WO2024014456A1 - 丸編地 - Google Patents
丸編地 Download PDFInfo
- Publication number
- WO2024014456A1 WO2024014456A1 PCT/JP2023/025578 JP2023025578W WO2024014456A1 WO 2024014456 A1 WO2024014456 A1 WO 2024014456A1 JP 2023025578 W JP2023025578 W JP 2023025578W WO 2024014456 A1 WO2024014456 A1 WO 2024014456A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- knitted fabric
- fibers
- cellulose
- circular knitted
- stitches
- Prior art date
Links
- 239000004744 fabric Substances 0.000 title claims abstract description 162
- 229920002994 synthetic fiber Polymers 0.000 claims abstract description 86
- 239000012209 synthetic fiber Substances 0.000 claims abstract description 85
- 229920003043 Cellulose fiber Polymers 0.000 claims abstract description 76
- 210000004177 elastic tissue Anatomy 0.000 claims description 28
- 229920000728 polyester Polymers 0.000 claims description 23
- 238000007747 plating Methods 0.000 claims description 10
- -1 cupro Polymers 0.000 claims description 6
- 229920000742 Cotton Polymers 0.000 claims description 5
- 229920000433 Lyocell Polymers 0.000 claims description 3
- 239000004677 Nylon Substances 0.000 claims description 3
- 229920000297 Rayon Polymers 0.000 claims description 3
- 229920001778 nylon Polymers 0.000 claims description 3
- 239000002964 rayon Substances 0.000 claims description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 2
- 238000009940 knitting Methods 0.000 abstract description 76
- 229920002678 cellulose Polymers 0.000 abstract description 15
- 239000001913 cellulose Substances 0.000 abstract description 15
- 230000009172 bursting Effects 0.000 description 27
- 230000000052 comparative effect Effects 0.000 description 17
- 239000000835 fiber Substances 0.000 description 14
- 238000005259 measurement Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 11
- 230000008520 organization Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 7
- 239000002131 composite material Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000009987 spinning Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 230000035900 sweating Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920002334 Spandex Polymers 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 238000007383 open-end spinning Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007378 ring spinning Methods 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004759 spandex Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004758 synthetic textile Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04B—KNITTING
- D04B1/00—Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04B—KNITTING
- D04B1/00—Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
- D04B1/14—Other fabrics or articles characterised primarily by the use of particular thread materials
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04B—KNITTING
- D04B1/00—Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
- D04B1/14—Other fabrics or articles characterised primarily by the use of particular thread materials
- D04B1/18—Other fabrics or articles characterised primarily by the use of particular thread materials elastic threads
Definitions
- the present invention relates to circular knitted fabrics.
- Circular knitted fabrics have traditionally been known as knitted fabrics for clothing.For example, jersey fabrics, bare jersey fabrics, and pique fabrics are thin, lightweight, and can improve breathability, so they are ideal for innerwear, T-shirts, and polo shirts. It is used in many items such as outerwear.
- fabrics with a high blend of synthetic fibers or fabrics made of 100% synthetic fibers were the mainstream, as items with a high blend of cellulose have a limit in bursting strength as they become thinner.
- the standard bursting strength values for clothing are approximately 350kPa or more for thin knitted innerwear, and 400kPa or more for thick knitted T-shirts and polo shirts.
- fabrics with a high cellulose content have a bursting strength equivalent to that of thick knitted fabrics. It was difficult to do. Therefore, as a feature of thin clothing, synthetic fibers such as polyester and nylon have been used to maintain bursting strength, and increasing the cellulose content has been avoided.
- Patent Document 1 describes a lightweight, thin knit fabric that is a weft knitted fabric consisting of repeating lattice pattern units, has a basis weight of 30 to 90 g/ m2 , and has a bursting strength of 300 kPa or more.
- a lightweight, thin knit fabric that is a weft knitted fabric consisting of repeating lattice pattern units, has a basis weight of 30 to 90 g/ m2 , and has a bursting strength of 300 kPa or more.
- Patent Document 2 contains water-absorbing elongated yarn (cellulose fiber) and elastic yarn in order to provide a knitted fabric that is comfortable to wear, has improved breathability during sweating, and does not feel sticky or stuffy.
- a single circular knitted fabric characterized by having a portion where a course containing elastic yarn is knitted next to a course containing water-absorbing elongated yarn. This effect of improving breathability during sweating can be obtained by knitting a course containing elastic yarn next to a course containing water-absorbing elongated threads, which can support the opening of the loops when the water-absorbing elongated threads are stretched by water absorption.
- the water-absorbing elongated yarn described in Patent Document 2 is a cellulose fiber that has been subjected to a specific alkali treatment or the like and has a water-absorbing elongation rate of 3% or more.
- specific knitting structures include jersey knitting in which cellulose fibers and synthetic fibers with elastic yarns are alternately repeated, and knitted parts in which tuck loops or welt loops are continuous in the wale direction in the knitted part of cellulose fibers.
- the problems to be solved by the present invention are to provide a material that contains cellulose but has high bursting strength, a high cellulose content, a small basis weight (light and thin), and high versatility.
- a circular knitted fabric that can be manufactured using a circular knitting machine.
- a circular knitted fabric containing cellulose fibers and synthetic fibers comprising a row A in which knitted loops of the synthetic fibers are continuously connected in the wale direction of the knitted fabric, and knitted loops of the cellulose fibers and knitted synthetic fibers.
- the content of cellulose fiber in the knitted fabric is A circular knitted fabric having a content of 10% by mass or more and 70% by mass or less.
- the course made of cellulose fibers has knit stitches and welt stitches or tuck stitches repeated alternately, and the course made of synthetic fibers has continuous knit stitches or knit stitches and welt stitches or tuck stitches.
- the circular knitted fabric of the present invention has high bursting strength despite containing cellulose, has a high cellulose content, has a small basis weight (light and thin), and can be manufactured using a highly versatile circular knitting machine. It is a circular knitted fabric.
- the knitted fabric of the present invention has a structure in which the knitted loops of synthetic fibers are continuously connected in the wale direction of the knitted fabric, even though it is a cellulose mixture, and has a high bursting strength and a small basis weight (lightweight and thin). It is a circular knitted fabric that can be produced using only two types of needles, short needles and long needles, which are highly versatile circular knitting equipment. Further, the knitted fabric of the present invention can be made into a plain fabric with no pattern and excellent versatility.
- the gauge of the circular knitting machine that can be used is preferably 28 gauge to 60 gauge, more preferably 28 gauge to 40 gauge.
- circular knitting machines can be used in small sizes from 14 inches to 24 inches, and large sizes from 26 inches to 60 inches.
- the knitting design allows for knitting.
- the knitted fabric of the present invention can be designed to have a smooth or milled plain surface without pattern irregularities, making it suitable for clothing applications. becomes.
- FIG. 3 is a schematic diagram showing an example of knitting structures of Comparative Examples 1 to 4 and 7.
- FIG. 3 is a schematic diagram showing an example of knitting structures of Comparative Examples 8 to 10.
- FIG. 7 is a schematic diagram showing an example of a knitting structure of Comparative Example 5.
- FIG. 6 is a schematic diagram showing an example of a knitting structure of Comparative Example 6.
- One embodiment of the present invention is a circular knitted fabric containing cellulose fibers and synthetic fibers, comprising a row A in which knitted loops of the synthetic fibers are continuously connected in the wale direction of the knitted fabric, and a knitted loop of the cellulose fibers. and a row B in which the knitted loops of the synthetic fiber are alternately connected, and the row A and the row B are 1:4, 1:3, 1:2, 1:1, 2:2, 3:3, 4. :4, 2:1, 3:1, 4:1, 2:3, 2:4, 3:2, 3:4, 4:3, 4:2.
- the circular knitted fabric is characterized in that the content of cellulose fibers is 10% by mass or more and 70% by mass or less. With such a knitted structure, it is possible to create a design in which the front surface has smooth or milled grains, which makes it look like a solid color without any pattern quirks, and is therefore suitable for use in clothing.
- the row A By having the row A in which the synthetic fiber knitted loops are continuously connected in the wale direction of the knitted fabric, it has excellent bursting strength even when the blending ratio of cellulose fibers is high and the fabric has a low basis weight.
- the course made of synthetic fibers may have knit stitches, and the course made of cellulose fibers may have welt stitches or tuck stitches, but is not limited thereto.
- the knit stitches of the courses made of synthetic fibers are connected by knitting loops, and in row A, the knitted loops of synthetic fibers are continuous in the wale direction of the knitted fabric. and connect.
- the odd-numbered courses (1, 3, 5, 7, etc.) in row A made of synthetic fibers are the knit stitches, and the even-numbered courses (2, 4, 6, 8, etc.) in row A are the knit stitches.
- the knit stitches made of odd-numbered courses of synthetic fibers are connected by knitting loops, creating a row A in which the knitted loops of synthetic fibers are continuously connected in the wale direction of the knitted fabric.
- Row A is, for example, a knitting structure in which knit stitches of fibers made of synthetic fibers and tuck stitches or welt stitches made of cellulose fibers alternate in the wale direction.
- the row B in which knitted loops of cellulose fibers and knitted loops of synthetic fibers are alternately connected is not limited to this, but may have a structure in which knits are continuous, for example.
- the ratio of row B in the course direction of the knitted fabric is within the range of 1 to 4, the connection between the loops made of synthetic fibers and the loops made of cellulose fibers is suppressed to a minimum, which causes rupture compared to the jersey texture ( Figure 4).
- Strength increases.
- the number of loops in the wale direction is preferably 10 to 70 loops per inch (2.54 cm), more preferably 10 to 40 loops.
- courses made of cellulose fibers and courses made of synthetic fibers are alternately repeated in the wale direction.
- the course made of cellulose fibers have alternating knit stitches and welt stitches or tuck stitches, and that the course made of synthetic fibers have continuous knit stitches.
- the content of cellulose fibers is preferably 10% by mass or more, more preferably 30% by mass or more, still more preferably 40% by mass or more, and particularly preferably 50% by mass. Examples of the knitting structure of the present invention are shown in FIGS. 1-1 to 1-4 and FIGS. 2-3.
- Another embodiment of the present invention is a circular knitted fabric containing cellulose fibers and synthetic fibers, comprising a row A in which knitted loops of the synthetic fibers are continuously connected in the wale direction of the knitted fabric, and a knitted loop of the cellulose fibers. and a row B in which the knitted loops of the synthetic fibers are connected in a ratio of 1 to 5:1 to 9 (excluding 1:1) in the wale direction of the knitted fabric, and a row B of 1 to 5:1 to 5 (1:1 is excluded).
