e of the element body 110. Note that the end face of at least one cathode 70 may be exposed to this peeling surface.
  • the unnecessary portion of the upper part of the first portion 221 is scraped off with a grinder or the like along a predetermined cut line (for example, the dashed line in FIG. 18C).
  • the surface exposed by scraping away the unnecessary portion becomes the second end surface 110f of the element body 110.
  • the anode 60 (foil made of a valve metal base) of each element 1 is exposed at the second end surface 110f.
  • FIG. 19 is a diagram schematically showing an example of the process of cutting the first portion of the exterior body around the through hole.
  • the first portion 221 is cut around each through hole 223.
  • the first portion 121 having a tubular structure can be easily formed from the first portion 221 .
  • a predetermined cut line for example, a dashed line in FIG. 19
  • a dicer or the like is cut with a dicer or the like.
  • the element body 110 may be barrel polished. Specifically, the element body 110 may be polished by enclosing the element body 110 together with an abrasive material in a barrel tank and rotating the barrel vessel. As a result, the corners and ridges of the element body 110 are rounded.
  • metal fine particles for example, Cu fine particles
  • a metal film contact layer
  • a first external electrode 130 and a second external electrode 140 are formed on the first end surface 110e (cathode end surface) and second end surface 110f (anode end surface) of the element body 110, respectively.
  • a conductive paste is applied by screen printing or the like and cured to form resin electrode layers as the first external electrode 130 and the second external electrode 140, respectively.
  • the conductive paste for forming the resin electrode layer a silver paste containing silver particles as a conductive component is suitable. Thereafter, a plating layer may be formed on the resin electrode layer by plating.
  • a thin sputtered film and/or vapor deposited film having a thickness of, for example, several ⁇ m may be formed by a sputtering method or a vapor deposition method.
  • a solid electrolytic capacitor 100B can be obtained by the above method.
  • each cathode 70 of each solid electrolytic capacitor element 1 may be directly connected to the first external electrode 130 without providing the current collecting electrode 102.
  • each cathode 70 is attached to the first end surface 110e (cathode end surface) of the element body 110 by scraping off the lower part of the first portion 221 to which the sheet 250 was attached using a grinder or the like.
  • the first external electrode 130 may be formed on each cathode 70 exposed on the first end surface 110e.
  • the second portion 222a of the exterior body 220 may be formed according to the following steps. That is, first, the liquid material 222 is injected and filled into each through hole 223 of the first portion 221 using a dispenser or the like. Next, a plurality of solid electrolytic capacitor elements 1 (superimposed body 101) are inserted into each through hole 223 filled with liquid material 222, and liquid material 222 is filled around each inserted element 1. For example, by performing vacuum defoaming after inserting a plurality of elements 1, the liquid material 222 is filled around each element 1. Then, the liquid material 222 filled in each through hole 223 is cured by heating, for example, in a vacuum oven.
  • the exterior body 120 is composed of only two types of resin materials, that is, the first portion 121 and the second portion 122, but the exterior body 120 is It may be composed of three types of resin materials.
  • one or more intermediate resin layers made of a resin material may be provided between the first portion and the second portion of the exterior body.
  • Such an intermediate resin layer can be formed by, for example, forming a second part for sealing a stack of a plurality of solid electrolytic capacitor elements by transfer molding or the like to have a size smaller than the through hole of the first part, and then forming a solid Formed by inserting the stacked body of electrolytic capacitor elements together with the second part into the through hole of the first part, and then filling the gap between the second part and the first part with a liquid resin material and hardening it. can do.
  • the exterior body 120 may be made of only one type of resin material.
  • only the second portion 122 may be provided without providing the first portion 121.
  • Such a solid electrolytic capacitor can be manufactured, for example, by setting a cut line inside each through hole 223 and cutting and removing all of the first portion 221 in a cutting process for singulation. .
  • the element bodies are opposite to each other.
  • the shape is not particularly limited as long as it has a first end face and a second end face, and may be, for example, cylindrical in addition to a substantially rectangular parallelepiped shape.
  • the case where a plurality of element bodies 110 are simultaneously produced using the first portion 221 in which a plurality of through holes 223 are open has been described.
  • the element bodies may be manufactured one by one using the first portion of the exterior body that is empty.
  • Example 10 A plurality of solid electrolytic capacitors similar to the solid electrolytic capacitor 100A shown in FIGS. 9 and 10 were manufactured. However, all solid electrolytic capacitors used had defects in the solid electrolyte layer near the first portion of the mask.
  • FIG. 20 is a graph showing the results of measuring leakage current for solid electrolytic capacitors of Examples and Comparative Examples.
  • the vertical axis indicates the magnitude (logarithm) of the leakage current
  • the horizontal axis indicates the number of solid electrolytic capacitors that exhibited the leakage current on the vertical axis.
  • the leakage current can be kept below the standard value (see the standard line in the figure). , it was possible to prevent the occurrence of leakage current defects.
  • a valve metal base comprising a metal base layer and a porous layer on the metal base layer, and having an anode terminal region and a cathode forming region; a dielectric layer provided on the surface of the porous layer in the cathode formation region; a solid electrolyte layer provided on the porous layer via the dielectric layer in the cathode formation region; a conductive layer formed on the solid electrolyte layer; a mask having a first portion and a second portion; the first portion partitions the anode terminal region and the cathode formation region, and contacts the porous layer via the dielectric layer or directly; The second portion covers the solid electrolyte layer provided on the porous layer, A solid electrolytic capacitor element in which the mask does not cover the conductive layer.
  • ⁇ 4> The solid electrolytic capacitor element according to any one of ⁇ 1> to ⁇ 3>, wherein the second portion covers at least a portion of the first portion.
  • ⁇ 5> The solid electrolytic capacitor element according to any one of ⁇ 1> to ⁇ 4>, wherein the thickness of the solid electrolyte layer near the first portion is smaller than the thickness of the solid electrolyte layer at a central portion of the solid electrolyte layer.
  • ⁇ 6> The solid electrolytic capacitor element according to any one of ⁇ 1> to ⁇ 5>, wherein the first portion and the second portion are provided on at least one main surface of the valve metal base.
  • a solid electrolytic capacitor comprising a plurality of solid electrolytic capacitor elements according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 9> forming, via a dielectric layer or directly on the porous layer of the valve metal base, a first portion of a mask that partitions an anode terminal region and a cathode formation region of the valve metal base; After forming the first portion, forming a solid electrolyte layer on the porous layer via the dielectric layer in the cathode formation region;
  • a method for manufacturing a solid electrolytic capacitor element comprising: after forming the solid electrolyte layer, forming a second portion of the mask that covers the solid electrolyte layer.
  • Solid electrolytic capacitor element 10 10A Valve metal base 10a Side of valve metal base 11 Metal base layer 11a One end surface of metal base layer 12 Porous layer 12a Outermost surface of porous layer 13 Anode terminal region 14 Cathode formation region 15 Element part 16 Support part 20 Dielectric layer 30 Solid electrolyte layer 40 Conductive layer 50 Mask 51 First part of mask 51a End of first part of mask on cathode formation region side 52 Second part of mask 60 Anode 70 Cathode 80 Treatment Liquid 85 Processing tank 100A, 100B Solid electrolytic capacitor 101 Superimposed body 102 Current collecting electrode 110 Element body 110a First main surface 110b Second main surface 110c First side surface 110d Second side surface 110e First end surface 110f Second end surface 120 Exterior body 121 First part of the exterior body 122 Second part of the exterior body 123 Through hole 130 First external electrode 140 Second external electrode 160 Sealing body 170, 180 Lead frame 210 Workpiece 211 Holding part 212 Element part 220 Exterior body 221 The exterior body First portion 222 Liquid material 222a Second

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

金属基体層11と金属基体層11上の多孔質層12とを有し、陽極端子領域13と陰極形成領域14とを有する弁作用金属基体10と、陰極形成領域14において多孔質層12の表面上に設けられた誘電体層20と、陰極形成領域14において誘電体層20を介して多孔質層12上に設けられた固体電解質層30と、固体電解質層30上に形成された導電層40と、第1部分51及び第2部分52を有するマスク50と、を備え、第1部分51は、陽極端子領域13と陰極形成領域14とを区画し、誘電体層20を介して又は直接に多孔質層12に接触し、第2部分52は、多孔質層12上に設けられた固体電解質層30を覆い、マスク50は、導電層40を覆わない、固体電解コンデンサ素子1。

