WO2024009833A1 - 導電性樹脂組成物、電磁波シールド層、及び電子部品 - Google Patents

導電性樹脂組成物、電磁波シールド層、及び電子部品 Download PDF

Info

Publication number
WO2024009833A1
WO2024009833A1 PCT/JP2023/023680 JP2023023680W WO2024009833A1 WO 2024009833 A1 WO2024009833 A1 WO 2024009833A1 JP 2023023680 W JP2023023680 W JP 2023023680W WO 2024009833 A1 WO2024009833 A1 WO 2024009833A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
conductive resin
component
composition according
mass
Prior art date
Application number
PCT/JP2023/023680
Other languages
English (en)
French (fr)
Inventor
喬 山口
崇史 米田
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Publication of WO2024009833A1 publication Critical patent/WO2024009833A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • electronic components such as power amplifiers, Wi-Fi/Bluetooth modules, and flash memories are mounted on circuit boards built into electronic devices such as mobile phones, smartphones, notebook computers, and tablet terminals.
  • electronic components may malfunction due to external electromagnetic waves.
  • electronic components may become a source of electromagnetic noise, causing other electronic components to malfunction.
  • conductive particles such as silver and copper have low electrical resistance and are incorporated into conductive inks used in the manufacture of electronic circuits and coating agents for forming shield layers that shield electromagnetic waves in electronic components.
  • U.S. Pat. No. 5,001,302 discloses a conductive ink that does not contain polymeric and resinous binders, but contains nanosilver particles and an adhesion promoter.
  • Patent Document 2 discloses a technique of spraying and coating the surface of an electronic component with a coating agent.
  • the conventional spray coating agent that forms the electromagnetic shielding layer deteriorates over time in a high-temperature, high-humidity environment, so there is a risk that the adhesion after the reliability test may deteriorate.
  • an object of the present invention is to provide a conductive resin composition that can form an electromagnetic shielding layer that has a high electromagnetic shielding effect and has excellent adhesion after a reliability test.
  • the means for solving the above problems are as follows, and the present invention includes the following aspects.
  • the indentation elastic modulus EIT determined from the load-displacement curve obtained by the nanoindentation test according to the following procedure is 10 to 20 GPa.
  • Conductive resin composition [procedure] (1) A conductive resin composition is applied onto a slide glass and heated at 200° C. for 20 minutes to form a coating film with a thickness of 50 ⁇ m to obtain a test piece. (2) Apply a load to the coating surface of the test piece obtained in (1) using a Berkovich type indenter over 10 seconds to a maximum load of 200 mN, hold the maximum load for 10 seconds, and then remove it over 10 seconds.
  • the flexible skeleton-containing epoxy resin has a part of the molecule selected from a polyoxyalkylene skeleton, a polyethylene glycol skeleton, a polypropylene glycol skeleton, a polyether skeleton, a polypropylene oxide skeleton, a urethane skeleton, a polybutadiene skeleton, and a nitrile rubber skeleton.
  • An electronic component comprising the electromagnetic shielding layer according to [18].
  • a conductive resin composition that can form an electromagnetic shielding layer that has a high electromagnetic shielding effect and has excellent adhesion after a reliability test.
  • FIG. 1 is a diagram showing a DSC chart of a composition containing component (B), component (D), and component (E) in Example 1 and Example 2 of the conductive resin composition according to an embodiment of the present invention. It is.
  • the conductive resin composition according to the embodiment of the present invention is a conductive resin composition containing silver-containing particles as the component (A) and at least one of a thermosetting resin and a thermoplastic resin as the component (B). There it is,
  • the indentation modulus EIT determined from the load-displacement curve obtained by the nanoindentation test according to the following procedure is 10 to 20 GPa.
  • the indentation modulus E IT represents the ratio of stress to strain in the compression direction when a Berkovich indenter is indented.
  • the conductive resin composition according to the embodiment of the present invention has an indentation modulus E IT of 10 to 20 GPa measured by the above specific procedure, so that thermal linear expansion of the adherend and the cured product (electromagnetic shielding layer) By absorbing the internal stress caused by the difference in coefficients by the cured product (electromagnetic shielding layer), adhesion is maintained even after a reliability test in a high-temperature, high-humidity environment, making it possible to form an electromagnetic shielding layer with excellent durability.
  • E IT indentation modulus
  • the indentation modulus E IT of the conductive resin composition according to the embodiment of the present invention needs to be 10 to 20 GPa, and from the viewpoint of adhesion of the electromagnetic shielding layer obtained by the conductive resin composition, it is 12 GPa or more. It is preferably 14 GPa or more, and more preferably 14 GPa or more. Further, from the viewpoint of adhesion of the electromagnetic shielding layer obtained from the conductive resin composition, it is more preferably 18 GPa or less.
  • the indentation modulus EIT is more preferably 12 to 18 GPa, particularly preferably 14 to 18 GPa, from the viewpoint of adhesion.
  • the conductive resin composition according to the embodiment of the present invention may be used for spray application.
  • the conductive resin composition according to the embodiment of the present invention may be a spray coating agent for electromagnetic shielding.
  • an electromagnetic shielding layer can be formed using the conductive resin composition according to the embodiment of the present invention.
  • the conductive resin composition according to the embodiment of the present invention contains silver-containing particles as the component (A).
  • Silver-containing particles are included to shield electromagnetic waves.
  • Silver-containing particles (hereinafter sometimes referred to as "(A) component” or “(A) silver-containing particles”) are not particularly limited, but include silver particles such as silver powder, alloy particles containing silver, carbon particles, etc. These include silver-coated particles in which non-silver particles are coated with silver, and silver-coated particles in which single or alloy metal particles of ferromagnetic material such as nickel or iron are coated with silver.
  • the silver-containing particles (A) preferably contain metal particles such as silver particles or alloy particles containing silver, and more preferably contain silver particles. This is because the electrical conductivity of silver is higher than that of other metals. (A) By including silver particles as the silver-containing particles, it is possible to obtain a conductive resin composition that exhibits a higher electromagnetic shielding effect.
  • the silver-containing particles are preferably nano-order silver particles from the viewpoint of sinterability and spray applicability.
  • the average particle diameter (D50) of the silver-containing particles is preferably 1000 nm or less, more preferably 500 nm or less, even more preferably 350 nm or less, and particularly preferably 150 nm or less. Moreover, it is preferably 50 nm or more, more preferably 80 nm or more, and even more preferably 100 nm or more.
  • the average particle diameter (D50) of the silver-containing particles is preferably from 50 nm to 1000 nm, more preferably from 80 nm to 500 nm, and even more preferably from 100 nm to 350 nm, from the viewpoint of sinterability and spray coating properties.
  • the thickness is preferably 100 nm to 150 nm, particularly preferably 100 nm to 150 nm.
  • component (A) preferably contains silver particles having an average particle size of 100 nm or more and 350 nm or less.
