WO2024012564A1 - 铝复合集流体及其制备方法和应用 - Google Patents

铝复合集流体及其制备方法和应用 Download PDF

Info

Publication number
WO2024012564A1
WO2024012564A1 PCT/CN2023/107437 CN2023107437W WO2024012564A1 WO 2024012564 A1 WO2024012564 A1 WO 2024012564A1 CN 2023107437 W CN2023107437 W CN 2023107437W WO 2024012564 A1 WO2024012564 A1 WO 2024012564A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
aluminum
composite current
polymer material
aluminum composite
Prior art date
Application number
PCT/CN2023/107437
Other languages
English (en)
French (fr)
Inventor
王成豪
李学法
张国平
Original Assignee
扬州纳力新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210827694.0A external-priority patent/CN115149000A/zh
Priority claimed from PCT/CN2022/105809 external-priority patent/WO2024011535A1/zh
Application filed by 扬州纳力新材料科技有限公司 filed Critical 扬州纳力新材料科技有限公司
Publication of WO2024012564A1 publication Critical patent/WO2024012564A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of battery technology, and specifically to an aluminum composite current collector and its preparation method and application.
  • the current metal composite current collector is mainly composed of a metal layer and a polymer layer located between the metal layers.
  • the preparation method is often completed by using a vacuum evaporation process.
  • the current vacuum evaporation process requires multiple evaporations on the polymer film (for example, up to 10 to 15 times).
  • multiple evaporations will cause the polymer layer to undergo multiple high-temperature and cooling processes, leading to polymerization.
  • the strength and elongation of the polymer film decrease to varying degrees, which eventually causes the metal composite current collector to break during battery manufacturing and use, seriously affecting the application of current collectors and batteries.
  • the reduction in the tensile strength and elongation of the metal composite current collector will also lead to a reduction in the extrusion resistance, impact resistance and other properties of the battery, which is prone to safety problems.
  • the present invention provides a preparation method of aluminum composite current collector, which includes the following steps:
  • the two sides of the polymer material film are respectively bonded to the aluminum metal layer on the surface of the copper foil, and the copper foil is peeled off after hot pressing.
  • the pressure of the hot pressing is 50Mpa ⁇ 100Mpa, and the temperature is 40°C ⁇ 60°C,
  • the laminating speed is 30m/min ⁇ 50m/min.
  • the thickness of the aluminum composite current collector after hot pressing is 5 ⁇ m to 15 ⁇ m; preferably, the thickness of the aluminum metal layer is 0.3 ⁇ m to 3 ⁇ m, and the thickness of the polymer material film is 3 ⁇ m. ⁇ 10 ⁇ m.
  • the bonding method is adhesive bonding
  • the adhesive includes one or more of urea-formaldehyde resin adhesive, polyvinyl acetate adhesive, acrylic resin adhesive, polyacrylic acid resin, polyurethane adhesive, hot melt adhesive and epoxy resin adhesive.
  • the copper foil with an aluminum metal layer plated on the surface is plated with the aluminum metal layer on the surface of the copper foil using a vacuum evaporation process, wherein the vacuum evaporation process parameters are selected from the group consisting of: One or more of the following: vacuum degree ⁇ 10 -2 Pa, plating material temperature 600°C ⁇ 1600°C, evaporation rate 10m/min ⁇ 100m/min.
  • the thickness of the copper foil is 3 ⁇ m to 16 ⁇ m.
  • the polymer material film is made of a composite formed of an insulating polymer material and an inorganic non-conductive filler, a composite of an insulating polymer material and a conductive filler, an insulating polymer material or a conductive polymer. material, wherein the mass percentage of the insulating polymer material in the composite formed by the insulating polymer material and the inorganic non-conductive filler is ⁇ 90%, and the composite formed by the insulating polymer material and the conductive filler is as described in The mass percentage of insulating polymer material is ⁇ 90%.
  • the insulating polymer material is selected from the group consisting of cellulose and its derivatives, starch and its derivatives, protein and its derivatives, polyvinyl alcohol and its cross-linked polymers, polyethylene glycol and its Cross-linked polymer, polyamide, polyterephthalate, polyimide, polyethylene, polypropylene, polystyrene, polyvinyl chloride, aramid, polyphenylenediamide, acrylonitrile-butan Diene-styrene copolymer, polyethylene terephthalate, polybutylene terephthalate, poly-p-phenylene terephthalamide, polypropylene, poly One or more of formaldehyde, epoxy resin, phenolic resin, polytetrafluoroethylene, polyvinylidene fluoride, silicone rubber and polycarbonate; and/or
  • the conductive polymer material is selected from doped polysulfide nitride and/or doped polyacetylene; and/or
  • the inorganic non-conductive filler is selected from one or more of ceramic materials, glass materials and ceramic composite materials; and/or
  • the conductive filler is selected from one or more of carbon black, carbon nanotubes, graphite, acetylene black, graphene, nickel, iron, copper, aluminum, alloy, nickel-coated graphite powder and nickel-coated carbon fiber. .
  • the present invention also provides an aluminum composite current collector prepared by the above-mentioned preparation method of an aluminum composite current collector.
  • the aluminum composite current collector has one or more of the following properties: puncture strength ⁇ 300gf, longitudinal tensile strength ⁇ 350MPa, transverse tensile strength ⁇ 350MPa, longitudinal elongation ⁇ 80%, transverse elongation ⁇ 80%.
  • the present invention further provides a cathode, which includes the above-mentioned aluminum composite current collector and a cathode active material layer located on the aluminum composite current collector.
  • the present invention provides a battery, which includes the above-mentioned positive electrode.
  • Another aspect of the present invention provides an electrical device, the power source of which includes the above-mentioned battery.
  • the preparation method of the aluminum composite current collector provided above uses a hot pressing process and uses copper foil as the base material to transfer the aluminum metal layer, which avoids the need for the polymer material film to undergo multiple high temperatures and cooling in the traditional vacuum evaporation process. Cycling process, thereby solving the attenuation of the strength and elongation of the polymer material film during the current collector manufacturing process, improving the tensile strength and elongation of the aluminum composite current collector, thereby further improving the safety of the battery, especially the extrusion resistance pressure resistance and impact resistance.