Description

固体電解コンデンサ素子、固体電解コンデンサ及び固体電解コンデンサ素子の製造方法
 本発明は、固体電解コンデンサ素子、固体電解コンデンサ及び固体電解コンデンサ素子の製造方法に関する。
 特許文献1には、表面がエッチングされている第1部分と、第1部分以外の表面がエッチングされていない第2部分とを有する陽極箔と、陽極箔の第1部分の表面に形成された誘電体層と、誘電体層の表面に形成された固体電解質層と、固体電解質層の表面の一部に形成された陰極引出層と、を有するコンデンサ素子を備え、第1部分と第2部分との境界部及び当該境界部の近傍が、陰極引出層の端部及び固体電解質層の端部とともに、絶縁性の保護層で覆われている固体電解コンデンサが記載されている。
国際公開第2017/154374号
 特許文献1に記載された固体電解コンデンサにおいては、絶縁性の保護層付近にかかるストレスは低減できるが、陰極引出層形成時の導電性ペースト侵入による不具合を抑制することができない。詳しくは、第1部分と第2部分との境界部近傍の固体電解質層は薄く欠陥が生じやすく、その部分に陰極引出層用の導電性ペーストが侵入すると漏れ電流不良につながり品質が安定しない。これを抑制する術としては、高度に導電性ペーストの加工精度を向上させるか、導電性ペーストの塗布領域を小さくする施策が考えられるが、前者は設備価格や管理コストが増え、後者は等価直列抵抗(ESR)を犠牲にするという問題が発生する。
 本発明は、上記の問題を解決するためになされたものであり、漏れ電流不良を抑制できる固体電解コンデンサ素子を提供することを目的とする。また、本発明は、上記固体電解コンデンサ素子を備える固体電解コンデンサを提供することを目的とする。さらに、本発明は、漏れ電流不良を抑制できる固体電解コンデンサ素子を実現可能な固体電解コンデンサ素子の製造方法を提供することを目的とする。
 本発明の固体電解コンデンサ素子は、金属基体層と上記金属基体層上の多孔質層とを有し、陽極端子領域と陰極形成領域とを有する弁作用金属基体と、上記陰極形成領域において上記多孔質層の表面上に設けられた誘電体層と、上記陰極形成領域において上記誘電体層を介して上記多孔質層上に設けられた固体電解質層と、上記固体電解質層上に形成された導電層と、第1部分及び第2部分を有するマスクと、を備え、上記第1部分は、上記陽極端子領域と上記陰極形成領域とを区画し、上記誘電体層を介して又は直接に上記多孔質層に接触し、上記第2部分は、上記多孔質層上に設けられた上記固体電解質層を覆い、上記マスクは、上記導電層を覆わない。
 本発明の固体電解コンデンサは、本発明の固体電解コンデンサ素子を複数備える。
 本発明の固体電解コンデンサ素子の製造方法は、誘電体層を介して又は直接に、弁作用金属基体の多孔質層上に、上記弁作用金属基体の陽極端子領域と陰極形成領域とを区画するマスクの第1部分を形成する工程と、上記第1部分の形成後、上記陰極形成領域において上記誘電体層を介して上記多孔質層上に固体電解質層を形成する工程と、上記固体電解質層の形成後、上記固体電解質層を覆う前記マスクの第2部分を形成する工程と、を含む。
 本発明によれば、漏れ電流不良を抑制できる固体電解コンデンサ素子を提供することができる。また、本発明によれば、上記固体電解コンデンサ素子を備える固体電解コンデンサを提供することができる。さらに、本発明によれば、漏れ電流不良を抑制できる固体電解コンデンサ素子を実現可能な固体電解コンデンサ素子の製造方法を提供することができる。
図1は、本発明の実施形態に係る固体電解コンデンサ素子の一例を模式的に示す平面図である。 図2は、図1に示す固体電解コンデンサ素子のX-X線に沿った断面図である。 図3は、図2に示す固体電解コンデンサ素子のマスク部分を拡大した断面図である。 図4は、図2に示す固体電解コンデンサ素子とは別の形態の固体電解コンデンサ素子のマスク部分を拡大した断面図である。 図5は、弁作用金属基体の多孔質層上にマスクの第1部分を形成する工程の一例を示す模式図である。 図6は、固体電解質層を形成する工程の一例を示す模式図である。 図7は、マスクの第1部分が形成された弁作用金属基体を、固体電解質を含有する処理液に浸漬する工程の一例を示す模式図である。 図8は、固体電解質層上にマスクの第2部分を形成する工程の一例を示す模式図である。 図9は、本発明の実施形態に係る固体電解コンデンサの一例を模式的に示す斜視図である。 図10は、図9に示す固体電解コンデンサのA-A線断面図である。 図11は、本発明の実施形態に係る固体電解コンデンサの他の例を模式的に示す斜視図である。 図12は、図11に示す固体電解コンデンサのB-B線に沿った断面図である。 図13は、外装体の第1部分の一例を模式的に示す斜視図であり、一部の貫通孔を透視した状態を示す。 図14は、ワークの一例を模式的に示す平面図である。 図15は、複数の固体電解コンデンサ素子が互いに重なり合った重畳体を準備する工程の一例を模式的に示す図である。 図16は、粘着性シートを外装体の第1部分に貼り付ける工程の一例を模式的に示す図である。 図17は、粘着性シート上に導電性ペーストを供給する工程の一例を模式的に示す図である。 図18Aは、重畳体を貫通孔内に挿入する工程の一例を模式的に示す図である。図18Bは、各素子の先端部を導電性ペースト内に埋め込む工程の一例を模式的に示す図である。図18Cは、貫通孔内に挿入された各素子の周囲に液状材料を充填する工程の一例を模式的に示す図である。 図19は、貫通孔の周囲において外装体の第1部分を切断する工程の一例を模式的に示す図である。 図20は、実施例及び比較例の固体電解コンデンサについて漏れ電流を測定した結果を示すグラフである。
 以下、本発明の固体電解コンデンサ素子、固体電解コンデンサ及び固体電解コンデンサ素子の製造方法について説明する。
 しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
[固体電解コンデンサ素子]
 図1は、本発明の実施形態に係る固体電解コンデンサ素子の一例を模式的に示す平面図である。図2は、図1に示す固体電解コンデンサ素子のX-X線に沿った断面図である。図3は、図2に示す固体電解コンデンサ素子のマスク部分を拡大した断面図である。なお、図1では、導電層40に覆われた弁作用金属基体10及び固体電解質層30の外周を破線で示す。
 図1~図3に示す固体電解コンデンサ素子1は、金属基体層11と金属基体層11上の多孔質層12とを有し、陽極端子領域13と陰極形成領域14とを有する弁作用金属基体10と、陰極形成領域14において多孔質層12の表面上に設けられた誘電体層20(図3参照、図1及び図2では図示せず)と、陰極形成領域14において誘電体層20を介して多孔質層12上に設けられた固体電解質層30と、固体電解質層30上に形成された導電層40と、第1部分51及び第2部分52を有するマスク50と、を備えている。
 そして、第1部分51は、陽極端子領域13と陰極形成領域14とを区画し、誘電体層20を介して多孔質層12に接触し、第2部分52は、多孔質層12上に設けられた固体電解質層30を覆い、マスク50は、導電層40を覆っていない。
 このように、マスク50の第1部分51が陽極端子領域13と陰極形成領域14とを区画し、誘電体層20を介して多孔質層12に接触し、マスク50の第2部分52が多孔質層12上に設けられた固体電解質層30を覆う一方で、マスク50が導電層40を覆っていないことから、まず、マスク50の第1部分51を形成し、次に、陰極形成領域14に固体電解質層30を形成し、次に、マスク50の第2部分52を形成し、その後、固体電解質層30上に導電層40を形成することができる。そのため、マスク50の第1部分51近傍において固体電解質層30が薄く欠陥が生じたとしても、導電層40の形成前に当該薄膜部や欠陥部をマスク50の第2部分52で覆って保護することができる。したがって、その後に導電層40を形成しても当該薄膜部や欠陥部において誘電体層20を介して弁作用金属基体10に導電層40が接触するのを防止できる。その結果、当該接触に起因して漏れ電流不良が発生するのを抑制することができる。
 漏れ電流不良をより効果的に抑制する観点からは、図3に示すように、第2部分52は、第1部分51の陰極形成領域14側の端51aから少なくとも50μm(より好ましくは100μm、さらに好ましくは300μm)離れた地点まで固体電解質層30を覆っていることが好ましい。すなわち、第1部分51の陰極形成領域14側の端51aを起点としたときの第2部分52の幅Wは、50μm以上であることが好ましく、100μm以上であることがより好ましく、300μm以上であることがさらに好ましい。
 ESRを低減する観点からは、第2部分52は、第1部分51の陰極形成領域14側の端51aから500μm(より好ましくは300μm、さらに好ましくは100μm)を超える地点では固体電解質層30を覆っていないことが好ましい。すなわち、第1部分51の陰極形成領域14側の端51aを起点としたときの第2部分52の幅Wは、500μm以下であることが好ましく、300μm以下であることがより好ましく、100μm以下であることがさらに好ましい。
 第2部分52は、第1部分51の少なくとも一部を覆うことが好ましい。これにより、第1部分51と第2部分52との間に隙間が発生し、当該隙間において固体電解質層30の薄膜部や欠陥部が露出し、露出した薄膜部や欠陥部において誘電体層20を介して弁作用金属基体10に導電層40が接触するのを防止できる。すなわち、漏れ電流不良をより効果的に抑制することができる。
 図2に示すように第1部分51近傍における固体電解質層30の厚みT1は、固体電解質層30の中心部分における固体電解質層30の厚みT2より小さくてもよい。このような場合に上述のように漏れ電流不良をより効果的に抑制することができる。
 なお、この場合、固体電解質層30の厚みT1は、弁作用金属基体10の各主面側において、固体電解質層30の厚みT2より小さくてもよい。また、固体電解質層30は、弁作用金属基体10の各主面側において、弁作用金属基体10の一方の端部(マスク50から最も遠い端部)付近から他方の端部(マスク50の第1部分51)に向かって徐々に厚みが小さくなっていてもよい。
