WO2024011535A1 - 铝复合集流体及其制备方法和应用 - Google Patents

铝复合集流体及其制备方法和应用 Download PDF

Info

Publication number
WO2024011535A1
WO2024011535A1 PCT/CN2022/105809 CN2022105809W WO2024011535A1 WO 2024011535 A1 WO2024011535 A1 WO 2024011535A1 CN 2022105809 W CN2022105809 W CN 2022105809W WO 2024011535 A1 WO2024011535 A1 WO 2024011535A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
polymer material
composite current
aluminum
aluminum composite
Prior art date
Application number
PCT/CN2022/105809
Other languages
English (en)
French (fr)
Inventor
王成豪
李学法
张国平
Original Assignee
扬州纳力新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扬州纳力新材料科技有限公司 filed Critical 扬州纳力新材料科技有限公司
Priority to PCT/CN2022/105809 priority Critical patent/WO2024011535A1/zh
Priority to PCT/CN2023/107437 priority patent/WO2024012564A1/zh
Publication of WO2024011535A1 publication Critical patent/WO2024011535A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of battery technology, and specifically to an aluminum composite current collector and its preparation method and application.
  • the current metal composite current collector is mainly composed of a metal layer and a polymer layer located between the metal layers.
  • the preparation method is often completed by using a vacuum evaporation process.
  • the current vacuum evaporation process requires multiple evaporations on the polymer film (for example, up to 10 to 15 times).
  • multiple evaporations will cause the polymer layer to undergo multiple high-temperature and cooling processes, leading to polymerization.
  • the strength and elongation of the polymer film decrease to varying degrees, which eventually causes the metal composite current collector to break during battery manufacturing and use, seriously affecting the application of current collectors and batteries.
  • the reduction in the tensile strength and elongation of the metal composite current collector will also lead to a reduction in the extrusion resistance, impact resistance and other properties of the battery, which is prone to safety problems.
  • the present invention provides a preparation method of aluminum composite current collector, which includes the following steps:
  • the two sides of the polymer material film are respectively bonded to the aluminum metal layer on the surface of the copper foil, and the copper foil is peeled off after hot pressing.
  • the pressure of the hot pressing is 500kg ⁇ 1000kg, and the temperature is 40°C ⁇ 60°C, lamination speed is 30m/min ⁇ 50m/min.
  • the thickness of the aluminum composite current collector after hot pressing is 3 ⁇ m to 35 ⁇ m; preferably, the thickness of the aluminum metal layer is 0.3 ⁇ m to 3 ⁇ m, and the thickness of the polymer material film is 3 ⁇ m. ⁇ 25 ⁇ m.
  • the bonding method is adhesive bonding
  • the adhesive includes one or more of urea-formaldehyde resin adhesive, polyvinyl acetate adhesive, acrylic resin adhesive, polyacrylic acid resin, polyurethane adhesive, hot melt adhesive and epoxy resin adhesive.
  • the copper foil with an aluminum metal layer plated on the surface is plated with the aluminum metal layer on the surface of the copper foil using a vacuum evaporation process, wherein the vacuum evaporation process parameters include: The vacuum degree is ⁇ 10 -2 Pa, the plating material temperature is 600°C ⁇ 1600°C, and the evaporation rate is 10m/min ⁇ 100m/min.
  • the thickness of the copper foil is 3 ⁇ m to 16 ⁇ m.
  • the polymer material film is made of a composite formed of an insulating polymer material and an inorganic non-conductive filler, a composite of an insulating polymer material and a conductive filler, an insulating polymer material or a conductive polymer. material, wherein the mass percentage of the insulating polymer material in the composite formed by the insulating polymer material and the inorganic non-conductive filler is ⁇ 90%, and the composite formed by the insulating polymer material and the conductive filler is as described in The mass percentage of insulating polymer material is ⁇ 90%.
  • the insulating polymer material is selected from the group consisting of cellulose and its derivatives, starch and its derivatives, protein and its derivatives, polyvinyl alcohol and its cross-linked polymers, polyethylene glycol and its Cross-linked polymer, polyamide, polyterephthalate, polyimide, polyethylene, polypropylene, polystyrene, polyvinyl chloride, aramid, polyphenylenediamide, acrylonitrile-butan Diene-styrene copolymer, polyethylene terephthalate, polybutylene terephthalate, poly(p-phenylene terephthalamide), polypropylene, polyformaldehyde, epoxy resin, phenolic resin One or more of resin, polytetrafluoroethylene, polyvinylidene fluoride, silicone rubber and polycarbonate; and/or
  • the conductive polymer material is selected from doped polysulfide nitride and/or doped polyacetylene; and/or
  • the inorganic non-conductive filler is selected from one or more of ceramic materials, glass materials and ceramic composite materials; and/or
  • the conductive filler is selected from one or more of carbon black, carbon nanotubes, graphite, acetylene black, graphene, nickel, iron, copper, aluminum, alloy, nickel-coated graphite powder and nickel-coated carbon fiber. .
  • the present invention also provides an aluminum composite current collector prepared by the above-mentioned preparation method of an aluminum composite current collector.