- a column B connected at a ratio of 1 to 3:1 to 3 (excluding 1:1)
- a row B connected at a ratio of 1 to 3:1 to 3 (excluding 1:1)
- rows B that are connected at a ratio of 1:3 (excluding 1:3)
- the column A and the column B are 1:4, 1:3, 1:2, 1:1, 2:2, 3:3, 4:4, 2:1, 3:1, 4:1,,2 :3, 2:4, 3:2, 3:4, 4:3, 4:2, and the content of cellulose fiber in the knitted fabric is 10% by mass or more and 70% by mass or less. , a circular knitted fabric.
- It may be knitted by repeating courses made of cellulose fibers and courses made of synthetic fibers in a ratio of 1 to 5:1 to 9 (excluding 1:1) in the wale direction.
- courses made of cellulose fibers have knit stitches and welt stitches or tuck stitches repeated alternately
- courses made of synthetic fibers have continuous knit stitches or knit stitches and welt stitches or tuck stitches. are preferably repeated alternately.
- the cellulose mixing ratio cannot be set high.
- the content of cellulose fibers is preferably 10% by mass or more, more preferably 30% by mass or more, and still more preferably 40% by mass or more. Examples of the knitting structure of the invention are shown in FIGS. 1-5 to 1-9. Note that the organizational chart is not limited to this.
- the basis weight of the circular knitted fabric of this embodiment is preferably 30 g/m 2 or more and 160 g/m 2 or less, more preferably 50 g/m 2 or more and 140 g/m 2 or less in the form without elastic fibers, More preferably, it is 70 g/m 2 or more and 100 g/m 2 or less.
- the thickness of the circular knitted fabric of this embodiment is preferably 0.2 mm or more and 0.7 mm or less.
- the bursting strength of the circular knitted fabric of this embodiment is preferably 260 kPa or more and 600 kPa or less, more preferably 300 kPa or more and 550 kPa or less, and still more preferably 370 kPa or more and 550 kPa or less.
- the strength/lightness index of the circular knitted fabric of this embodiment is preferably 0.05 g/m 2 ⁇ kPa or more and 0.58 g/m 2 ⁇ kPa or less, more preferably 0.05 g/m 2 ⁇ kPa or more and 0 .43 g/m 2 ⁇ kPa or less, more preferably 0.05 g/m 2 ⁇ kPa or more and 0.27 g/m 2 ⁇ kPa or less.
- the raw material for the synthetic fiber course is not particularly limited, but examples include polyester fibers such as polyethylene terephthalate and polytrimethylene terephthalate, polyamide fibers such as nylon 6 and nylon 66, and polyolefin fibers such as polyethylene. These bright yarns, semi-dull yarns, full dull yarns, etc. can be selected arbitrarily, and the cross-sectional shape of the fibers can be any shape such as round, oval, W-shape, cocoon-shape, hollow fiber, etc. It is not particularly limited, and may be a raw yarn or a crimped yarn such as a false twist.
- the course made of cellulose fibers is not particularly limited, but recycled (refined) cellulose fibers such as rayon, cupro, lyocell, etc. may be used, and natural fibers include cotton, hemp, etc.
- the cellulose fibers may be in the form of a single yarn such as raw silk or twisted yarn, or may be in the form of a composite yarn with synthetic fibers as exemplified below.
- the form of the composite yarn is not particularly limited, and a composite method suitable for the purpose may be selected, such as composite by interlacing or composite by combination combustion.
- the fineness of the composite yarn of cellulose fibers and synthetic fibers is preferably 19 to 89 dtex, thereby making it possible to obtain a knitted fabric that has excellent bending softness, is thin, lightweight, and is comfortable to wear.
- the fineness of the synthetic fiber is preferably 33 dtex or more and 167 dtex or less, more preferably 56 dtex or more and 110 dtex or less, and even more preferably 56 dtex or more and 84 dtex or less, regardless of long or short fibers.
- the synthetic fibers are not particularly limited as long as they have a fineness such that the blending ratio of cellulose fibers in the fabric is in the range of 10% by mass to 70% by mass, preferably 30% by mass to 70% by mass.
- the fineness of the cellulose fibers is also preferably 33 dtex or more and 167 dtex or less, more preferably 56 dtex or more and 110 dtex or less, and even more preferably 56 dtex or more and 84 dtex or less, regardless of long or short fibers.
- the cotton count of the spun yarn is preferably 120/1 or more and 30/1 or less, more preferably 100/1 or more and 60/1 or less, and even more preferably 100/1 or more and 80/1 or less.
- the fineness of the single filaments is not particularly limited, but it is preferably in the range of 0.1 or more and 11.0 dtex or less, and the number of single yarns is 10 or more and 200 or less.
- Both the course made of cellulose fiber and the course made of synthetic fiber may be a blended yarn of short fiber spun yarn of cellulose or natural fiber and synthetic fiber.
- the twisting may be a single yarn, double yarn, or triplet yarn, and the spinning method is not particularly limited.
- the number of twists in ring spinning, silospan spinning, etc. is generally in the range of 15 to 25 twists per inch (2.54 cm), with light twists of 15 twists or less and hard twists of 25 twists or more. Good too. Open-end spinning, which is tied spinning, or MVS yarn may be used.
- the yarn length of the synthetic fiber is preferably 130 mm/100 W or more and 270 mm/100 W or less, more preferably 150 mm/100 W or more and 270 mm/100 W or less, and more preferably 150 mm/100 W or more and 190 mm/100 W or less.
- the yarn length of the cellulose fiber is preferably 0.8 times or more and 1.5 times or less than the yarn length of the synthetic fiber, more preferably 1.0 times or more and 1.5 times or less, and 1.0 times or more and 1.5 times or less. More preferably, it is .4 times or less.
- the yarn length of the cellulose fibers is 0.8 times or more and 1.5 times or less than the yarn length of the synthetic fibers, when stress is applied to the weft knitted fabric, row A composed of high-strength synthetic fibers Due to the stress applied, the bursting strength of the weft knitted fabric increases. If the yarn length is the same, the bursting strength will not decrease even if the finish is set to the lightest possible weight.
- elastic fibers may be mixed with cellulose fibers by drawing or plating, elastic fibers may be mixed with synthetic fibers by drawing or plating, and elastic fibers may be mixed with synthetic fibers by drawing or plating. may be mixed with cellulose fibers and synthetic fibers by aligning or plating.
- the elastic fibers may be knitted into courses made of cellulose fibers, synthetic fibers, or cellulose fibers and synthetic fibers, for example. . In particular, it is particularly preferable that the elastic fibers are woven into all courses including courses made of cellulose fibers and courses made of synthetic fibers.
- Elastic fibers refer to fibers with a maximum elongation of 100% or more.
- polyurethane-based (spandex) or polyetherester-based elastic fibers can be used.
- polyurethane-based elastic fibers may be dry-spun or melt-spun. Can be used.
- the elastic fibers do not lose their elasticity at around 180° C., which is the normal treatment temperature in the presetting step during dyeing.
- elastic fibers having high setting properties, deodorizing properties, and antibacterial properties can also be used by containing powders such as special polymers and inorganic substances.
- the fineness of the elastic fiber is preferably 11 dtex or more and 44 dtex or less, and more preferably 11 dtex to 33 dtex from the viewpoint of light weight.
- the circular knitted fabric of this embodiment can be a single circular knitted fabric.
- Strength-light index (g/m 2 /kpa) basis weight (g/m 2 )/bursting strength (kpa).
- Thickness (mm) It was measured according to JIS-L-1018 (knit fabric test method). Note that the thickness measurements obtained in the examples are values measured after removing the elastic fibers.
- Elongation modulus Measured according to JIS-L-1096 B method.
- Elongation modulus Measured according to JIS-L-1096 B-1 method (constant load method).
- Example 1 On a 32G single circular knitting machine, two stitches were made using cupra 56 dtex/45 filament yarn for one course in which the knit structure and welt structure were alternately repeated one stitch at a time, and polyester 84 dtex/72 filament yarn for one course of the all-needle knit structure. The organization was organized in such a way that one cycle is the organization. The measurement fabric was disperse-dyed using a mini color lab tester at 130°C for 30 minutes to obtain a weft knitted fabric. The obtained knitting structure is schematically shown in Figure 1-1. Further, the characteristics of the obtained single knitted fabric are shown in Table 1 below.
- Examples 2 to 12 A circular knitted fabric was obtained by carrying out the same operation as in Example 1, except that the yarn length was changed to the value shown in Table 1 below. The characteristics of the obtained single circular knitted fabric are shown in Table 1 below.
- Example 13 On a 28G single circular knitting machine, two stitches were made using cupro 84 dtex/45 filament yarn for one course in which the knit structure and welt structure were alternately repeated one stitch at a time, and polyester 84 dtex/72 filament yarn for one course of the all-needle knit structure. The organization was organized in such a way that one cycle is the organization. The measurement fabric was disperse-dyed using a mini color lab tester at 130°C for 30 minutes to obtain a weft knitted fabric. The obtained knitting structure is schematically shown in Figure 1-1. The characteristics of the obtained single circular knitted fabric are shown in Table 2 below.
- Example 14 to 17 A single circular knitted fabric was obtained by carrying out the same operation as in Example 13, except that the yarn length was changed to the value shown in Table 2 below. The characteristics of the single circular knitted fabric are shown in Table 2 below.
- Example 18-20 A single circular knitted fabric was obtained by carrying out the same operation as in Example 13 except that the yarn length was changed to the value shown in Table 3-1. The characteristics of single circular knitted fabric are shown in Table 3-1 below. The measurement fabric was disperse-dyed using a mini color lab tester at 130°C for 30 minutes to obtain a single knitted fabric.
- Example 21 On a 28G single circular knitting machine, two stitches were made using cupra 84 dtex/45 filament yarn for one course in which knit structure and tuck structure were alternately repeated one stitch at a time, and polyester 84 dtex/72 filament yarn for one course of all-needle knit structure. The organization was organized in such a way that one cycle is the organization. The measurement fabric was disperse-dyed using a mini color lab tester at 130°C for 30 minutes to obtain a weft knitted fabric. The obtained knitting structure is schematically shown in Figure 1-2. The characteristics of the obtained single circular knitted fabric are shown in Table 3-1 below.
- Example 22 On a 28G single circular knitting machine, cupro 84 dtex/45 filament yarn is used for one course in which knit structure 1 and tuck structure 3 are repeated alternately, and polyester 84 dtex/72 filament yarn is used for one course of all-needle knit structure.