  • the average particle size of the silver-containing particles can be measured, for example, by observation using a scanning electron microscope (SEM). For example, obtain an SEM photograph or SEM image of (A) silver-containing particles at a magnification of 10,000 times to 20,000 times, and shape the outline of the (A) silver-containing particles present in the SEM photograph or SEM image into a perfect circle.
  • the diameter of the perfect circle can be measured by approximating to , and the arithmetic mean value of the diameters of 50 arbitrary (A) silver-containing particles can be taken as the average particle diameter.
  • the shape of the silver-containing particles is not particularly limited, and may be any shape such as spherical, granular, flaky, acicular, or scaly.
  • the average value of the long axis of the scaly or acicular shape can be taken as the average particle diameter.
  • the silver-containing particles (A) are preferably spherical.
  • the method for producing the silver-containing particles is not particularly limited, and can be produced by, for example, a reduction method, a pulverization method, an electrolysis method, an atomization method, a heat treatment method, or a combination thereof.
  • silver-containing particles can also be produced by these production methods.
  • Flake-shaped silver-containing particles can be produced, for example, by crushing spherical or granular silver-containing particles using a ball mill or the like.
  • Silver-containing particles are specifically silver powder manufactured by Metalor Technologies USA (Product name: P620-7, P620-24), silver powder manufactured by DOWA Electronics Co., Ltd. (Product name: Ag nano powder) -2) etc. can be used.
  • Silver-containing particles are preferably contained in the conductive resin composition in a range of 35% by mass or more and 99% by mass or less, and 40% by mass or more and 98% by mass or less, in terms of solid content. It may be contained within the range of 45% by mass or more and 92% by mass or less.
  • solid content equivalent refers to a resin composition excluding volatile components such as solvents.
  • (A) Silver-containing particles may be prepared by using a masterbatch in which they are previously dispersed in (C) the solvent described below.
  • the masterbatch is prepared by dispersing (A) silver-containing particles in a (C) solvent in advance and making it into a slurry.
  • the shield layer has a dense film structure and can improve adhesion to the surface of electronic components and the like.
  • the conductive resin composition further contains a solvent as the (C) component as described below, the (C) solvent is added to the conductive resin composition in addition to the (C) solvent contained in the masterbatch.
  • a slurry containing silver particles product name: nanoAg (SNM-007 (NET 92%)
  • DOWA Electronics Co., Ltd. can be used as the masterbatch.
  • thermosetting resin or thermoplastic resin The conductive resin composition according to the embodiment of the present invention has at least one type selected from thermosetting resins and thermoplastic resins (hereinafter referred to as “component (B)” or “resin (B)”) as component (B). ).
  • the resin imparts adhesiveness and curability to the conductive resin composition.
  • the resin may include both a thermosetting resin and a thermoplastic resin.
  • the content of the resin is preferably in the range of 0.1 parts by mass or more and 20 parts by mass or less, and 1 part by mass or more and 10 parts by mass or less, based on 100 parts by mass of the (A) silver-containing particles. It is more preferably within the range, more preferably 1.5 parts by mass or more and 8 parts by mass or less, particularly preferably 2 parts by mass or more and 7 parts by mass or less.
  • the conductive resin composition covers the entire object. It becomes easier to form an electromagnetic shielding layer that adheres closely and is substantially uniform.
  • thermosetting resins and thermoplastic resins can be used, but from the viewpoint of adhesiveness and curability, it is 0.5% by mass or more in the conductive resin composition. It is preferably contained within a range of 10% by mass or less, and may be contained within a range of 0.8% by mass or more and 4.8% by mass or less.
  • the resin (B) contained in the conductive resin composition preferably contains a thermosetting resin.
  • thermosetting resins include epoxy resins. That is, in the conductive resin composition according to the embodiment of the present invention, it is preferable that the component (B) contains an epoxy resin.
  • the thermosetting resin may be used alone or in combination of two or more.
  • Epoxy resin preferably has at least one epoxy group or glycidyl group in its molecule and is liquid at room temperature.
  • Epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, hydrogenated bisphenol type epoxy resin, alicyclic epoxy resin, alcohol ether type epoxy resin, cycloaliphatic type epoxy resin, and fluorene type epoxy resin. Examples include resins, siloxane-based epoxy resins, aminophenol-type epoxy resins, and cresol novolac-type epoxy resins.
  • the epoxy equivalent is preferably 100 to 400 g/eq, more preferably 180 to 350 g/eq, from the viewpoint of curability and elastic modulus of the cured product.
  • the epoxy equivalent is within this range, the curability of the resin is controlled, the adhesion to the adherend is improved, and electrical conductivity and shielding properties are easily compatible. If the epoxy equivalent of the epoxy resin is 100 g/eq or more, the amount of polar reactive groups will be sufficient, the adhesion to metal will be improved, and the curing speed of the resin will be accelerated. This can prevent the silver-containing particles from forming a conductive path.
  • the epoxy resin has excellent reactivity, improves conductivity and shielding properties, and suppresses deterioration of adhesion and durability even if the resin is insufficiently cured. can do.
  • component (B) contains a flexible skeleton-containing epoxy resin.
  • the epoxy resin may be an epoxy resin having a flexible skeleton (epoxy resin containing a flexible skeleton), and the conductive resin composition may contain an epoxy resin having a flexible skeleton as the (B) resin.
  • the conductive resin composition contains an epoxy resin having a flexible skeleton as the resin (B), when a coating film is formed from the conductive resin composition, its flexibility increases, and the indentation modulus E IT increases. This makes it easier to specify a specific range.
  • the epoxy resin having a flexible skeleton may be contained in the resin (B) as a main ingredient.
  • the epoxy resin having a flexible skeleton has two or more epoxy groups in one molecule, and a part of the molecule includes a polyoxyalkylene skeleton, a polyethylene glycol skeleton, a polyprorepylene glycol skeleton, Epoxy resins containing at least one flexible skeleton selected from polyether skeletons, polypropylene oxide skeletons, urethane skeletons, polybutadiene skeletons, and nitrile rubber skeletons are preferred.
  • An epoxy resin having a flexible skeleton has two or more epoxy groups in one molecule, and a part of the molecule includes a polyoxyalkylene skeleton, a polyethylene glycol skeleton, a polypropylene glycol skeleton, a polyether skeleton, and a polypropylene oxide skeleton.
  • an epoxy resin containing at least one flexible skeleton selected from a polypropylene oxide skeleton, a urethane skeleton, and a polybutadiene skeleton.
  • components without flexible skeletons such as bisphenol A epoxy resin and bisphenol F epoxy resin can be included in the entire base resin, from the viewpoint of setting the indentation modulus EIT within a specific range, these components should be added to the base resin as a whole.
  • the proportion of the epoxy resin component having a flexible skeleton is preferably 50% by mass or less, and the proportion of the epoxy resin component having a flexible skeleton is preferably 50% by mass or more, and 90% by mass or more based on the total amount of epoxy resin. More preferably, it is 100% by mass.