  • Figure 1 is a schematic structural diagram of an aluminum composite current collector produced in one embodiment of the present invention.
  • Figure 2 shows the production equipment of aluminum composite current collector in one embodiment of the present invention.
  • the present invention provides a preparation method of aluminum composite current collector, which includes the following steps:
  • the two sides of the polymer material film are bonded to the aluminum metal layer on the surface of the copper foil, and the copper foil is peeled off after hot pressing.
  • the hot pressing pressure is 50Mpa ⁇ 100Mpa
  • the temperature is 40°C ⁇ 60°C
  • the lamination speed is 30m/ min ⁇ 50m/min.
  • the preparation method of the aluminum composite current collector provided above uses a hot pressing process and uses copper foil as the base material to transfer the aluminum metal layer, which avoids the need for the polymer material film to undergo multiple high temperatures and cooling in the traditional vacuum evaporation process. Cycling process, thereby solving the attenuation of the strength and elongation of the polymer material film during the current collector manufacturing process, improving the tensile strength and elongation of the aluminum composite current collector, thereby further improving Improve battery safety, especially crush resistance and impact resistance.
  • hot pressing treatment can make the surface of the aluminum composite current collector smoother and increase the adhesion between the aluminum metal layer and the polymer material film.
  • the aluminum metal layer and the polymer material film can be fully pressed together to avoid melting of the aluminum metal layer.
  • the aluminum metal layer can be transferred to the polymer material film to form an aluminum composite current collector.
  • the thickness of the hot-pressed aluminum composite current collector can be 5 ⁇ m to 15 ⁇ m, for example, it can also be 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, or 14 ⁇ m.
  • the thickness of the aluminum metal layer is 0.3 ⁇ m to 3 ⁇ m.
  • it may also be 0.4 ⁇ m, 0.5 ⁇ m, 0.6 ⁇ m, 0.8 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, or 2.5 ⁇ m.
  • the thickness of the polymer material film may be 3 ⁇ m. ⁇ 10 ⁇ m, for example, it may also be 5 ⁇ m or 8 ⁇ m.
  • the material of the aluminum metal layer is preferably high-purity aluminum.
  • the purity of aluminum can be ⁇ 99.8%.
  • the bonding method is adhesive bonding; optionally, the adhesive can be any commonly used adhesive in this field, including, but not limited to, urea-formaldehyde resin adhesive, polyvinyl acetate adhesive, acrylic acid One or more of resin adhesives, polyacrylic resins, polyurethane adhesives, hot melt adhesives and epoxy resin adhesives, preferably acrylic resin adhesives and polyacrylic resins.
  • the adhesive in order to reduce costs while ensuring adhesion, can be coated with a thickness of 0.1 ⁇ m to 2 ⁇ m, preferably 0.3 ⁇ m to 0.6 ⁇ m before hot pressing.
  • the copper foil with an aluminum metal layer plated on the surface is plated with the aluminum metal layer on the surface of the copper foil using a vacuum evaporation process, wherein the vacuum evaporation process parameters include: vacuum degree ⁇ 10 - 2 Pa, the plating temperature is 600°C ⁇ 1600°C, the evaporation rate is 10m/min ⁇ 100m/min, and can also be 20m/min, 30m/min, 50m/min, 70m/min, 80m/min, 90m/ min. Among them, the evaporation rate refers to the moving speed of the copper foil.
  • the step of winding the copper foil coated with the aluminum metal layer is further included, wherein the winding tension may be 5N to 25N.
  • the thickness of the copper foil in order to reduce costs and avoid the problem of strip breakage during hot pressing caused by low strength, can be 3 ⁇ m to 16 ⁇ m, preferably 8 ⁇ m to 12 ⁇ m.
  • the polymer material film can be made of any material commonly used in the art, including but not limited to composites of insulating polymer materials and inorganic non-conductive fillers, and composites of insulating polymer materials and conductive fillers. , insulating polymer material or conductive polymer material, wherein the mass percentage of insulating polymer material in the composite formed by insulating polymer material and inorganic non-conductive filler is ⁇ 90%, and in the composite formed by insulating polymer material and conductive filler The mass percentage of insulating polymer material is ⁇ 90%.
  • the insulating polymer material may be selected from the group consisting of cellulose and its derivatives, starch and its derivatives, protein and its derivatives, polyvinyl alcohol and its cross-linked polymers, polyethylene glycol and its cross-linked polymers, polyethylene glycol and its cross-linked polymers.
  • the conductive polymer material may be selected from doped polysulfide nitride and/or doped polyacetylene.
  • the inorganic non-conductive filler can be selected from one or more of ceramic materials, glass materials and ceramic composite materials;
  • the conductive filler can be selected from at least one of conductive carbon materials, metal materials, and composite conductive materials.
  • the carbon material can be selected from carbon black, carbon nanotubes, graphite, acetylene black, and graphene.
  • the metal material can be selected from Nickel, iron, copper, aluminum, alloy, wherein the alloy contains one or more of nickel, iron, copper and aluminum, the composite conductive material can be selected from one of nickel-coated graphite powder and nickel-coated carbon fiber or more kind.
  • the present invention also provides an aluminum composite current collector prepared by the above-mentioned preparation method of an aluminum composite current collector.
  • the puncture strength of the aluminum composite current collector is ⁇ 300gf
  • the longitudinal tensile strength is ⁇ 350MPa
  • the transverse tensile strength is ⁇ 350MPa
  • the longitudinal elongation is ⁇ 80%
  • the transverse elongation is ⁇ 80%.
  • the puncture strength of the aluminum composite current collector is ⁇ 300gf
  • the longitudinal tensile strength is ⁇ 360MPa
  • the transverse tensile strength is ⁇ 360MPa
  • the longitudinal elongation is ⁇ 90%
  • the transverse elongation is ⁇ 90%.
  • the square resistance of the upper and lower surfaces of the aluminum composite current collector is both ⁇ 50 m ⁇ .
  • the surface roughness of the aluminum composite current collector is Rz ⁇ 5.
  • the present invention further provides a cathode, which includes the above-mentioned aluminum composite current collector and a cathode active material layer located on the aluminum composite current collector.