- the organization was performed using a structure in which four ports constitute one cycle.
- the measurement fabric was disperse-dyed using a mini color lab tester at 130°C for 30 minutes to obtain a weft knitted fabric.
- the obtained knitting structure is schematically shown in Figure 1-4.
- the characteristics of the obtained single circular knitted fabric are shown in Table 3-1 below.
- Table 3-2 shows the characteristics of the circular knitted fabric of Example 18 and the circular knitted fabric of Example 18-2, which had elastic fibers in all courses under the same yarn length conditions.
- Example 18-2 As shown in Table 3-3 below, the elongation rate and elongation elastic modulus of the circular knitted fabrics of Example 18 and Example 18-2 are compared. If the elongation elastic modulus was 52% or more after 30 seconds, the phenomenon of not returning to the original shape even after elongation (bagging phenomenon) was unlikely to occur.
- Example 23 On a 32G single circular knitting machine, two stitches were made using cupra 56 dtex/45 filament yarn for one course in which the knit structure and welt structure were alternately repeated one stitch at a time, and polyester 84 dtex/72 filament yarn for one course of the all-needle knit structure. The organization was organized in such a way that one cycle is the organization. The measurement fabric was disperse-dyed using a mini color lab tester at 130°C for 30 minutes to obtain a weft knitted fabric. The obtained knitting structure is schematically shown in Figure 1-1. Further, the characteristics of the obtained single knitted fabric are shown in Table 4 below.
- Example 24 Single circular knitted fabrics obtained with yarn lengths set to the values shown in Table 4 below were set with tension particularly in the horizontal direction, and the bursting strength was measured at a basis weight of 72 g/m 2 .
- Example 25 A single circular knitted fabric obtained by setting the yarn length to the value shown in Table 4 below was set with tension particularly in the horizontal direction, and the bursting strength was measured at a basis weight of 68 g/m 2 .
- Example 26 A single circular knitted fabric obtained by setting the yarn length to the value shown in Table 4 below was set with tension particularly in the horizontal direction, and the bursting strength was measured at a basis weight of 30.4 g/m 2 .
- Example 27 A single circular knitted fabric obtained by setting the yarn length to the value shown in Table 4 below was set with tension particularly in the vertical direction, and the bursting strength was measured at a basis weight of 101 g/m 2 .
- Example 28 In the circular knitted fabric of Example 23, under the same yarn length conditions, the knit structure and the welt structure were alternately repeated one stitch at a time, using Cupra 56 dtex/45 filament yarn in the first course, and in the second course with an all-needle knit structure. Polyester 84 dtex/72 filament yarn, polyester 84 dtex/72 filament yarn in the third course where the knit structure and tuck structure are alternately repeated one stitch at a time, and polyester 84 dtex/72 filament yarn in the fourth course of the all-needle knit structure. Knitting was performed using a 32G single circular knitting machine with a structure in which 4 stitches constitute one cycle.
- the measurement fabric was disperse-dyed using a mini color lab tester at 130°C for 30 minutes to obtain a weft knitted fabric.
- the obtained knitting structure is schematically shown in Figure 1-5.
- the characteristics of the obtained single circular knitted fabric are shown in Table 4 below.
- Example 29 Circular knitted fabric of Example 23, polyester 84 dtex/72 filament yarn in 3 consecutive courses with all-needle knit structure under similar yarn length conditions, and 4th course in which knit structure and welt structure were alternately repeated one stitch at a time.
- the fabric was knitted using cupra 56 dtex/45 filament yarn on a 32G single circular knitting machine with a structure in which 4 stitches constitute one cycle.
- the measurement fabric was disperse-dyed using a mini color lab tester at 130°C for 30 minutes to obtain a weft knitted fabric.
- the obtained knitting structure is schematically shown in Figure 1-9.
- the characteristics of the obtained single circular knitted fabric are shown in Table 4 below.
- Example 30 On a 36G single circular knitting machine, two stitches were made using cupra 56 dtex/45 filament yarn for one course in which the knit structure and welt structure were alternately repeated one stitch at a time, and polyester 84 dtex/72 filament yarn for one course of the all-needle knit structure. The organization was organized in such a way that one cycle is the organization. The measurement fabric was disperse-dyed using a mini color lab tester at 130°C for 30 minutes to obtain a weft knitted fabric. The obtained knitting structure is schematically shown in Figure 1-1. Further, the characteristics of the obtained single knitted fabric are shown in Table 5 below.
- Example 7 The basic structure of jersey knitting is adopted, and the yarn count is the same as in Example 1, using cupra 56 dtex/45 filament yarn for one course and polyester 84 dtex/72 filament yarn for one course, resulting in the same yarn arrangement. did. In addition, the yarn length conditions were shortened to the limit before knitting became impossible, thereby creating a knitted fabric (double jersey) that had the highest bursting strength among jersey fabrics. The obtained knitting structure is shown in FIG. 4.