  • the puncture strength of the aluminum composite current collector is ⁇ 300gf
  • the longitudinal tensile strength is ⁇ 350MPa
  • the transverse tensile strength is ⁇ 350MPa
  • the longitudinal elongation is ⁇ 80%
  • the transverse elongation is ⁇ 80%.
  • the present invention further provides a cathode, which includes the above-mentioned aluminum composite current collector and a cathode active material layer located on the aluminum composite current collector.
  • the present invention provides a battery, which includes the above-mentioned positive electrode.
  • Another aspect of the present invention provides an electrical device, the power source of which includes the above-mentioned battery.
  • the preparation method of the aluminum composite current collector provided above uses a hot pressing process and uses copper foil as the base material to transfer the aluminum metal layer, which avoids the need for the polymer material film to undergo multiple high temperatures and cooling in the traditional vacuum evaporation process. Cycling process, thereby solving the attenuation of the strength and elongation of the polymer material film during the current collector manufacturing process, improving the tensile strength and elongation of the aluminum composite current collector, thereby further improving the safety of the battery, especially the extrusion resistance Compression and impact resistance.
  • Figure 1 is a schematic structural diagram of an aluminum composite current collector produced in one embodiment of the present invention.
  • the present invention provides a preparation method of aluminum composite current collector, which includes the following steps:
  • the two sides of the polymer material film are bonded to the aluminum metal layer on the surface of the copper foil, and the copper foil is peeled off after hot pressing.
  • the hot pressing pressure is 500kg ⁇ 1000kg
  • the temperature is 40°C ⁇ 60°C
  • the lamination speed is 30m/ min ⁇ 50m/min.
  • the preparation method of the aluminum composite current collector provided above uses a hot pressing process and uses copper foil as the base material to transfer the aluminum metal layer, which avoids the need for the polymer material film to undergo multiple high temperatures and cooling in the traditional vacuum evaporation process. Cycling process, thereby solving the attenuation of the strength and elongation of the polymer material film during the current collector manufacturing process, improving the tensile strength and elongation of the aluminum composite current collector, thereby further improving the safety of the battery, especially the extrusion resistance Compression and impact resistance.
  • hot pressing treatment can make the surface of the aluminum composite current collector smoother and increase the adhesion between the aluminum metal layer and the polymer material film.
  • the aluminum metal layer and the polymer material film can be fully pressed together to avoid melting of the aluminum metal layer.
  • the aluminum metal layer can be transferred to the polymer material film to form an aluminum composite current collector.
  • the thickness of the hot-pressed aluminum composite current collector can be 3 ⁇ m to 35 ⁇ m, for example, it can also be 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m, 15 ⁇ m, 18 ⁇ m, 20 ⁇ m. , 25 ⁇ m, 30 ⁇ m.
  • the thickness of the aluminum metal layer is 0.3 ⁇ m to 3 ⁇ m.
  • it may also be 0.4 ⁇ m, 0.5 ⁇ m, 0.6 ⁇ m, 0.8 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, or 2.5 ⁇ m.
  • the thickness of the polymer material film may be 3 ⁇ m. ⁇ 25 ⁇ m, for example, it may also be 5 ⁇ m, 8 ⁇ m, 10 ⁇ m, 12 ⁇ m, 15 ⁇ m, 20 ⁇ m, or 22 ⁇ m.
  • the material of the aluminum metal layer is preferably high-purity aluminum.
  • the purity of aluminum can be ⁇ 99.8%.
  • the bonding method is adhesive bonding; optionally, the adhesive can be any commonly used adhesive in this field, including, but not limited to, urea-formaldehyde resin adhesive, polyvinyl acetate adhesive, acrylic acid One or more of resin adhesives, polyacrylic resins, polyurethane adhesives, hot melt adhesives and epoxy resin adhesives, preferably acrylic resin adhesives and polyacrylic resins.
  • the adhesive in order to reduce costs while ensuring adhesion, can be coated with a thickness of 0.1 ⁇ m to 2 ⁇ m, preferably 0.3 ⁇ m to 0.6 ⁇ m before hot pressing.
  • the copper foil with an aluminum metal layer plated on the surface is plated with the aluminum metal layer on the surface of the copper foil using a vacuum evaporation process, wherein the vacuum evaporation process parameters include: vacuum degree ⁇ 10 - 2 Pa, the plating temperature is 600°C ⁇ 1600°C, the evaporation rate is 10m/min ⁇ 100m/min, and can also be 20m/min, 30m/min, 50m/min, 70m/min, 80m/min, 90m/ min. Among them, the evaporation rate refers to the moving speed of the copper foil.
  • the step of winding the copper foil coated with the aluminum metal layer is further included, wherein the winding tension may be 5N to 25N.
  • the thickness of the copper foil in order to reduce costs and avoid the problem of strip breakage during hot pressing caused by low strength, can be 3 ⁇ m to 16 ⁇ m, preferably 8 ⁇ m to 12 ⁇ m.
  • the polymer material film can be made of any material commonly used in the art, including but not limited to composites of insulating polymer materials and inorganic non-conductive fillers, and composites of insulating polymer materials and conductive fillers. , insulating polymer material or conductive polymer material, wherein the mass percentage of insulating polymer material in the composite formed by insulating polymer material and inorganic non-conductive filler is ⁇ 90%, and in the composite formed by insulating polymer material and conductive filler The mass percentage of insulating polymer material is ⁇ 90%.