  • the cathode active material in the cathode active material layer can be any cathode active material known in the art, for example, it can be lithium cobalt oxide, lithium iron phosphate, NCA, NCM, lithium manganate, lithium nickelate, NCMA or cobalt-free cathode.
  • the method of peeling off the copper foil is to peel off the copper and aluminum composite current collector with a peeling knife.
  • the aluminum composite current collector is prepared through the aluminum composite current collector production equipment 10 in Figure 2 .
  • the aluminum composite current collector production equipment 10 includes a copper foil unwinding roller 11, an evaporation device 12, and a film unwinding roller 13. , adhesive adding device 14, hot pressing device 15, peeling knife 16, current collector winding roller 17, copper foil winding roller 18.
  • the two copper foil unwinding rollers 11 each unwind the copper foil 500, and then the two copper foils 500 pass through the evaporation device and one side of the copper foil 500 is plated with the aluminum metal layer 200.
  • the film unwinding roller 13 unwinds the polymer material film 100, and then the two adhesive adding devices 14 add adhesives to both sides of the polymer material film 100. agent.
  • Two strips of copper foil 500 coated with an aluminum metal layer and a polymer material film 100 with an adhesive on the surface pass through the hot pressing device 15 , and the aluminum metal layer 200 and the polymer material film 100 are bonded together.
  • the two peeling knives 16 respectively peel off the copper foil 500 and the aluminum metal layer 200 on both sides.
  • the aluminum composite current collector 400 formed by the aluminum metal layer 200 and the polymer material film 100 is rolled up by the current collector winding roller 17 and peeled off.
  • the last two copper foils 500 are independently rolled up by two copper foil winding rollers 18 .
  • the present invention provides a battery, which includes the above-mentioned positive electrode.
  • the battery may be a lithium-ion battery.
  • Another aspect of the present invention provides an electrical device, the power source of which includes the above-mentioned battery.
  • specific types of electrical devices include, but are not limited to, mobile terminals (mobile phones, mobile computers, etc.), smart wearables, power tools (electric drills, electric motors, etc.), electric vehicles, mobile power supplies, etc.
  • Positive electrode composed of the aluminum composite current collector prepared in step 1 and the lithium iron phosphate active material layer coated on the aluminum composite current collector;
  • Negative electrode graphite
  • Electrolyte liquid electrolyte with lithium hexafluorophosphate as solute
  • Positive electrode composed of the aluminum composite current collector prepared in step 1 and the lithium iron phosphate active material layer coated on the aluminum composite current collector;
  • Negative electrode graphite
  • Electrolyte liquid electrolyte with lithium hexafluorophosphate as solute