- the 1st stitch is a miss weave, and the 2nd and 3rd stitches are a repeated knit weave.
- Cupro 56 dtex/45 filament yarn is used in 1 course, the 1st stitch is a knit weave, and the remaining stitches are repeated in a miss tuck weave.
- a 36G single circular knit fabric was knitted using a polyester 84 dtex/72 filament yarn with a structure in which two stitches constitute one cycle.
- Comparative Example 8 and Example 30 had the same fineness and yarn length conditions
- Comparative Example 9 had the same fineness and yarn length conditions as Example 31
- Comparative Example 10 had the same fineness and yarn length conditions as Example 32. did. Therefore, the bursting strength of Comparative Examples 8 to 10 and Examples 30 to 32, which are knitted structures made of vertical frames in the prior literature, are compared under the same conditions using the same fineness and yarn length. It was found that in the knitted structures of Comparative Examples 8 to 10, loops were formed in which the knitted loops of cellulose fibers were connected to each other, and the bursting strength was lower than that of the Examples.
- Examples 31-32 A single circular knitted fabric was obtained by carrying out the same operation as in Example 23, except that the yarn length was changed to the value shown in Table 5 below. The characteristics of the obtained single circular knitted fabric are shown in Table 5 below.
- the knitted fabric of the present invention has excellent burst strength and can have a high cellulose content, so it can be suitably used for clothing that can be made lightweight depending on the purpose.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Knitting Of Fabric (AREA)
Abstract
セルロース混用でありながら破裂強度が高く、セルロース混用率が高く、目付が小さく(軽量薄手であり)、かつ、汎用性の高い丸編機で製造可能な丸編地を提供する。本発明に係る丸編地は、セルロース繊維と合成繊維を含む丸編地であって、該合成繊維の編みループが編地のウェール方向に連続してつながる列Aと、該セルロース繊維の編みループと該合成繊維の編みループが交互につながる列Bとを含み、又は、該合成繊維の編みループが編地のウェール方向に連続してつながる列Aと、該セルロース繊維の編みループと該合成繊維の編みループが編地のウェール方向に1~5:1~9でつながる列Bとを含み、該列Aと該列Bが1:4、1:3、1:2、1:1、2:2、3:3、4:4、2:1、3:1、4:1、2:3、2:4、3:2、3:4、4:3、4:2のいずれかの比率で配置され、かつ、編地におけるセルロース繊維の含有量が10質量%以上70質量%以下であることを特徴とする。
Description
本発明は丸編地に関する。
従来から丸編地は衣料用編物として知られ、例えば、天竺組織、ベアー天竺組織、鹿の子組織などは、薄く軽量で通気性を向上させることが可能であることから、インナー用途やTシャツ、ポロシャツなどアウター用途など多くのアイテムに使用されている。その中で、セルロース混率の高いアイテムは薄くするほど破裂強度に限界があるため、合繊高混率の生地や合繊100%の生地が主流であった。衣料品の一般的な破裂強度の目安値は、薄地編物インナー用途で350kPa以上、厚地編物Tシャツやポロシャツ用途で400kPa以上程度であり、特にセルロース高混率の生地では、厚手編物同等の破裂強度とすることは難しかった。それゆえ、これまで薄手な衣類の特徴として、破裂強度を保つためポリエステル、ナイロンなどの合繊を用いることが主流であり、セルロース混率を増やすことは避けられてきた。
以下の特許文献1には、格子模様繰り返し単位からなる緯編地であって、目付が30~90g/m2であり、破裂強度が300kPa以上であることを特徴とする軽量薄手ニット生地であれば、軽量薄手性と強度が改善されることが記載されているものの、セルロース混用の生地における軽量薄手性と強度の向上には改善の余地があった。
以下の特許文献2には、着用時快適で、かつ、発汗時に通気性が向上し、べとつき感や蒸れ感のない編地を提供すべく、吸水伸長糸(セルロース繊維)と弾性糸が含有されているシングル丸編地であって、吸水伸長糸を含有するコースの隣に弾性糸を含有するコースが編成されている部分を有する事を特徴とする丸編地が開示されている。かかる発汗時の通気性向上効果は、吸水伸長糸を含有するコースの隣に弾性糸を含有するコースが編成されていれば、吸水伸長糸が吸水によって伸長した時にループの開きをサポートすることができ、吸水伸長による通気性向上性能を最大限発揮することができるという発見に基づくものであり、強度の向上とは関係しない。特許文献2に記載された吸水伸長糸は、吸水伸長率が3%以上の特定のアルカリ処理等されたセルロース繊維である。また、かかる特定の編組織では、セルロース繊維と、弾性糸が添え糸された合成繊維とが交互に繰り返す天竺編みや、セルロース繊維の編成部分においてウェール方向にタックループ又はウェルトループが連続した編成部分と天竺編みを交互に繰り返す編組織であり、合成繊維からなるコースのニット目同士が編みループでつながれ、合成繊維の編みループが編地のウェール方向に連続してつながる編み組織ではない。
上記従来技術の水準に鑑み、本発明が解決しようとする課題は、セルロース混用でありながら破裂強度が高く、セルロース混用率が高く、目付が小さく(軽量薄手であり)、かつ、汎用性の高い丸編機を使用して製造可能な丸編地を提供することである。
上記課題を解決すべく、本発明者らは鋭意検討し実験を重ねた結果、特定の組織、設計による編地であれば上記課題を解決できることを予想外に見出し、本発明を完成するに至ったものである。
すなわち、本発明は以下の通りのものである。
[1]セルロース繊維と合成繊維を含む丸編地であって、該合成繊維の編みループが編地のウェール方向に連続してつながる列Aと、該セルロース繊維の編みループと該合成繊維の編みループが交互につながる列Bとを含み、該列Aと該列Bが1:4、1:3、1:2、1:1、2:2、3:3、4:4,2:1、3:1、4:1、2:3、2:4、3:2、3:4,4:3、4:2のいずれかの比率で配置され、編地におけるセルロース繊維の含有量が10質量%以上70質量%以下である、丸編地。
[2]前記セルロース繊維からなるコースと、前記合成繊維からなるコースとが、ウェール方向に交互に繰り返されて編成されている、前記[1]に記載の丸編地。
[3]前記セルロース繊維からなるコースはニット目とウェルト目又はタック目とが交互に繰り返されており、前記合成繊維からなるコースはニットが連続している、前記[1]又は[2]に記載の丸編地。
[4]セルロース繊維と合成繊維を含む丸編地であって、該合成繊維の編みループが編地のウェール方向に連続してつながる列Aと、該セルロース繊維の編みループと該合成繊維の編みループが編地のウェール方向に1~5:1~9(1:1は除く)でつながる列Bとを含み、該列Aと該列Bが1:4,1:3、1:2、1:1、2:2、3:3、4:4、2:1、3:1、4:1、2:3、2:4、3:2、3:4,4:3、4:2のいずれかの比率で配置され、編地におけるセルロース繊維の含有量が10質量%以上70質量%以下である、丸編地。
[5]前記セルロース繊維からなるコースはニット目とウェルト目又はタック目とが交互に繰り返されており、前記合成繊維からなるコースはニットが連続しているか又はニット目とウェルト目又はタック目とが交互に繰り返されている、前記[4]に記載の丸編地。
[6]前記列Aと該列Bが1:1の比率で配置されている、前記[1]~[5]のいずれかに記載の丸編地。
[7]前記列Aにおいて、ウェール方向のループ数が1inchあたり10ループ以上70ループ以下である、前記[1]~[6]のいずれかに記載の丸編地。
[8]弾性繊維を抜いたときの形態で目付が30g/m2以上160g/m2以下である、前記[1]~[7]のいずれかに記載の丸編地。
[9]前記セルロース繊維の繊度が33dtex以上167dtex以下であり、前記合成繊維の繊度が33dtex以上110dtex以下である、前記[1]~[8]のいずれかに記載の丸編地。
[10]前記合成繊維の糸長が130mm/100W以上270mm/100W以下であり、前記セルロース繊維の糸長が前記合成繊維の糸長の0.8倍以上1.5倍以下である、前記[1]~[9]のいずれかに記載の丸編地。
[11]前記セルロース繊維が、レーヨン、キュプラ、綿、リヨセルまたはアセテートであり、かつ、前記合成繊維が、ナイロン、またはポリエステルである、前記[1]~[10]のいずれかに記載の丸編地。
[12]弾性繊維が前記セルロース繊維及び/又は前記合成繊維とともに引き揃え又はプレーティングにより混用されている、前記[1]~[11]のいずれかに記載の丸編地。
[13]弾性繊維が前記セルロース繊維及び前記合成繊維とともに引き揃え又はプレーティングにより混用され、かつ、該弾性繊維が全てのコースにおいて引き揃え又はプレーティングにより混用されている、前記[1]~[12]のいずれかに記載の丸編地。
[14]シングル丸編地である、前記[1]~[13]のいずれかに記載の丸編地。
すなわち、本発明は以下の通りのものである。
[1]セルロース繊維と合成繊維を含む丸編地であって、該合成繊維の編みループが編地のウェール方向に連続してつながる列Aと、該セルロース繊維の編みループと該合成繊維の編みループが交互につながる列Bとを含み、該列Aと該列Bが1:4、1:3、1:2、1:1、2:2、3:3、4:4,2:1、3:1、4:1、2:3、2:4、3:2、3:4,4:3、4:2のいずれかの比率で配置され、編地におけるセルロース繊維の含有量が10質量%以上70質量%以下である、丸編地。
[2]前記セルロース繊維からなるコースと、前記合成繊維からなるコースとが、ウェール方向に交互に繰り返されて編成されている、前記[1]に記載の丸編地。
[3]前記セルロース繊維からなるコースはニット目とウェルト目又はタック目とが交互に繰り返されており、前記合成繊維からなるコースはニットが連続している、前記[1]又は[2]に記載の丸編地。
