WO2024012023A1 - 一种离子电导剂、电极极片组和锂离子电池 - Google Patents

一种离子电导剂、电极极片组和锂离子电池 Download PDF

Info

Publication number
WO2024012023A1
WO2024012023A1 PCT/CN2023/092518 CN2023092518W WO2024012023A1 WO 2024012023 A1 WO2024012023 A1 WO 2024012023A1 CN 2023092518 W CN2023092518 W CN 2023092518W WO 2024012023 A1 WO2024012023 A1 WO 2024012023A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive agent
ion conductive
lithium
negative electrode
positive electrode
Prior art date
Application number
PCT/CN2023/092518
Other languages
English (en)
French (fr)
Inventor
江文锋
Original Assignee
蜻蜓实验室(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜻蜓实验室(深圳)有限公司 filed Critical 蜻蜓实验室(深圳)有限公司
Priority to EP23802134.9A priority Critical patent/EP4329016A1/en
Publication of WO2024012023A1 publication Critical patent/WO2024012023A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to an ion conductivity agent, an electrode plate group and a lithium-ion battery.
  • the related technology directly uses carbon black with high oil absorption value to solve the problem in one go.
  • the main problem caused by directly using carbon black with high oil absorption value is that carbon black itself is a highly conductive substance and will directly participate in the reaction of the positive and negative electrodes, resulting in battery gas expansion, capacity reduction and other consequences. Therefore, there is an urgent need for an ion conductivity agent, an electrode plate set and a lithium-ion battery to improve the above problems.
  • the purpose of this application is to provide an ion conductive agent, an electrode plate group and a lithium ion battery.
  • the ion conductive agent is used to meet the conductive requirements of lithium ions while reducing the reaction involved in the positive and negative electrodes.
  • this application provides an ion conductive agent, the resistivity of the ion conductive agent is greater than 10 ⁇ m; the oil absorption value of the ion conductive agent is greater than 100ml/100g; the properties of the ion conductive agent are solid powder; The solid powder has a median particle size less than 50 ⁇ m.
  • the resistivity of the set ion conductive agent is greater than 10 ⁇ m; the oil absorption value of the ion conductive agent is greater than 100ml/100g; the ion conductive agent is prevented from participating in the reaction of the positive and negative electrodes, and the resulting The battery produces gas and expands to prevent battery capacity from being reduced.
  • the ion conductive agent is in the form of solid powder; the median particle size of the solid powder is less than 50 ⁇ m. Avoid clogging holes or scratches on the surface of the pole piece when coating ingredients.
  • the ion conductive agent is configured as an insulating material or a non-insulating material; when the ion conductive agent is configured as an insulating material, the ion conductive agent is preferably at least one of aluminum oxide, silicon oxide, and magnesium oxide.
  • the present application provides an electrode plate set, including: a positive electrode piece and a negative electrode piece; the positive electrode piece and at least one of the negative electrode pieces includes the ion conductive agent described in any one of the first aspects; the positive electrode piece is provided with a positive active material; and the negative electrode piece is provided with a negative active material.
  • the ion conductive agent provided on the positive electrode piece accounts for [0.01%, 30%] in the total weight of the positive electrode piece; the ion conductive agent provided on the negative electrode piece is in The total weight of the negative electrode piece ranges from [0.01% to 30%].
  • the beneficial effect is to ensure that the content of the ion conductive agent is sufficient to achieve effective ion conduction; at the same time, it avoids the loss of the effective capacity of the battery due to excessive content of the ion conductive agent, which is beneficial to reducing the difficulty of coating ingredients.
  • the positive electrode piece provided with the ion conductive agent is also provided with an electronic conductive agent, and the proportion of the ion conductive agent in the total weight of the positive electrode conductive agent ranges from [5% to 100%];
  • the total weight of the positive conductive agent is the sum of the weight of the ion conductive agent of the positive electrode piece and the weight of the electronic conductive agent of the positive electrode piece;
  • the negative electrode piece provided with the ion conductive agent is also provided with an electronic conductive agent agent, the proportion of the ion conductive agent in the total weight of the negative electrode conductive agent is [5%, 100%];
  • the total weight of the negative electrode conductive agent is the weight of the ion conductive agent of the negative electrode plate and the weight of the negative electrode The sum of the weight of the electronic conductive agent of the sheet.
  • the ion conductive agent of the present application can be used alone; in other fields, it can also be used in combination with other conductive agents.
  • the two requirements of electronic conductivity and ionic conductivity are separated, and the ionic conductive agent is used alone to solve the conductivity problem of lithium ions, which can optimize the battery formula, increase the range of optional materials, and help save costs.
  • the material of the positive electrode active material is selected from at least one selected from the group consisting of lithium cobalt oxide, lithium manganate, lithium iron phosphate, lithium iron manganese phosphate, lithium nickel cobalt manganate, and nickel manganese spinel.
  • the material of the negative active material is selected from at least one of natural graphite, artificial graphite, mesocarbon microspheres, lithium titanate, silicon alloy, tin alloy, and active lithium metal.
  • a positive electrode current collector is provided on one side of the positive electrode piece; the positive electrode piece includes a mixture of the positive electrode active material and the ion conductive agent; and a negative electrode current collector is provided on one side of the negative electrode piece.
  • the positive electrode current collector is configured as aluminum foil; the negative electrode current collector is configured as copper foil.
  • the present application provides a lithium-ion battery, including a plurality of electrode plate groups as described in any one of the second aspects.
  • the lithium-ion battery further includes a battery packaging case; the electrode pole piece group is disposed in the packaging case.
  • FIG. 1 is a schematic structural diagram of an electrode pole piece group provided by this application.
  • Figure 2 is a schematic structural diagram of a lithium-ion battery provided by this application.
  • this application provides an ion conductive agent, the resistivity of the ion conductive agent is greater than 10 ⁇ m.
  • the oil absorption value of the ion conductive agent is greater than 100ml/100g.
  • the ion conductive agent is in the form of solid powder.
  • the solid powder has a median particle size less than 50 ⁇ m.