  • Positive electrode the aluminum composite current collector prepared in step 1 and the iron phosphate coated on the aluminum composite current collector Lithium active material layer composition;
  • Negative electrode graphite
  • Electrolyte liquid electrolyte with lithium hexafluorophosphate as solute
  • Table 2 shows the shrinkage rate of the copper foil after peeling off in Example 1 and the shrinkage rate of the PET base film after peeling off in Comparative Example 2.
  • the shrinkage rate of the PET base film after evaporation and hot pressing is greater than that of the copper foil. Therefore, the peeled copper foil can be used again to prepare the aluminum composite current collector of the present invention after being rolled up.
  • the PET base film cannot be used to prepare the aluminum composite current collector of the present invention due to size issues.
  • Performance test Measure the internal resistance of the lithium iron phosphate battery.
  • the measurement steps are: (1) Set the signal generator to generate an AC signal with a frequency of 1kHz; (2) Connect the positive and negative electrodes of the lithium iron phosphate battery to the load respectively. The resistor and signal generator form a closed circuit. (3) Excite the circuit, make the AC signal pass through the battery and load resistor, observe the voltage response curve on the oscilloscope, and record the stable amplitude and phase. (4) Calculate the internal resistance of the battery based on the response voltage amplitude and load resistance value. The internal resistance is equal to the voltage amplitude divided by the current amplitude.
  • the internal resistance of the lithium iron phosphate battery in Comparative Example 2 is greater than the internal resistance of the lithium iron phosphate battery in Example 1.
  • the reason is that part of the aluminum will remain in the process of peeling off the copper foil or PET base film. On the surface of the layer, the residual copper will increase the conductivity of the aluminum composite current collector, thereby reducing the internal resistance of the lithium iron phosphate battery, while the remaining PET base film will reduce the conductivity of the aluminum composite current collector, thereby reducing the internal resistance of the lithium iron phosphate battery. Internal resistance increases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本发明涉及电池技术领域,具体而言,涉及一种铝复合集流体及其制备方法和应用。铝复合集流体的制备方法包括以下步骤:提供表面镀有铝金属层的铜箔和聚合物材料薄膜;以及将聚合物材料薄膜的两面分别与铜箔表面的铝金属层相粘合,热压后剥离所述铜箔,热压的压力为50Mpa~100Mpa,温度为40℃~60℃,压合速度为30m/min~50m/min。上述铝复合集流体的拉伸强度和延伸率较高,有利于提升电池耐挤压性和抗冲击性。

Description

铝复合集流体及其制备方法和应用 技术领域
本发明涉及电池技术领域,具体而言,涉及一种铝复合集流体及其制备方法和应用。
背景技术
目前的金属复合集流体主要由金属层及位于金属层之间的高分子聚合物层构成,其制备方式往往是采用真空蒸镀工艺进行完成。目前真空蒸镀工艺需要在高分子薄膜上面多次蒸镀(比如可高达10~15次),然而多次蒸镀会致使高分子聚合物层经受多次高温-冷却的过程,导致高分子聚合物薄膜的强度和延伸率出现不同程度的衰减,最终使得金属复合集流体在电池制造、使用过程中出现断裂的现象,严重影响集流体和电池的应用。而且金属复合集流体的拉伸强度和延伸率的降低也会导致电池的耐挤压性、抗冲击性等性能的降低,易出现安全问题。
发明内容
基于此,有必要提供一种能够提高拉伸强度和延伸率,从而提升电池耐挤压性和抗冲击性的铝复合集流体及其制备方法和应用。
本发明一方面,提供一种铝复合集流体的制备方法,其包括以下步骤:
提供表面镀有铝金属层的铜箔和聚合物材料薄膜;以及
将所述聚合物材料薄膜的两面分别与所述铜箔表面的所述铝金属层粘合,热压后剥离所述铜箔,所述热压的压力为50Mpa~100Mpa,温度为40℃~60℃, 压合速度为30m/min~50m/min。