  • the insulating polymer material may be selected from the group consisting of cellulose and its derivatives, starch and its derivatives, protein and its derivatives, polyvinyl alcohol and its cross-linked polymers, polyethylene glycol and its cross-linked polymers, polyethylene glycol and its cross-linked polymers.
  • the conductive polymer material may be selected from doped polysulfide nitride and/or doped polyacetylene.
  • the inorganic non-conductive filler can be selected from one or more of ceramic materials, glass materials and ceramic composite materials;
  • the conductive filler can be selected from at least one of conductive carbon materials, metal materials, and composite conductive materials.
  • the carbon material can be selected from carbon black, carbon nanotubes, graphite, acetylene black, and graphene.
  • the metal material can be selected from Nickel, iron, copper, aluminum, alloy, wherein the alloy contains one or more of nickel, iron, copper and aluminum, the composite conductive material can be selected from one of nickel-coated graphite powder and nickel-coated carbon fiber or more.
  • the present invention also provides an aluminum composite current collector prepared by the above-mentioned preparation method of an aluminum composite current collector.
  • the puncture strength of the aluminum composite current collector is ⁇ 300gf
  • the longitudinal tensile strength is ⁇ 350MPa
  • the transverse tensile strength is ⁇ 350MPa
  • the longitudinal elongation is ⁇ 80%
  • the transverse elongation is ⁇ 80%.
  • the polymer material film has a puncture strength of ⁇ 300gf, a longitudinal tensile strength of ⁇ 360MPa, a transverse tensile strength of ⁇ 360MPa, a longitudinal elongation of ⁇ 90%, and a transverse elongation of ⁇ 90%.
  • the square resistance of the upper and lower surfaces of the aluminum composite current collector is both ⁇ 50 m ⁇ .
  • the surface roughness of the aluminum composite current collector is Rz ⁇ 5.
  • the present invention further provides a cathode, which includes the above-mentioned aluminum composite current collector and a cathode active material layer located on the aluminum composite current collector.
  • the cathode active material in the cathode active material layer can be any cathode active material known in the art, for example, it can be lithium cobalt oxide, lithium iron phosphate, NCA, NCM, lithium manganate, lithium nickelate, NCMA or cobalt-free cathode.
  • the present invention provides a battery, which includes the above-mentioned positive electrode.