 図2では、第1部分51及び第2部分52は、弁作用金属基体10の各主面上に設けられた場合が示されているが、第1部分51及び第2部分52は、弁作用金属基体10の少なくとも一方の主面上に設けられることが好ましい。弁作用金属基体10は、互いに対向する一対の主面と、一対の主面間をつなぐ複数(通常は4つ)の側面を有するが、一対の主面の面積が大きいため、弁作用金属基体10の少なくとも一方の主面(より好ましくは各主面)上に第1部分51及び第2部分52を設けることによって、漏れ電流不良をより効果的に抑制することができる。
 同様の観点からは、第1部分51及び第2部分52は、弁作用金属基体10を取り囲むように環状(例えば四角リング状)に設けられることが好ましい。すなわち、第1部分51及び第2部分52は、弁作用金属基体10の一対の主面上と一対の側面上とに設けられることが好ましい。
 なお、図3には、マスク50の第1部分51が誘電体層20を介して多孔質層12に接触している形態を示したが、マスク50の第1部分51が直接に多孔質層12に接触していてもよい。
 図4は、図2に示す固体電解コンデンサ素子とは別の形態の固体電解コンデンサ素子のマスク部分を拡大した断面図である。図4には、マスク50の第1部分51が誘電体層20を介さずに直接に多孔質層12に接触している形態を示している。その他の構成は図3に示すマスク部分と同様である。マスク50を設けることにより発揮される効果は、図2及び図3に示す形態の固体電解コンデンサ素子において発揮される効果と同様である。
 固体電解コンデンサ素子1における各構成について以下に詳しく説明する。
 弁作用金属基体10は、平面視四角形状の薄膜(箔)であり、好ましくは、一対の長辺及び一対の短辺を有する平面視矩形状(短冊状)である。弁作用金属基体10は、固体電解コンデンサ素子1の陽極60として機能する。
 なお、本明細書にて、「平面視」とは、弁作用金属基体の主面の法線方向から見ることを意味する。
 弁作用金属基体10は、図3及び図4に示したように、金属基体層11と、複数の凹部が設けられた多孔質層12とを有している。そのため、弁作用金属基体10の各主面は、多孔質状になっている。これにより、弁作用金属基体10の表面積が大きくなっている。なお、弁作用金属基体10の両主面が多孔質状(多孔質層12)である場合に限られず、弁作用金属基体10の両主面の一方のみが多孔質状(多孔質層12)であってもよい。
 金属基体層11は、弁作用金属基体10の芯金部であり、図2に示したように、その厚みは略一定である。
 弁作用金属基体10は、例えば、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム等の金属単体、又は、これらの金属を含む合金等の弁作用金属によって構成されている。弁作用金属の表面には、酸化被膜を形成することができる。
 なお、弁作用金属基体10は、金属基体層と当該金属基体層の少なくとも一方の主面に設けられた多孔質層とによって構成されていればよく、金属箔の表面をエッチングしたもの、金属箔の表面に多孔質状の微粉焼結体を形成したもの等を適宜採用することができる。
 誘電体層20は、ここでは、弁作用金属基体10の多孔質層12の表面上に設けられている(図3参照)。図3に示す形態では、誘電体層20は、金属基体層11の一方の端面11a(図2参照)を除いて弁作用金属基体10上の全体に設けられている。また、図4に示す形態では、金属基体層11の一方の端面11a(図2参照)及びマスク50の第1部分51の直下を除いて弁作用金属基体10上の全体に設けられている。
 ただし、誘電体層20は、少なくとも端面11aを除いて弁作用金属基体10の両主面の少なくとも一方上に設けられていればよい。
 誘電体層20は、弁作用金属基体10の多孔質層12の表面に設けられた酸化被膜によって構成されていることが好ましい。例えば、誘電体層20は、アルミニウムの酸化物で構成されている。アルミニウムの酸化物は、後述するように、弁作用金属基体の表面が陽極酸化処理されることにより形成される。
 マスク50は、弁作用金属基体10の1つの辺10a(好ましくは短辺)に沿って設けられた絶縁部材であり、固体電解コンデンサ素子1の陽極60と陰極70とを隔て、固体電解コンデンサ素子1の陽極60及び陰極70間の絶縁を確保している。マスク50の第1部分51によって、弁作用金属基体10は、陽極端子領域13と陰極形成領域14とに区画されている。マスク50は、弁作用金属基体10の辺10aに沿って直線状に設けられている(帯状に延在している)。
 ここでは、マスク50(第1部分51)は、弁作用金属基体10の辺10aから所定の間隔を空けて配置されているが、辺10aの際まで配置されていてもよい。その場合は、弁作用金属基体10の辺10aに位置する端面が陽極端子領域13に相当することになる。また、マスク50は、誘電体層20を介して、弁作用金属基体10の一対の主面上と一対の側面上に設けられているが、誘電体層20と同様に、弁作用金属基体10の一対の主面の少なくとも一方(ただし誘電体層20が設けられた主面)上に設けられていてもよい。
 マスク50は、上述のように、誘電体層20を介して多孔質層12に接触する第1部分51と、多孔質層12上に設けられた固体電解質層30を覆う第2部分52とを有している。第1部分51は、陽極端子領域13と陰極形成領域14とを区画し、固体電解質層30が陽極端子領域13に侵入するのを防止する絶縁マスクとして主に機能し、第2部分52は、固体電解質層30の薄膜部や欠陥部を覆って保護する保護マスクとして主に機能する。また、第2部分52によって、導電層40の塗布エリアが制限される。第2部分52は、固体電解質層30の一部のみ、特に固体電解質層30の第1部分51に隣接する部分のみを覆っている。
 図3及び図4に示すように、マスク50の第1部分51は、弁作用金属基体10(多孔質層12)の複数の細孔(凹部)を充填するように設けられていることが好ましい。ただし、マスク50の第1部分51によって誘電体層20の外表面の一部が覆われていればよく、マスク50の第1部分51によって充填されていない多孔質層12の細孔(凹部)が存在していてもよい。
また、マスク50の第1部分51は、多孔質層12の細孔に充填された部分から金属基体層11の反対側に向かって連続的に存在しており、マスク50の第1部分51と多孔質層12の最表面12a(多孔質層12の最も外側に現れる面、図3及び図4の太破線部参照)との間には固体電解質層30は存在していない。ただし、マスク50の第1部分51が充填されていない多孔質層12の複数の細孔が金属基体層11側に存在する場合、それらの細孔には固体電解質層30が充填されていてもよい。
 図3及び図4に示すように、マスク50の第2部分52は、多孔質層12の最表面12aを覆う固体電解質層30をさらに覆っている。すなわち、マスク50の第2部分52と多孔質層12の最表面12aとの間には固体電解質が層状に存在しており、マスク50の第2部分52は、弁作用金属基体10(多孔質層12)の細孔(凹部)内に充填されていない。
 マスク50(第1部分51及び第2部分52)は、絶縁材料から構成されている。マスク50は、例えば、絶縁性樹脂を含む組成物等のマスク材を塗布して形成される。絶縁性樹脂としては、例えば、ポリフェニルスルホン(PPS)、ポリエーテルスルホン(PES)、シアン酸エステル樹脂、フッ素樹脂(テトラフルオロエチレン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体等)、可溶性ポリイミドシロキサンとエポキシ樹脂からなる組成物、ポリイミド樹脂、ポリアミドイミド樹脂、及び、それらの誘導体又は前駆体等が挙げられる。
 マスク50の第1部分51及び第2部分52は、同じ絶縁材料から形成されていてもよいし、互いに異なる絶縁材料から形成されていてもよい。なお、前者の場合、第1部分51と第2部分52との間には図3及び図4に示したような界面は存在していなくてもよい。この場合も、誘電体層20を介して又は直接に多孔質層12に接触する部分を第1部分51とし、多孔質層12上に設けられた固体電解質層30を覆う部分を第2部分52とする。
 マスク材の塗布は、例えば、スクリーン印刷、ローラー転写、ディスペンサ、インクジェット印刷等により行うことができる。
 固体電解コンデンサ素子1は、誘電体層20上に設けられた固体電解質層30と、固体電解質層30上に設けられた導電層40と、を有しており、これらは、固体電解コンデンサ素子1の陰極70として機能する。また、陰極70は、マスク50の第1部分51によって区画された弁作用金属基体10の陰極形成領域14において誘電体層20上に設けられている。
 固体電解質層30は、誘電体層20上に設けられている。図3及び図4に示すように、固体電解質層30は、弁作用金属基体10(多孔質層12)の複数の細孔(凹部)を充填するように設けられていることが好ましい。ただし、固体電解質層30によって誘電体層20の外表面の一部が覆われていればよく、固体電解質層30によって充填されていない多孔質層12の細孔(凹部)が存在していてもよい。
 固体電解質層30は、マスク50の第1部分51によって区画された弁作用金属基体10の陰極形成領域14において誘電体層20上に設けられている。
 固体電解質層30を構成する材料としては、例えば、ポリピロール類、ポリチオフェン類、ポリアニリン類等の導電性高分子等が用いられる。これらの中では、ポリチオフェン類が好ましく、PEDOTと呼ばれるポリ(3,4-エチレンジオキシチオフェン)が特に好ましい。また、上記導電性高分子は、ポリスチレンスルホン酸(PSS)等のドーパントを含んでいてもよい。
 固体電解質層30は、例えば、3,4-エチレンジオキシチオフェン等の重合性モノマーの含有液を用いて、誘電体層20の表面にポリ(3,4-エチレンジオキシチオフェン)等の導電性高分子の重合膜を形成する方法や、ポリ(3,4-エチレンジオキシチオフェン)等の導電性高分子の分散液を誘電体層20の表面に塗布して乾燥させる方法等によって形成される。