  • the resistivity of the ion conductive agent is greater than 10 ⁇ m.
  • the oil absorption value of the ion conductive agent is greater than 100ml/100g. Avoid the ion conductive agent from participating in the reaction of the positive and negative electrodes to prevent the battery from producing gas and swelling, and reducing the battery capacity.
  • the ion conductive agent is in the form of solid powder.
  • the solid powder has a median particle size less than 50 ⁇ m. Avoid clogging holes or scratches on the surface of the pole piece when coating ingredients.
  • the median particle size is the particle size D50, that is, the particle size corresponding to when the cumulative particle size distribution percentage reaches 50%.
  • the ion conductive agent is configured as an insulating material or a non-insulating material; when the ion conductive agent is configured as an insulating material, the ion conductive agent is preferably at least one of aluminum oxide, silicon oxide, and magnesium oxide. .
  • the material of the ion conductive agent is aluminum oxide.
  • the material of the ion conductive agent is silicon oxide.
  • the material of the ion conductive agent is magnesium oxide.
  • the material of the ion conductive agent is a mixture of aluminum oxide, silicon oxide and magnesium oxide.
  • the ion conductive agent can be an insulating material of any composition.
  • FIG. 1 is a schematic structural diagram of an electrode pole piece group provided by this application.
  • this application provides an electrode piece set, including: a positive electrode piece 101 and a negative electrode piece 102 . At least one of the positive electrode piece 101 and the negative electrode piece 102 includes the ion conductive agent described in any one of the first aspects.
  • the positive electrode piece 101 is provided with a positive active material.
  • the negative electrode piece 102 is provided with negative active material.
  • the cathode active material is made of at least one selected from the group consisting of lithium cobalt oxide, lithium manganate, lithium iron phosphate, lithium iron manganese phosphate, lithium nickel cobalt manganate, and nickel manganese spinel.
  • the material of the positive electrode active material is lithium cobalt oxide.
  • the material of the positive electrode active material is lithium manganate.
  • the material of the positive electrode active material is lithium iron phosphate.
  • the material of the positive electrode active material is lithium iron manganese phosphate.
  • the material of the positive electrode active material is lithium nickel cobalt manganate.
  • the material of the cathode active material is nickel manganese spinel.
  • the material of the negative active material is selected from at least one of natural graphite, artificial graphite, mesocarbon microspheres, lithium titanate, silicon alloy, tin alloy, and active lithium metal.
  • the material of the negative active material is natural graphite.
  • the material of the negative active material is artificial graphite.
  • the material of the negative active material is mesocarbon microspheres.
  • the material of the negative active material is lithium titanate phosphate.
  • the negative active material is made of silicon alloy.
  • the material of the negative active material may also be tin alloy or active lithium metal.
  • the proportion of the ion conductive agent provided in the positive electrode piece 101 in the total weight of the positive electrode piece 101 is [0.01%, 30%].
  • the ion conductive agent provided on the negative electrode piece 102 accounts for a range of [0.01% to 30%] in the total weight of the negative electrode piece 102 . This arrangement is conducive to ensuring that the content of the ion conductive agent is sufficient to achieve effective ion conduction. At the same time, it is avoided that the content of the ion conductive agent is too high and the effective capacity of the battery is lost, which is beneficial to reducing the difficulty of coating the ingredients.
  • the ion conductive agent provided in the positive electrode piece 101 accounts for 0.01% of the total weight of the positive electrode piece 101 .
  • the ion conductive agent provided on the negative electrode piece 102 accounts for 0.01% of the total weight of the negative electrode piece 102 .
  • the ion conductive agent provided on the positive electrode piece 101 accounts for 30% of the total weight of the positive electrode piece 101 .
  • the ion conductive agent provided on the negative electrode piece 102 accounts for 30% of the total weight of the negative electrode piece 102 .
  • the ion conductive agent provided in the positive electrode piece 101 accounts for 15% of the total weight of the positive electrode piece 101 .
  • the ion conductive agent provided on the negative electrode piece 102 accounts for 15% of the total weight of the negative electrode piece 102 .
  • carbon black conductive agent is directly used to solve the problems of electronic conductivity and ion conductivity of the positive and negative electrode plates at one time.
  • the carbon black conductive agent must satisfy these two requirements at the same time.
  • This conductivity requirement requires not only high electronic conductivity, but also high oil absorption value to ensure good liquid storage performance, which greatly reduces the selectivity of the material.
  • the positive electrode piece 101 provided with the ion conductive agent is also provided with an electronic conductive agent, so The proportion range of the ion conductive agent in the total weight of the positive electrode conductive agent is [5%, 100%].
  • the total weight of the positive conductive agent is the sum of the weight of the ion conductive agent of the positive electrode piece 101 and the weight of the electronic conductive agent of the positive electrode piece 101 .
  • the negative electrode piece 102 provided with the ion conductive agent is also provided with an electronic conductive agent, and the proportion of the ion conductive agent in the total weight of the negative electrode conductive agent ranges from [5% to 100%].
  • the total weight of the negative conductive agent is the sum of the weight of the ion conductive agent of the negative electrode piece 102 and the weight of the electronic conductive agent of the negative electrode piece 102 . It is worth noting that in systems with high electronic conductivity, the ion conductive agent of the present application can be used alone. It can also be used in combination with other conductive agents in other fields. In this application, the two requirements of electronic conductivity and ionic conductivity are separated, and the ionic conductive agent is used alone to solve the conductivity problem of lithium ions, which can optimize the battery formula, increase the range of optional materials, and help save costs.
  • the ion conductive agent accounts for 5% of the total weight of the positive electrode conductive agent.
  • the proportion of the ion conductive agent in the total weight of the negative electrode conductive agent is 5%.
  • the ion conductive agent accounts for 100% of the total weight of the positive electrode conductive agent.