  • the battery may be a lithium-ion battery.
  • Another aspect of the present invention provides an electrical device, the power source of which includes the above-mentioned battery.
  • specific types of electrical devices include, but are not limited to, mobile terminals (mobile phones, mobile computers, etc.), smart wearables, power tools (electric drills, electric motors, etc.), electric vehicles, mobile power supplies, etc.
  • Positive electrode composed of the aluminum composite current collector prepared in step 1 and the lithium iron phosphate active material layer coated on the aluminum composite current collector;
  • Negative electrode graphite
  • Electrolyte liquid electrolyte with lithium hexafluorophosphate as solute
  • Positive electrode composed of the aluminum composite current collector prepared in step 1 and the lithium iron phosphate active material layer coated on the aluminum composite current collector;
  • Negative electrode graphite
  • Electrolyte liquid electrolyte with lithium hexafluorophosphate as solute
  • Example 1 Comparative example 1 Thickness( ⁇ m) 8 8 Longitudinal (MD) tensile strength (MPa) 380 220 Transverse direction (TD) tensile strength (MPa) 360 200 Longitudinal (MD) elongation (%) 95 45 Transverse (TD) elongation (%) 90 40

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本发明涉及电池技术领域,具体而言,涉及一种铝复合集流体及其制备方法和应用。铝复合集流体的制备方法包括以下步骤:提供表面镀有铝金属层的铜箔和聚合物材料薄膜;以及将聚合物材料薄膜的两面分别与铜箔表面的铝金属层相粘合,热压后剥离所述铜箔,热压的压力为500kg~1000kg,温度为40℃~60℃,压合速度为30m/min~50m/min。上述铝复合集流体的拉伸强度和延伸率较高,有利于提升电池耐挤压性和抗冲击性。

Description

铝复合集流体及其制备方法和应用 技术领域
本发明涉及电池技术领域,具体而言,涉及一种铝复合集流体及其制备方法和应用。
背景技术
目前的金属复合集流体主要由金属层及位于金属层之间的高分子聚合物层构成,其制备方式往往是采用真空蒸镀工艺进行完成。目前真空蒸镀工艺需要在高分子薄膜上面多次蒸镀(比如可高达10~15次),然而多次蒸镀会致使高分子聚合物层经受多次高温-冷却的过程,导致高分子聚合物薄膜的强度和延伸率出现不同程度的衰减,最终使得金属复合集流体在电池制造、使用过程中出现断裂的现象,严重影响集流体和电池的应用。而且金属复合集流体的拉伸强度和延伸率的降低也会导致电池的耐挤压性、抗冲击性等性能的降低,易出现安全问题。
发明内容
基于此,有必要提供一种能够提高拉伸强度和延伸率,从而提升电池耐挤压性和抗冲击性的铝复合集流体及其制备方法和应用。
本发明一方面,提供一种铝复合集流体的制备方法,其包括以下步骤:
提供表面镀有铝金属层的铜箔和聚合物材料薄膜;以及
将所述聚合物材料薄膜的两面分别与所述铜箔表面的所述铝金属层粘合,热压后剥离所述铜箔,所述热压的压力为500kg~1000kg,温度为40℃~60℃, 压合速度为30m/min~50m/min。
在其中一个实施例中,热压后的所述铝复合集流体的厚度为3μm~35μm;优选地,所述铝金属层的厚度为0.3μm~3μm,所述聚合物材料薄膜的厚度为3μm~25μm。
在其中一个实施例中,所述粘合的方式为粘结剂粘合;
可选地,所述粘结剂包括脲醛树脂胶粘剂、聚醋酸乙烯胶粘剂、丙烯酸树脂胶粘剂、聚丙烯酸树脂、聚氨酯胶粘剂、热熔胶粘剂及环氧树脂胶粘剂中的一种或多种。
在其中一个实施例中,所述表面镀有铝金属层的铜箔是采用真空蒸镀工艺在所述铜箔的表面镀覆所述铝金属层,其中,所述真空蒸镀工艺参数包括:真空度<10 -2Pa,镀料温度为600℃~1600℃,蒸镀速率为10m/min~100m/min。
在其中一个实施例中,所述铜箔的厚度为3μm~16μm。