  • the indentation modulus of the conductive resin composition can be easily controlled within a specific range, which contributes to increasing the adhesion of the electromagnetic shielding layer formed from the conductive resin composition.
  • Examples of commercially available epoxy resins include bisphenol F type epoxy resin (product name: YDF8170) manufactured by Nippon Steel Sumitomo Chemical Co., Ltd., bisphenol A type epoxy resin (product name: EXA-850CRP) manufactured by DIC Corporation, and manufactured by DIC Corporation.
  • Bisphenol A type bisphenol F type mixed epoxy resin (product name: EXA-835LV), aminophenol type epoxy resin manufactured by Mitsubishi Chemical Corporation (grade: JER630), cresol novolac type epoxy resin manufactured by DIC Corporation (product name: Epicron N665) -EXP), polypropylene oxide modified epoxy resin manufactured by ADEKA Corporation (product name: EP4010S), polybutadiene skeleton-containing epoxy resin manufactured by Daicel Corporation (product name: PB3600), urethane skeleton-containing epoxy resin manufactured by ADEKA Corporation (product name: EPU) 7N), etc.
  • the (B) resin contained in the conductive resin composition may include a thermoplastic resin.
  • the resin (B) contained in the conductive resin composition contains a thermoplastic resin
  • examples of the thermoplastic resin include polystyrene resin, acrylic resin, polycarbonate resin, polyamide resin, polyamideimide resin, and a glass transition temperature of 25°C.
  • At least one type selected from the group consisting of thermoplastic elastomers which are as follows and which are liquid or dissolved in an organic solvent can be mentioned.
  • the acrylic resin is not particularly limited, and examples include polymers obtained by polymerizing one or more monomers selected from acrylic acid, methacrylic acid, acrylic esters, and methacrylic esters.
  • a preferred acrylic resin is a polymer obtained by polymerizing acrylic acid or methacrylic acid.
  • the polycarbonate resin is not particularly limited, and a polymer obtained by a phosgene method in which a dihydroxydiaryl compound and phosgene are reacted, or a transesterification method in which a dihydroxydiaryl compound and a carbonate ester such as diphenyl carbonate are reacted can be used. can.
  • Polyamide resins are not particularly limited, and include polymers containing amide bonds (-NH-CO-) in the main chain of the polymer, such as nylon 6, nylon 66, copolymerized nylon, and N-methoxymethylated nylon. Examples include modified nylons such as:
  • the polyamide-imide resin is not particularly limited, and examples thereof include those obtained by mixing and polycondensing tricarboxylic acid anhydride with a diamine compound or diisocyanate.
  • thermoplastic elastomer having a glass transition temperature of 25° C. or lower and in a liquid state or in a liquid state dissolved in an organic solvent examples include acrylic rubber, butadiene rubber, silicone rubber, and nitrile rubber.
  • thermoplastic elastomer a commercially available product manufactured by a known method may be used, and examples of the commercially available product include carboxyl-terminated butadiene nitrile rubber (product name: HYPRO CTBN 1300 ⁇ 13) manufactured by HUNTSMAN Co., Ltd. Ru.
  • the conductive resin composition according to the embodiment of the present invention may further contain a solvent (hereinafter sometimes referred to as "component (C)” or “(C) solvent”) as component (C). good.
  • component (C) component (C)
  • component (C) solvent component (C)
  • the conductive resin composition according to the embodiment of the present invention may further contain a solvent (hereinafter sometimes referred to as "component (C)” or “(C) solvent”) as component (C). good.
  • component (C) solvent may be used as a solvent for producing a masterbatch.
  • the (C) solvent used in the conductive resin composition according to the embodiment of the present invention may be one type of (C) solvent, or may contain two or more types of (C) solvents.
  • the amount of the solvent (C) contained in the masterbatch containing the silver-containing particles may be any amount as long as the sedimentation of the (A) silver-containing particles can be suppressed and the slurry state can be maintained.
  • the amount of the (C) solvent contained in the conductive resin composition is preferably in the range of 6 parts by mass or more and 100 parts by mass or less, more preferably 7 parts by mass, based on 100 parts by mass of the (A) silver-containing particles. Parts by weight or more and 50 parts by weight or less, particularly preferably 8 parts by weight or more and 30 parts by weight or less.
  • the content of the (C) solvent in the conductive resin composition using the masterbatch is (A) 4 parts by mass or more and 100 parts by mass or less, 5 parts by mass or more and 80 parts by mass or less, 6 parts by mass or more and 70 parts by mass or less, 7 parts by mass or more and 25 parts by mass or less, based on 100 parts by mass of the (A) silver-containing particles. As long as it is within the range.
  • the conductive resin composition according to the embodiment of the present invention further includes a curing agent (hereinafter sometimes referred to as "component (D)” or “curing agent (D)”) as component (D). You can stay there.
  • component (D) a curing agent
  • the resin (B) contains a thermosetting resin
  • the conductive resin composition further contains a curing agent (D). That is, in the conductive resin composition, it is preferable that (B) the resin contains a thermosetting resin and further contains (D) a curing agent.
  • the curing agent preferably contains at least one selected from the group consisting of acid anhydride curing agents, phenol curing agents, amine curing agents, and imidazole curing agents; It is more preferable to contain at least one selected from a curing agent, a phenolic curing agent, and an amine curing agent, and it is even more preferable to contain a phenolic curing agent.
  • the curing agent may be used alone or in combination of two or more. At least one type of (D) curing agent may be used as the (D) curing agent, and the other type may be used as the below-mentioned (E) curing accelerator.
  • acid anhydride curing agents examples include phthalic anhydride, maleic anhydride, dodecenylsuccinic anhydride, trimellitic anhydride, benzophenonetetracarboxylic dianhydride, tetrahydrophthalic anhydride, and methyltetrahydrophthalic anhydride. , methylbutenyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, and the like.
  • phenolic curing agent is a phenol resin
  • phenol resin monomers, oligomers, and polymers in general having two or more phenolic hydroxyl groups that can react with an epoxy resin can be used.
  • the phenolic curing agent it is preferable that it is a liquid phenolic curing agent (liquid phenol resin).
  • liquid phenolic curing agent liquid phenol resin
  • phenol resin examples include resol type phenol resin, phenol novolak resin, cresol novolak resin, bisphenol A type novolak resin, and triazine-modified phenol novolak resin.
  • commercially available products include novolac type phenol resin (product name: RESITOP PSM4324) manufactured by Gun-Ei Chemical Co., Ltd. and liquid phenol resin (product name: XPL4437E) manufactured by Gun-Ei Chemical Co., Ltd.
  • amine curing agent examples include aliphatic polyamines such as diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, trimethylhexamethylenediamine, and 2-methylpentamethylenediamine, isophoronediamine, 1,3-bisaminomethylcyclohexane, Bis(4-aminocyclohexyl)methane, norbornenediamine, alicyclic polyamines such as 1,2-diaminocyclohexane, piperazine such as N-aminoethylpiperazine, 1,4-bis(2-amino-2-methylpropyl)piperazine, etc.