在其中一个实施例中,热压后的所述铝复合集流体的厚度为5μm~15μm;优选地,所述铝金属层的厚度为0.3μm~3μm,所述聚合物材料薄膜的厚度为3μm~10μm。
在其中一个实施例中,所述粘合的方式为粘结剂粘合;
可选地,所述粘结剂包括脲醛树脂胶粘剂、聚醋酸乙烯胶粘剂、丙烯酸树脂胶粘剂、聚丙烯酸树脂、聚氨酯胶粘剂、热熔胶粘剂及环氧树脂胶粘剂中的一种或多种。
在其中一个实施例中,所述表面镀有铝金属层的铜箔是采用真空蒸镀工艺在所述铜箔的表面镀覆所述铝金属层,其中,所述真空蒸镀工艺参数选自以下一个或多个:真空度<10-2Pa,镀料温度为600℃~1600℃,蒸镀速率为10m/min~100m/min。
在其中一个实施例中,所述铜箔的厚度为3μm~16μm。
在其中一个实施例中,所述聚合物材料薄膜的材质选自绝缘聚合物材料和无机非导电填料形成的复合物、绝缘聚合物材料和导电填料形成的复合物、绝缘聚合物材料或导电聚合物材料,其中,所述绝缘聚合物材料和无机非导电填料形成的复合物中所述绝缘聚合物材料的质量百分比≥90%,所述绝缘聚合物材料和导电填料形成的复合物中所述绝缘聚合物材料的质量百分比≥90%。
在其中一个实施例中,所述绝缘聚合物材料选自纤维素及其衍生物、淀粉及其衍生物、蛋白质及其衍生物、聚乙烯醇及其交联聚合物、聚乙二醇及其交联聚合物、聚酰胺、聚对苯二甲酸酯、聚酰亚胺、聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、芳纶、聚二甲酰苯二胺、丙烯腈-丁二烯-苯乙烯共聚物、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚对苯二甲酰对苯二胺、聚丙乙烯、聚 甲醛、环氧树脂、酚醛树脂、聚四氟乙烯、聚偏氟乙烯、硅橡胶及聚碳酸酯中的一种或多种;和/或
所述导电聚合物材料选自掺杂聚氮化硫和/或掺杂聚乙炔;和/或
所述无机非导电填料选自陶瓷材料、玻璃材料及陶瓷复合材料中的一种或多种;和/或
所述导电填料选自碳黑、碳纳米管、石墨、乙炔黑、石墨烯、镍、铁、铜、铝、合金、镍包覆的石墨粉及镍包覆的碳纤维中的一种或多种。
本发明一方面,还提供一种如上述所述的铝复合集流体的制备方法制得的铝复合集流体。
在其中一个实施例中,所述铝复合集流体具有以下一个或多个性能:穿刺强度≥300gf,纵向拉伸强度≥350MPa,横向拉伸强度≥350MPa,纵向延伸率≥80%,横向延伸率≥80%。
本发明另一方面,进一步提供一种正极,其包括上述所述的铝复合集流体及位于所述铝复合集流体上的正极活性材料层。
本发明再一方面,提供一种电池,其包括上述所述的正极。
本发明又一方面,提高一种用电装置,其电源包括上述所述的电池。
上述提供的铝复合集流体的制备方法,通过采用热压工艺以及以铜箔为基材进行铝金属层的转移,避免了传统真空蒸镀工艺中聚合物材料薄膜需多次经受高温-冷却的循环过程,从而解决了聚合物材料薄膜在集流体制造过程中强度和延伸率的衰减,提升了铝复合集流体的抗拉强度和延伸率,从而进一步提升了电池的安全性,尤其是耐挤压性和抗冲击性。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一个实施例中制得的铝复合集流体的结构示意图;
图2为本发明一个实施例中铝复合集流体的生产设备。
附图标记说明:100、聚合物材料薄膜;200、铝金属层;300、粘结剂层;400、铝复合集流体;500、铜箔;
10、铝复合集流体的生产设备;11、铜箔放卷辊;12、蒸镀装置;13、薄膜放卷辊;14、粘结剂添加装置;15、热压装置;16、剥离刀;17、集流体收卷辊;18、铜箔收卷辊。
具体实施方式
现将详细地提供本发明实施方式的参考,其一个或多个实例描述于下文。提供每一实例作为解释而非限制本发明。实际上,对本领域技术人员而言,显而易见的是,可以对本发明进行多种修改和变化而不背离本发明的范围或精神。例如,作为一个实施方式的部分而说明或描述的特征可以用于另一实施方式中,来产生更进一步的实施方式。
因此,旨在本发明覆盖落入所附权利要求的范围及其等同范围中的此类修改和变化。本发明的其它对象、特征和方面公开于以下详细描述中或从中是显而易见的。本领域普通技术人员应理解本讨论仅是示例性实施方式的描述,而非意在限制本发明更广阔的方面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术 领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。本文中所用的术语“包含”、“包括”、“具有”、“含有”或其任何其它变形,意在覆盖非排它性的包括。例如,包含所列要素的组合物、步骤、方法、制品或装置不必仅限于那些要素,而是可以包括未明确列出的其它要素或此种组合物、步骤、方法、制品或装置所固有的要素。
除了在操作实施例中所示以外或另外表明之外,所有在说明书和权利要求中表示成分的量、物化性质等所使用的数字理解为在所有情况下通过术语“约”来调整。例如,因此,除非有相反的说明,否则上述说明书和所附权利要求书中列出的数值参数均是近似值,本领域的技术人员能够利用本文所公开的教导内容寻求获得的所需特性,适当改变这些近似值。用端点表示的数值范围的使用包括该范围内的所有数字以及该范围内的任何范围,例如,1至5包括1、1.1、1.3、1.5、2、2.75、3、3.80、4和5等等。
本发明一方面,提供一种铝复合集流体的制备方法,其包括以下步骤:
提供表面镀有铝金属层的铜箔和聚合物材料薄膜;以及
将聚合物材料薄膜的两面分别与铜箔表面的铝金属层粘合,热压后剥离铜箔,其中热压的压力为50Mpa~100Mpa,温度为40℃~60℃,压合速度为30m/min~50m/min。
上述提供的铝复合集流体的制备方法,通过采用热压工艺以及以铜箔为基材进行铝金属层的转移,避免了传统真空蒸镀工艺中聚合物材料薄膜需多次经受高温-冷却的循环过程,从而解决了聚合物材料薄膜在集流体制造过程中强度和延伸率的衰减,提升了铝复合集流体的抗拉强度和延伸率,从而进一步提升 了电池的安全性,尤其是耐挤压性和抗冲击性。
而且热压处理可以使铝复合集流体表面平整增加的同时增加铝金属层与聚合物材料薄膜之间的粘合力。进一步通过调控热压的参数可以使铝金属层与聚合物材料薄膜充分压合的基础上,避免铝金属层的熔融。剥离铜箔后,可以将铝金属层转移至聚合物材料薄膜上,从而形成铝复合集流体。
在一些实施方式中,热压后的铝复合集流体的厚度可以为5μm~15μm,例如,还可以为6μm、7μm、8μm、9μm、10μm、11μm、12μm、13μm、14μm。优选地,铝金属层的厚度为0.3μm~3μm,例如,还可以为0.4μm、0.5μm、0.6μm、0.8μm、1μm、1.5μm、2μm、2.5μm,聚合物材料薄膜的厚度可以为3μm~10μm,例如,还可以为5μm、8μm。
在一些实施方式中,铝金属层的材质优选为高纯度铝,例如,铝的纯度可以≥99.8%。
在一些实施方式中,粘合的方式为粘结剂粘合;可选地,粘结剂可以为本领域任意常用粘结剂,包括,但不限于,脲醛树脂胶粘剂、聚醋酸乙烯胶粘剂、丙烯酸树脂胶粘剂、聚丙烯酸树脂、聚氨酯胶粘剂、热熔胶粘剂及环氧树脂胶粘剂中的一种或多种,优选为丙烯酸树脂胶粘剂、聚丙烯酸树脂。