[4]セルロース繊維と合成繊維を含む丸編地であって、該合成繊維の編みループが編地のウェール方向に連続してつながる列Aと、該セルロース繊維の編みループと該合成繊維の編みループが編地のウェール方向に1~5:1~9(1:1は除く)でつながる列Bとを含み、該列Aと該列Bが1:4,1:3、1:2、1:1、2:2、3:3、4:4、2:1、3:1、4:1、2:3、2:4、3:2、3:4,4:3、4:2のいずれかの比率で配置され、編地におけるセルロース繊維の含有量が10質量%以上70質量%以下である、丸編地。
[5]前記セルロース繊維からなるコースはニット目とウェルト目又はタック目とが交互に繰り返されており、前記合成繊維からなるコースはニットが連続しているか又はニット目とウェルト目又はタック目とが交互に繰り返されている、前記[4]に記載の丸編地。
[6]前記列Aと該列Bが1:1の比率で配置されている、前記[1]~[5]のいずれかに記載の丸編地。
[7]前記列Aにおいて、ウェール方向のループ数が1inchあたり10ループ以上70ループ以下である、前記[1]~[6]のいずれかに記載の丸編地。
[8]弾性繊維を抜いたときの形態で目付が30g/m2以上160g/m2以下である、前記[1]~[7]のいずれかに記載の丸編地。
[9]前記セルロース繊維の繊度が33dtex以上167dtex以下であり、前記合成繊維の繊度が33dtex以上110dtex以下である、前記[1]~[8]のいずれかに記載の丸編地。
[10]前記合成繊維の糸長が130mm/100W以上270mm/100W以下であり、前記セルロース繊維の糸長が前記合成繊維の糸長の0.8倍以上1.5倍以下である、前記[1]~[9]のいずれかに記載の丸編地。
[11]前記セルロース繊維が、レーヨン、キュプラ、綿、リヨセルまたはアセテートであり、かつ、前記合成繊維が、ナイロン、またはポリエステルである、前記[1]~[10]のいずれかに記載の丸編地。
[12]弾性繊維が前記セルロース繊維及び/又は前記合成繊維とともに引き揃え又はプレーティングにより混用されている、前記[1]~[11]のいずれかに記載の丸編地。
[13]弾性繊維が前記セルロース繊維及び前記合成繊維とともに引き揃え又はプレーティングにより混用され、かつ、該弾性繊維が全てのコースにおいて引き揃え又はプレーティングにより混用されている、前記[1]~[12]のいずれかに記載の丸編地。
[14]シングル丸編地である、前記[1]~[13]のいずれかに記載の丸編地。
本発明の丸編地は、セルロース混用でありながら破裂強度が高く、セルロース混用率が高く、目付が小さく(軽量薄手であり)、かつ、汎用性の高い丸編機を使用して製造可能な丸編地である。本発明の編地は、セルロース混用でありながら合成繊維の編みループが編地のウェール方向に連続してつなげる組織、設計にすることで破裂強度が高く、かつ、目付が小さい(軽量薄手)設計が可能であり、さらに汎用性の高い丸編み設備であるショート針とロング針の2種類の針のみを使用して製作することができる丸編地である。また、本発明の編地は、柄癖がなく汎用性に優れた無地の生地とすることもできる。使用できる丸編み機のゲージは28ゲージ~60ゲージが好ましく、より好ましくは28ゲージ~40ゲージである。また、丸編み機のインチとしては、小寸は14インチ~24インチまで、大寸は26インチ~60インチまでが使用可能であり、機種としては一般的なセミジャガードだけでなく、ジャガード機や成型編みまで編立てが可能な編み設計となっている。さらに、本発明の編地は、特定の編み組織とすることで、表側の目面がスムース目あるいはフライス目の無地に見える柄癖のない設計とすることができるため、衣料用途に好適なものとなる。
以下、本発明の実施形態を詳細に説明する。
本発明の1の実施形態は、セルロース繊維と合成繊維を含む丸編地であって、該合成繊維の編みループが編地のウェール方向に連続してつながる列Aと、該セルロース繊維の編みループと該合成繊維の編みループが交互につながる列Bとを含み、該列Aと該列Bが1:4、1:3、1:2、1:1、2:2、3:3、4:4、2:1、3:1、4:1、2:3、2:4、3:2、3:4、4:3、4:2のいずれかの比率で配置され、編地におけるセルロース繊維の含有量が10質量%以上70質量%以下である、ことを特徴とする丸編地である。かかる編み組織では、表側の目面がスムース目あるいはフライス目の無地に見える柄癖のない設計とすることができるため、衣料用途に好適なものとなる。
本発明の1の実施形態は、セルロース繊維と合成繊維を含む丸編地であって、該合成繊維の編みループが編地のウェール方向に連続してつながる列Aと、該セルロース繊維の編みループと該合成繊維の編みループが交互につながる列Bとを含み、該列Aと該列Bが1:4、1:3、1:2、1:1、2:2、3:3、4:4、2:1、3:1、4:1、2:3、2:4、3:2、3:4、4:3、4:2のいずれかの比率で配置され、編地におけるセルロース繊維の含有量が10質量%以上70質量%以下である、ことを特徴とする丸編地である。かかる編み組織では、表側の目面がスムース目あるいはフライス目の無地に見える柄癖のない設計とすることができるため、衣料用途に好適なものとなる。
合成繊維の編みループが編地のウェール方向に連続してつながる列Aを有することで、セルロース繊維の混率が高い場合、及び生地の目付が低い場合であっても破裂強度に優れるものとなる。列Aは、これに限られないが、例えば、合成繊維からなるコースをニット目とし、セルロース繊維からなるコースをウェルト目又はタック目とすることができる。この場合、セルロース繊維からなるコースがウェルト目又はタック目であるために、合成繊維からなるコースのニット目同士が編みループでつながれ、列Aにおいて合成繊維の編みループが編地のウェール方向に連続してつながる。例えば、図1のように、列Aの奇数コース(1,3,5,7等)の合成繊維から成るコースをニット目とし、列Aの偶数コース(2、4、6、8等)のセルロース繊維からなるコースをウェルト目又はタック目とすることで、奇数コースの合成繊維からなるニット目同士が編みループでつながれ合繊繊維の編みループが編地のウェール方向に連続してつながる列Aが作られる。列Aは、例えば、合成繊維から成る繊維のニット目と、セルロース繊維からなるタック目又はウェルト目がウェール方向に交互に成る編み構造である。
セルロース繊維の編みループと合成繊維の編みループが交互につながる列Bは、これに限られないが、例えば、ニット目が連続する構造であってよい。
前記列AとBの比率は、編地のコース方向にA:B=1~4:1~4の比率が好ましく、A:B=1~3:1~3の比率がより好ましく、A:B=1~2:1~2の比率がさらに好ましく、はA:B=1:1で配置されていることが特に好ましい。
編地のコース方向に列Aが1~4の比率内であると列Aの偶数コース(2、4、6、8等)のセルロース繊維からなるコースは編み構造上、糸のたるみが抑えられスナッキングが起こりにくい。また、編地のコース方向に列Bが1~4の比率内であると合成繊維からなるループとセルロース繊維からなるループのつながり部分が少なく抑えられるために、天竺組織(図4)よりも破裂強度が強くなる。
前記列Aにおいて、ウェール方向のループ数が1inch(2.54cm)あたり10ループ以上70ループ以下であることが好ましく、より好ましくは10ループ以上40ループ以下である。
セルロース繊維の編みループと合成繊維の編みループが交互につながる列Bは、これに限られないが、例えば、ニット目が連続する構造であってよい。
前記列AとBの比率は、編地のコース方向にA:B=1~4:1~4の比率が好ましく、A:B=1~3:1~3の比率がより好ましく、A:B=1~2:1~2の比率がさらに好ましく、はA:B=1:1で配置されていることが特に好ましい。
編地のコース方向に列Aが1~4の比率内であると列Aの偶数コース(2、4、6、8等)のセルロース繊維からなるコースは編み構造上、糸のたるみが抑えられスナッキングが起こりにくい。また、編地のコース方向に列Bが1~4の比率内であると合成繊維からなるループとセルロース繊維からなるループのつながり部分が少なく抑えられるために、天竺組織(図4)よりも破裂強度が強くなる。
前記列Aにおいて、ウェール方向のループ数が1inch(2.54cm)あたり10ループ以上70ループ以下であることが好ましく、より好ましくは10ループ以上40ループ以下である。
セルロース繊維からなるコースと、合成繊維からなるコースとが、ウェール方向に交互に繰り返されて編成されていることが好ましい。この場合、セルロース繊維からなるコースはニット目とウェルト目又はタック目とが交互に繰り返されており、合成繊維からなるコースはニット目が連続していることが好ましい。かかる編み組織とすることで、合成繊維の編みループが編地のウェール方向に連続してつながる列Aを有し、合成繊維とセルロース繊維が交互にしてつながる列Bを有することで、セルロース混用率が高くても、破裂強度に優れる。また、セルロース繊維の含有量が10質量%以上であれば好ましく、より好ましくは30質量%以上であり、さらに好ましくは40質量%以上であり、特に好ましくは50質量%である。本発明の編み組織の例を、図1-1~図1-4、並びに図2~3に示す。
本発明の他の実施形態は、セルロース繊維と合成繊維を含む丸編地であって、該合成繊維の編みループが編地のウェール方向に連続してつながる列Aと、該セルロース繊維の編みループと該合成繊維の編みループが編地のウェール方向に1~5:1~9(1:1は除く)でつながる列Bとを含むことが好ましく、1~5:1~5(1:1は除く)でつながる列Bとを含むことがより好ましく、1~3:1~3(1:1は除く)でつながる列Bとを含むことがさらに好ましく、1:1~3(1:1は除く)でつながる列Bとを含むことが特に好ましく、1:3でつながる列Bとを含むことが、さらに特に好ましい。該列Aと該列Bが1:4、1:3、1:2、1:1、2:2、3:3、4:4、2:1、3:1、4:1,、2:3、2:4、3:2、3:4、4:3、4:2のいずれかの比率で配置され、編地におけるセルロース繊維の含有量が10質量%以上70質量%以下である、丸編地である。セルロース繊維からなるコースと、合成繊維からなるコースとが、ウェール方向に1~5:1~9(1:1は除く)で繰り返されて編成されているものであってもよい。この場合、セルロース繊維からなるコースはニット目とウェルト目又はタック目とが交互に繰り返されており、合成繊維からなるコースはニット目が連続しているか、又はニット目とウェルト目又はタック目とが交互に繰り返されことが好ましい。かかる編み組織とすることで、合成繊維の編みループが編地のウェール方向に連続してつながる列Aを有することになり、又セルロース繊維と合成繊維が1~5:1~9(1:1は除く)にしてつながる列Bを有することで、軽量でありながらセルロース繊維が高混率で破裂強度が高く設定できる。セルロース繊維が6コース以上になると編立て時に糸切れが生じる、又合成繊維が10コース以上になるとセルロース混用率が高く設定できない。また、セルロース繊維の含有量が10質量%以上であれば好ましく、より好ましくは30質量%以上であり、さらに好ましくは40質量%以上である。発明の編み組織の例を、図1-5~図1-9に示す。尚、組織図はこれに限定されるものではない。
本実施形態の丸編地の目付は、弾性繊維を抜いた形態では30g/m2以上160g/m2以下であることが好ましく、より好ましくは50g/m2以上140g/m2以下であり、さらに好ましくは70g/m2以上100g/m2以下である。本実施形態の丸編地の厚みは、0.2mm以上0.7mm以下であることが好ましい。本実施形態の丸編地の破裂強度は、260kPa以上600kPa以下であることが好ましく、より好ましくは300kPa以上550kPa以下であり、さらに好ましくは370kpa以上550kpa以下である。
本実施形態の丸編地の強度軽量指数は、0.05g/m2・kPa以上0.58g/m2・kPa以下であることが好ましく、より好ましくは0.05g/m2・kPa以上0.43g/m2・kPa以下であり、さらに好ましくは0.05g/m2・kPa以上0.27g/m2・kPa以下である。
本実施形態の丸編地の強度軽量指数は、0.05g/m2・kPa以上0.58g/m2・kPa以下であることが好ましく、より好ましくは0.05g/m2・kPa以上0.43g/m2・kPa以下であり、さらに好ましくは0.05g/m2・kPa以上0.27g/m2・kPa以下である。
合成繊維からなるコースの原料は特に限定されるものではないが、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート等のポリエステル繊維、ナイロン6やナイロン66等のポリアミド繊維、ポリエチレンや等のポリオレフィン繊維等が挙げられ、これらのブライト糸、セミダル糸、フルダル糸等任意に選択でき、繊維の断面形状も丸型、楕円形、W型、繭型、中空糸等任意な断面形状であることができ、繊維の形状についても特に限定されず、原糸、仮撚等の捲縮糸であってもよい。