  • the proportion of the ion conductive agent in the total weight of the negative electrode conductive agent is 100%.
  • the ion conductive agent accounts for 52.5% of the total weight of the positive electrode conductive agent.
  • the ion conductive agent accounts for 52.5% of the total weight of the negative electrode conductive agent.
  • a positive current collector 103 is provided on one side of the positive electrode piece 101 .
  • the positive electrode sheet 101 includes a mixture of the positive active material and the ion conductive agent.
  • a negative electrode current collector 104 is provided on one side of the negative electrode piece 102 .
  • the negative electrode plate 102 includes a mixture of the negative active material and the ion conductive agent.
  • the mixture of the negative active material and the ion conductive agent is applied to one end of the negative current collector 104 by coating.
  • the mixture of the positive active material and the ion conductive agent is applied to one end of the positive current collector 103 by coating.
  • the positive current collector 103 is provided as aluminum foil.
  • the negative electrode current collector 104 is configured as copper foil.
  • the positive electrode current collector 103 is configured as an aluminum foil with a thickness of 13 ⁇ m.
  • the negative electrode current collector 104 is configured as a copper foil with a thickness of 6 ⁇ m.
  • Figure 2 is a schematic structural diagram of a lithium-ion battery provided by this application.
  • the present application provides a lithium ion battery, including a plurality of electrode plate groups as described in any one of the second aspects.
  • a battery packaging case 105 is provided outside the electrode plate group.
  • the battery packaging case 105 is made of aluminum plastic film.
  • the liquid injection process includes aligning the suction port of the vacuum pump with the injection port of the battery, opening the vacuum pump to evacuate the battery shell, and closing the vacuum pump after vacuuming. Insert the injection port of the injection device into the battery's injection port, and then inject liquid. It is worth mentioning that in order to ensure the injection effect, multiple injections can be performed, and the seal is sealed after the injection is completed.
  • the aging process includes selecting battery groups for aging operations.
  • the formation process includes connecting the circuits of the formation machine to the battery according to the positive and negative poles, using the formation machine to perform the formation, and then completing the selection of parameters for each battery pack through a computer according to the battery model.
  • the capacity-dividing process includes capacity-dividing the formed batteries that meet the standards, and using a capacity-dividing cabinet to perform capacity-dividing operations on the batteries.
  • the sorting process includes sorting batteries. During the sorting process, the batteries are placed under the collection module, and then the collection module and the battery are connected. After four steps of discharging, charging, discharging, and recharging, each battery is detected. item parameters.
  • the positive active material is lithium iron phosphate material
  • the positive current collector is aluminum foil with a thickness of 13um.
  • the weight ratio of the positive electrode sheet is: 95% positive active material, 2% polyvinylidene difluoride (PVDF), and 3% carbon black conductive agent (Super-P).
  • the negative active material is artificial graphite, and the negative current collector is a copper foil with a thickness of 6um.
  • the weight ratio of the negative electrode sheet is: 95% negative active material, 2% styrene butadiene rubber (SBR), 2% sodium carboxymethyl cellulose (CMC), 1% carbon Black conductive agent.
  • the positive active material is lithium iron phosphate material
  • the positive current collector is aluminum foil with a thickness of 13um.
  • the weight ratio of the cathode material is: 95% cathode active material, 2% polyvinylidene fluoride, 1% carbon black conductive agent, and 2% silica.
  • the oil absorption value of silica is 300ml/100g, and the median particle size is 5um.
  • the negative active material is artificial graphite, and the negative current collector is a copper foil with a thickness of 6um.
  • the weight ratio of the negative electrode material is: 95% negative electrode active material, 2% styrene-butadiene rubber, 2% sodium carboxymethylcellulose, and 1% carbon black conductive agent.
  • the electrode components of the above-mentioned Example 1 and Comparative Example 1 are used to assemble a soft-packaged battery, and the outer shell is made of aluminum plastic film. It is encapsulated and molded, and then the electrolyte injection, aging, formation, volume separation and other processes are carried out to prepare a lithium-ion battery.
  • Example 1 The above-mentioned Example 1 and Comparative Example 1 were repeated several times and the average value was obtained. The obtained battery performance comparison is shown in Table 1.
  • the positive active material is lithium iron phosphate material
  • the positive current collector is aluminum foil with a thickness of 13um.
  • the weight ratio of the positive electrode sheet is: 96% positive active material, 2% polyvinylidene fluoride, and 2% carbon black conductive agent.
  • the negative active material is artificial graphite, and the negative current collector is a copper foil with a thickness of 6um.
  • the weight ratio of the negative electrode plate is: 95% negative active material, 2% styrene-butadiene rubber, 2% sodium carboxymethylcellulose, and 1% carbon black conductive agent.
  • the positive active material is lithium iron phosphate material
  • the positive current collector is aluminum foil with a thickness of 13um.
  • the weight ratio of the cathode material is: 96% cathode active material, 2% polyvinylidene fluoride, 1% carbon black conductive agent, and 2% carbon black conductive agent.
  • the negative active material is artificial graphite, and the negative current collector is a copper foil with a thickness of 6um.
  • the weight ratio of the negative electrode material is: 95% negative electrode active material, 2% styrene-butadiene rubber, 2% sodium carboxymethyl cellulose, and 1% silica.
  • the oil absorption value of silica is 300ml/100g, and the median particle size is 5um.
  • the electrode components of the above-mentioned Example 2 and Comparative Example 2 are assembled to make a soft-packaged battery.
  • the outer shell is made of aluminum plastic film material for packaging and molding. Then the electrolyte injection, aging, formation, volume separation and other processes are carried out to prepare lithium ions. Battery.
  • Example 2 The above-mentioned Example 2 and Comparative Example 2 were repeated several times and the average value was obtained. The obtained battery performance comparison is shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了一种离子电导剂、电极极片组和锂离子电池,所述离子导电剂的电阻率大于10Ω·m;所述离子导电剂的吸油值大于100ml/100g;所述离子导电剂的性状为固体粉末;所述固体粉末的中值粒径小于50μm。该离子电导剂用于满足锂离子的导电的要求的同时减少参与正负极的反应。