在一些实施方式中,为了在降低成本的同时保证粘结力,在热压前,可以将粘合剂的厚度涂覆为0.1μm~2μm,优选为0.3μm~0.6μm。
在一些实施方式中,表面镀有铝金属层的铜箔是采用真空蒸镀工艺在所述铜箔的表面镀覆所述铝金属层,其中,真空蒸镀工艺参数包括:真空度<10-2Pa,镀料温度为600℃~1600℃,蒸镀速率为10m/min~100m/min,还可以为20m/min、30m/min、50m/min、70m/min、80m/min、90m/min。其中,蒸镀速率是指铜箔的移动速度。
在一些实施方式中,在铜箔表面真空蒸镀铝金属层后,还包括对镀有铝金属层的铜箔进行收卷的步骤,其中收卷的张力可以为5N~25N。
在一些实施方式中,为了降低成本,且避免强度过低导致热压过程中出现断带问题,铜箔的厚度可以为3μm~16μm,优选为8μm~12μm。
在一些实施方式中,聚合物材料薄膜的材质可以为本领域常用的任意材质,包括但不限于绝缘聚合物材料和无机非导电填料形成的复合物、绝缘聚合物材料和导电填料形成的复合物、绝缘聚合物材料或导电聚合物材料,其中,绝缘聚合物材料和无机非导电填料形成的复合物中绝缘聚合物材料的质量百分比≥90%,绝缘聚合物材料和导电填料形成的复合物中绝缘聚合物材料的质量百分比≥90%。
所述绝缘聚合物材料可以选自纤维素及其衍生物、淀粉及其衍生物、蛋白质及其衍生物、聚乙烯醇及其交联聚合物、聚乙二醇及其交联聚合物、聚酰胺、聚对苯二甲酸酯、聚酰亚胺、聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、芳纶、聚二甲酰苯二胺、丙烯腈-丁二烯-苯乙烯共聚物、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚对苯二甲酰对苯二胺、聚丙乙烯、聚甲醛、环氧树脂、酚醛树脂、聚四氟乙烯、聚偏氟乙烯、硅橡胶及聚碳酸酯中的一种或多种;
所述导电聚合物材料可以选自掺杂聚氮化硫和/或掺杂聚乙炔。
所述无机非导电填料可以选自陶瓷材料、玻璃材料及陶瓷复合材料中的一种或多种;
所述导电填料可以选自导电碳材料、金属材料、复合导电材料中的至少一种,其中,碳材料可以选自碳黑、碳纳米管、石墨、乙炔黑、石墨烯,金属材料可以选自镍、铁、铜、铝、合金、其中合金含有镍、铁、铜及铝中的一种或多种,复合导电材料可以选自镍包覆的石墨粉及镍包覆的碳纤维中的一种或多 种。
本发明一方面,还提供一种如上述所述的铝复合集流体的制备方法制得的铝复合集流体。
在一些实施方式中,铝复合集流体的穿刺强度≥300gf,纵向拉伸强度≥350MPa,横向拉伸强度≥350MPa,纵向延伸率≥80%,横向延伸率≥80%。
在一些实施方式中,铝复合集流体的穿刺强度≥300gf,纵向拉伸强度≥360MPa,横向拉伸强度≥360MPa,纵向延伸率≥90%,横向延伸率≥90%。
在一些实施方式中,铝复合集流体的上、下表面的方阻均≤50mΩ。
在一些实施方式中,铝复合集流体表面粗糙度Rz≤5。
本发明另一方面,进一步提供一种正极,其包括上述所述的铝复合集流体及位于所述铝复合集流体上的正极活性材料层。
在一些实施方式中,正极活性材料层中的正极活性材料可以为本领域公知的任意正极活性材料,例如,可以为钴酸锂、磷酸铁锂、NCA、NCM、锰酸锂、镍酸锂、NCMA或无钴正极。
在一些实施方式中,剥离所述铜箔的方法为:通过剥离刀将铜与铝复合集流体剥离。
具体而言,铝复合集流体通过图2的铝复合集流体的生产设备10制备,所述铝复合集流体的生产设备10包括铜箔放卷辊11、蒸镀装置12、薄膜放卷辊13、粘结剂添加装置14、热压装置15、剥离刀16、集流体收卷辊17、铜箔收卷辊18。
两个铜箔放卷辊11各自放卷铜箔500,然后两条铜箔500穿过蒸镀装置后铜箔500的一面镀上铝金属层200。薄膜放卷辊13放卷聚合物材料薄膜100,然后两个粘结剂添加装置14各自在聚合物材料薄膜100的两面分别添加粘结 剂。两条镀有铝金属层的铜箔500和表面有粘结剂的聚合物材料薄膜100穿过热压装置15,铝金属层200与聚合物材料薄膜100粘结在一起。然后两个剥离刀16各自将两侧的铜箔500与铝金属层200剥离,铝金属层200、聚合物材料薄膜100形成的铝复合集流体400被集流体收卷辊17收卷,而剥离后的两条铜箔500独立地被两条铜箔收卷辊18收卷。
本发明再一方面,提供一种电池,其包括上述所述的正极。
在一些实施方式中,电池可以为锂离子电池。
本发明又一方面,提高一种用电装置,其电源包括上述所述的电池。
在其中一个实施例中,用电装置的具体类型包括,但不限于移动终端(手机、移动电脑等)、智能穿戴、电动工具(电钻、电动机等)、电动汽车、移动电源等。
以下结合具体实施例和对比例对本发明作进一步详细的说明。
实施例1
1、铝复合集流体的制备
1)以厚度为8μm的铜箔作为基材,选用纯度为99.9%的铝为镀料,采用真空蒸镀在铜箔表面沉积厚度为1μm的铝金属层,收卷,放卷,制备镀铝铜箔;其中,真空蒸镀的工艺参数如下:真空度为0.5×10-2Pa,镀料温度为650℃,蒸镀速率为100m/min,收卷张力为5N,放卷张力为20N;
2)在6μm厚的PET薄膜的两面各涂覆一层厚度为0.3μm的丙烯酸树脂粘结剂,取两个上述制得的镀铝铜箔,通过粘结剂将镀铝铜箔的镀铝面与PET薄膜的两面粘合,即形成“三明治”结构的复合层;
3)将上述制得的“三明治”结构的复合层置于热压机中热压,热压的压力为80Mpa、温度为50℃、压合速度为40m/min。随后,将铜箔从铝金属层上剥 离,并进行收卷分切,制得8μm厚的铝复合集流体。在本实施例铝复合集流体的制备过程中,聚合物材料薄膜100、铝金属层200和粘结剂层300的位置关系如图1所示,其中,聚合物材料薄膜100为PET薄膜,粘结剂层300为丙烯酸树脂粘结剂层。对铝复合集流体进行相关性能测试,其测试结果如表1所示。对剥离后的铜箔进行相关性能测试,其测试结果如表2所示。
2、电池装配
正极:由步骤1中制得的铝复合集流体及涂覆在铝复合集流体上的磷酸铁锂活性材料层组成;
负极:石墨;
电解液:以六氟磷酸锂为溶质的液态电解液;
隔膜:聚乙烯(PE)微孔隔膜;
将上述各个部件装配成型号为100Ah的磷酸铁锂电池,并进行相关性能测试,测试结果如表3和表4所示。
实施例2
1)以厚度为12μm的铜箔作为基材,选用纯度为99.9%的铝为镀料,采用真空蒸镀在铜箔表面沉积厚度为2μm的铝金属层,收卷,放卷,制备镀铝铜箔;其中,真空蒸镀的工艺参数如下:真空度为0.8×10-2Pa,镀料温度为1000℃,蒸镀速率为80m/min,收卷张力为5N,放卷张力为20N;
2)在10μm厚的聚乙烯薄膜的两面各涂覆一层厚度为0.5μm的环氧树脂粘结剂,取两个上述制得的镀铝铜箔,通过粘结剂将镀铝铜箔的镀铝面与聚乙烯薄膜的两面粘合,即形成“三明治”结构的复合层;
3)将上述制得的“三明治”结构的复合层置于热压机中热压,热压的压力为50Mpa、温度为50℃、压合速度为30m/min。随后,将铜箔从铝金属层上剥 离,并进行收卷分切,制备14μm厚的铝复合集流体。
实施例3
1)以厚度为5μm的铜箔作为基材,选用纯度为99.9%的铝为镀料,采用真空蒸镀在铜箔表面沉积厚度为0.5μm的铝金属层,收卷,放卷,制备镀铝铜箔;其中,真空蒸镀的工艺参数如下:真空度为0.5×10-2Pa,镀料温度为600℃,蒸镀速率为50m/min,收卷张力为5N,放卷张力为20N;