セルロース繊維からなるコースについて特に限定されるものではないが、レーヨン、キュプラ、リヨセル、等の再生(精製)セルロース繊維を用いてもよく、又、天然繊維では綿、麻等が挙げられる。前記セルロース繊維は、生糸、撚糸として単一糸の形態であることができ、また、以下に例示する合成繊維との複合糸との形態であってもよい。複合糸の形態は特に限定されず、インターレースによる複合や合燃による複合など、用途に合わせた複合方法を選択すればよい。セルロース繊維と合成繊維との複合糸の繊度としては19~89dtexの繊度とすることが好ましく、これにより曲げ柔らかさに優れ、薄手で軽量な着用感に優れた編地を得ることができる。
合成繊維の繊度は、長短繊維を問わず、33dtex以上167dtex以下であることが好ましく、より好ましくは56dtex以上110dtex以下であり、さらに好ましくは56dtex以上84dtex以下である。また、合成繊維は、生地中のセルロース繊維の混率が10質量%以上70質量以下、好ましくは30質量%以上70質量%以下の範囲になるような繊度のものであれば特に制限はない。
セルロース繊維の繊度も、長短繊維を問わず、33dtex以上167dtex以下であることが好ましく、より好ましくは56dtex以上110dtex以下であり、さらに好ましくは56dtex以上84dtex以下である。紡績糸の綿番手は120/1以上30/1以下であることが好ましく、より好ましくは100/1以上60/1以下であり、さらに好ましくは100/1以上80/1以下である。
前記セルロース繊維と合成繊維が長繊維の場合の単糸繊度は、特に制限はないが、いずれも0.1以上11.0dtex以下、単糸数10本以上200本以下の範囲であることが好ましい。
セルロース繊維の繊度も、長短繊維を問わず、33dtex以上167dtex以下であることが好ましく、より好ましくは56dtex以上110dtex以下であり、さらに好ましくは56dtex以上84dtex以下である。紡績糸の綿番手は120/1以上30/1以下であることが好ましく、より好ましくは100/1以上60/1以下であり、さらに好ましくは100/1以上80/1以下である。
前記セルロース繊維と合成繊維が長繊維の場合の単糸繊度は、特に制限はないが、いずれも0.1以上11.0dtex以下、単糸数10本以上200本以下の範囲であることが好ましい。
セルロース繊維からなるコースと合成繊維からなるコースはどちらもセルロースや天然繊維と合成繊維との短繊維紡績糸の混紡糸でもよい。撚り合わせとして単糸、双糸、三子糸でもよく、紡績方法として特に限定されるものではない。リング紡績、サイロスパン精紡などの撚り数は一般的な1インチ(2.54cm)間に15~25回ほどの撚り範囲であり、15回以下の甘撚り、25回以上の強撚であってもよい。結束紡であるオープンエンド紡績、MVS糸でもよい。
合成繊維の糸長は130mm/100W以上270mm/100W以下であることが好ましく、より好ましくは150mm/100W以上270mm/100W以下であることが好ましく、より好ましくは150mm/100W以上190mm/100W以下である。また、セルロース繊維の糸長は合成繊維の糸長の0.8倍以上1.5倍以下であることが好ましく、1.0倍以上1.5倍以下がより好ましく、1.0倍以上1.4倍以下がさらに好ましい。セルロース繊維の糸長が合成繊維の糸長の0.8倍以上1.5倍以下であることにより、緯編地に応力をかけたときに、強度の高い合成繊維から構成される列Aに応力がかかるため、緯編地の破裂強度が高くなる。同条件の糸長であれば、可能な限り軽量目付に仕上げセットしても破裂強度は低下しない。
本実施形態の丸編地には、弾性繊維がセルロース繊維と引き揃え又はプレーティングにより混用されていてもよく、弾性繊維が合成繊維と引き揃え又はプレーティングにより混用されていてもよく、弾性繊維がセルロース繊維及び合成繊維に引き揃え又はプレーティングにより混用されていてもよい。弾性繊維は、例えば、セルロース繊維から成るコースに編み込まれていてもよく、合成繊維から成るコースに編み込まれていてもよく、セルロース繊維からなるコース及び合成繊維から成るコースに編み込まれていてもよい。特に、弾性繊維はセルロース繊維からなるコース及び合成繊維から成るコースを含む全コースに編み込まれていることが特に好ましい。これは、弾性繊維が全コースに編み込まれている方が伸長率が高くても伸長弾性率に優れ、伸縮性のある素材に起こりやすい生地が元の形状に戻らなくなる現象が起こりにくいためである。弾性繊維とは最大伸度100%以上の繊維を指す。弾性繊維のポリマーや紡糸方法には特に限定されず、ポリウレタン系(スパンデックス)、ポリエーテルエステル系の弾性繊維を使用することができ、例えば、ポリウレタン系弾性繊維では、乾式紡糸又は溶融紡糸したものが使用できる。弾性繊維は染色加工時のプレセット工程の通常処理温度である180℃近辺で伸縮性を損なわないことが好ましい。また、弾性繊維が特殊ポリマーや無機物等の粉体を含有することにより、高セット性、消臭性、抗菌性の機能性を有する弾性繊維も使用可能である。弾性繊維の繊度は11dtex以上44dtex以下であることが好ましく、軽量である観点から11dtex~33dtexであることがより好ましい。
本実施形態の丸編地は、シングル丸編地であることができる。
本実施形態の丸編地は、シングル丸編地であることができる。
以下、実施例により本発明を具体的に説明する。無論、本発明はこれらの実地例のみに限定されるものではない。
(1)目付(g/m2)
JIS-L-1096の標準状態における単位面積当たりの質量A法に準じて測定した。弾性繊維を抜いて測定する場合と、弾性繊維を含む形で測定する場合があるが、実施例で得た目付は、弾性繊維を抜いて測定した数値である。
JIS-L-1096の標準状態における単位面積当たりの質量A法に準じて測定した。弾性繊維を抜いて測定する場合と、弾性繊維を含む形で測定する場合があるが、実施例で得た目付は、弾性繊維を抜いて測定した数値である。
(2)破裂強度(kpa)
JIS-L-1096(ミューレン法)A法に準じて測定した。
実施例で得た破裂強度は弾性繊維を抜いて測定した数値である。
JIS-L-1096(ミューレン法)A法に準じて測定した。
実施例で得た破裂強度は弾性繊維を抜いて測定した数値である。
(3)強度軽量指数(g/m2/kpa)=目付(g/m2)/破裂強度(kpa)。
(4)厚み(mm)
JIS―L―1018(ニット生地試験方法)に準じて測定した。尚、実施例で得た厚み測定は弾性繊維を抜いて測定した数値である。
JIS―L―1018(ニット生地試験方法)に準じて測定した。尚、実施例で得た厚み測定は弾性繊維を抜いて測定した数値である。
(5)繊度測定(dtex)
JIS―L―1013(簡便法)B法に準じて測定した。
JIS―L―1013(簡便法)B法に準じて測定した。
(6)伸長弾性率
伸長率:JIS―L-1096 B法に準じて測定した。
伸長弾性率:JIS―L―1096 B―1法(定荷重法)に準じて測定した。
伸長率:JIS―L-1096 B法に準じて測定した。
伸長弾性率:JIS―L―1096 B―1法(定荷重法)に準じて測定した。
[実施例1]
ニット組織とウェルト組織とが1針ずつ交互に繰り返される1コースにキュプラ56dtex/45フィラメント糸と、全針ニット組織の1コースにポリエステル84dtex/72フィラメント糸として、32Gのシングル丸編み機において、2口が1つのサイクルである組織で編成を行った。測定布はミニカラーラボ試験機で130℃×30分の条件で分散染めを行い、緯編地を得た。得られた編組織を模式的に図1-1に示す。また、得られたシングル編地の特徴を以下の表1に示す。
ニット組織とウェルト組織とが1針ずつ交互に繰り返される1コースにキュプラ56dtex/45フィラメント糸と、全針ニット組織の1コースにポリエステル84dtex/72フィラメント糸として、32Gのシングル丸編み機において、2口が1つのサイクルである組織で編成を行った。測定布はミニカラーラボ試験機で130℃×30分の条件で分散染めを行い、緯編地を得た。得られた編組織を模式的に図1-1に示す。また、得られたシングル編地の特徴を以下の表1に示す。
[比較例1]
基本組織である天竺編みの組織を採用して、実施例1と同じ糸番手である1コースにキュプラ56dtex/45フィラメント糸と、1コースにポリエステル84dtex/72フィラメント糸を使用して同じ糸配列とした。又糸長条件は編立てが不可能になる手前の限界まで短くすることで天竺組織の中でも最も破裂強度の高い編み条件で設定している編地(度詰天竺)であった。得られた編組織を図4に示す。
基本組織である天竺編みの組織を採用して、実施例1と同じ糸番手である1コースにキュプラ56dtex/45フィラメント糸と、1コースにポリエステル84dtex/72フィラメント糸を使用して同じ糸配列とした。又糸長条件は編立てが不可能になる手前の限界まで短くすることで天竺組織の中でも最も破裂強度の高い編み条件で設定している編地(度詰天竺)であった。得られた編組織を図4に示す。
[実施例2~12]
糸長を以下表1に記載の値にした以外は、実施例1と同様の操作を、行い丸編地を得た。得られたシングル丸編地の特徴を以下の表1に示す。
糸長を以下表1に記載の値にした以外は、実施例1と同様の操作を、行い丸編地を得た。得られたシングル丸編地の特徴を以下の表1に示す。
[実施例13]
ニット組織とウェルト組織とが1針ずつ交互に繰り返される1コースにキュプラ84dtex/45フィラメント糸と、全針ニット組織の1コースにポリエステル84dtex/72フィラメント糸として、28Gのシングル丸編み機において、2口が1つのサイクルである組織で編成を行った。測定布はミニカラーラボ試験機で130℃×30分の条件で分散染めを行い、緯編地を得た。得られた編組織を模式的に図1-1に示す。得られたシングル丸編地の特徴を以下の表2に示す。
ニット組織とウェルト組織とが1針ずつ交互に繰り返される1コースにキュプラ84dtex/45フィラメント糸と、全針ニット組織の1コースにポリエステル84dtex/72フィラメント糸として、28Gのシングル丸編み機において、2口が1つのサイクルである組織で編成を行った。測定布はミニカラーラボ試験機で130℃×30分の条件で分散染めを行い、緯編地を得た。得られた編組織を模式的に図1-1に示す。得られたシングル丸編地の特徴を以下の表2に示す。
[比較例2]
基本組織である天竺編みの組織を採用して、実施例13と同じ糸番手である1コースにキュプラ84dtex/45フィラメント糸と、1コースにポリエステル84dtex/72フィラメント糸を使用して同じ糸配列とした。又糸長条件は編立てが不可能になる手前の限界まで短くすることで天竺組織の中でも最も破裂強度の高い編み条件で設定している編地(度詰天竺)であった。得られた編組織を図4に示す。
基本組織である天竺編みの組織を採用して、実施例13と同じ糸番手である1コースにキュプラ84dtex/45フィラメント糸と、1コースにポリエステル84dtex/72フィラメント糸を使用して同じ糸配列とした。又糸長条件は編立てが不可能になる手前の限界まで短くすることで天竺組織の中でも最も破裂強度の高い編み条件で設定している編地(度詰天竺)であった。得られた編組織を図4に示す。
[実施例14~17]
糸長を以下の表2に示す値にした以外は実施例13と同様の操作を行い、シングル丸編地を得た。シングル丸編地の特徴を以下の表2に示す。
糸長を以下の表2に示す値にした以外は実施例13と同様の操作を行い、シングル丸編地を得た。シングル丸編地の特徴を以下の表2に示す。
[比較例3]
基本組織である天竺編みの組織を採用して、実施例13と同じ糸番手である1コースにキュプラ84dtex/45フィラメント糸と、1コースにポリエステル84dtex/72フィラメント糸を使用して同じ糸配列とした。又糸長条件は編立てが不可能になる手前の限界まで短くすることで天竺組織の中でも最も破裂強度の高い編み条件で設定している編地(度詰天竺)であった。得られた編組織を図4に示す。
基本組織である天竺編みの組織を採用して、実施例13と同じ糸番手である1コースにキュプラ84dtex/45フィラメント糸と、1コースにポリエステル84dtex/72フィラメント糸を使用して同じ糸配列とした。又糸長条件は編立てが不可能になる手前の限界まで短くすることで天竺組織の中でも最も破裂強度の高い編み条件で設定している編地(度詰天竺)であった。得られた編組織を図4に示す。