Description

一种离子电导剂、电极极片组和锂离子电池
相关申请的交叉引用
本申请要求于2022年07月14日提交于中国国家知识产权局的申请号为202210825511.1、名称为“一种离子电导剂、电极极片组和锂离子电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,尤其涉及一种离子电导剂、电极极片组和锂离子电池。
背景技术
在锂电池制造行业,随着电池能量密度的提高,正负极极片的面密度越来越高,压实密度越来越大,这就导致正负极片的孔隙越来越小;同时由于各个工序一致性问题,造成极片的孔隙的不均匀性,这就带来电解液的浸润困难。同时,在电池循环过程当中,正负极材料随着充放电的进行,材料本身的膨胀收缩,也导致电解液不停的被挤出和回吸,当局部的电解液无法满足当前的充放电电流的要求时,电池的直流阻抗急剧增加,严重时负极会形成析锂,产生安全隐患。
影响极片电导率的因素主要有两个,一个是电子电导率,一个离子电导率,而相关技术是直接采用高吸油值的炭黑来一次性解决问题。直接用高吸油值炭黑带来的主要问题是炭黑本身是高导电物质,会直接参与正负极的反应,导致电池产气膨胀、容量降低等后果。因此,亟需一种离子电导剂、电极极片组和锂离子电池以改善上述问题。
发明内容
本申请的目的在于提供一种离子电导剂、电极极片组和锂离子电池,该离子电导剂用于满足锂离子的导电的要求的同时减少参与正负极的反应。
第一方面,本申请提供一种离子电导剂,所述离子导电剂的电阻率大于10Ω·m;所述离子导电剂的吸油值大于100ml/100g;所述离子导电剂的性状为固体粉末;所述固体粉末的中值粒径小于50μm。
本申请的方法有益效果为:通过设置的所述离子导电剂的电阻率大于10Ω·m;所述离子导电剂的吸油值大于100ml/100g;避免离子导电剂参与正负极的反应,防止导致电池产气而膨胀,避免电池容量降低。所述离子导电剂的性状为固体粉末;所述固体粉末的中值粒径小于50μm。避免在配料涂布时造成堵孔或者极片表面产生划痕。
可选的,所述离子导电剂设置为绝缘材料或非绝缘材料;所述离子导电剂设置为绝缘材料时,所述离子导电剂优选氧化铝、氧化硅和氧化镁中的至少一者。
第二方面,本申请提供一种电极极片组,包括:正极极片和负极极片;所述正极极片 和所述负极极片中的至少一者包括所述第一方面中任一项所述的离子导电剂;所述正极极片设有正极活性物质;所述负极极片设有负极活性物质。
可选的,所述正极极片设置的所述离子导电剂在所述正极极片的总重量占比区间为[0.01%,30%];所述负极极片设置的所述离子导电剂在所述负极极片的总重量占比区间为[0.01%~30%]。其有益效果在于,确保所述离子导电剂含量足够,起到有效的离子传导作用;同时避免所述离子导电剂含量过高而损失电池的有效容量,有利于降低配料涂布的难度。
可选的,设置有所述离子导电剂的所述正极极片还设有电子导电剂,所述离子导电剂在正极导电剂总重量的占比区间为[5%,100%];所述正极导电剂总重量为所述正极极片的离子导电剂的重量与所述正极极片的电子导电剂的重量之和;设置有所述离子导电剂的所述负极极片还设有电子导电剂,所述离子导电剂在负极导电剂总重量的占比区间为[5%,100%];所述负极导电剂总重量为所述负极极片的离子导电剂的重量与所述负极极片的电子导电剂的重量之和。值得说明的是,在高电子电导率的体系中,本申请的离子导电剂可以单独使用;在其它领域中也可以结合其它导电剂一起使用。在本申请中,将解决电子电导和离子电导两种需求分开,单独采用离子导电剂来解决锂离子的导电问题,可以优化电池的配方,增大可选的材料范围,有助于节约成本。
可选的,所述正极活性物质的材料选自钴酸锂、锰酸锂、磷酸铁锂、磷酸锰铁锂、镍钴锰酸锂、镍锰尖晶石中的至少一种。
可选的,所述负极活性物质的材料选自天然石墨、人造石墨、中间相碳微球、钛酸锂、硅合金、锡合金、活性锂金属中的至少一种。
可选的,所述正极极片的一侧设有正极集流体;所述正极极片包括所述正极活性材料和所述离子导电剂的混合物;所述负极极片的一侧设有负极集流体;所述负极极片包括所述负极活性材料和所述离子导电剂的混合物。
可选的,所述正极集流体设置为铝箔;所述负极集流体设置为铜箔。
第三方面,本申请提供一种锂离子电池,包括若干如所述第二方面中任一项所述的电极极片组。
可选的,所述锂离子电池还包括电池封装壳;所述电极极片组设置于所述封装壳内。
附图说明
图1为本申请提供的一种电极极片组的结构示意图;
图2为本申请提供的一种锂离子电池的结构示意图。
图中标号:
101、正极极片;102、负极极片;103、正极集流体;104、负极集流体;105、电池封装壳。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。除非另外定义,此处使用的技术术语或者科学术语应当为本申请所属领域内具有一般技能的人士所理解的通常意义。本文中使用的“包括”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
针对相关技术存在的问题,本申请提供一种离子电导剂,所述离子导电剂的电阻率大于10Ω·m。所述离子导电剂的吸油值大于100ml/100g。所述离子导电剂的性状为固体粉末。所述固体粉末的中值粒径小于50μm。
值得说明的是,通过设置的所述离子导电剂的电阻率大于10Ω·m。所述离子导电剂的吸油值大于100ml/100g。避免离子导电剂参与正负极的反应,防止导致电池产气而膨胀,避免电池容量降低。所述离子导电剂的性状为固体粉末。所述固体粉末的中值粒径小于50μm。避免在配料涂布时造成堵孔或者极片表面产生划痕。所述中值粒径为粒度D50,即累计粒度分布百分数达到50%时所对应的粒径。