  • aliphatic polyamines such as diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, trimethylhexamethylenediamine, and 2-methylpentamethylenediamine, isophoronediamine, 1,3-bisaminomethylcyclohexane, Bis(4-aminocyclohexy
  • Aromatic polyamines such as diaminodiphenylmethane, m-phenylenediamine, m-xylenediamine, diaminodiphenylsulfone, diethyltoluenediamine, trimethylene bis(4-aminobenzoate), polytetramethylene oxide di-p-aminobenzoate, etc.
  • Examples include polyamines.
  • Commercially available products include 3,3'-diethyl-4,4'-diaminodiphenylmethane (product name: KAYAHARD AA (HDAA) manufactured by Nippon Kayaku Co., Ltd.) and aromatic amines manufactured by Albemarle Japan Co., Ltd. (product name: Etacure 100).
  • imidazole curing agents examples include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl -2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole and the like.
  • Modified imidazole curing agents can also be used. Specific examples include epoxy-imidazole adduct compounds and acrylate-imidazole adduct compounds. Commercially available products include acrylate-imidazole adduct compound (product name: EH2021) manufactured by ADEKA Corporation.
  • the amount of (D) curing agent varies depending on the type of epoxy resin and the type of (D) curing agent. Suitable blending amounts are described below depending on the type of curing agent (D).
  • the ratio of the acid anhydride equivalent (g/eq) of the (D) curing agent to the epoxy equivalent (g/eq) of the epoxy resin is preferably 0.05 to 10, more preferably 0.1 to 5, even more preferably 0.5 to 3.
  • the ratio of the hydroxyl group equivalent (g/eq) of the phenolic curing agent to the epoxy equivalent (g/eq) of the epoxy resin (hydroxyl group equivalent/epoxy equivalent) is preferably is preferably 0.01 to 5, more preferably 0.04 to 1.5, even more preferably 0.06 to 1.2.
  • the ratio of the amine value (mgKOH/g) of the amine curing agent to the epoxy equivalent (g/eq) of the epoxy resin (amine value/epoxy equivalent) is preferably is preferably 0.001 to 3, more preferably 0.01 to 2, even more preferably 0.05 to 1.5.
  • the amine value refers to the number of mg of potassium hydroxide in the same mole as hydrochloric acid required to neutralize 1 g of solid content of the amine curing agent.
  • the imidazole-based curing agent is preferably in the range of 0.1 parts by mass or more and 50 parts by mass or less, more preferably 0.1 parts by mass or more and 50 parts by mass or less, based on 100 parts by mass of the epoxy resin. It is preferable that the amount is in the range of .25 parts by mass or more and 30 parts by mass or less, more preferably 0.5 parts by mass or more and 20 parts by mass or less.
  • the conductive resin composition according to the embodiment of the present invention further includes a curing accelerator (hereinafter sometimes referred to as “component (E)” or “curing accelerator (E)”) as component (E). May contain.
  • a curing accelerator is blended to accelerate the curing of a thermosetting resin, and when an epoxy resin is used as the (B) resin, for example, imidazoles, salts of triphenylphosphine or tetraphenylphosphine, etc. Can be used.
  • 2-phenyl-4-methyl-5-hydroxymethylimidazole (product name: Curazole 2P4MHZ-PW) manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • 2-ethyl-4-methylimidazole product name: :2E4MZ
  • 2-phenyl-4-methylimidazole product name: 2P4MZ manufactured by Shikoku Kasei Kogyo Co., Ltd., and the like
  • the composition consisting of component (B), component (D), and component (E) is measured by differential scanning calorimetry.
  • DSC Differential Scanning Calorimetry
  • the maximum value of the exothermic peak in the chart is preferably in the range of 175 to 250°C. Since the maximum value of the exothermic peak in the DSC chart is in the range of 175 to 250°C, the effect of lowering the resistance can be obtained.
  • component (F) Component (additive)
  • the conductive resin composition according to the embodiment of the present invention further contains various additives (hereinafter sometimes referred to as “component (F)” or “additive (F)”) as component (F). May contain.
  • component (F) for example, a silane coupling agent, an antifoaming agent, a dispersant, etc. can be blended.
  • Silane coupling agents are blended to increase the heat resistance and adhesive strength of conductive resin compositions, and include various silanes such as epoxy, amino, vinyl, methacrylic, acrylic, and mercapto. Coupling agents can be used. Among these, epoxy silane coupling agents having an epoxy group and methacrylic silane coupling agents having a methacrylic group are preferred.
  • Shin-Etsu Chemical's epoxy-based silane coupling agent (3-glycidoxypropyltrimethoxysilane) (product name: KBM403)
  • Shin-Etsu Chemical's methacrylic-based silane coupling agent (3-methacryloxypropyltrimethoxysilane) (product name: KBM503), etc.
  • KBM403 Shin-Etsu Chemical's epoxy-based silane coupling agent
  • KBM503 3-methacryloxypropyltrimethoxysilane
  • the amount is preferably 0.01 parts by mass or more and 5 parts by mass or less, preferably 0.05 parts by mass or more and 3 parts by mass or less, based on 100 parts by mass of (A) silver-containing particles. Within the range of parts by mass or less.
  • the antifoaming agent is added to prevent the generation of bubbles in the conductive resin composition, and for example, acrylic, silicone, and fluorosilicone antifoaming agents can be used. Specifically, a silicone antifoaming agent manufactured by Asahi Kasei Wacker Silicone (product name: WACKER AF98/1000) can be used. When adding an antifoaming agent, it can be added within the range of 0.001 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of (A) silver-containing particles.
  • the dispersant is at least one selected from the group consisting of acrylic acid dispersants, phosphate ester salt dispersants, and polyfunctional ionic dispersants from the viewpoint of compatibility with other components. It is preferable.
  • a dispersant is included as component (F) in the conductive resin composition, the dispersibility of the silver-containing particles (A) and other components in the conductive resin composition can be improved.
  • acrylic dispersants include polyisobutyl methacrylate.
  • commercially available phosphate ester salt dispersants include BYK-145 manufactured by BYK Chemie.
  • Examples of the polyfunctional ionic dispersant include SC1015F of the Marialim (registered trademark) series and Marialim (registered trademark) SC series manufactured by NOF Corporation.
  • the Marialim (registered trademark) series dispersant manufactured by NOF Corporation is a multifunctional comb-shaped dispersant having an ionic group in the main chain and a polyoxyalkylene chain in the graft chain.
  • a dispersant When adding a dispersant, it can be added within the range of 0.001 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of (A) silver-containing particles.
  • the shield layer can be formed in a state in which the (A) silver grain-containing particles are substantially uniformly dispersed by suppressing the precipitation of the silver particles.