[実施例18~20]
糸長を表3-1に記載の値にした以外は実施例13と同様の操作を行い、シングル丸編地を得た。シングル丸編地の特徴を以下の表3―1に示す。
測定布はミニカラーラボ試験機で130℃×30分の条件で分散染めを行い、シングル編地を得た。
糸長を表3-1に記載の値にした以外は実施例13と同様の操作を行い、シングル丸編地を得た。シングル丸編地の特徴を以下の表3―1に示す。
測定布はミニカラーラボ試験機で130℃×30分の条件で分散染めを行い、シングル編地を得た。
[実施例21]
ニット組織とタック組織とが1針ずつ交互に繰り返される1コースにキュプラ84dtex/45フィラメント糸と、全針ニット組織の1コースにポリエステル84dtex/72フィラメント糸として、28Gのシングル丸編み機において、2口が1つのサイクルである組織で編成を行った。測定布はミニカラーラボ試験機で130℃×30分の条件で分散染めを行い、緯編地を得た。得られた編組織を模式的に図1-2に示す。得られたシングル丸編地の特徴を以下の表3―1に示す。
ニット組織とタック組織とが1針ずつ交互に繰り返される1コースにキュプラ84dtex/45フィラメント糸と、全針ニット組織の1コースにポリエステル84dtex/72フィラメント糸として、28Gのシングル丸編み機において、2口が1つのサイクルである組織で編成を行った。測定布はミニカラーラボ試験機で130℃×30分の条件で分散染めを行い、緯編地を得た。得られた編組織を模式的に図1-2に示す。得られたシングル丸編地の特徴を以下の表3―1に示す。
[実施例22]
ニット組織1に対してとタック組織3とが交互に繰り返される1コースにキュプラ84dtex/45フィラメント糸と、全針ニット組織の1コースにポリエステル84dtex/72フィラメント糸として、28Gのシングル丸編み機において、4口が1つのサイクルである組織で編成を行った。測定布はミニカラーラボ試験機で130℃×30分の条件で分散染めを行い、緯編地を得た。得られた編組織を模式的に図1-4に示す。得られたシングル丸編地の特徴を以下の表3―1に示す。
ニット組織1に対してとタック組織3とが交互に繰り返される1コースにキュプラ84dtex/45フィラメント糸と、全針ニット組織の1コースにポリエステル84dtex/72フィラメント糸として、28Gのシングル丸編み機において、4口が1つのサイクルである組織で編成を行った。測定布はミニカラーラボ試験機で130℃×30分の条件で分散染めを行い、緯編地を得た。得られた編組織を模式的に図1-4に示す。得られたシングル丸編地の特徴を以下の表3―1に示す。
実施例18の丸編地と、同様の糸長条件下、弾性繊維をすべてのコースに有した実施例18-2の丸編地の特徴を以下の表3-2に示す。
以下の表3-3に示すように、実施例18と実施例18-2のが丸編地の伸長率と伸長弾性率を比較する。伸長弾性率が30秒後に52%以上あれば、伸長されても元の形態に戻らない現象(バギング現象)が起こりにくかった。
[実施例23]
ニット組織とウェルト組織とが1針ずつ交互に繰り返される1コースにキュプラ56dtex/45フィラメント糸と、全針ニット組織の1コースにポリエステル84dtex/72フィラメント糸として、32Gのシングル丸編み機において、2口が1つのサイクルである組織で編成を行った。測定布はミニカラーラボ試験機で130℃×30分の条件で分散染めを行い、緯編地を得た。得られた編組織を模式的に図1-1に示す。また、得られたシングル編地の特徴を以下の表4に示す。
ニット組織とウェルト組織とが1針ずつ交互に繰り返される1コースにキュプラ56dtex/45フィラメント糸と、全針ニット組織の1コースにポリエステル84dtex/72フィラメント糸として、32Gのシングル丸編み機において、2口が1つのサイクルである組織で編成を行った。測定布はミニカラーラボ試験機で130℃×30分の条件で分散染めを行い、緯編地を得た。得られた編組織を模式的に図1-1に示す。また、得られたシングル編地の特徴を以下の表4に示す。
[比較例4]
基本組織である天竺編みの組織を採用して、実施例1と同じ糸番手である1コースにキュプラ56dtex/45フィラメント糸と、1コースにポリエステル84dtex/72フィラメント糸を使用して同じ糸配列とした。又糸長条件は編立てが不可能になる手前の限界まで短くすることで天竺組織の中でも最も破裂強度の高い編み条件で設定している編地(度詰天竺)であった。得られた編組織を図4に示す。
基本組織である天竺編みの組織を採用して、実施例1と同じ糸番手である1コースにキュプラ56dtex/45フィラメント糸と、1コースにポリエステル84dtex/72フィラメント糸を使用して同じ糸配列とした。又糸長条件は編立てが不可能になる手前の限界まで短くすることで天竺組織の中でも最も破裂強度の高い編み条件で設定している編地(度詰天竺)であった。得られた編組織を図4に示す。
[比較例5]
ニット組織とウェルト組織とが1針ずつ交互に繰り返される1コースにキュプラ56dtex/45フィラメント糸と、全針ニット組織で連続した10コースにポリエステル84dtex/72フィラメント糸として、32Gのシングル丸編み機において、11口が1つのサイクルである組織で編成を行った。測定布はミニカラーラボ試験機で130℃×30分の条件で分散染めを行い、緯編地を得た。得られた編組織を模式的に図6に示す。また、得られたシングル編地の特徴を以下の表4に示す。全針ニット組織で連続したポリエステル84dtex/72フィラメント糸をウェール方向に10以上の比率でつながるとセルロース側の混率10%以上の設計が難しくなる。
ニット組織とウェルト組織とが1針ずつ交互に繰り返される1コースにキュプラ56dtex/45フィラメント糸と、全針ニット組織で連続した10コースにポリエステル84dtex/72フィラメント糸として、32Gのシングル丸編み機において、11口が1つのサイクルである組織で編成を行った。測定布はミニカラーラボ試験機で130℃×30分の条件で分散染めを行い、緯編地を得た。得られた編組織を模式的に図6に示す。また、得られたシングル編地の特徴を以下の表4に示す。全針ニット組織で連続したポリエステル84dtex/72フィラメント糸をウェール方向に10以上の比率でつながるとセルロース側の混率10%以上の設計が難しくなる。
[比較例6]
ニット組織とウェルト組織とが1針ずつ交互に繰り返されるコースで連続した6コースにキュプラ56dtex/45フィラメント糸と、全針ニット組織の1コースにポリエステル84dtex/72フィラメント糸として、32Gのシングル丸編み機において、7口が1つのサイクルである組織で編成を試みた。ニット組織とウェルト組織とが1針ずつ交互に繰り返される組織は6コース以上で連続すると編立てが不可能であった。編組織を模式的に図7に示す。
ニット組織とウェルト組織とが1針ずつ交互に繰り返されるコースで連続した6コースにキュプラ56dtex/45フィラメント糸と、全針ニット組織の1コースにポリエステル84dtex/72フィラメント糸として、32Gのシングル丸編み機において、7口が1つのサイクルである組織で編成を試みた。ニット組織とウェルト組織とが1針ずつ交互に繰り返される組織は6コース以上で連続すると編立てが不可能であった。編組織を模式的に図7に示す。
[実施例24]
糸長を以下の表4に記載の値にして得たシングル丸編地で、特にヨコ方向に張力を有しセットを行い目付72g/m2で破裂強度の測定を行った。
糸長を以下の表4に記載の値にして得たシングル丸編地で、特にヨコ方向に張力を有しセットを行い目付72g/m2で破裂強度の測定を行った。
[実施例25]
糸長を以下の表4に記載の値にして得たシングル丸編地で、特にヨコ方向に張力を有しセットを行い目付68g/m2で破裂強度の測定を行った。
糸長を以下の表4に記載の値にして得たシングル丸編地で、特にヨコ方向に張力を有しセットを行い目付68g/m2で破裂強度の測定を行った。
[実施例26]
糸長を以下の表4に記載の値にして得たシングル丸編地で、特にヨコ方向に張力を有しセットを行い目付30.4g/m2で破裂強度の測定を行った。
糸長を以下の表4に記載の値にして得たシングル丸編地で、特にヨコ方向に張力を有しセットを行い目付30.4g/m2で破裂強度の測定を行った。
[実施例27]
糸長を以下の表4に記載の値にして得たシングル丸編地で、特にタテ方向に張力を有しセットを行い目付101g/m2で破裂強度の測定を行った。
糸長を以下の表4に記載の値にして得たシングル丸編地で、特にタテ方向に張力を有しセットを行い目付101g/m2で破裂強度の測定を行った。
[実施例28]
実施例23の丸編地と、同様の糸長条件下、ニット組織とウェルト組織とが1針ずつ交互に繰り返される1コース目にキュプラ56dtex/45フィラメント糸、全針ニット組織の2コース目にポリエステル84dtex/72フィラメント糸、ニット組織とタック組織とが1針ずつ交互に繰り返される3コース目にポリエステル84dtex/72フィラメント糸、全針ニット組織の4コース目にポリエステル84dtex/72フィラメント糸、として、32Gのシングル丸編み機において、4口が1つのサイクルである組織で編成を行った。測定布はミニカラーラボ試験機で130℃×30分の条件で分散染めを行い、緯編地を得た。得られた編組織を模式的に図1-5に示す。得られたシングル丸編地の特徴を以下の表4に示す。
実施例23の丸編地と、同様の糸長条件下、ニット組織とウェルト組織とが1針ずつ交互に繰り返される1コース目にキュプラ56dtex/45フィラメント糸、全針ニット組織の2コース目にポリエステル84dtex/72フィラメント糸、ニット組織とタック組織とが1針ずつ交互に繰り返される3コース目にポリエステル84dtex/72フィラメント糸、全針ニット組織の4コース目にポリエステル84dtex/72フィラメント糸、として、32Gのシングル丸編み機において、4口が1つのサイクルである組織で編成を行った。測定布はミニカラーラボ試験機で130℃×30分の条件で分散染めを行い、緯編地を得た。得られた編組織を模式的に図1-5に示す。得られたシングル丸編地の特徴を以下の表4に示す。
[実施例29]
実施例23の丸編地と、同様の糸長条件下、全針ニット組織で連続した3コースにポリエステル84dtex/72フィラメント糸、ニット組織とウェルト組織とが1針ずつ交互に繰り返される4コース目にキュプラ56dtex/45フィラメント糸、として、32Gのシングル丸編み機において、4口が1つのサイクルである組織で編成を行った。測定布はミニカラーラボ試験機で130℃×30分の条件で分散染めを行い、緯編地を得た。得られた編組織を模式的に図1-9に示す。得られたシングル丸編地の特徴を以下の表4に示す。
実施例23の丸編地と、同様の糸長条件下、全針ニット組織で連続した3コースにポリエステル84dtex/72フィラメント糸、ニット組織とウェルト組織とが1針ずつ交互に繰り返される4コース目にキュプラ56dtex/45フィラメント糸、として、32Gのシングル丸編み機において、4口が1つのサイクルである組織で編成を行った。測定布はミニカラーラボ試験機で130℃×30分の条件で分散染めを行い、緯編地を得た。得られた編組織を模式的に図1-9に示す。得られたシングル丸編地の特徴を以下の表4に示す。
[実施例30]
ニット組織とウェルト組織とが1針ずつ交互に繰り返される1コースにキュプラ56dtex/45フィラメント糸と、全針ニット組織の1コースにポリエステル84dtex/72フィラメント糸として、36Gのシングル丸編み機において、2口が1つのサイクルである組織で編成を行った。測定布はミニカラーラボ試験機で130℃×30分の条件で分散染めを行い、緯編地を得た。得られた編組織を模式的に図1-1に示す。また、得られたシングル編地の特徴を以下の表5に示す。
ニット組織とウェルト組織とが1針ずつ交互に繰り返される1コースにキュプラ56dtex/45フィラメント糸と、全針ニット組織の1コースにポリエステル84dtex/72フィラメント糸として、36Gのシングル丸編み機において、2口が1つのサイクルである組織で編成を行った。測定布はミニカラーラボ試験機で130℃×30分の条件で分散染めを行い、緯編地を得た。得られた編組織を模式的に図1-1に示す。また、得られたシングル編地の特徴を以下の表5に示す。
[比較例7]