在一些实施例中,所述离子导电剂设置为绝缘材料或非绝缘材料;所述离子导电剂设置为绝缘材料时,所述离子导电剂优选氧化铝、氧化硅和氧化镁中的至少一者。
一些具体实施例中,所述离子导电剂的材料设置为氧化铝。
另一些具体实施例中,所述离子导电剂的材料设置为氧化硅。
又一些具体实施例中,所述离子导电剂的材料设置为氧化镁。
再一些具体实施例中,所述离子导电剂的材料设置为氧化铝、氧化硅和氧化镁的混合物。
值得说明的是,所述离子导电剂可以设置为任意成分的绝缘材料。
图1为本申请提供的一种电极极片组的结构示意图。
如图1所示,本申请提供一种电极极片组,包括:正极极片101和负极极片102。所述正极极片101和所述负极极片102中的至少一者包括所述第一方面中任一项所述的离子导电剂。所述正极极片101设有正极活性物质。所述负极极片102设有负极活性物质。
在一些实施例中,所述正极活性物质的材料选自钴酸锂、锰酸锂、磷酸铁锂、磷酸锰铁锂、镍钴锰酸锂、镍锰尖晶石中的至少一种。
一些具体实施例中,所述正极活性物质的材料设置为钴酸锂。
另一些具体实施例中,所述正极活性物质的材料设置为锰酸锂。
又一些具体实施例中,所述正极活性物质的材料设置为磷酸铁锂。
再一些具体实施例中,所述正极活性物质的材料设置为磷酸锰铁锂。
还有一些具体实施例中,所述正极活性物质的材料设置为镍钴锰酸锂。
值得说明的是,在一些具体实施例中,所述正极活性物质的材料设置为镍锰尖晶石。
在一些实施例中,所述负极活性物质的材料选自天然石墨、人造石墨、中间相碳微球、钛酸锂、硅合金、锡合金、活性锂金属中的至少一种。
一些具体实施例中,所述负极活性物质的材料设置为天然石墨。
另一些具体实施例中,所述负极活性物质的材料设置为人造石墨。
又一些具体实施例中,所述负极活性物质的材料设置为中间相碳微球。
再一些具体实施例中,所述负极活性物质的材料设置为磷酸钛酸锂。
还有一些具体实施例中,所述负极活性物质的材料设置为硅合金。
值得说明的是,在一些具体实施例中,所述负极活性物质的材料还可以设置为锡合金或活性锂金属。
在一些实施例中,所述正极极片101设置的所述离子导电剂在所述正极极片101的总重量占比区间为[0.01%,30%]。所述负极极片102设置的所述离子导电剂在所述负极极片102的总重量占比区间为[0.01%~30%]。这种设置有利于确保所述离子导电剂含量足够,起到有效的离子传导作用。同时避免所述离子导电剂含量过高而损失电池的有效容量,有利于降低配料涂布的难度。
一些具体实施例中,所述正极极片101设置的所述离子导电剂在所述正极极片101的总重量占比为0.01%。所述负极极片102设置的所述离子导电剂在所述负极极片102的总重量占比为0.01%。
另一些具体实施例中,所述正极极片101设置的所述离子导电剂在所述正极极片101的总重量占比为30%。所述负极极片102设置的所述离子导电剂在所述负极极片102的总重量占比为30%。
又一些具体实施例中,所述正极极片101设置的所述离子导电剂在所述正极极片101的总重量占比为15%。所述负极极片102设置的所述离子导电剂在所述负极极片102的总重量占比为15%。
值得说明的是,相关技术中是直接用炭黑导电剂来一次性解决正负极极片的电子导电率和离子导电率的问题,这样一来就必须使炭黑导电剂必须同时满足这两种导电率的要求,既要保证高的电子电导,同时还要保证高吸油值来确保有良好的储液性能,这样使得材料的选择性大大降低。
在一些实施例中,设置有所述离子导电剂的所述正极极片101还设有电子导电剂,所 述离子导电剂在正极导电剂总重量的占比区间为[5%,100%]。所述正极导电剂总重量为所述正极极片101的离子导电剂的重量与所述正极极片101的电子导电剂的重量之和。设置有所述离子导电剂的所述负极极片102还设有电子导电剂,所述离子导电剂在负极导电剂总重量的占比区间为[5%,100%]。所述负极导电剂总重量为所述负极极片102的离子导电剂的重量与所述负极极片102的电子导电剂的重量之和。值得说明的是,在高电子电导率的体系中,本申请的离子导电剂可以单独使用。在其它领域中也可以结合其它导电剂一起使用。在本申请中,将解决电子电导和离子电导两种需求分开,单独采用离子导电剂来解决锂离子的导电问题,可以优化电池的配方,增大可选的材料范围,有助于节约成本。
一些具体实施例中,所述离子导电剂在正极导电剂总重量的占比为5%。所述离子导电剂在负极导电剂总重量的占比为5%。
又一些具体实施例中,所述离子导电剂在正极导电剂总重量的占比为100%。所述离子导电剂在负极导电剂总重量的占比为100%。
另一些具体实施例中,所述离子导电剂在正极导电剂总重量的占比为52.5%。所述离子导电剂在负极导电剂总重量的占比为52.5%。
在一些实施例中,所述正极极片101的一侧设有正极集流体103。所述正极极片101包括所述正极活性材料和所述离子导电剂的混合物。所述负极极片102的一侧设有负极集流体104。所述负极极片102包括所述负极活性材料和所述离子导电剂的混合物。
值得说明的是,所述负极活性材料和所述离子导电剂的混合物通过涂布的方式涂覆到所述负极集流体104的一端。所述正极活性材料和所述离子导电剂的混合物通过涂布的方式涂覆到所述正极集流体103的一端。
在一些实施例中,所述正极集流体103设置为铝箔。所述负极集流体104设置为铜箔。
一些具体实施例中,所述正极集流体103设置为厚度为13μm的铝箔。所述负极集流体104设置为厚度为6μm的铜箔。