  • the amount of the dispersant contained in the conductive resin composition is preferably in the range of 1 part by mass or more and 8 parts by mass or less, more preferably 1.5 parts by mass, based on 100 parts by mass of the (A) silver-containing particles. Parts or more and 7 parts by mass or less.
  • the amount of the additive in the conductive resin composition is preferably in the range of 0.01 parts by mass or more and 5 parts by mass or less, preferably 0.05 parts by mass, based on 100 parts by mass of the conductive resin composition.
  • the amount is within the range of 3 parts by mass or less.
  • the amount of the additive in the conductive resin composition to which the masterbatch has been added is 0.01 parts by mass or more and 5 parts by mass or less based on 100 parts by mass of the conductive resin composition. As long as it is within the range.
  • the conductive resin composition according to the embodiment of the present invention may further contain carbon particles as the component (G).
  • Examples of the types of carbon particles include carbon black, Ketjenblack, acetylene black, carbon nanotubes, graphene, graphite, and fullerene, which improve the toughness of the shield layer after curing and improve the adhesion after reliability tests.
  • Graphene is preferable from the viewpoint of improving. Graphene is a material consisting of pure carbon with atoms arranged in a hexagonal pattern in tightly packed sheets one atom thick.
  • the average particle size (D50) of the carbon particles is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m, and 1 to 3 ⁇ m. More preferably.
  • the average particle size of component (G) is within this range, toughness can be imparted to the shield layer after hardening, and the spray applicability can also be improved.
  • the conductive resin composition contains carbon particles, when the conductive resin composition is applied to an object to form an electromagnetic shielding layer, the toughness of the electromagnetic shielding layer is improved, and the toughness of the electromagnetic shielding layer is improved. can improve adhesion.
  • carbon particles include, for example, graphite (scaly graphite) (product name: CX3000) manufactured by Chuetsu Graphite Industries Co., Ltd., graphene powder (grade: XGnP-R10) manufactured by XG Science, and graphene powder manufactured by Graphene Platform Co., Ltd. Graphene (product name: GNH-XA) is mentioned.
  • the content of component (G) relative to 100 parts by mass of component (A) in the conductive resin composition is preferably 1 to 50 parts by mass, more preferably 3 to 30 parts by mass, and 5 to 30 parts by mass. More preferably, the amount is 25 parts by mass.
  • the toughness of the electromagnetic shielding layer can be improved without reducing the adhesion of the conductive resin composition to the target object, and the electromagnetic wave shielding layer can be improved.
  • An electromagnetic shielding layer with high shielding effect and excellent durability can be formed.
  • the viscosity of the conductive resin composition is, for example, a viscosity of 10 mPa ⁇ s or more when measured at 25° C. and a rotational speed of 10 rpm using a rotational viscometer (product number: TVE-22H) manufactured by Toki Sangyo Co., Ltd. It is preferably 15 mPa ⁇ s or more, more preferably 20 mPa ⁇ s or more, even more preferably 25 mPa ⁇ s or more, and particularly preferably 30 mPa ⁇ s or more.
  • the upper limit of the viscosity is preferably 10,000 mPa ⁇ s or less, more preferably 5000 mPa ⁇ s or less, even more preferably 1000 mPa ⁇ s or less, and preferably 900 mPa ⁇ s or less. It is even more preferable, and particularly preferably 850 mPa ⁇ s or less. If the viscosity of the conductive resin composition measured at 25° C. and 10 rpm is within the range of 10 mPa ⁇ s or more and 10,000 mPa ⁇ s or less, the conductive resin composition can be easily applied by spraying. It is preferable because it can be done. The viscosity of the conductive resin composition can be adjusted by changing the type and blending ratio of the solvent (C). Note that the viscosity of the present invention is at 25°C.
  • the production of the conductive resin composition includes, for example, (A) silver-containing particles, (B) resin, optionally (C) solvent, optionally (D) curing agent, and optionally (E) curing acceleration. It can be produced by blending the additive (F) as necessary, and (G) carbon particles as necessary, and stirring and mixing using a known device.
  • a known device for example, a Henschel mixer, a roll mill, a three-roll mill, etc. can be used.
  • Each component constituting the conductive resin composition may be mixed by charging them into the device at the same time, or some of them may be charged into the device first and mixed, and the remaining components are charged into the device and mixed later. You may.
  • (A) silver-containing particles and (C) a solvent may be stirred and mixed in advance to produce a slurry-like masterbatch, which may be used to produce a conductive resin composition.
  • the masterbatch may contain a dispersant as the component (F), and may contain other additives as necessary.
  • (A) silver-containing particles and (C) solvent contained in the masterbatch can be stirred and mixed using the above-mentioned known device.
  • the electromagnetic shield layer according to the embodiment of the present invention is an electromagnetic shield layer formed from the above-mentioned conductive resin composition.
  • the electromagnetic shielding layer according to the embodiment of the present invention can be formed from the above conductive resin composition, and is preferably formed by spray coating using the conductive resin composition.
  • the electromagnetic wave shielding layer formed from the conductive resin composition according to the embodiment of the present invention has an excellent electromagnetic wave shielding effect, and therefore can effectively shield electromagnetic waves.
  • the electromagnetic shielding layer according to the embodiment of the present invention has an electromagnetic shielding effect of 37 dB or more, preferably 50 dB or more, particularly preferably 60 dB or more. This electromagnetic shielding effect can be measured in accordance with ASTM D4935.
  • the electromagnetic shielding layer according to the embodiment of the present invention preferably has a thermal conductivity of 7 W/mK or more, more preferably 14 W/mK or more, and 16 W/mK or more from the viewpoint of heat dissipation of the component. It is even more preferable that there be.
  • the thermal conductivity is preferably 400 W/mK or less, more preferably 100 W/mK or less, and even more preferably 40 W/mK or less.
  • This thermal conductivity is a value obtained by measuring the thermal conductivity at 25° C. using an LFA447 flash analyzer manufactured by NETZSCH.
  • the specific heat used in the calculation can be measured by measuring the cured product by the DSC method using a differential scanning calorimeter DSC204F1 manufactured by NETZSCH, and the specific gravity of the cured product can be measured by the Archimedes method.
  • the electromagnetic shielding layer formed from the conductive resin composition according to the embodiment of the present invention has a tape adhesion of 4B or higher in both tape adhesion and reliability tests shown in Examples below. Having such tape adhesion makes it difficult for the electromagnetic shielding layer formed on the outer surface of the electronic component to peel off.
  • An electronic component according to an embodiment of the present invention includes an electromagnetic shielding layer according to an embodiment of the present invention.
  • the conductive resin composition according to the embodiment of the present invention can be applied to electronic components by spray coating or the like.
  • the present invention also relates to electronic components using the above-mentioned conductive resin composition.
  • Examples of electronic components using the conductive resin composition according to the embodiments of the present invention include power amplifiers, Wi-Fi/Bluetooth modules, and flashlights used in electronic devices such as mobile phones, smartphones, notebook computers, and tablet terminals. Examples include memory.