在其中一个实施例中,所述聚合物材料薄膜的材质选自绝缘聚合物材料和无机非导电填料形成的复合物、绝缘聚合物材料和导电填料形成的复合物、绝缘聚合物材料或导电聚合物材料,其中,所述绝缘聚合物材料和无机非导电填料形成的复合物中所述绝缘聚合物材料的质量百分比≥90%,所述绝缘聚合物材料和导电填料形成的复合物中所述绝缘聚合物材料的质量百分比≥90%。
在其中一个实施例中,所述绝缘聚合物材料选自纤维素及其衍生物、淀粉及其衍生物、蛋白质及其衍生物、聚乙烯醇及其交联聚合物、聚乙二醇及其交联聚合物、聚酰胺、聚对苯二甲酸酯、聚酰亚胺、聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、芳纶、聚二甲酰苯二胺、丙烯腈-丁二烯-苯乙烯共聚物、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚对苯二甲酰对苯二胺、聚丙乙烯、聚甲醛、环氧树脂、酚醛树脂、聚四氟乙烯、聚偏氟乙烯、硅橡胶及聚碳酸酯中 的一种或多种;和/或
所述导电聚合物材料选自掺杂聚氮化硫和/或掺杂聚乙炔;和/或
所述无机非导电填料选自陶瓷材料、玻璃材料及陶瓷复合材料中的一种或多种;和/或
所述导电填料选自碳黑、碳纳米管、石墨、乙炔黑、石墨烯、镍、铁、铜、铝、合金、镍包覆的石墨粉及镍包覆的碳纤维中的一种或多种。
本发明一方面,还提供一种如上述所述的铝复合集流体的制备方法制得的铝复合集流体。
在其中一个实施例中,所述铝复合集流体的穿刺强度≥300gf,纵向拉伸强度≥350MPa,横向拉伸强度≥350MPa,纵向延伸率≥80%,横向延伸率≥80%。
本发明另一方面,进一步提供一种正极,其包括上述所述的铝复合集流体及位于所述铝复合集流体上的正极活性材料层。
本发明再一方面,提供一种电池,其包括上述所述的正极。
本发明又一方面,提高一种用电装置,其电源包括上述所述的电池。
上述提供的铝复合集流体的制备方法,通过采用热压工艺以及以铜箔为基材进行铝金属层的转移,避免了传统真空蒸镀工艺中聚合物材料薄膜需多次经受高温-冷却的循环过程,从而解决了聚合物材料薄膜在集流体制造过程中强度和延伸率的衰减,提升了铝复合集流体的抗拉强度和延伸率,从而进一步提升了电池的安全性,尤其是耐挤压性和抗冲击性。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见 地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一个实施例中制得的铝复合集流体的结构示意图。
附图标记说明:100、聚合物材料薄膜;200、铝金属层;300、粘结剂层
具体实施方式
现将详细地提供本发明实施方式的参考,其一个或多个实例描述于下文。提供每一实例作为解释而非限制本发明。实际上,对本领域技术人员而言,显而易见的是,可以对本发明进行多种修改和变化而不背离本发明的范围或精神。例如,作为一个实施方式的部分而说明或描述的特征可以用于另一实施方式中,来产生更进一步的实施方式。
因此,旨在本发明覆盖落入所附权利要求的范围及其等同范围中的此类修改和变化。本发明的其它对象、特征和方面公开于以下详细描述中或从中是显而易见的。本领域普通技术人员应理解本讨论仅是示例性实施方式的描述,而非意在限制本发明更广阔的方面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。本文中所用的术语“包含”、“包括”、“具有”、“含有”或其任何其它变形,意在覆盖非排它性的包括。例如,包含所列要素的组合物、步骤、方法、制品或装置不必仅限于那些要素,而是可以包括未明确列出的其它要素或此种组合物、步骤、方法、制品或装置所固有的要素。
除了在操作实施例中所示以外或另外表明之外,所有在说明书和权利要求中表示成分的量、物化性质等所使用的数字理解为在所有情况下通过术语“约”来调整。例如,因此,除非有相反的说明,否则上述说明书和所附权利要求书中列出的数值参数均是近似值,本领域的技术人员能够利用本文所公开的教导内容寻求获得的所需特性,适当改变这些近似值。用端点表示的数值范围的使用包括该范围内的所有数字以及该范围内的任何范围,例如,1至5包括1、1.1、1.3、1.5、2、2.75、3、3.80、4和5等等。
本发明一方面,提供一种铝复合集流体的制备方法,其包括以下步骤:
提供表面镀有铝金属层的铜箔和聚合物材料薄膜;以及
将聚合物材料薄膜的两面分别与铜箔表面的铝金属层粘合,热压后剥离铜箔,其中热压的压力为500kg~1000kg,温度为40℃~60℃,压合速度为30m/min~50m/min。
上述提供的铝复合集流体的制备方法,通过采用热压工艺以及以铜箔为基材进行铝金属层的转移,避免了传统真空蒸镀工艺中聚合物材料薄膜需多次经受高温-冷却的循环过程,从而解决了聚合物材料薄膜在集流体制造过程中强度和延伸率的衰减,提升了铝复合集流体的抗拉强度和延伸率,从而进一步提升了电池的安全性,尤其是耐挤压性和抗冲击性。
而且热压处理可以使铝复合集流体表面平整增加的同时增加铝金属层与聚合物材料薄膜之间的粘合力。进一步通过调控热压的参数可以使铝金属层与聚合物材料薄膜充分压合的基础上,避免铝金属层的熔融。剥离铜箔后,可以将铝金属层转移至聚合物材料薄膜上,从而形成铝复合集流体。
在一些实施方式中,热压后的铝复合集流体的厚度可以为3μm~35μm,例如,还可以为6μm、7μm、8μm、9μm、10μm、11μm、12μm、13μm、14μm、 15μm、18μm、20μm、25μm、30μm。优选地,铝金属层的厚度为0.3μm~3μm,例如,还可以为0.4μm、0.5μm、0.6μm、0.8μm、1μm、1.5μm、2μm、2.5μm,聚合物材料薄膜的厚度可以为3μm~25μm,例如,还可以为5μm、8μm、10μm、12μm、15μm、20μm、22μm。
在一些实施方式中,铝金属层的材质优选为高纯度铝,例如,铝的纯度可以≥99.8%。
在一些实施方式中,粘合的方式为粘结剂粘合;可选地,粘结剂可以为本领域任意常用粘结剂,包括,但不限于,脲醛树脂胶粘剂、聚醋酸乙烯胶粘剂、丙烯酸树脂胶粘剂、聚丙烯酸树脂、聚氨酯胶粘剂、热熔胶粘剂及环氧树脂胶粘剂中的一种或多种,优选为丙烯酸树脂胶粘剂、聚丙烯酸树脂。