图2为本申请提供的一种锂离子电池的结构示意图。
如图2所示,本申请提供一种锂离子电池,包括若干如所述第二方面中任一项所述的电极极片组。
值得说明的是,所述电极极片组外侧设有电池封装壳105。所述电池封装壳105由铝塑膜制成。
本申请提出对比例1、实施例1、对比例2和实施例2。以下实施例和对比例中制得的锂离子电池,均进行注液、陈化、化成、分容的制作工序:
所述注液工序,包括将真空泵的抽吸口对准电池的注射口,打开抽真空泵对电池壳进行抽真空,抽真空后关闭真空泵。使注射装置的注射口插入电池的注射口,然后进行注液。 值得说明的是,为了保证注液效果,可以进行多次注液,注液完成后封口。
所述陈化工序,包括选取电池分组进行陈化作业。
所述化成工序,包括将化成机线路按照正负极连接到电池上,利用化成机进行化成,然后根据电池型号,通过计算机完成对各个电池组进行参数的选择。
所述分容工序,包括把化成过的符合标准的电池进行分容,利用分容柜对电池进行分容操作。
所述分选工序,包括对电池进行分选,分选过程中将电池放在采集模块下,然后连接采集模块和电池,并经过放电、充电、放电、再充电四个步骤,检测电池的各项参数。
对比例1
正极活性材料选择磷酸铁锂材料,正极集流体选择厚度为13um的铝箔。
正极极片的重量配比为:95%的正极活性材料,2%的聚偏氟乙烯(polyvinylidene difluoride,PVDF),3%的碳黑导电剂(Super-P)。
负极活性物质为人造石墨,负极集流体选择厚度为6um的铜箔。
负极极片的重量配比为:95%的负极活性物质,2%的丁苯橡胶(Styrene Butadiene Rubber,SBR),2%的羧甲基纤维素钠(Carboxymethyl Cellulose,CMC),1%的碳黑导电剂。
电解液体系为碳酸乙烯酯(Ethylene carbonate,EC):碳酸甲乙酯(Ethyl Methyl Carbonate,EMC)=3:7,浓度为1mol/L的六氟磷酸锂(1M LiPF6),2%的碳酸亚乙烯酯(Vinylene Carbonate,VC)。
实施例1
正极活性材料选择磷酸铁锂材料,正极集流体选择厚度为13um的铝箔。
正极材料的重量配比为:95%的正极活性材料,2%的聚偏氟乙烯,1%的碳黑导电剂,2%的二氧化硅。
二氧化硅的吸油值为300ml/100g,中值粒径为5um。
负极活性物质为人造石墨,负极集流体选择厚度为6um的铜箔。
负极材料的重量配比为:95%的负极活性物质,2%的丁苯橡胶,2%的羧甲基纤维素钠,1%的碳黑导电剂。
电解液体系为碳酸乙烯酯:碳酸甲乙酯=3:7,浓度为1mol/L的六氟磷酸锂,2%的碳酸亚乙烯酯。
用上述实施例1和对比例1的电极组分组装制成软包装电池,外壳选择铝塑膜材料进 行封装成型,然后分别进行电解液注液、陈化、化成、分容等工序制得锂离子电池。
上述实施例1和对比例1重复实施若干次取平均值,得到的电池性能对比如表1所示。
通过表1的电池测试表分析可见,对比例1的电池容量和实施例1的电池容量一致,均在位于区间[4.9Ah,5.1Ah]。在对比例1中,5C放电容量与0.2C放电容量比值为47%。在实施例1中,5C放电容量与0.2C放电容量比值为65%。可见实施例1的离子导电剂用在正极极片中,大倍率放电性能得到很大提升。对比例1和实施例1的电池在45℃温度环境下进行500次1C充电与1C放电循环后电池容量保持率分别为85%和93%。可见,实施例1由于减少了正极导电剂带来的副反应,高温循环后电池容量保持率得到了提升。
对比例2
正极活性材料选择磷酸铁锂材料,正极集流体选择厚度为13um的铝箔。
正极极片的重量配比为:96%的正极活性材料,2%的聚偏氟乙烯,2%的碳黑导电剂。
负极活性物质为人造石墨,负极集流体选择厚度为6um的铜箔。
负极极片的重量配比为:95%的负极活性物质,2%的丁苯橡胶,2%的羧甲基纤维素钠,1%的碳黑导电剂。
电解液体系为碳酸乙烯酯:碳酸甲乙酯=3:7,浓度为1mol/L的六氟磷酸锂,2%的碳酸亚乙烯酯。
实施例2
正极活性材料选择磷酸铁锂材料,正极集流体选择厚度为13um的铝箔。
正极材料的重量配比为:96%的正极活性材料,2%的聚偏氟乙烯,1%的碳黑导电剂,2%的碳黑导电剂。
负极活性物质为人造石墨,负极集流体选择厚度为6um的铜箔。
负极材料的重量配比为:95%的负极活性物质,2%的丁苯橡胶,2%的羧甲基纤维素钠,1%的二氧化硅。
二氧化硅的吸油值为300ml/100g,中值粒径为5um。
电解液体系为碳酸乙烯酯:碳酸甲乙酯=3:7,浓度为1mol/L的六氟磷酸锂,2%的碳酸亚乙烯酯。
用上述实施例2和对比例2的电极组分组装制成软包装电池,外壳选择铝塑膜材料进行封装成型,然后分别进行电解液注液、陈化、化成、分容等工序制得锂离子电池。
上述实施例2和对比例2重复实施若干次取平均值,得到的电池性能对比如表2所示。
通过上述表2的电池测试表分析可见,对比例电池和本申请的实施例电池的电池容量一致,均在位于区间[4.9Ah,5.2Ah]。在对比例2中,5C恒流充电容量与0.2C放电容量比值为47%。在实施例2中,5C恒流充电容量与0.2C放电容量比值为58%。可见,实施例2的离子导电剂用在负极极片中,电池容量得到了提升,大倍率充电性能也得到了提高。
虽然在上文中详细说明了本申请的实施方式,但是对于本领域的技术人员来说显而易见的是,能够对这些实施方式进行各种修改和变化。但是,应理解,这种修改和变化都属于权利要求书中所述的本申请的范围和精神之内。而且,在此说明的本申请可有其它的实施方式,并且可通过多种方式实施或实现。