 なお、弁作用金属基体10の細孔(凹部)を充填する内層を形成した後、誘電体層20全体を被覆する外層を形成することが好ましい。内層の形成は、例えば、浸漬法、電解重合、スポンジ転写、スクリーン印刷、ディスペンサ、インクジェット印刷等により行うことができる。同様に、外層の形成は、例えば、浸漬法、電解重合、スポンジ転写、スクリーン印刷、ディスペンサ、インクジェット印刷等により行うことができる。
 導電層40は、固体電解質層30上に設けられている。導電層40は、マスク50の第2部分52で覆われた領域を除いて、固体電解質層30の略全域を覆っており、マスク50の第2部分52に接触している。なお、導電層40は、マスク50の第2部分52の少なくとも一部を覆うように配置されてもよいし、マスク50の第2部分52に接触せずにマスク50の第2部分52の手前まで配置されていてもよい。導電層40は、略一定の厚さを有している。
 導電層40は、例えば、カーボン層又は陰極導体層を含む。また、導電層40は、カーボン層の外表面に陰極導体層が設けられた複合層や、カーボン及び陰極導体層材料を含む混合層であってもよい。
 カーボン層は、例えば、カーボン粒子と樹脂とを含むカーボンペーストを固体電解質層30の表面に塗布して乾燥させる方法等によって形成される。
 カーボンペーストの塗布は、例えば、浸漬法、スポンジ転写、スクリーン印刷、スプレー塗布、ディスペンサ、インクジェット印刷等により行うことができる。
 陰極導体層は、例えば、金、銀、銅、白金等の金属粒子と樹脂とを含む導電性ペーストを固体電解質層又はカーボン層の表面に塗布して乾燥させる方法等によって形成される。陰極導体層は、銀層であることが好ましい。
 導電性ペーストの塗布は、例えば、浸漬法、スポンジ転写、スクリーン印刷、スプレー塗布、ディスペンサ、インクジェット印刷等により行うことができる。
[固体電解コンデンサ素子の製造方法]
 固体電解コンデンサ素子1の製造方法について以下に説明する。以下の例では、大判の弁作用金属基体を用いて、複数の固体電解コンデンサ素子を同時に製造する方法について説明する。
 図5は、弁作用金属基体の多孔質層上にマスクの第1部分を形成する工程の一例を示す模式図である。
 図5に示すように、誘電体層(図示せず)を介して弁作用金属基体10Aの多孔質層(図示せず)上に、弁作用金属基体10Aの陽極端子領域13と陰極形成領域14とを区画するマスク50の第1部分51を形成する。
 より詳細には、まず、金属基体層(図示せず)と金属基体層上の多孔質層とを有する弁作用金属基体10Aをレーザー加工又は打ち抜き加工等で切断することにより、複数の素子部15と支持部16とを含む形状に加工する。各々の素子部15は短冊状であり、支持部16から突出している。
 次に、各々の素子部15の短辺に沿うように、素子部15の両主面及び両側面にマスク50の第1部分51を形成する。
 マスク50の第1部分51は、例えば、絶縁性樹脂を含む組成物等のマスク材をスクリーン印刷、ローラー転写、ディスペンサ、インクジェット印刷等により塗布して形成される。絶縁性樹脂としては、例えば、ポリフェニルスルホン(PPS)、ポリエーテルスルホン(PES)、シアン酸エステル樹脂、フッ素樹脂(テトラフルオロエチレン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体等)、可溶性ポリイミドシロキサンとエポキシ樹脂からなる組成物、ポリイミド樹脂、ポリアミドイミド樹脂、及び、それらの誘導体又は前駆体等が挙げられる。
 その後、弁作用金属基体10Aに陽極酸化処理を行うことにより、弁作用金属基体10A(多孔質層)の表面に誘電体層となる酸化被膜を形成する。この際、レーザー加工又は打ち抜き加工等で切断された素子部15の側面にも酸化被膜が形成される。この工程の場合は、弁作用金属基体10A(多孔質層)の表面がマスク50の第1部分51で覆われた部分には誘電体層が形成されないので、マスク50の第1部分51が誘電体層を介さずに直接に多孔質層に接触することになる。
なお、すでに弁作用金属の酸化物が形成されている化成箔を弁作用金属基体10Aとして用いてもよい。この場合も、切断後の弁作用金属基体10Aに陽極酸化処理を行うことにより、切断された素子部15の側面に酸化被膜を形成する。このような化成箔を弁作用金属基体10Aとして用いた場合は、マスク50の第1部分51が誘電体層を介して多孔質層に接触することになる。
 図6は、固体電解質層を形成する工程の一例を示す模式図である。
 図7は、マスクの第1部分が形成された弁作用金属基体を、固体電解質を含有する処理液に浸漬する工程の一例を示す模式図である。
 第1部分51の形成後、図6に示すように、陰極形成領域14において誘電体層を介して多孔質層上に固体電解質層30を形成する。
 より詳細には、図7に示すように、素子部15を、先端側からマスク50の第1部分51に接触するまで、固体電解質を含有する処理液80に浸漬することにより、処理液80が弁作用金属基体10Aの多孔質層に含浸される。なお、処理液80は、処理槽85に供給されている。所定時間の浸漬後、素子部15を処理液80から引き上げ、所定温度及び所定時間で乾燥させる。処理液80への浸漬、引き上げ及び乾燥を所定回数繰り返すことにより、固体電解質層30が形成される。
 固体電解質を含有する処理液80として、例えば、ポリピロール類、ポリチオフェン類、ポリアニリン類等の導電性高分子の分散液が用いられる。導電性高分子の分散液を誘電体層20の外表面に付着し乾燥させることで、導電性高分子膜を形成することができる。あるいは、固体電解質を含有する処理液80として、重合性モノマー、例えば3,4-エチレンジオキシチオフェンと酸化剤との含有液が用いられてもよい。重合性モノマーの含有液を誘電体層20の外表面に付着させて、化学重合により導電性高分子膜を形成することができる。この導電性高分子膜が、固体電解質層30となる。
 図8は、固体電解質層上にマスクの第2部分を形成する工程の一例を示す模式図である。
 図8に示すように、固体電解質層30の形成後、固体電解質層30を覆うマスク50の第2部分52を形成する。より詳細には、マスク50の第1部分51に沿うように、素子部15の両主面及び両側面にマスク50の第2部分52を形成する。
 マスク50の第2部分52を形成することにより、マスク50の第1部分51近傍において固体電解質層30が薄く欠陥が生じたとしても、導電層40の形成前に当該薄膜部や欠陥部をマスク50の第2部分52で覆って保護することができる。したがって、上述のように漏れ電流不良が発生するのを抑制することができる。
 マスク50の第2部分52は、例えば、絶縁性樹脂を含む組成物等のマスク材をスクリーン印刷、ローラー転写、ディスペンサ、インクジェット印刷等により塗布して形成される。絶縁性樹脂としては、例えば、ポリフェニルスルホン(PPS)、ポリエーテルスルホン(PES)、シアン酸エステル樹脂、フッ素樹脂(テトラフルオロエチレン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体等)、可溶性ポリイミドシロキサンとエポキシ樹脂からなる組成物、ポリイミド樹脂、ポリアミドイミド樹脂、及び、それらの誘導体又は前駆体等が挙げられる。
 その後、固体電解質層30の表面にカーボンペーストを塗布して乾燥させることにより、カーボン層を陰極形成領域14に形成する。例えば、カーボンペーストに素子部15を浸漬、引き上げ及び乾燥することにより、カーボン層を形成する。カーボンペーストの塗布は、この浸漬法の他、例えば、スポンジ転写、スクリーン印刷、スプレー塗布、ディスペンサ、インクジェット印刷等により行ってもよい。なお、カーボンペーストは、導電成分としてのカーボン粒子と、エポキシ樹脂、フェノール樹脂等の樹脂成分とを含有する導電性ペーストである。
 そして、カーボン層の表面に導電性ペーストを塗布して乾燥させることにより、陰極導体層を陰極形成領域14に形成する。例えば、導電性ペーストに素子部15を浸漬、引き上げ及び乾燥することにより、陰極導体層を形成する。導電性ペーストの塗布は、この浸漬法の他、例えば、スポンジ転写、スクリーン印刷、スプレー塗布、ディスペンサ、インクジェット印刷等により行ってもよい。なお、陰極導体層形成用の導電性ペーストとしては、例えば、導電成分としての金属粒子と、エポキシ樹脂、フェノール樹脂等の樹脂成分とを含有するものが挙げられる。金属粒子としては、例えば、金、銀、銅、白金等が挙げられる。なかでも、陰極導体層形成用の導電性ペーストとしては、導電成分として銀粒子を含有する銀ペーストが好適である。
 最後に、弁作用金属基体10Aを切断して、素子部15を分離して短冊状の弁作用金属基体10Aを形成する。
 以上の工程を経て、固体電解コンデンサ素子1が得られる。
[固体電解コンデンサ]
 図9は、本発明の実施形態に係る固体電解コンデンサの一例を模式的に示す斜視図である。
 図9に示す固体電解コンデンサ100Aは、複数の固体電解コンデンサ素子1が封止材で封止されて封止体160が形成されており、固体電解コンデンサ素子1の陽極と接続されたリードフレーム170と、固体電解コンデンサ素子1の陰極と接続されたリードフレーム180とを備えている。
 図9及び図10には、固体電解コンデンサ100Aの長さ方向(長手方向)をL、幅方向をW、高さ方向をTで示している。ここで、長さ方向Lと幅方向Wと高さ方向Tとは互いに直交している。
 固体電解コンデンサの長手方向はリードフレームの長手方向でもある。
 図10は、図9に示す固体電解コンデンサのA-A線断面図である。
 図10に示す固体電解コンデンサ100Aは、上述の複数の固体電解コンデンサ素子1と、固体電解コンデンサ素子1の陽極60として機能する弁作用金属基体10と接続されたリードフレーム170と、固体電解コンデンサ素子1の陰極70として機能する導電層40と接続されたリードフレーム180と、封止材から形成された封止体160と、を備えている。
 封止体160(封止材)は、複数の固体電解コンデンサ素子1を封止する。
 封止体160は、各固体電解コンデンサ素子1の全体とリードフレーム170の一部とリードフレーム180の一部とを覆うように形成されている。封止体160(封止材)の材質としては、例えば、エポキシ樹脂等が挙げられる。