在一些实施方式中,为了在降低成本的同时保证粘结力,在热压前,可以将粘合剂的厚度涂覆为0.1μm~2μm,优选为0.3μm~0.6μm。
在一些实施方式中,表面镀有铝金属层的铜箔是采用真空蒸镀工艺在所述铜箔的表面镀覆所述铝金属层,其中,真空蒸镀工艺参数包括:真空度<10 -2Pa,镀料温度为600℃~1600℃,蒸镀速率为10m/min~100m/min,还可以为20m/min、30m/min、50m/min、70m/min、80m/min、90m/min。其中,蒸镀速率是指铜箔的移动速度。
在一些实施方式中,在铜箔表面真空蒸镀铝金属层后,还包括对镀有铝金属层的铜箔进行收卷的步骤,其中收卷的张力可以为5N~25N。
在一些实施方式中,为了降低成本,且避免强度过低导致热压过程中出现断带问题,铜箔的厚度可以为3μm~16μm,优选为8μm~12μm。
在一些实施方式中,聚合物材料薄膜的材质可以为本领域常用的任意材质,包括但不限于绝缘聚合物材料和无机非导电填料形成的复合物、绝缘聚合物材 料和导电填料形成的复合物、绝缘聚合物材料或导电聚合物材料,其中,绝缘聚合物材料和无机非导电填料形成的复合物中绝缘聚合物材料的质量百分比≥90%,绝缘聚合物材料和导电填料形成的复合物中绝缘聚合物材料的质量百分比≥90%。
所述绝缘聚合物材料可以选自纤维素及其衍生物、淀粉及其衍生物、蛋白质及其衍生物、聚乙烯醇及其交联聚合物、聚乙二醇及其交联聚合物、聚酰胺、聚对苯二甲酸酯、聚酰亚胺、聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、芳纶、聚二甲酰苯二胺、丙烯腈-丁二烯-苯乙烯共聚物、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚对苯二甲酰对苯二胺、聚丙乙烯、聚甲醛、环氧树脂、酚醛树脂、聚四氟乙烯、聚偏氟乙烯、硅橡胶及聚碳酸酯中的一种或多种;
所述导电聚合物材料可以选自掺杂聚氮化硫和/或掺杂聚乙炔。
所述无机非导电填料可以选自陶瓷材料、玻璃材料及陶瓷复合材料中的一种或多种;
所述导电填料可以选自导电碳材料、金属材料、复合导电材料中的至少一种,其中,碳材料可以选自碳黑、碳纳米管、石墨、乙炔黑、石墨烯,金属材料可以选自镍、铁、铜、铝、合金、其中合金含有镍、铁、铜及铝中的一种或多种,复合导电材料可以选自镍包覆的石墨粉及镍包覆的碳纤维中的一种或多种。
本发明一方面,还提供一种如上述所述的铝复合集流体的制备方法制得的铝复合集流体。
在一些实施方式中,铝复合集流体的穿刺强度≥300gf,纵向拉伸强度≥350MPa,横向拉伸强度≥350MPa,纵向延伸率≥80%,横向延伸率≥80%。
在一些实施方式中,聚合物材料薄膜的穿刺强度≥300gf,纵向拉伸强度≥ 360MPa,横向拉伸强度≥360MPa,纵向延伸率≥90%,横向延伸率≥90%。
在一些实施方式中,铝复合集流体的上、下表面的方阻均≤50mΩ。
在一些实施方式中,铝复合集流体表面粗糙度Rz≤5。
本发明另一方面,进一步提供一种正极,其包括上述所述的铝复合集流体及位于所述铝复合集流体上的正极活性材料层。
在一些实施方式中,正极活性材料层中的正极活性材料可以为本领域公知的任意正极活性材料,例如,可以为钴酸锂、磷酸铁锂、NCA、NCM、锰酸锂、镍酸锂、NCMA或无钴正极。
本发明再一方面,提供一种电池,其包括上述所述的正极。
在一些实施方式中,电池可以为锂离子电池。
本发明又一方面,提高一种用电装置,其电源包括上述所述的电池。
在其中一个实施例中,用电装置的具体类型包括,但不限于移动终端(手机、移动电脑等)、智能穿戴、电动工具(电钻、电动机等)、电动汽车、移动电源等。
以下结合具体实施例和对比例对本发明作进一步详细的说明。
实施例1
1、铝复合集流体的制备
1)以厚度为8μm的铜箔作为基材,选用纯度为99.9%的铝为镀料,采用真空蒸镀在铜箔表面沉积厚度为1μm的铝金属层,收卷,放卷,制备镀铝铜箔;其中,真空蒸镀的工艺参数如下:真空度为0.5×10 -2Pa,镀料温度为650℃,蒸镀速率为100m/min,收卷张力为5N,放卷张力为20N;
2)在6μm厚的PET薄膜的两面各涂覆一层厚度为0.3μm的丙烯酸树脂粘结剂,取两个上述制得的镀铝铜箔,通过粘结剂将镀铝铜箔的镀铝面与PET薄 膜的两面粘合,即形成“三明治”结构的复合层;
3)将上述制得的“三明治”结构的复合层置于热压机中热压,热压的压力为800kg、温度为50℃、压合速度为40m/min。随后,将铜箔从铝金属层上剥离,并进行收卷分切,制得8μm厚的铝复合集流体。在本实施例铝复合集流体的制备过程中,聚合物材料薄膜100、铝金属层200和粘结剂层300的位置关系如图1所示,其中,聚合物材料薄膜100为PET薄膜,粘结剂层300为丙烯酸树脂粘结剂层。对铝复合集流体进行相关性能测试,其测试结果如表1所示。
2、电池装配
正极:由步骤1中制得的铝复合集流体及涂覆在铝复合集流体上的磷酸铁锂活性材料层组成;
负极:石墨;
电解液:以六氟磷酸锂为溶质的液态电解液;
隔膜:聚乙烯(PE)微孔隔膜;
将上述各个部件装配成型号为100Ah的磷酸铁锂电池,并进行相关性能测试,测试结果如表2所示。
实施例2
1)以厚度为12μm的铜箔作为基材,选用纯度为99.9%的铝为镀料,采用真空蒸镀在铜箔表面沉积厚度为2μm的铝金属层,收卷,放卷,制备镀铝铜箔;其中,真空蒸镀的工艺参数如下:真空度为0.8×10 -2Pa,镀料温度为1000℃,蒸镀速率为80m/min,收卷张力为5N,放卷张力为20N;
2)在10μm厚的聚乙烯薄膜的两面各涂覆一层厚度为0.5μm的环氧树脂粘结剂,取两个上述制得的镀铝铜箔,通过粘结剂将镀铝铜箔的镀铝面与聚乙烯薄膜的两面粘合,即形成“三明治”结构的复合层;