  • each electronic component may be mounted on a board after applying the conductive resin composition to each electronic component, or each electronic component may be mounted on a board.
  • the conductive resin composition may be applied after being mounted on the board.
  • SEM scanning electron microscope
  • Resin B1 AER9000 (polypropylene oxide modified epoxy resin), manufactured by Asahi Kasei Corporation, epoxy equivalent: 380 g/eq
  • B2 EP4010S (polypropylene oxide modified epoxy resin), manufactured by ADEKA Corporation, epoxy equivalent: 350 g/eq
  • B3 PB3600 (epoxy resin containing polybutadiene skeleton), manufactured by Daicel Corporation, epoxy equivalent: 199 g/eq
  • B4 EPU 7N (urethane skeleton-containing epoxy resin), manufactured by ADEKA Corporation, epoxy equivalent: 230 g/eq
  • B5 CTBN 1300 x 13 (CTBN (carboxyl-terminated butadiene nitrile rubber), manufactured by HUNTSMAN Co., Ltd.
  • B6 AK601 (bisphenol A type epoxy resin), manufactured by Nippon Kayaku Co., Ltd.
  • (C) Solvent C1 KBM 103, manufactured by Shin-Etsu Silicone Co., Ltd.
  • C2 Terpinolene, manufactured by Nippon Terpene Chemical Co., Ltd.
  • C3 Butyl carbitol
  • Curing agent D1 Hexahydrophthalic anhydride (HN5500), acid anhydride curing agent, manufactured by Hitachi Chemical Co., Ltd.
  • D2 XPL4437E, phenolic curing agent, manufactured by Gunei Chemical Co., Ltd.
  • Additive F1 Marialim SC1015F, polymeric polycarboxylic acid dispersant, manufactured by NOF Corporation
  • G Carbon particle graphene (GNH-XA), particle size 2.5 ⁇ m, manufactured by Graphene Platform Co., Ltd.
  • ⁇ Viscosity> The viscosity of each conductive resin composition in Examples and Comparative Examples was determined by measuring 1 ml of a sample using a viscometer TVE-22H type viscometer (1° 34' cone, R24) manufactured by Toki Sangyo Co., Ltd., and heating it at 25°C. The value after rotating at 10 rpm for 1 minute was read as the measured value.
  • a stencil with a film thickness of 50 ⁇ m capable of producing a linear print pattern of 50 mm ⁇ 2 mm on a flat alumina substrate was prepared, and each conductive resin composition of Examples and Comparative Examples was printed as a sample.
  • the alumina substrate on which the sample was printed was cured at 200°C for 20 minutes, and the line resistance of the cured product was measured using a digital multimeter.
  • the sample film thickness was actually measured using a Tokyo Seimitsu Surfcom 1500 surface roughness meter, and the specific resistance value was determined. was calculated.
  • ⁇ Tape adhesion> Each of the conductive resin compositions of Examples and Comparative Examples was coated on a cured epoxy resin to a film thickness of approximately 150 ⁇ m, and the test pieces were cured at 200°C for 20 minutes.
  • a cross-cut test was conducted in accordance with ASTM D3359-97 to evaluate tape adhesion. Specifically, a sample was applied to a flat plate with a size of 10 mm x 10 mm, cured at 200°C for 20 minutes, and six cuts were made at 1 mm intervals in the vertical and horizontal directions using a cutter. 25 grids of 1 mm x 1 mm (5 mm x 5 mm) were formed.
  • a tape was attached to the obtained test piece and when it was peeled off using the method described in ASTM D3359-97, the peeling state was evaluated by calculating the peeled area ratio from the number of pieces peeled off within the total area of a 5 mm x 5 mm grid.
  • the tape adhesion was evaluated on the peeled surface after the tape was peeled off on a five-point scale from 1B to 5B. If it is 5B or more, it is evaluated as "excellent”, if it is 4B, it is evaluated as "good”, and if it is 3B to 0B, it is evaluated as "poor".
  • ⁇ Reliability test> The conductive resin compositions of Examples and Comparative Examples were coated on the cured epoxy resin to a film thickness of approximately 150 ⁇ m, and the resulting test pieces were cured at 200°C for 20 minutes at 130°C. /85%RH for 24 hours under HAST (High Accelerated Stress Test) test conditions, and the adhesion after the test was evaluated in the same manner as the cross-cut test in ⁇ Tape Adhesion>.
  • the conductive resin compositions of Examples and Comparative Examples were coated as samples on a 1 mm thick copper plate so that the film thickness after curing was 100 to 150 ⁇ m, and the cured resin compositions were cured at 200°C for 20 minutes.
  • a test piece was prepared by applying carbon spray to the surface of the object.
  • the thermal conductivity of the prepared test piece at 25° C. was measured using an LFA447 flash analyzer manufactured by NETZSCH.
  • the specific heat used in the calculation was measured by the DSC method using a differential scanning calorimeter DSC204F1 manufactured by NETZSCH, and the specific gravity of the cured product was measured by the Archimedes method.
  • ⁇ Indentation modulus> Each of the conductive resin compositions of Examples and Comparative Examples was applied as a sample on a glass slide so that the thickness of the cured film was 50 ⁇ m, and the sample was cured at 200°C for 20 minutes to prepare a test piece (cured product). did. The measurement was performed using a nanoindentation test device, ENT-NEXUS, manufactured by Elionix. To the test piece cured at 200°C for 20 minutes, a maximum load of 200 mN was applied for 10 seconds using a Berkovich type indenter, the load was held for 10 seconds, and the load was unloaded for 10 seconds. did.
  • the indentation depth was approximately 5 ⁇ m, approximately 1/10 of the sample film thickness of 50 ⁇ m, and measurements were taken in an area not affected by the slide glass. A nanoindentation test is performed under these conditions to obtain a load-displacement curve.
  • the indentation elastic modulus EIT defined in ISO14577 was calculated from the obtained load-displacement curve.
  • the electromagnetic shielding effect was measured in accordance with ASTM D4935.
  • a dispense bubble (DJ-2200, manufactured by Nordson Asymtec Corporation) was attached to a precision dispensing device (S2-920P, manufactured by Nordson Asymtec Corporation), and the sample was placed on a polyimide substrate (thickness 1 mm) with a film thickness of 15 ⁇ m after curing.
  • a test piece was prepared by coating the sample so as to have the following properties and heating it at 200°C for 20 minutes. The prepared test piece was measured using a "coaxial tube type shielding effect measurement system (500MHz to 18Ghz)" manufactured by Keycom.
  • a precision dispensing device (product name: Spectrum II Dispenser, model number: S2-920P, manufactured by Nordson Asymtec Corporation) was equipped with a dispense bubble (product name: Dispense Jet, model number: DJ-2200, manufactured by Nordson Asymtec Corporation), and an example was prepared.