 固体電解コンデンサ素子1は、上述のように、弁作用金属基体10、誘電体層(図示せず)、固体電解質層30、導電層40及びマスク50を備えている。弁作用金属基体10は、金属基体層11と金属基体層11上の多孔質層12とを有し、陽極端子領域13と陰極形成領域14とを有している。マスク50は、誘電体層を介して又は直接に多孔質層12に接触する第1部分51と多孔質層12上に設けられた固体電解質層30を覆う第2部分52とを有し、導電層40を覆っていない。
 陽極端子領域13側において、各固体電解コンデンサ素子1の弁作用金属基体10がリードフレーム170によってまとめられて、封止材(封止体160)の外に引き出される。
 陰極形成領域14側において、各固体電解コンデンサ素子1の導電層40が電気的に接続されて、さらにリードフレーム180と電気的に接続されて、封止材(封止体160)の外に引き出される。
 図11は、本発明の実施形態に係る固体電解コンデンサの他の例を模式的に示す斜視図である。図12は、図11に示す固体電解コンデンサのB-B線に沿った断面図である。
 図11及び図12には、固体電解コンデンサ100B及び素体110の長さ方向(長手方向)をL、幅方向をW、高さ方向をTで示している。ここで、長さ方向Lと幅方向Wと高さ方向Tとは互いに直交している。
 図11及び図12に示す固体電解コンデンサ100Bは、略直方体状の外形を有している。固体電解コンデンサ100Bは、素体110と、第1外部電極130と、第2外部電極140と、を備える。
 素体110は、固体電解コンデンサ素子1(以下、単に「素子1」と略記する場合がある)を備え、複数の素子1が重ね合わされた重畳体101を備える。さらに、素体110は、外装体120と、集電電極102と、を備える。
 なお、重畳体101に含まれる素子1の数は、2以上であれば特に限定されず、適宜設定可能である。
 素体110は、略直方体状の外形を有している。素体110は、高さ方向Tにおいて相対する第1主面110a及び第2主面110b、幅方向Wにおいて相対する第1側面110c及び第2側面110d、並びに、長さ方向Lにおいて相対する第1端面110e及び第2端面110fを有している。
 上記のように素体110は、略直方体状の外形を有しているが、角部及び稜線部に丸みが付けられていてもよい。角部は、素体110の3面が交わる部分であり、稜線部は、素体110の2面が交わる部分である。
 第1外部電極130は、素体110の第1端面110eに形成されており、第2外部電極140は、素体110の第2端面110fに形成されている。
 複数の素子1は高さ方向Tに重ねて配置されている。複数の素子1の各々の延在方向は、素体110の第1主面110a及び第2主面110bと略平行となっている。高さ方向Tに隣接する素子1同士は、導電性接着剤(図示せず)を介して互いに接合されていてもよい。
 固体電解コンデンサ素子1は、上述のように、弁作用金属基体10、誘電体層(図示せず)、固体電解質層30、導電層40及びマスク50を備えている。弁作用金属基体10は、金属基体層11と金属基体層11上の多孔質層12とを有し、陽極端子領域13と陰極形成領域14とを有している。マスク50は、誘電体層を介して又は直接に多孔質層12に接触する第1部分51と多孔質層12上に設けられた固体電解質層30を覆う第2部分52とを有し、導電層40を覆っていない。
 図12に示したように、外装体120は、複数の素子1を封止している。すなわち、外装体120には、複数の素子1の重畳体101が埋設されている。また、外装体120は、集電電極102を封止している。そして、外装体120は、第1樹脂材料を含む第1部分121と、第2樹脂材料を含む第2部分122と、を有している。
 第1部分121は、貫通孔123を有する管構造(例えば四角管構造)であり、貫通孔123内に複数の素子1(重畳体101)を収納している。第2部分122は、複数の素子1(重畳体101)の収納された貫通孔123内に存在している。
 なお、ここで、「四角管構造」とは、管構造の外周面が4つの平面を含む構造であって、4つの平面のうちの隣り合う2つの面がいずれも互いに交差(好ましくは直交)する構造であり、貫通孔123の形状は、特に限定されない。
 第2部分122は、複数の素子1(重畳体101)の収納された貫通孔123内に充填されている。すなわち、第2部分122は、第1部分121の内側であって複数の素子1(重畳体101)の周囲に充填されている。
 なお、ここで、第2部分122が複数の素子1(重畳体101)の収納された貫通孔123内に充填された状態とは、第2部分122が、第1部分121の内側であって複数の素子1(重畳体101)の周囲の空間を完全に満たしていてもよいし、完全には満たしていなくてもよい。後者の場合、例えば、第2部分122に気泡がわずかに残っていてもよいし、第2部分122と第1部分121との間に隙間がわずかに残っていてもよいし、第2部分122と少なくとも1つの素子1との間に隙間がわずかに残っていてもよい。
 第1樹脂材料は、第2樹脂材料と同じ材料であってもよいが、第2樹脂材料と異なる材料であることが好ましい。
 第1部分121の第1樹脂材料としては、射出成型可能な樹脂が好適であり、具体的には、PPS(ポリフェニレンスルフィド)、LCP(液晶ポリマー)、PBT(ポリブチレンテレフタレート)、ポリイミド、ポリアミド等の熱可塑性樹脂が好適である。第1樹脂材料は、強化材として、シリカ粒子、アルミナ粒子、金属粒子等のフィラーや、セラミック繊維等の繊維を含んでいてもよい。
 第2部分122の第2樹脂材料としては、エポキシ樹脂、シリコン樹脂、ウレタン樹脂等の熱硬化性樹脂が好適である。第2樹脂材料は、強化材として、シリカ粒子、アルミナ粒子、金属粒子等のフィラーや、セラミック繊維等の繊維を含んでいてもよい。
 図12に示したように、集電電極102は、複数の素子1の複数の陰極70と電気的に接続されている。集電電極102は、素体110の第1端面110eに露出しており、少なくとも素体110の第1端面110e側の部分に設けられている。また、集電電極102は、第1端面110eから奥まった位置に厚みを持った形状で形成されている。
 そして、図12に示したように、各陰極70の少なくとも第1外部電極130側の部分が集電電極102内に埋め込まれており、これにより、各陰極70と集電電極102との間の電気的接続が確保されている。
 集電電極102は、導電成分(導電材料)及び樹脂成分(樹脂材料)の複合材料である。導電成分は、銀、銅、ニッケル、錫等の金属単体、又は、これらの金属の少なくとも1種を含有する合金等を主成分として含むことが好ましい。樹脂成分は、エポキシ樹脂、フェノール樹脂等を主成分として含むことが好ましい。集電電極102は、例えば、銀ペースト等の導電性ペーストを用いて形成可能である。
 図12に示したように、第1外部電極130は、素体110の第1端面110eに設けられている。図11では、第1外部電極130は、素体110の第1端面110eから、第1主面110a、第2主面110b、第1側面110c及び第2側面110dの各々に亘って設けられている。第1外部電極130は、第1端面110eにおいて素体110から露出した集電電極102と電気的に接続されている。すなわち、第1外部電極130は、集電電極102を介して各陰極70と電気的に接続されている。
 また、集電電極102は、複数の素子1(重畳体101)の収納された貫通孔123内に存在しており、集電電極102及び外装体120の第1部分121が素体110の第1端面110eを形成しているため、第1外部電極130は、この第1端面110e上に形成することができる。したがって、第1外部電極130と集電電極102との電気的接続が容易であり、かつ、第1外部電極130を薄い厚みで形成することが可能となる。
 具体的には、第1外部電極130は、スパッタ法により形成される、いわゆるスパッタ膜を有していてもよい。スパッタ膜の材質としては、例えば、Ni、Sn、Ag、Cu、Ag等が挙げられる。
 また、第1外部電極130は、蒸着法により形成される、いわゆる蒸着膜を有していてもよい。蒸着膜の材質としては、例えば、Ni、Sn、Ag、Cu等が挙げられる。
 このように、第1外部電極130は、スパッタ膜及び/又は蒸着膜から形成可能であることから、第1外部電極130の膜厚は、第2外部電極140の膜厚に比べて薄くてもよい。具体的には、第1外部電極130の膜厚は、1μm以上、100μm以下であることが好ましく、5μm以上、50μm以下であることがより好ましく、10μm以上、30μm以下であることがさらに好ましい。
 図12に示したように、第2外部電極140は、素体110の第2端面110fに設けられている。図11では、第2外部電極140は、素体110の第2端面110fから、第1主面110a、第2主面110b、第1側面110c及び第2側面110dの各々に亘って設けられている。第2外部電極140は、第2端面110fにおいて素体110から露出する素子1の陽極60と電気的に接続されている。第2外部電極140は、素体110の第2端面110fにおいて陽極60と直接的に接続されてもよく、間接的に接続されてもよい。
 第1外部電極130及び第2外部電極140の少なくとも一方は、導電成分と樹脂成分とを含む樹脂電極層を有していてもよい。導電成分は、銀、銅、ニッケル、錫等の金属単体、又は、これらの金属の少なくとも1種を含有する合金等を主成分として含むことが好ましい。樹脂成分は、エポキシ樹脂、フェノール樹脂等を主成分として含むことが好ましい。樹脂電極層は、例えば、銀ペースト等の導電性ペーストを用いて形成可能である。
 第1外部電極130及び第2外部電極140の少なくとも一方は、めっき法により形成される、いわゆるめっき層を有していてもよい。めっき層としては、例えば、亜鉛・銀・ニッケル層、銀・ニッケル層、ニッケル層、亜鉛・ニッケル・金層、ニッケル・金層、亜鉛・ニッケル・銅層、ニッケル・銅層等が挙げられる。これらのめっき層上には、例えば、銅めっき層と、ニッケルめっき層と、錫めっき層とが順に(あるいは、一部のめっき層を除いて)設けられることが好ましい。