Claims (10)

  1. 一种离子电导剂,其中,所述离子导电剂的电阻率大于10Ω·m;
    所述离子导电剂的吸油值大于100ml/100g;
    所述离子导电剂的性状为固体粉末;
    所述离子导电剂的中值粒径小于50μm。
  2. 一种电极极片组,其中,所述电极极片组包括:正极极片和负极极片;所述正极极片和所述负极极片中的至少一者包括权利要求1所述的离子导电剂;
    所述正极极片设有正极活性物质;
    所述负极极片设有负极活性物质。
  3. 根据权利要求2所述的电极极片组,其中,所述正极极片设置的所述离子导电剂在所述正极极片的总重量占比区间为[0.01%,30%];
    所述负极极片设置的所述离子导电剂在所述负极极片的总重量占比区间为[0.01%~30%]。
  4. 根据权利要求2所述的电极极片组,其中,设置有所述离子导电剂的所述正极极片还设有电子导电剂,所述离子导电剂在正极导电剂总重量的占比区间为[5%,100%];所述正极导电剂总重量为所述正极极片的离子导电剂的重量与所述正极极片的电子导电剂的重量之和;
    设置有所述离子导电剂的所述负极极片还设有电子导电剂,所述离子导电剂在负极导电剂总重量的占比区间为[5%,100%];所述负极导电剂总重量为所述负极极片的离子导电剂的重量与所述负极极片的电子导电剂的重量之和。
  5. 据权利要求2所述的电极极片组,其中,所述正极活性物质的材料选自钴酸锂、锰酸锂、磷酸铁锂、磷酸锰铁锂、镍钴锰酸锂、镍锰尖晶石中的至少一种。
  6. 据权利要求2所述的电极极片组,其中,所述负极活性物质的材料选自天然石墨、人造石墨、中间相碳微球、钛酸锂、硅合金、锡合金、活性锂金属中的至少一种。
  7. 根据权利要求2所述的电极极片组,其中,所述正极极片的一侧设有正极集流体;所述正极极片包括所述正极活性材料和所述离子导电剂的混合物;
    所述负极极片的一侧设有负极集流体;所述负极极片包括所述负极活性材料和所述离子导电剂的混合物。
  8. 根据权利要求7所述的电极极片组,其中,所述正极集流体设置为铝箔;所述负极集流体设置为铜箔。
  9. 一种锂离子电池,其中,所述锂离子电池包括若干如权利要求3至8中任一项所述 的电极极片组。
  10. 根据权利要求9所述的锂离子电池,其中,所述锂离子电池还包括电池封装壳;所述电极极片组设置于所述封装壳内。
PCT/CN2023/092518 2022-07-14 2023-05-06 一种离子电导剂、电极极片组和锂离子电池 WO2024012023A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23802134.9A EP4329016A1 (en) 2022-07-14 2023-05-06 Ionic conductive agent, electrode sheet group, and lithium-ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210825511.1 2022-07-14
CN202210825511.1A CN115050965A (zh) 2022-07-14 2022-07-14 一种离子电导剂、电极极片组和锂离子电池

Publications (1)

Publication Number Publication Date
WO2024012023A1 true WO2024012023A1 (zh) 2024-01-18

Family

ID=83165622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092518 WO2024012023A1 (zh) 2022-07-14 2023-05-06 一种离子电导剂、电极极片组和锂离子电池