  • a dispense bubble product name: Dispense Jet, model number: DJ-2200, manufactured by Nordson Asymtec Corporation
  • Each of the conductive resin compositions of Comparative Example and Comparative Example was sprayed onto a flat surface. At this time, a needle with a nozzle diameter of 24G was used, and the needle was evaluated for nozzle clogging, discharge failure, fading, etc.
  • a state in which the product was atomized by spraying and applied in a straight line was evaluated as " ⁇ (good)", and a state in which the product was not ejected or was interrupted in the middle of the straight line by spraying was evaluated as "x (unsatisfactory)".
  • Example 1 The conductive resin compositions of Examples and Comparative Examples and the above evaluation results are shown in Tables 1 and 2.
  • the cured products obtained by curing the compositions containing component (B), component (D), and component (E) in Example 1 and Example 2 at 200°C for 20 minutes were measured using a differential scanning calorimeter manufactured by NETZSCH.
  • FIG. 1 shows a DSC chart (resin-based DSC) measured using DSC204F1.
  • the conductive resin compositions according to Examples 1 to 9 are conductive resin compositions containing (A) silver-containing particles and (B) resin, and have an indentation modulus E IT is in the range of 10 to 20 GPa, so when the conductive resin composition is applied by spray coating, a coating film with high adhesion can be formed on objects such as electronic components, and it has an excellent electromagnetic shielding effect. It had Moreover, in comparison with Example 1, Example 2 was shown to have superior adhesion after the reliability test by using a phenol resin as a curing agent.
  • Comparative Example 1 This is considered to be because the resin (B) used in Comparative Example 1 had poor reactivity and insufficient curing, resulting in an increase in the initial resistance value. Moreover, in Comparative Example 1, thermal shrinkage due to heat during the reliability test was large, and it is thought that peeling occurred during the adhesion test after the reliability test.
  • the conductive resin composition according to Comparative Example 2 which did not contain the component (B), had an indentation modulus EIT of more than 20 GPa, and had insufficient adhesion and reliability.
  • the conductive resin composition according to Comparative Example 3 had an indentation modulus EIT of more than 20 GPa, and did not have sufficient reliability.
  • the conductive resin composition according to the embodiment of the present invention can form an electromagnetic shielding layer on electronic components by spraying, and is used in electronic devices such as mobile phones, smartphones, notebook computers, and tablet terminals. , power amplifiers, Wi-Fi/Bluetooth modules, flash memories, and other electronic components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本発明は、(A)成分として、銀含有粒子、及び(B)成分として、熱硬化性樹脂又は熱可塑性樹脂の少なくとも一方を含む導電性樹脂組成物であって、明細書中に記載の手順のナノインデンテーション試験により得られる荷重-変位曲線から求められる押し込み弾性率EITが10~20GPaである、導電性樹脂組成物に関する。

Description

導電性樹脂組成物、電磁波シールド層、及び電子部品
 本発明は、導電性樹脂組成物、電磁波シールド層、及び電子部品に関する。
 携帯電話、スマートフォン、ノートパソコン、タブレット端末などの電子機器に内蔵されている基板には、例えば、パワーアンプ、Wi-Fi/Bluetoothモジュール、フラッシュメモリなどの電子部品が実装されている。このような電子部品は外部からの電磁波により誤作動を起こすおそれがある。また逆に、電子部品が電磁波ノイズ発生源になり、他の電子部品の誤作動を引き起こすおそれもある。
 電子機器の分野において、システムオンチップ(SoC)、システムインパッケージ(SiP)、マルチチップモジュール(MCM)など、複数の部品を1つの部品に集積する高集積化技術の開発が進み、電子機器は、ますます小型化や薄型化している。電子機器の小型化や薄型化が進むにしたがって、ベースバンド部品、無線周波数(Radio Frequency:RF)用部品、ワイヤレス部品、アナログ機器、及び電力管理コンポーネントなどの部品間において、電磁妨害(Electromagnetic Interference、以下「EMI」ともいう。)から保護する必要性がより高まっている。
 そして、基板に実装する電子部品を保護するため、電子部品の表面に電磁波シールド層を形成して電磁波を遮断することが検討されており、様々な材料が検討されている。
 例えば、銀、銅などの導電性粒子は電気抵抗が小さく、電子回路の製造に用いられる導電性インクや電子部品において電磁波を遮蔽するシールド層を形成するための塗布剤などに配合される。例えば、特許文献1には、ポリマーおよび樹脂の結合剤を含まず、ナノ銀粒子および接着促進剤を含む導電性インクが開示されている。