 第1外部電極130及び第2外部電極140の少なくとも一方は、樹脂電極層及びめっき層をともに有していてもよい。例えば、第1外部電極130は、集電電極102に接続された樹脂電極層と、樹脂電極層の表面上に設けられた外層めっき層と、を有していてもよい。また、第1外部電極130は、集電電極102に接続された内層めっき層と、内層めっき層を覆うように設けられた樹脂電極層と、樹脂電極層の表面上に設けられた外層めっき層と、を有していてもよい。また、第2外部電極140は、陽極60に接続された樹脂電極層と、樹脂電極層の表面上に設けられた外層めっき層と、を有していてもよい。また、第2外部電極140は、陽極60に接続された内層めっき層と、内層めっき層を覆うように設けられた樹脂電極層と、樹脂電極層の表面上に設けられた外層めっき層と、を有していてもよい。
[固体電解コンデンサの製造方法]
 図9及び図10に示した固体電解コンデンサ100Aは、例えば、複数の固体電解コンデンサ素子1にリードフレーム170及び180を接続した後、コンプレッションモールド、トランスファーモールド等の樹脂モールドにより複数の固体電解コンデンサ素子1の周囲を封止材で封止して封止体160を形成することによって製造することができる。
 図11及び図12に示した固体電解コンデンサ100Bは、以下の方法により製造することができる。以下の例では、大判の弁作用金属基体を用いて、複数の固体電解コンデンサ素子を同時に製造する方法について説明する。
 図13は、外装体の第1部分の一例を模式的に示す斜視図であり、一部の貫通孔を透視した状態を示す。
 まず、図13に示すように、上述の第1樹脂材料を含み、複数の貫通孔223を有する外装体220の第1部分221(外装体120の第1部分121となる部材)を準備する。第1部分221は、所定の厚さを有する平面視長方形状の平らな板材に、貫通孔223が縦横にそれぞれ複数ずつ設けられた部材である。各貫通孔223は、第1部分221の主面に対して直交する方向に設けられており、その両端部は開放されている。第1部分221は射出成型により作成できる。第1部分221に使用する第1樹脂材料としては、射出成型可能な樹脂が好適であり、具体的には、PPS(ポリフェニレンスルフィド)、LCP(液晶ポリマー)、PBT(ポリブチレンテレフタレート)、ポリイミド、ポリアミド等の熱可塑性樹脂が好適である。第1樹脂材料は、強化材として、シリカ粒子、アルミナ粒子、金属粒子等のフィラーや、セラミック繊維等の繊維を含んでいてもよい。第1部分221の各貫通孔223の内側の各角部には、丸みを付ける加工やコーナー加工(傾斜面形成)を施してもよい。
 次に、重畳体101を準備する。
 図14は、ワークの一例を模式的に示す平面図である。
 まず、図14に示すように、帯状の保持部211に素子部212(複数の固体電解コンデンサ素子1)が一定間隔で短冊状に連結されたワーク210を準備する。各素子部212にはマスク50が形成されている。ワーク210は、上述の固体電解コンデンサ素子の製造方法で説明した方法により作成可能である。
 ここで、上述の第1部分221には、短冊状のワーク210の素子1と同じ個数とピッチで略直方体状の貫通孔223が空いており、そのような貫通孔223の列を複数備えている。
 図15は、複数の固体電解コンデンサ素子が互いに重なり合った重畳体を準備する工程の一例を模式的に示す図である。
 続いて、図15に示すように、短冊状に複数の素子1が形成されたワーク210を複数枚準備し、複数の素子1が重なり合うように所定枚数のワーク210を束ねた状態でクランプ等の治具(図示せず)で固定する。これにより、複数の素子1が互いに重なり合った重畳体101が複数作成される。なお、複数の重畳体101は、一列(図15の紙面に対して垂直方向に並んだ列)に配列されている。
 図16は、粘着性シートを外装体の第1部分に貼り付ける工程の一例を模式的に示す図である。
 次に、図16に示したように、各貫通孔223の第1の開口223aを閉じるように粘着性シート250(以下、単に「シート250」と略記する場合がある)を第1部分221に貼り付ける。すなわち、粘着性を有するシート250を第1部分221の片面全面に貼り付けて各貫通孔223の片側を閉じるようにする。これにより、封止後にシート250を剥離することで素体110の第1端面110eに集電電極102を容易に露出することが可能となる。
 なお、各貫通孔223は、第1の開口223a(下側の開口)が蓋をされた状態となればよく、粘着性シート250を貼り付ける代わりに、例えば、第1部分221を平らな台に配置することによって第1の開口223aに蓋をしてもよい。
 図17は、粘着性シート上に導電性ペーストを供給する工程の一例を模式的に示す図である。
 次に、図17に示したように、各貫通孔223の第1の開口223aを粘着性シート250で蓋をした状態で、各貫通孔223の第2の開口223b(上側の開口)からシート250上に導電性ペースト230を供給する。この結果、各貫通孔223内においてシート250上に導電性ペースト230が塗布される。導電性ペースト230としては、例えば、導電成分としての金属粒子と、エポキシ樹脂、フェノール樹脂等の樹脂成分とを含有するものが挙げられる。金属粒子としては、例えば、銀、銅、ニッケル、錫等が挙げられる。なかでも、導電性ペースト230としては、導電成分として銀粒子を含有する銀ペーストが好適である。また、導電性ペースト230の供給には、例えばディスペンサ等を用いることが可能である。
 図18Aは、重畳体を貫通孔内に挿入する工程の一例を模式的に示す図である。図18Bは、各素子の先端部を導電性ペースト内に埋め込む工程の一例を模式的に示す図である。図18Cは、貫通孔内に挿入された各素子の周囲に液状材料を充填する工程の一例を模式的に示す図である。
 次に、図18Aに示すように、固定した複数のワーク210を第1部分221に対して相対的に移動させ、同一列の貫通孔223内に、第2の開口223bから重畳体101を挿入する。
 このように、保持部211に複数の素子1が一定間隔で短冊状に連結されたワーク210を用いることによって、第1部分221への素子1の挿入を短冊単位で実施できるため、素子1を一枚ずつ、又は重畳体101を1体ずつ第1部分221へ挿入するよりも、大幅に生産性を向上することができる。
 このとき、図18Bに示すように、各素子1の先端部、すなわち、陰極70の先端部で導電性ペースト230を押し広げ、各素子1の陰極70の先端部を導電性ペースト230内に埋め込む。すなわち、全ての素子1に導電性ペースト230が接続されるようにする。
 そして、各陰極70が埋め込まれた状態で、シート250上で導電性ペースト230を例えば加熱することによって硬化させる。この結果、各素子1の陰極70の少なくとも先端部が集電電極102内に埋め込まれた状態で集電電極102が形成される(図12参照)。
 続いて、図18Cに示すように、各貫通孔223内に挿入された各素子1の周囲、すなわち隣り合う素子1の間の隙間と、重畳体101及び第1部分221の間の隙間とに液状材料222を充填する。例えば、液状材料222を各貫通孔223内にディスペンサ等により注入し、真空脱泡を行うことによって各素子1の周囲に液状材料222を充填する。ここでは、隣り合うマスク50の間にも液状材料222を充填しているが、隣り合うマスク50が互いに接触している場合は、それらの間に液状材料222が充填されなくてもよい。また、注入や真空脱泡の際に加熱して液状材料222の粘度を下げてもよい。液状材料222は、上述の第2樹脂材料(ただし、硬化前の液状のもの)を含んでいる。液状の第2樹脂材料に含まれる樹脂は、エポキシ樹脂、シリコン樹脂、ウレタン樹脂等の熱硬化性樹脂が好適である。液状の第2樹脂材料は、強化材として、シリカ粒子、アルミナ粒子、金属粒子等のフィラーや、セラミック繊維等の繊維を含んでいてもよい。
 硬化前の液状材料222は、25℃で、100Pa・s以下の粘度であることが好ましい。100Pa・s以下の粘度であれば、真空オーブンで脱泡と加熱するだけで容易に充填可能であるため、生産性を上げることができる。硬化前の液状材料222の粘度は、25℃で、30Pa・s以下であることがより好ましく、5Pa・s以下であることがさらに好ましい。
 なお、硬化前の液状材料222の粘度の下限に制限はないが、液状材料222を充填した後から加熱硬化するまでの間に、第1部分221とシート250との隙間から液状材料222が漏れることがないように、粘度は低すぎないことが好ましい。より具体的には、硬化前の液状材料222の粘度は、25℃で、通常では0.01Pa・s以上であり、好ましくは0.1Pa・s以上であり、より好ましくは0.3Pa・s以上である。
 そして、各貫通孔223内に充填された液状材料222を硬化する。例えば、真空オーブンで液状材料222を加熱して硬化させて外装体220の第2部分222a(外装体120の第2部分122となる部分)とする。
 なお、液状材料222の硬化物である第2部分222aには気泡がわずかに残っていてもよい。また、第2部分222aと第1部分221との間、及び/又は、第2部分222aと少なくとも1つの素子1との間には、隙間がわずかに残っていてもよい。
 その後、他の列の貫通孔223についても、列毎に、導電性ペースト230の供給、複数の素子1(重畳体101)の挿入、導電性ペースト230の硬化、液状材料222の充填、及び液状材料222の硬化を行い、全ての貫通孔223内に複数の素子1(重畳体101)及び第2部分222aを収納する。
 続いて、液状材料222を硬化した後、第1部分221からシート250を剥離する。剥離面には各素子1が接続された集電電極102が露出し、この剥離面が素体110の第1端面110eになる。なお、少なくとも1つの陰極70の端面がこの剥離面に露出してもよい。
 他方、第1部分221の上部には各素子1の不要部分や液状材料222の不要な部分、さらにはワーク210の保持部211が存在する。また、第1部分221の高さはチップの長手方向の長さになるため、所定長さに整える必要がある。そのため、まず、所定のカットライン(例えば図18C中の一点鎖線)に沿って、第1部分221の上部の不要部分をグラインダ等で削り取る。不要部分が削り取られて露出した面が、素体110の第2端面110fになる。第2端面110fには各素子1の陽極60(弁作用金属基体から構成された箔)が露出している。