2)在5μm厚的聚乙烯薄膜的两面各涂覆一层厚度为0.3μm的环氧树脂粘结剂,取两个上述制得的镀铝铜箔,通过粘结剂将镀铝铜箔的镀铝面与聚乙烯薄膜的两面粘合,即形成“三明治”结构的复合层;
3)将上述制得的“三明治”结构的复合层置于热压机中热压,热压的压力为80Mpa温度为50℃、压合速度为40m/min。随后,将铜箔从铝金属层上剥离,并进行收卷分切,制备6μm厚的铝复合集流体。
对比例1
本对比例与实施例1的制备方法不同,具体步骤如下:
1、铝复合集流体的制备
1)选用纯度为99.9%的铝为镀料,采用真空蒸镀在6μm厚的PET薄膜的两面各沉积厚度为1μm的铝金属层,收卷,制备8μm厚的铝复合集流体;其中,真空蒸镀的工艺参数如下:真空度为0.5×10-2Pa,镀料温度为650℃,蒸镀速率为100m/min,收卷张力为5N。对铝复合集流体进行相关性能测试,其测试结果如表1所示。
2、电池装配
正极:由步骤1中制得的铝复合集流体及涂覆在铝复合集流体上的磷酸铁锂活性材料层组成;
负极:石墨;
电解液:以六氟磷酸锂为溶质的液态电解液;
隔膜:聚乙烯(PE)微孔隔膜;
将上述各个部件装配成型号为100Ah的磷酸铁锂电池,并进行相关性能测试,测试结果如表3所示。
对比例2
本对比例与实施例1的制备方法不同,具体步骤如下:
1)以厚度为8μm的PET基膜作为基材,选用纯度为99.9%的铝为镀料,采用真空蒸镀在PET基膜表面沉积厚度为1μm的铝金属层,收卷,放卷,制备复合箔材;其中,真空蒸镀的工艺参数如下:真空度为0.5×10-2Pa,镀料温度为650℃,蒸镀速率为100m/min,收卷张力为5N,放卷张力为20N;
2)在6μm厚的PET薄膜的两面各涂覆一层厚度为0.3μm的丙烯酸树脂粘结剂,取两个上述制得的复合箔材,通过粘结剂将复合箔材的镀铝面与PET薄膜的两面粘合,即形成“三明治”结构的复合层;
3)将上述制得的“三明治”结构的复合层置于热压机中热压,热压的压力为80Mpa温度为50℃、压合速度为40m/min。随后,将PET基膜从铝金属层上剥离,并进行收卷分切,制得8μm厚的铝复合集流体。在本实施例铝复合集流体的制备过程中,聚合物材料薄膜100、铝金属层200和粘结剂层300的位置关系如图1所示,其中,聚合物材料薄膜100为PET薄膜,粘结剂层300为丙烯酸树脂粘结剂层。对剥离后的PET基膜进行相关性能测试,其测试结果如表2所示。
2、电池装配
正极:由步骤1中制得的铝复合集流体及涂覆在铝复合集流体上的磷酸铁 锂活性材料层组成;
负极:石墨;
电解液:以六氟磷酸锂为溶质的液态电解液;
隔膜:聚乙烯(PE)微孔隔膜;
将上述各个部件装配成型号为100Ah的磷酸铁锂电池,并进行相关性能测试,测试结果如表3所示。
表1实施例1和对比例1中制得的铝复合集流体相关性能测试
性能测试:
测量实施例1蒸镀前的铜箔宽度a和剥离后的铜箔宽度b,计算收缩率(收缩率=(a-b)/a);测量对比例2蒸镀前的PET基膜宽度c和剥离后的PET基膜宽度d,计算收缩率(收缩率=(c-d)/c))。
表2实施例1中剥离后的铜箔的收缩率和对比例2中剥离后的PET基膜的收缩率。
从表2可知,PET基膜在经过蒸镀和热压后的收缩率大于铜箔,因此剥离后的铜箔收卷后可再次用于本发明的铝复合集流体的制备,而剥离后的PET基膜因尺寸问题无法用于本发明的铝复合集流体的制备。
性能测试:
10PCS下电池挤压和重物冲击测试可以参见国标:GB18287_2000,测试结 果如表2所示。
表3实施例1和对比例1中制得的100Ah磷酸铁锂电池的相关性能测试
性能测试:测测量磷酸铁锂电池的内阻,测量步骤为:(1)将信号发生器设置为产生交流信号,频率为1kHz;(2)将磷酸铁锂电池的正极和负极分别连接到负载电阻和信号发生器,形成一个闭合的电路。(3)激励电路,使交流信号通过电池及负载电阻,观察示波器上的电压响应曲线,记录稳定后的幅度和相位。(4)根据响应的电压幅度和负载电阻值计算电池的内阻,内阻等于电压幅度除以电流幅度。
表4实施例1和对比例2中制得的100Ah磷酸铁锂电池的相关性能测试。
根据表4,对比例2中的磷酸铁锂电池的内阻大于实施例1中的磷酸铁锂电池的内阻,其原因在于:剥离铜箔或PET基膜的过程中会有部分残留在铝层表面,残留的铜的会提升铝复合集流体的导电性,从而降低磷酸铁锂电池的内阻,而残留的PET基膜会降低铝复合集流体的导电性,从而使磷酸铁锂电池的内阻升高。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的 普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种铝复合集流体的制备方法,其特征在于,包括以下步骤:
    提供表面镀有铝金属层的铜箔和聚合物材料薄膜;以及
    将所述聚合物材料薄膜的两面分别与所述铜箔表面的所述铝金属层粘合,热压后剥离所述铜箔,所述热压的压力为50Mpa~100Mpa,温度为40℃~60℃,压合速度为30m/min~50m/min。
  2. 根据权利要求1所述的铝复合集流体的制备方法,其特征在于,热压后的所述铝复合集流体的厚度为5μm~15μm;优选地,所述铝金属层的厚度为0.3μm~3μm,所述聚合物材料薄膜的厚度为3μm~10μm。
  3. 根据权利要求1所述的铝复合集流体的制备方法,其特征在于,所述粘合的方式为粘结剂粘合;
    可选地,所述粘结剂包括脲醛树脂胶粘剂、聚醋酸乙烯胶粘剂、丙烯酸树脂胶粘剂、聚丙烯酸树脂、聚氨酯胶粘剂、热熔胶粘剂及环氧树脂胶粘剂中的一种或多种。
  4. 根据权利要求1所述的铝复合集流体的制备方法,其特征在于,所述表面镀有铝金属层的铜箔是采用真空蒸镀工艺在所述铜箔的表面镀覆所述铝金属层,其中,所述真空蒸镀工艺参数选自以下一个或多个:真空度<10-2Pa,镀料温度为600℃~1600℃,蒸镀速率为10m/min~100m/min。
  5. 根据权利要求4所述的铝复合集流体的制备方法,其特征在于,所述铜箔的厚度为3μm~16μm。
  6. 根据权利要求1~5任一项所述的铝复合集流体的制备方法,其特征在于,所述聚合物材料薄膜的材质选自绝缘聚合物材料和无机非导电填料形成的复合物、绝缘聚合物材料和导电填料形成的复合物、绝缘聚合物材料或导电聚合物材料,其中,所述绝缘聚合物材料和无机非导电填料形成的复合物中所述绝缘 聚合物材料的质量百分比≥90%,所述绝缘聚合物材料和导电填料形成的复合物中所述绝缘聚合物材料的质量百分比≥90%。
  7. 根据权利要求6所述的铝复合集流体的制备方法,其特征在于,所述绝缘聚合物材料选自纤维素及其衍生物、淀粉及其衍生物、蛋白质及其衍生物、聚乙烯醇及其交联聚合物、聚乙二醇及其交联聚合物、聚酰胺、聚对苯二甲酸酯、聚酰亚胺、聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、芳纶、聚二甲酰苯二胺、丙烯腈-丁二烯-苯乙烯共聚物、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚对苯二甲酰对苯二胺、聚丙乙烯、聚甲醛、环氧树脂、酚醛树脂、聚四氟乙烯、聚偏氟乙烯、硅橡胶及聚碳酸酯中的一种或多种;和/或
    所述导电聚合物材料选自掺杂聚氮化硫和/或掺杂聚乙炔;和/或