3)将上述制得的“三明治”结构的复合层置于热压机中热压,热压的压力为500kg、温度为50℃、压合速度为30m/min。随后,将铜箔从铝金属层上剥离,并进行收卷分切,制备14μm厚的铝复合集流体。
实施例3
1)以厚度为5μm的铜箔作为基材,选用纯度为99.9%的铝为镀料,采用真空蒸镀在铜箔表面沉积厚度为0.5μm的铝金属层,收卷,放卷,制备镀铝铜箔;其中,真空蒸镀的工艺参数如下:真空度为0.5×10 -2Pa,镀料温度为600℃,蒸镀速率为50m/min,收卷张力为5N,放卷张力为20N;
2)在5μm厚的聚乙烯薄膜的两面各涂覆一层厚度为0.3μm的环氧树脂粘结剂,取两个上述制得的镀铝铜箔,通过粘结剂将镀铝铜箔的镀铝面与聚乙烯薄膜的两面粘合,即形成“三明治”结构的复合层;
3)将上述制得的“三明治”结构的复合层置于热压机中热压,热压的压力为800kg、温度为50℃、压合速度为40m/min。随后,将铜箔从铝金属层上剥离,并进行收卷分切,制备6μm厚的铝复合集流体。
对比例1
本对比例与实施例1的制备方法不同,具体步骤如下:
1、铝复合集流体的制备
1)选用纯度为99.9%的铝为镀料,采用真空蒸镀在6μm厚的PET薄膜的两面各沉积厚度为1μm的铝金属层,收卷,制备8μm厚的铝复合集流体;其中,真空蒸镀的工艺参数如下:真空度为0.5×10 -2Pa,镀料温度为650℃,蒸镀速率为100m/min,收卷张力为5N。对铝复合集流体进行相关性能测试,其测试结果如表1所示。
2、电池装配
正极:由步骤1中制得的铝复合集流体及涂覆在铝复合集流体上的磷酸铁锂活性材料层组成;
负极:石墨;
电解液:以六氟磷酸锂为溶质的液态电解液;
隔膜:聚乙烯(PE)微孔隔膜;
将上述各个部件装配成型号为100Ah的磷酸铁锂电池,并进行相关性能测试,测试结果如表2所示。
表1实施例1和对比例1中制得的铝复合集流体相关性能测试
产品特性 实施例1 对比例1
厚度(μm) 8 8
纵向(MD)拉伸强度(MPa) 380 220
横向(TD)拉伸强度(MPa) 360 200
纵向(MD)延伸率(%) 95 45
横向(TD)延伸率(%) 90 40
性能测试:
10PCS下电池挤压和重物冲击测试可以参见国标:GB18287_2000,测试结果如表2所示。
表2实施例1和对比例1中制得的100Ah磷酸铁锂电池的相关性能测试
表2
序号 10PCS下挤压结果 10PCS下重物冲击测试结果
实施例1 不爆炸、不起火 不爆炸、不起火
对比例1 起火、爆炸 起火、爆炸
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细, 但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种铝复合集流体的制备方法,其特征在于,包括以下步骤:
    提供表面镀有铝金属层的铜箔和聚合物材料薄膜;以及
    将所述聚合物材料薄膜的两面分别与所述铜箔表面的所述铝金属层粘合,热压后剥离所述铜箔,所述热压的压力为500kg~1000kg,温度为40℃~60℃,压合速度为30m/min~50m/min。
  2. 根据权利要求1所述的铝复合集流体的制备方法,其特征在于,热压后的所述铝复合集流体的厚度为3μm~35μm;优选地,所述铝金属层的厚度为0.3μm~3μm,所述聚合物材料薄膜的厚度为3μm~25μm。
  3. 根据权利要求1所述的铝复合集流体的制备方法,其特征在于,所述粘合的方式为粘结剂粘合;
    可选地,所述粘结剂包括脲醛树脂胶粘剂、聚醋酸乙烯胶粘剂、丙烯酸树脂胶粘剂、聚丙烯酸树脂、聚氨酯胶粘剂、热熔胶粘剂及环氧树脂胶粘剂中的一种或多种。
  4. 根据权利要求1所述的铝复合集流体的制备方法,其特征在于,所述表面镀有铝金属层的铜箔是采用真空蒸镀工艺在所述铜箔的表面镀覆所述铝金属层,其中,所述真空蒸镀工艺参数包括:真空度<10 -2Pa,镀料温度为600℃~1600℃,蒸镀速率为10m/min~100m/min。
  5. 根据权利要求4所述的铝复合集流体的制备方法,其特征在于,所述铜箔的厚度为3μm~16μm。
  6. 根据权利要求1~5任一项所述的铝复合集流体的制备方法,其特征在于,所述聚合物材料薄膜的材质选自绝缘聚合物材料和无机非导电填料形成的复合物、绝缘聚合物材料和导电填料形成的复合物、绝缘聚合物材料或导电聚合物材料,其中,所述绝缘聚合物材料和无机非导电填料形成的复合物中所述绝缘 聚合物材料的质量百分比≥90%,所述绝缘聚合物材料和导电填料形成的复合物中所述绝缘聚合物材料的质量百分比≥90%。
  7. 根据权利要求6所述的铝复合集流体的制备方法,其特征在于,所述绝缘聚合物材料选自纤维素及其衍生物、淀粉及其衍生物、蛋白质及其衍生物、聚乙烯醇及其交联聚合物、聚乙二醇及其交联聚合物、聚酰胺、聚对苯二甲酸酯、聚酰亚胺、聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、芳纶、聚二甲酰苯二胺、丙烯腈-丁二烯-苯乙烯共聚物、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚对苯二甲酰对苯二胺、聚丙乙烯、聚甲醛、环氧树脂、酚醛树脂、聚四氟乙烯、聚偏氟乙烯、硅橡胶及聚碳酸酯中的一种或多种;和/或
    所述导电聚合物材料选自掺杂聚氮化硫和/或掺杂聚乙炔;和/或
    所述无机非导电填料选自陶瓷材料、玻璃材料及陶瓷复合材料中的一种或多种;和/或
    所述导电填料选自碳黑、碳纳米管、石墨、乙炔黑、石墨烯、镍、铁、铜、铝、合金、镍包覆的石墨粉及镍包覆的碳纤维中的一种或多种。
  8. 一种如权利要求1~7任一项所述的铝复合集流体的制备方法制得的铝复合集流体。
  9. 根据权利要求8所述的铝复合集流体,其特征在于,所述铝复合集流体的穿刺强度≥300gf,纵向拉伸强度≥350MPa,横向拉伸强度≥350MPa,纵向延伸率≥80%,横向延伸率≥80%。