 次に、個片化のためにカットを行う。
 図19は、貫通孔の周囲において外装体の第1部分を切断する工程の一例を模式的に示す図である。
 図19に示すように、各貫通孔223の周囲において第1部分221を切断する。これにより、第1部分221から管構造の第1部分121を容易に形成することができる。例えば、各貫通孔223の外側の所定のカットライン(例えば図19中の一点鎖線)をダイサー等で切断する。
 以上により素子1の重畳体101を備える素体110を得る。
 この後、素体110をバレル研磨してもよい。具体的には、素体110を、バレル槽内に研磨材とともに封入し、当該バレル槽を回転させることにより、素体110を研磨してもよい。これにより、素体110の角部及び稜線部に丸みがつけられる。
 なお、必要に応じてバレル研磨された素体110の第2端面110f(陽極端面)には、エアロゾルデポジション法により金属微粒子(例えば、Cuの微粒子)を噴出して衝突させてもよい。これにより、素体110の第2端面110f(陽極端面)に露出した陽極60上に金属膜(コンタクト層)を形成してもよい。
 次に、素体110の第1端面110e(陰極端面)及び第2端面110f(陽極端面)にそれぞれ第1外部電極130及び第2外部電極140を形成する。例えば、導電性ペーストをスクリーン印刷法等で塗布して硬化し、第1外部電極130及び第2外部電極140として樹脂電極層をそれぞれ形成する。樹脂電極層形成用の導電性ペーストとしては、導電成分として銀粒子を含有する銀ペーストが好適である。その後、めっきすることによって樹脂電極層上にめっき層を形成してもよい。
 このとき、第1外部電極130として、スパッタ法や蒸着法により例えば数μm厚の薄いスパッタ膜及び/又は蒸着膜を形成してもよい。
 上記方法により固体電解コンデンサ100Bを得ることができる。
 なお、ここでは、集電電極102を有する場合について説明したが、集電電極102を設けずに各固体電解コンデンサ素子1の陰極70を第1外部電極130に直接的に接続してもよい。この場合は、例えば、粘着性シート250の剥離後にシート250が貼り付けられていた第1部分221の下部をグラインダ等で削り取ることによって素体110の第1端面110e(陰極端面)に各陰極70を露出させ、第1端面110eに露出した各陰極70上に第1外部電極130を形成してもよい。
 また、集電電極102を設けない場合は、外装体220の第2部分222aは、以下の工程に従って実施してもよい。すなわち、まず、第1部分221の各貫通孔223内に液状材料222をディスペンサ等により注入して充填する。次に、液状材料222が充填された各貫通孔223内に複数の固体電解コンデンサ素子1(重畳体101)を挿入し、挿入された各素子1の周囲に液状材料222を充填する。例えば、複数の素子1の挿入後に真空脱泡を行うことによって、各素子1の周囲に液状材料222を充填する。そして、各貫通孔223内に充填された液状材料222を、例えば真空オーブンで加熱することによって、硬化する。
 また、上記実施形態(特に図11及び図12)では、外装体120が2種類の樹脂材料、すなわち第1部分121及び第2部分122のみから構成される場合について説明したが、外装体120は3種類の樹脂材料から構成されてもよい。例えば、外装体の第1部分及び第2部分の間に樹脂材料からなる1層以上の中間樹脂層を設けてもよい。このような中間樹脂層は、例えば、複数の固体電解コンデンサ素子の重畳体を封止する第2部分を、第1部分の貫通孔より小さい寸法でトランスファ成形等により形成しておき、その後、固体電解コンデンサ素子の重畳体を第2部分ごと第1部分の貫通孔内に挿入し、そして、第2部分と第1部分との間の隙間に液状の樹脂材料を充填して硬化することによって形成することができる。
 その反対に、外装体120は1種類の樹脂材料のみから構成されてもよい。例えば、第1部分121を設けずに第2部分122のみを設けてもよい。このような固体電解コンデンサは、例えば、個片化のためにカット工程において、各貫通孔223の内側にカットラインを設定し、第1部分221を全てカットして除去することによって作製可能である。
 また、上記実施形態(特に図11及び図12)では、略直方体状の素体110を用いる場合について説明したが、図11及び図12に示した固体電解コンデンサ100Bにおいて、素体は、相対する第1端面及び第2端面を有する形状であれば特に限定されず、略直方体状の他に、例えば、円柱状等であってもよい。
 また、上記実施形態(特に図13~図19)では、複数の貫通孔223の空いた第1部分221を用いて複数の素体110を同時に作製する場合について説明したが、貫通孔が1つだけ空いた外装体の第1部分を用いて素体を1個ずつ作製してもよい。
 以下、本発明の固体電解コンデンサ素子、固体電解コンデンサ及び固体電解コンデンサの製造方法をより具体的に開示した実施例を示す。なお、本発明は、これらの実施例のみに限定されるものではない。
(実施例)
 図9及び図10に示した固体電解コンデンサ100Aと同様の複数の固体電解コンデンサを作製した。ただし、いずれの固体電解コンデンサも、マスクの第1部分近傍において固体電解質層に欠陥が生じているものを使用した。
(比較例)
 マスクの第2部分を形成しなかったことを除いて、実施例と同様にして複数の固体電解コンデンサを作製した。比較例のいずれの固体電解コンデンサも、マスクの第1部分近傍において固体電解質層に欠陥が生じているものを使用した。
 図20は、実施例及び比較例の固体電解コンデンサについて漏れ電流を測定した結果を示すグラフである。なお、図20において、縦軸は漏れ電流の大きさ(対数)を示し、横軸は、縦軸の漏れ電流を示した固体電解コンデンサの個数を示している。
 図20に示すように、第1部分及び第2部分を有するマスクを備える実施例では、例え固体電解質層に欠陥が生じていても、漏れ電流を規格値(図中の規格線参照)以下とし、漏れ電流不良の発生を防止することができた。
 他方、第1部分のみを有するマスクを備える比較例では、規格値(図中の規格線参照)を超える漏れ電流を示す固体電解コンデンサが発生した。
 本明細書には、以下の内容が開示されている。
<1>
 金属基体層と前記金属基体層上の多孔質層とを有し、陽極端子領域と陰極形成領域とを有する弁作用金属基体と、
 前記陰極形成領域において前記多孔質層の表面上に設けられた誘電体層と、
 前記陰極形成領域において前記誘電体層を介して前記多孔質層上に設けられた固体電解質層と、
 前記固体電解質層上に形成された導電層と、
 第1部分及び第2部分を有するマスクと、を備え、
 前記第1部分は、前記陽極端子領域と前記陰極形成領域とを区画し、前記誘電体層を介して又は直接に前記多孔質層に接触し、
 前記第2部分は、前記多孔質層上に設けられた前記固体電解質層を覆い、
 前記マスクは、前記導電層を覆わない、固体電解コンデンサ素子。
<2>
 前記第2部分は、前記第1部分の前記陰極形成領域側の端から少なくとも50μm離れた地点まで前記固体電解質層を覆う、<1>に記載の固体電解コンデンサ素子。
<3>
 前記第2部分は、前記第1部分の前記陰極形成領域側の端から500μmを超える地点では前記固体電解質層を覆わない、<1>又は<2>に記載の固体電解コンデンサ素子。
<4>
 前記第2部分は、前記第1部分の少なくとも一部を覆う、<1>から<3>のいずれか1つに記載の固体電解コンデンサ素子。
<5>
 前記第1部分近傍における前記固体電解質層の厚みは、前記固体電解質層の中心部分における前記固体電解質層の厚みより小さい、<1>から<4>のいずれか1つに記載の固体電解コンデンサ素子。
<6>
 前記第1部分及び前記第2部分は、前記弁作用金属基体の少なくとも一方の主面上に設けられる、<1>から<5>のいずれか1つに記載の固体電解コンデンサ素子。
<7>
 前記第1部分及び前記第2部分は、前記弁作用金属基体を取り囲むように環状に設けられる、<6>に記載の固体電解コンデンサ素子。
<8>
 <1>から<7>のいずれか1つに記載の固体電解コンデンサ素子を複数備える、固体電解コンデンサ。
<9>
 誘電体層を介して又は直接に、弁作用金属基体の多孔質層上に、前記弁作用金属基体の陽極端子領域と陰極形成領域とを区画するマスクの第1部分を形成する工程と、
 前記第1部分の形成後、前記陰極形成領域において前記誘電体層を介して前記多孔質層上に固体電解質層を形成する工程と、
 前記固体電解質層の形成後、前記固体電解質層を覆う前記マスクの第2部分を形成する工程と、を含む、固体電解コンデンサ素子の製造方法。
 1 固体電解コンデンサ素子
 10、10A 弁作用金属基体
 10a 弁作用金属基体の辺
 11 金属基体層
 11a 金属基体層の一方の端面
 12 多孔質層
 12a 多孔質層の最表面
 13 陽極端子領域
 14 陰極形成領域
 15 素子部
 16 支持部
 20 誘電体層
 30 固体電解質層
 40 導電層
 50 マスク
 51 マスクの第1部分
 51a マスクの第1部分の陰極形成領域側の端
 52 マスクの第2部分
 60 陽極
 70 陰極
 80 処理液
 85 処理槽
 100A、100B 固体電解コンデンサ
 101 重畳体
 102 集電電極
 110 素体
 110a 第1主面
 110b 第2主面
 110c 第1側面
 110d 第2側面
 110e 第1端面
 110f 第2端面
 120 外装体
 121 外装体の第1部分
 122 外装体の第2部分
 123 貫通孔
 130 第1外部電極
 140 第2外部電極
 160 封止体
 170、180 リードフレーム
 210 ワーク
 211 保持部
 212 素子部
 220 外装体
 221 外装体の第1部分
 222 液状材料
 222a 外装体の第2部分
 223 貫通孔
 223a 第1の開口
 223b 第2の開口
 230 導電性ペースト
 250 粘着性シート
 W マスクの第2部分の幅
 T1 マスクの第1部分近傍における固体電解質層の厚み
 T2 固体電解質層の中心部分における固体電解質層の厚み