基本組織である天竺編みの組織を採用して、実施例1と同じ糸番手である1コースにキュプラ56dtex/45フィラメント糸と、1コースにポリエステル84dtex/72フィラメント糸を使用して同じ糸配列とした。又糸長条件は編立てが不可能になる手前の限界まで短くすることで天竺組織の中でも最も破裂強度の高い編み条件で設定している編地(度詰天竺)であった。得られた編組織を図4に示す。
基本組織である天竺編みの組織を採用して、実施例1と同じ糸番手である1コースにキュプラ56dtex/45フィラメント糸と、1コースにポリエステル84dtex/72フィラメント糸を使用して同じ糸配列とした。又糸長条件は編立てが不可能になる手前の限界まで短くすることで天竺組織の中でも最も破裂強度の高い編み条件で設定している編地(度詰天竺)であった。得られた編組織を図4に示す。
[比較例8~10]
先行技術文献、特表2017-516925号公報に格子フレームのタテ方向フレームとヨコ方向フレームを有する編地が開示されている。本願発明の編組織と近い部分を抜き取りだしてタテフレームのみからなる構造の編物を再現試作した。1針目はミス組織であり2、3針目はニット組織が繰り返される1コースにキュプラ56dtex/45フィラメント糸と、1針目はニット組織であり、残りの針数はミス・タック組織で繰り返される1コースにポリエステル84dtex/72フィラメント糸として、36Gのシングル丸編み地において、2口が1つのサイクルである組織で編成を行った。得られた編組織を図5に示す。尚、図5に示す編組織には列Bに相当する部分は存在しない。比較例8と実施例30は同じ繊度使いと糸長条件とし、比較例9は実施例31と同じ繊度使いと糸長条件とし、比較例10は実施例32と同じ繊度使いと糸長条件とした。よって、先行文献のタテフレームからなる編組織である比較例8~10と実施例30~32とで使用繊度と糸長が同条件下で編み組織の違った破裂強度の比較となる。比較例8~10の編組織はセルロース繊維の編みループ同士がつながるループが作られ、破裂強度が実施例よりも低下することが分かった。
先行技術文献、特表2017-516925号公報に格子フレームのタテ方向フレームとヨコ方向フレームを有する編地が開示されている。本願発明の編組織と近い部分を抜き取りだしてタテフレームのみからなる構造の編物を再現試作した。1針目はミス組織であり2、3針目はニット組織が繰り返される1コースにキュプラ56dtex/45フィラメント糸と、1針目はニット組織であり、残りの針数はミス・タック組織で繰り返される1コースにポリエステル84dtex/72フィラメント糸として、36Gのシングル丸編み地において、2口が1つのサイクルである組織で編成を行った。得られた編組織を図5に示す。尚、図5に示す編組織には列Bに相当する部分は存在しない。比較例8と実施例30は同じ繊度使いと糸長条件とし、比較例9は実施例31と同じ繊度使いと糸長条件とし、比較例10は実施例32と同じ繊度使いと糸長条件とした。よって、先行文献のタテフレームからなる編組織である比較例8~10と実施例30~32とで使用繊度と糸長が同条件下で編み組織の違った破裂強度の比較となる。比較例8~10の編組織はセルロース繊維の編みループ同士がつながるループが作られ、破裂強度が実施例よりも低下することが分かった。
[実施例31~32]
糸長を以下の表5に記載の値にした以外は、実施例23と同様の操作を、行いシングル丸編地を得た。得られたシングル丸編地の特徴を以下の表5に示す。
糸長を以下の表5に記載の値にした以外は、実施例23と同様の操作を、行いシングル丸編地を得た。得られたシングル丸編地の特徴を以下の表5に示す。
本発明の編地は破裂強度に優れ、かつセルロース混用率が高く設定できて、用途に応じて軽量化が可能な衣料に好適に利用可能である。
Claims (14)
- セルロース繊維と合成繊維を含む丸編地であって、該合成繊維の編みループが編地のウェール方向に連続してつながる列Aと、該セルロース繊維の編みループと該合成繊維の編みループが交互につながる列Bとを含み、該列Aと該列Bが1:4、1:3、1:2、1:1、2:2、3:3、4:4、2:1、3:1、4:1、2:3、2:4、3:2、3:4、4:3、4:2のいずれかの比率で配置され、編地におけるセルロース繊維の含有量が10質量%以上70質量%以下である、丸編地。
- 前記セルロース繊維からなるコースと、前記合成繊維からなるコースとが、ウェール方向に交互に繰り返されて編成されている、請求項1に記載の丸編地。
- 前記セルロース繊維からなるコースはニット目とウェルト目又はタック目とが交互に繰り返されており、前記合成繊維からなるコースはニットが連続している、請求項1又は2に記載の丸編地。
- セルロース繊維と合成繊維を含む丸編地であって、該合成繊維の編みループが編地のウェール方向に連続してつながる列Aと、該セルロース繊維の編みループと該合成繊維の編みループが編地のウェール方向に1~5:1~9(1:1は除く)でつながる列Bとを含み、該列Aと該列Bが1:4、1:3、1:2、1:1、2:2、3:3、4:4、2:1、3:1、4:1、2:3、2:4、3:2、3:4、4:3、4:2のいずれかの比率で配置され、編地におけるセルロース繊維の含有量が10質量%以上70質量%以下である、丸編地。
- 前記セルロース繊維からなるコースはニット目とウェルト目又はタック目とが交互に繰り返されており、前記合成繊維からなるコースはニットが連続しているか又はニット目とウェルト目又はタック目とが交互に繰り返されている、請求項4に記載の丸編地。
- 前記列Aと該列Bが1:1の比率で配置されている、請求項1、2、4、及び5のいずれか1項に記載の丸編地。
- 前記列Aにおいて、ウェール方向のループ数が1inchあたり10ループ以上70ループ以下である、請求項1、2、4、及び5のいずれか1項に記載の丸編地。
- 目付が、弾性繊維を抜いたときの形態で30g/m2以上160g/m2以下である、請求項1、2、4、及び5のいずれか1項に記載の丸編地。
- 前記セルロース繊維の繊度が33dtex以上167dtex以下であり、前記合成繊維の繊度が33dtex以上110dtex以下である、請求項1、2、4、及び5のいずれか1項に記載の丸編地。
- 前記合成繊維の糸長が130mm/100W以上270mm/100W以下であり、前記セルロース繊維の糸長が前記合成繊維の糸長の0.8倍以上1.5倍以下である、請求項1、2、4、及び5のいずれか1項に記載の丸編地。
- 前記セルロース繊維が、レーヨン、キュプラ、綿、リヨセルまたはアセテートであり、かつ、前記合成繊維が、ナイロン、またはポリエステルである、請求項1、2、4、及び5のいずれか1項に記載の丸編地。
- 弾性繊維が前記セルロース繊維及び/又は前記合成繊維とともに引き揃え又はプレーティングにより混用されている、請求項1、2、4、及び5のいずれか1項に記載の丸編地。
- 弾性繊維が前記セルロース繊維及び前記合成繊維とともに引き揃え又はプレーティングにより混用され、かつ、該弾性繊維が全てのコースにおいて引き揃え又はプレーティングにより混用されている、請求項1、2、4、及び5のいずれか1項に記載の丸編地。
- シングル丸編地である、請求項1、2、4、及び5のいずれか1項に記載の丸編地。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024533724A JPWO2024014456A1 (ja) | 2022-07-11 | 2023-07-11 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-111214 | 2022-07-11 | ||
JP2022111214 | 2022-07-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024014456A1 true WO2024014456A1 (ja) | 2024-01-18 |
Family
ID=89536753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/025578 WO2024014456A1 (ja) | 2022-07-11 | 2023-07-11 | 丸編地 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2024014456A1 (ja) |
WO (1) | WO2024014456A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60105604U (ja) * | 1983-12-23 | 1985-07-18 | 田村駒株式会社 | 肌着 |
JP2009035846A (ja) * | 2007-08-03 | 2009-02-19 | Asahi Kasei Fibers Corp | 丸編地 |
-
2023
- 2023-07-11 WO PCT/JP2023/025578 patent/WO2024014456A1/ja unknown
- 2023-07-11 JP JP2024533724A patent/JPWO2024014456A1/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60105604U (ja) * | 1983-12-23 | 1985-07-18 | 田村駒株式会社 | 肌着 |
JP2009035846A (ja) * | 2007-08-03 | 2009-02-19 | Asahi Kasei Fibers Corp | 丸編地 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2024014456A1 (ja) | 2024-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102158057B1 (ko) | 복수의 탄성 얀을 갖는 신축성 얀 및 패브릭 | |
JP6046549B2 (ja) | 伸縮性編地 | |
EP1437432B1 (en) | Circularly knitted fabric for fashioning clothes | |
WO2021073551A1 (zh) | 一种复合纱线及由其制得的面料 | |
CN112352073B (zh) | 圆型针织物 | |
WO2024014456A1 (ja) | 丸編地 | |
JP3482698B2 (ja) | 伸縮性弾性経編地 | |
JP2008069482A (ja) | 複合紡績糸 | |
JP2000017552A (ja) | 立体編物 | |
JP2000045155A (ja) | 編 地 | |
WO2019024840A1 (zh) | 一种针织面料 | |
KR100624369B1 (ko) | 소모조 잠재 권축사 | |
JP2018172814A (ja) | 複合杢加工糸、織編物、および複合杢加工糸の製造方法 | |
JP3226089U (ja) | ニット生地および衣料 | |
JP7284882B1 (ja) | 編地、その製造方法及びそれを含む衣料 | |
CN212293953U (zh) | 抗起毛球的五层双面编织面料 | |
US20240352632A1 (en) | Ultra-high molecular weight polyethylene material reduction for weft knit garments | |
CN210657365U (zh) | 一种经编塑身衣面料 | |
JP2000096401A (ja) | 伸縮性経編地 | |
JP7133920B2 (ja) | 伸縮性経編地及びこれを用いた衣料 | |
JP2003336148A (ja) | 伸長回復性の優れた溶剤紡糸セルロース繊維製編地の製造方法 | |
TW202407179A (zh) | 編織物 | |
TW202202681A (zh) | 針織面料及其用途 | |
WO2023034529A9 (en) | Ultra-high molecular weight polyethylene material reduction for weft knit garments | |
JP2024122607A (ja) | 編地、及びそれを含む衣料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23839628 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024533724 Country of ref document: JP Kind code of ref document: A |