  10. 一种正极,其特征在于,包括权利要求9所述的铝复合集流体及位于所述铝复合集流体上的正极活性材料层。
  11. 一种电池,其特征在于,包括权利要求10所述的正极。
  12. 一种用电装置,其特征在于,所述用电装置的电源包括权利要求11所述 的电池。
PCT/CN2022/105809 2022-07-14 2022-07-14 铝复合集流体及其制备方法和应用 WO2024011535A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/105809 WO2024011535A1 (zh) 2022-07-14 2022-07-14 铝复合集流体及其制备方法和应用
PCT/CN2023/107437 WO2024012564A1 (zh) 2022-07-14 2023-07-14 铝复合集流体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/105809 WO2024011535A1 (zh) 2022-07-14 2022-07-14 铝复合集流体及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2024011535A1 true WO2024011535A1 (zh) 2024-01-18

Family

ID=89535164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105809 WO2024011535A1 (zh) 2022-07-14 2022-07-14 铝复合集流体及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2024011535A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157263A1 (ja) * 2008-06-23 2009-12-30 シャープ株式会社 リチウムイオン二次電池
CN110249461A (zh) * 2017-07-26 2019-09-17 株式会社Lg化学 锂电极的制造方法
CN110676460A (zh) * 2018-12-29 2020-01-10 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置
CN112771692A (zh) * 2020-03-30 2021-05-07 宁德新能源科技有限公司 复合集流体、电极极片、电化学装置及电子装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157263A1 (ja) * 2008-06-23 2009-12-30 シャープ株式会社 リチウムイオン二次電池
CN110249461A (zh) * 2017-07-26 2019-09-17 株式会社Lg化学 锂电极的制造方法
CN110676460A (zh) * 2018-12-29 2020-01-10 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置
CN112771692A (zh) * 2020-03-30 2021-05-07 宁德新能源科技有限公司 复合集流体、电极极片、电化学装置及电子装置

Similar Documents

Publication Publication Date Title
JP6796114B2 (ja) 集電体、その極シート及び電気化学デバイス
WO2021195855A1 (zh) 复合集流体、电极极片、电化学装置及电子装置
JP6635043B2 (ja) 電極構成体固定用両面テープおよび二次電池
JP5200367B2 (ja) 双極型電池用電極
WO2022267764A1 (zh) 一种正极集流体和锂离子电池
CN111883777A (zh) 一种复合集流体及其制备方法、锂电池极片
CN108777308A (zh) 一种集流体及其制备方法、电化学储能装置
CN115149000A (zh) 铝复合集流体及其制备方法和应用
WO2022242255A1 (zh) 电极极片、制备方法、复合集流体、电池及电子设备
CN114497568B (zh) 一种热收缩复合集流体及其应用
WO2024000802A1 (zh) 一种复合集流体、制备方法、电极极片、电池和电子设备
WO2023216346A1 (zh) 低溶胀的复合集流体及其制备方法
JP2012022821A (ja) 二次電池用金属端子被覆樹脂フィルム
CN112750980A (zh) 一种负极片及其制备方法以及无隔膜电芯
CN113972422A (zh) 电化学装置和电子装置
CN105449262A (zh) 柔性锂离子电池及其制备方法
JP2001176458A (ja) 電池ケース用包材
WO2024011535A1 (zh) 铝复合集流体及其制备方法和应用
CN111029590B (zh) 一种电池极片基体、其制备方法和用途
WO2024012564A1 (zh) 铝复合集流体及其制备方法和应用
CN217387475U (zh) 一种极芯、电池装置及电子设备
CN111106354A (zh) 一种锂电池集流体及其制备方法以及锂电池
CN215578623U (zh) 一种负极片以及无隔膜电芯
CN112038576A (zh) 一种电极及其制造方法,以及包含该电极的锂离子电池
WO2024011536A1 (zh) 铜复合集流体及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950656

Country of ref document: EP

Kind code of ref document: A1