    所述无机非导电填料选自陶瓷材料、玻璃材料及陶瓷复合材料中的一种或多种;和/或
    所述导电填料选自碳黑、碳纳米管、石墨、乙炔黑、石墨烯、镍、铁、铜、铝、合金、镍包覆的石墨粉及镍包覆的碳纤维中的一种或多种。
  8. 一种如权利要求1~7任一项所述的铝复合集流体的制备方法制得的铝复合集流体。
  9. 根据权利要求8所述的铝复合集流体,其特征在于,所述铝复合集流体具有以下一个或多个性能:穿刺强度≥300gf,纵向拉伸强度≥350MPa,横向拉伸强度≥350MPa,纵向延伸率≥80%,横向延伸率≥80%。
  10. 一种正极,其特征在于,包括权利要求9所述的铝复合集流体及位于所述铝复合集流体上的正极活性材料层。
  11. 一种电池,其特征在于,包括权利要求10所述的正极。
  12. 一种用电装置,其特征在于,所述用电装置的电源包括权利要求11所述 的电池。
PCT/CN2023/107437 2022-07-14 2023-07-14 铝复合集流体及其制备方法和应用 WO2024012564A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210827694.0A CN115149000A (zh) 2022-07-14 2022-07-14 铝复合集流体及其制备方法和应用
PCT/CN2022/105809 WO2024011535A1 (zh) 2022-07-14 2022-07-14 铝复合集流体及其制备方法和应用
CNPCT/CN2022/105809 2022-07-14
CN202210827694.0 2022-07-14

Publications (1)

Publication Number Publication Date
WO2024012564A1 true WO2024012564A1 (zh) 2024-01-18

Family

ID=89535654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107437 WO2024012564A1 (zh) 2022-07-14 2023-07-14 铝复合集流体及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2024012564A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157263A1 (ja) * 2008-06-23 2009-12-30 シャープ株式会社 リチウムイオン二次電池
CN110249461A (zh) * 2017-07-26 2019-09-17 株式会社Lg化学 锂电极的制造方法
CN110676460A (zh) * 2018-12-29 2020-01-10 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置
CN112771692A (zh) * 2020-03-30 2021-05-07 宁德新能源科技有限公司 复合集流体、电极极片、电化学装置及电子装置
JP2021130208A (ja) * 2020-02-18 2021-09-09 東レフィルム加工株式会社 アルミニウム蒸着フィルム及びそれを用いた積層体
CN115149000A (zh) * 2022-07-14 2022-10-04 扬州纳力新材料科技有限公司 铝复合集流体及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157263A1 (ja) * 2008-06-23 2009-12-30 シャープ株式会社 リチウムイオン二次電池
CN110249461A (zh) * 2017-07-26 2019-09-17 株式会社Lg化学 锂电极的制造方法
CN110676460A (zh) * 2018-12-29 2020-01-10 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置
JP2021130208A (ja) * 2020-02-18 2021-09-09 東レフィルム加工株式会社 アルミニウム蒸着フィルム及びそれを用いた積層体
CN112771692A (zh) * 2020-03-30 2021-05-07 宁德新能源科技有限公司 复合集流体、电极极片、电化学装置及电子装置
CN115149000A (zh) * 2022-07-14 2022-10-04 扬州纳力新材料科技有限公司 铝复合集流体及其制备方法和应用

Similar Documents

Publication Publication Date Title
JP6796114B2 (ja) 集電体、その極シート及び電気化学デバイス
JP7169269B2 (ja) 集電体、その極シートと電気化学デバイス
WO2021195855A1 (zh) 复合集流体、电极极片、电化学装置及电子装置
WO2022267764A1 (zh) 一种正极集流体和锂离子电池
WO2022242255A1 (zh) 电极极片、制备方法、复合集流体、电池及电子设备
CN113782840B (zh) 一种全固态电芯及其制备方法和固态电池
WO2004023584A1 (ja) 複合集電体
JP5993726B2 (ja) リチウムイオン二次電池
CN112750980A (zh) 一种负极片及其制备方法以及无隔膜电芯
US20220352522A1 (en) Positive plate, electrochemical device comprising same and apparatus thereof
JP2003282064A (ja) 複合集電体
KR101664945B1 (ko) 전극 조립체의 제조방법 및 이를 이용하여 제조된 전극 조립체
CN115149000A (zh) 铝复合集流体及其制备方法和应用
CN114335692B (zh) 一种电化学装置及电子装置
CN113972422A (zh) 电化学装置和电子装置
WO2024164808A1 (zh) 一种高安全复合集流体、非水性二次电池及该集流体的制备方法
CN215578623U (zh) 一种负极片以及无隔膜电芯
CN113066958B (zh) 一种集流体及其应用
CN213366751U (zh) 一种耐腐蚀的极耳用镀镍钢带
WO2024012564A1 (zh) 铝复合集流体及其制备方法和应用
WO2024011535A1 (zh) 铝复合集流体及其制备方法和应用
CN217387475U (zh) 一种极芯、电池装置及电子设备
CN214528807U (zh) 一种锂离子电池用抗刺穿防跌落热熔双面胶
CN115842091A (zh) 一种电池极片、电芯、电池、电池模块、电池包及用电装置
CN218351505U (zh) 一种复合集流体、电极极片及电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839053

Country of ref document: EP

Kind code of ref document: A1