Country Status (3)

Country Link
EP (1) EP4329016A1 (zh)
CN (1) CN115050965A (zh)
WO (1) WO2024012023A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115050965A (zh) * 2022-07-14 2022-09-13 蜻蜓实验室(深圳)有限公司 一种离子电导剂、电极极片组和锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191482A (ja) * 2002-12-09 2004-07-08 Ricoh Co Ltd 帯電部材及びそれを有する画像形成装置
CN107910555A (zh) * 2017-10-24 2018-04-13 中航锂电(洛阳)有限公司 一种复合导电剂及其制备方法、极片、锂离子电池
JP2018073579A (ja) * 2016-10-27 2018-05-10 日立化成株式会社 リチウムイオン電池
JP2021004277A (ja) * 2019-06-25 2021-01-14 東海カーボン株式会社 導電性カーボンブラック原料の水性分散体、導電性カーボンブラック原料の水性分散体の製造方法、導電性カーボンブラック粉体、導電性カーボンブラック粉体の製造方法およびリチウムイオン二次電池用正極材の製造方法
CN114284465A (zh) * 2021-12-22 2022-04-05 蜂巢能源科技股份有限公司 正极浆料的制备方法、正极极片及锂离子电池
CN115050965A (zh) * 2022-07-14 2022-09-13 蜻蜓实验室(深圳)有限公司 一种离子电导剂、电极极片组和锂离子电池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3954455B2 (ja) * 2002-07-05 2007-08-08 松下電器産業株式会社 リチウム二次電池用極板およびリチウム二次電池
JP2005011595A (ja) * 2003-06-17 2005-01-13 Sony Corp 電解質およびそれを用いた電池
JP2011029408A (ja) * 2009-07-24 2011-02-10 Showa Denko Kk 電気化学キャパシタ並びにそれに用いる電極層およびその製法
JP5433484B2 (ja) * 2010-04-02 2014-03-05 日立ビークルエナジー株式会社 リチウムイオン二次電池
JP2017111875A (ja) * 2015-12-14 2017-06-22 トヨタ自動車株式会社 非水電解質二次電池
CN109935794B (zh) * 2017-12-18 2021-02-23 孚能科技(赣州)股份有限公司 锂离子电池
CN114744201A (zh) * 2022-05-12 2022-07-12 惠州亿纬锂能股份有限公司 一种电池极片及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191482A (ja) * 2002-12-09 2004-07-08 Ricoh Co Ltd 帯電部材及びそれを有する画像形成装置
JP2018073579A (ja) * 2016-10-27 2018-05-10 日立化成株式会社 リチウムイオン電池
CN107910555A (zh) * 2017-10-24 2018-04-13 中航锂电(洛阳)有限公司 一种复合导电剂及其制备方法、极片、锂离子电池
JP2021004277A (ja) * 2019-06-25 2021-01-14 東海カーボン株式会社 導電性カーボンブラック原料の水性分散体、導電性カーボンブラック原料の水性分散体の製造方法、導電性カーボンブラック粉体、導電性カーボンブラック粉体の製造方法およびリチウムイオン二次電池用正極材の製造方法
CN114284465A (zh) * 2021-12-22 2022-04-05 蜂巢能源科技股份有限公司 正极浆料的制备方法、正极极片及锂离子电池
CN115050965A (zh) * 2022-07-14 2022-09-13 蜻蜓实验室(深圳)有限公司 一种离子电导剂、电极极片组和锂离子电池

Also Published As

Publication number Publication date
EP4329016A1 (en) 2024-02-28
CN115050965A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
WO2020177623A1 (zh) 负极片、二次电池及其装置
WO2021223655A1 (zh) 一种正极片、制备方法及包含其的锂离子电池
CN105958009B (zh) 一种高安全性锂离子电池复合极片及其制备方法,锂离子电池
WO2022267538A1 (zh) 钠离子电池的负极极片、电化学装置及电子设备
CN103730683B (zh) 一种锂电池及其制备方法
CN109119592B (zh) 一种钛酸锂负极极片、制备方法及钛酸锂电池
WO2021223654A1 (zh) 一种正极片、制备方法及包含其的锂离子电池
WO2022267529A1 (zh) 正极活性材料、电化学装置与电子设备
WO2022267550A1 (zh) 正极活性材料、电化学装置与电子设备
CN114665065B (zh) 一种正极极片及其制备方法和应用
US9023521B2 (en) Nonaqueous electrolyte secondary battery
CN103682415A (zh) 一种高能量密度锂离子电池及其制备工艺
CN103928668B (zh) 一种锂离子电池及其正极材料的制备方法
WO2023151459A1 (zh) 补锂添加剂及其制备方法和应用
WO2016115909A1 (zh) 一种高压实密度负极锂离子电池和电解液
CN102237517A (zh) 一种锂离子电池、正极复合材料及其制备方法
CN103855401A (zh) 一种锂离子电池正极极片及其制备方法和含有该极片的锂离子电池
WO2024012023A1 (zh) 一种离子电导剂、电极极片组和锂离子电池
CN212907803U (zh) 一种高倍率充放电的锂离子电池
CN113540416A (zh) 一种固体电解质包覆石墨复合材料及其制备方法和应用、锂离子电池
CN114655951B (zh) 一种锂离子电池负极材料的制备方法
CN113675389B (zh) 一种石墨复合电极材料及其制备方法
CN109786751A (zh) 一种负极集流体及其制备方法以及固态电池
CN102544507B (zh) 一种锂离子动力电池正极片及锂离子动力电池
CN113594459A (zh) 一种具有多层结构的复合负极材料及其制备方法和应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023802134

Country of ref document: EP

Effective date: 20231117