 

Claims (9)

  1.  金属基体層と前記金属基体層上の多孔質層とを有し、陽極端子領域と陰極形成領域とを有する弁作用金属基体と、
     前記陰極形成領域において前記多孔質層の表面上に設けられた誘電体層と、
     前記陰極形成領域において前記誘電体層を介して前記多孔質層上に設けられた固体電解質層と、
     前記固体電解質層上に形成された導電層と、
     第1部分及び第2部分を有するマスクと、を備え、
     前記第1部分は、前記陽極端子領域と前記陰極形成領域とを区画し、前記誘電体層を介して又は直接に前記多孔質層に接触し、
     前記第2部分は、前記多孔質層上に設けられた前記固体電解質層を覆い、
     前記マスクは、前記導電層を覆わない、固体電解コンデンサ素子。
  2.  前記第2部分は、前記第1部分の前記陰極形成領域側の端から少なくとも50μm離れた地点まで前記固体電解質層を覆う、請求項1に記載の固体電解コンデンサ素子。
  3.  前記第2部分は、前記第1部分の前記陰極形成領域側の端から500μmを超える地点では前記固体電解質層を覆わない、請求項1又は2に記載の固体電解コンデンサ素子。
  4.  前記第2部分は、前記第1部分の少なくとも一部を覆う、請求項1~3のいずれか1項に記載の固体電解コンデンサ素子。
  5.  前記第1部分近傍における前記固体電解質層の厚みは、前記固体電解質層の中心部分における前記固体電解質層の厚みより小さい、請求項1~4のいずれか1項に記載の固体電解コンデンサ素子。
  6.  前記第1部分及び前記第2部分は、前記弁作用金属基体の少なくとも一方の主面上に設けられる、請求項1~5のいずれか1項に記載の固体電解コンデンサ素子。
  7.  前記第1部分及び前記第2部分は、前記弁作用金属基体を取り囲むように環状に設けられる、請求項6に記載の固体電解コンデンサ素子。
  8.  請求項1~7のいずれか1項に記載の固体電解コンデンサ素子を複数備える、固体電解コンデンサ。
  9.  誘電体層を介して又は直接に、弁作用金属基体の多孔質層上に、前記弁作用金属基体の陽極端子領域と陰極形成領域とを区画するマスクの第1部分を形成する工程と、
     前記第1部分の形成後、前記陰極形成領域において前記誘電体層を介して前記多孔質層上に固体電解質層を形成する工程と、
     前記固体電解質層の形成後、前記固体電解質層を覆う前記マスクの第2部分を形成する工程と、を含む、固体電解コンデンサ素子の製造方法。

     
PCT/JP2023/025689 2022-07-14 2023-07-12 固体電解コンデンサ素子、固体電解コンデンサ及び固体電解コンデンサ素子の製造方法 WO2024014469A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-113148 2022-07-14
JP2022113148 2022-07-14

Publications (1)

Publication Number Publication Date
WO2024014469A1 true WO2024014469A1 (ja) 2024-01-18

Family

ID=89536745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025689 WO2024014469A1 (ja) 2022-07-14 2023-07-12 固体電解コンデンサ素子、固体電解コンデンサ及び固体電解コンデンサ素子の製造方法

Country Status (1)

Country Link
WO (1) WO2024014469A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349689A (ja) * 1993-06-14 1994-12-22 Matsushita Electric Ind Co Ltd 固体電解コンデンサ
JPH0794369A (ja) * 1993-09-27 1995-04-07 Matsushita Electric Ind Co Ltd 固体電解コンデンサ
JP2018032768A (ja) * 2016-08-25 2018-03-01 株式会社村田製作所 固体電解コンデンサ素子、固体電解コンデンサ、固体電解コンデンサ素子の製造方法、及び、固体電解コンデンサの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349689A (ja) * 1993-06-14 1994-12-22 Matsushita Electric Ind Co Ltd 固体電解コンデンサ
JPH0794369A (ja) * 1993-09-27 1995-04-07 Matsushita Electric Ind Co Ltd 固体電解コンデンサ
JP2018032768A (ja) * 2016-08-25 2018-03-01 株式会社村田製作所 固体電解コンデンサ素子、固体電解コンデンサ、固体電解コンデンサ素子の製造方法、及び、固体電解コンデンサの製造方法

Similar Documents

Publication Publication Date Title
KR102387047B1 (ko) 고체 전해 콘덴서의 제조 방법 및 고체 전해 콘덴서
JP6819691B2 (ja) 固体電解コンデンサ及び固体電解コンデンサの製造方法
US10903011B2 (en) Multilayer electronic component and method of manufacturing the same
JP7408288B2 (ja) 固体電解コンデンサ
JP6856076B2 (ja) 固体電解コンデンサ
JP6747512B2 (ja) 固体電解コンデンサ
JP2020155695A (ja) 固体電解コンデンサ
JP7020504B2 (ja) 固体電解コンデンサ
US7088573B2 (en) Surface mount MELF capacitor
US7957120B2 (en) Capacitor chip and method for manufacturing same
WO2024014469A1 (ja) 固体電解コンデンサ素子、固体電解コンデンサ及び固体電解コンデンサ素子の製造方法
WO2023243662A1 (ja) 固体電解コンデンサ及び固体電解コンデンサの製造方法
US11810728B2 (en) Electrolytic capacitor
WO2023190050A1 (ja) 固体電解コンデンサ
WO2023085205A1 (ja) 電子部品及び電子部品の製造方法
JP2023179202A (ja) 電子部品及び電子部品の製造方法
WO2023085204A1 (ja) 電子部品及び電子部品の製造方法
US20240194414A1 (en) Solid electrolytic capacitor element, solid electrolytic capacitor, and method for manufacturing solid electrolytic capacitor element
WO2022264794A1 (ja) 固体電解コンデンサ素子及び固体電解コンデンサ
JP2020145276A (ja) 固体電解コンデンサ
WO2023090141A1 (ja) 電解コンデンサ素子
JP7487719B2 (ja) 固体電解コンデンサ素子、固体電解コンデンサ及び固体電解コンデンサ素子の製造方法
WO2023026709A1 (ja) 固体電解コンデンサ及び固体電解コンデンサの製造方法
WO2023026708A1 (ja) 固体電解コンデンサ素子、固体電解コンデンサ及び固体電解コンデンサ素子の製造方法
WO2023153432A1 (ja) 電解コンデンサ素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839641

Country of ref document: EP

Kind code of ref document: A1