 また、特許文献2には、電子部品の表面に塗布剤をスプレーしてコーティングする技術が開示されている。
日本国特表2014-529674号公報 日本国特開2020-143225号公報
 しかしながら、従来の電磁波シールド層を形成するスプレー塗布剤は、高温高湿環境下においては経時により変質するため、信頼性試験後の密着性が低下してしまう虞があった。
 そこで、本発明は、電磁波シールド効果が高く、かつ信頼性試験後の密着性に優れた電磁波シールド層を形成し得る、導電性樹脂組成物を提供することを目的とする。
 前記課題を解決するための手段は、以下の通りであり、本発明は、以下の態様を包含する。
〔1〕
(A)成分として、銀含有粒子、及び
(B)成分として、熱硬化性樹脂又は熱可塑性樹脂の少なくとも一方
を含む導電性樹脂組成物であって、
以下の手順のナノインデンテーション試験により得られる荷重-変位曲線から求められる押し込み弾性率EITが10~20GPaである、
導電性樹脂組成物。
[手順]
(1)スライドガラス上に導電性樹脂組成物を塗布し、200℃で20分間加熱し厚さ50μmの塗膜を形成し試験片を得る。
(2)(1)で得られた試験片の塗膜面に、バーコビッチ型圧子で、10秒かけて最大荷重200mNまで荷重をかけ、その最大荷重で10秒保持し、その後10秒かけて除荷する条件でナノインデンテーション試験を行い、荷重-変位曲線を得る。
〔2〕
 前記(A)成分が、平均粒径100nm以上350nm以下の銀粒子を含む、〔1〕に記載の導電性樹脂組成物。
〔3〕
 前記(B)成分がエポキシ樹脂を含有する、〔1〕又は〔2〕に記載の導電性樹脂組成物。
〔4〕
 前記(B)成分が、柔軟骨格含有エポキシ樹脂を含む、〔1〕~〔3〕のいずれか一項に記載の導電性樹脂組成物。
〔5〕
 前記柔軟骨格含有エポキシ樹脂が、分子の一部に、ポリオキシアルキレン骨格、ポリエチレングリコール骨格、ポリプロレピレングリコール骨格、ポリエーテル骨格、ポリプロピレンオキサイド骨格、ウレタン骨格、ポリブタジエン骨格、ニトリルゴム骨格から選択される少なくとも一の柔軟骨格を含む、〔4〕に記載の導電性樹脂組成物。
〔6〕
 前記(B)成分の含有量が、前記(A)成分100質量部に対し、0.1質量部以上20質量部以下である、〔1〕~〔5〕のいずれか一項に記載の導電性樹脂組成物。
〔7〕
 さらに、(C)成分として、溶剤を含む〔1〕~〔6〕のいずれか一項に記載の導電性樹脂組成物。
〔8〕
 さらに、(D)成分として、硬化剤を含む、〔1〕~〔7〕のいずれか一項に記載の導電性樹脂組成物。
〔9〕
 前記(D)成分が、酸無水物系硬化剤、フェノール系硬化剤、及びアミン系硬化剤より選択される少なくとも一種を含む、〔8〕に記載の導電性樹脂組成物。
〔10〕
 さらに、(E)成分として硬化促進剤を含む、〔8〕又は〔9〕に記載の導電性樹脂組成物。
〔11〕
 さらに(G)成分として、炭素粒子を含む、〔1〕~〔10〕のいずれか一項に記載の導電性樹脂組成物。
〔12〕
 前記(G)成分の平均粒径が、0.1~10μmである、〔11〕に記載の導電性樹脂組成物。
〔13〕
 前記(G)成分の含有量が、前記(A)成分100質量部に対し、1~50質量部である、〔11〕又は〔12〕に記載の導電性樹脂組成物。
〔14〕
 前記(B)成分、前記(D)成分、及び前記(E)成分からなる組成物を示差走査熱量測定したときのチャートにおける発熱ピークの極大値が175~250℃の範囲である、〔10〕に記載の導電性樹脂組成物。
〔15〕
 25℃10rpmにおける粘度が10~10,000mPa・s以下である、〔1〕~〔14〕のいずれか一項に記載の導電性樹脂組成物。
〔16〕
 前記導電性樹脂組成物がスプレー塗布用である、〔1〕~〔15〕のいずれか一項に記載の導電性樹脂組成物。
〔17〕
 前記導電性樹脂組成物が電磁波シールド用スプレー塗布剤である、〔1〕~〔15〕のいずれか一項に記載の導電性樹脂組成物。
〔18〕
 〔1〕~〔17〕のいずれか一項に記載の導電性樹脂組成物により形成された電磁波シールド層。
〔19〕
 〔18〕に記載の電磁波シールド層を含む電子部品。
 本発明によれば、電磁波シールド効果が高く、かつ信頼性試験後の密着性に優れた電磁波シールド層を形成し得る、導電性樹脂組成物を提供することができる。
図1は、本発明の実施形態に係る導電性樹脂組成物の実施例1及び実施例2における(B)成分、(D)成分、及び(E)成分を含む組成物のDSCチャートを示す図である。
 以下、本開示に係る導電性樹脂組成物の実施形態に基づいて説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための例示であって、本発明は、以下の導電性樹脂組成物に限定されない。
<導電性樹脂組成物>
 本発明の実施形態に係る導電性樹脂組成物は、(A)成分として、銀含有粒子、及び
(B)成分として、熱硬化性樹脂又は熱可塑性樹脂の少なくとも一方を含む導電性樹脂組成物であって、
以下の手順のナノインデンテーション試験により得られる荷重-変位曲線から求められる押し込み弾性率EITが10~20GPaである。
[手順]
(1)スライドガラス上に導電性樹脂組成物を塗布し、200℃で20分間加熱し厚さ50μmの塗膜を形成し試験片を得る。
(2)(1)で得られた試験片の塗膜面に、バーコビッチ型圧子で、10秒かけて最大荷重200mNまで荷重をかけ、その最大荷重で10秒保持し、その後10秒かけて除荷する条件でナノインデンテーション試験を行い、荷重-変位曲線を得る。
 なお、本発明の実施形態において、押込み弾性率EITは、バーコビッチ(Berkovich)圧子を押し込んだ時の圧縮方向の歪に対する応力の比率を表すものである。
 本発明の実施形態に係る導電性樹脂組成物は、上記特定の手順により測定した押し込み弾性率EITが10~20GPaであることにより、被着体と硬化物(電磁波シールド層)との熱線膨張係数差により生じる内部応力を硬化物(電磁波シールド層)が吸収することで、高温高湿環境下の信頼性試験後も密着性が維持され、耐久性に優れた電磁波シールド層を形成し得る。
 本発明の実施形態に係る導電性樹脂組成物の押し込み弾性率EITは、10~20GPaの必要があり、導電性樹脂組成物により得られる電磁波シールド層の密着性の観点から、12GPa以上であることが好ましく、14GPa以上であることがより好ましい。また、導電性樹脂組成物により得られる電磁波シールド層の密着性の観点から18GPa以下であることがより好ましい。押し込み弾性率EITは、密着性の観点から12~18GPaがより好ましく、14~18GPaが特に好ましい。
 本発明の実施形態に係る導電性樹脂組成物はスプレー塗布用であってもよい。本発明の実施形態に係る導電性樹脂組成物は電磁波シールド用スプレー塗布剤であってもよい。また、本発明の実施形態に係る導電性樹脂組成物により電磁波シールド層を形成することができる。
(A)成分(銀含有粒子)
 本発明の実施形態に係る導電性樹脂組成物は、(A)成分として、銀含有粒子を含む。銀含有粒子は電磁波を遮蔽するために配合する。
 銀含有粒子(以下、「(A)成分」又は「(A)銀含有粒子」と称する場合がある。)は、特に制限されないが、銀粉等の銀粒子や銀を含む合金粒子、炭素粒子等の非銀粒子が銀で被覆された銀被覆粒子や、ニッケル、鉄等の強磁性体の単一もしくは合金の金属粒子が銀で被覆された銀被覆粒子等を含む。
 (A)銀含有粒子は、1種類を単独で使用しても、2種類以上を併用してもよい。
 本発明の実施形態においては、(A)銀含有粒子が、銀粒子又は銀を含む合金粒子等の金属粒子を含むことが好ましく、銀粒子を含むことがより好ましい。銀の電気伝導率は、他の金属と比べて高いためである。(A)銀含有粒子として、銀粒子を含むことにより、より高い電磁波シールド効果を発揮する導電性樹脂組成物を得ることができる。
 銀含有粒子は、焼結性やスプレー塗布性の観点から、ナノオーダーの銀粒子が好ましい。銀含有粒子の平均粒径(D50)は、1000nm以下であることが好ましく、500nm以下であることがより好ましく、350nm以下であることがさらに好ましく、150nm以下であることが特に好ましい。また、50nm以上であることが好ましく、80nm以上であることがより好ましく、100nm以上であることがさらに好ましい。銀含有粒子の平均粒径(D50)は、焼結性やスプレー塗布性の観点から、50nm~1000nmであることが好ましく、80nm~500nmであることがより好ましく、100nm~350nmであることが更に好ましく、100nm~150nmであることが特に好ましい。
 銀含有粒子の平均粒径が上記の範囲であれば、シールド層が緻密な膜構造となり導電性が向上するとともに、スプレー塗布に適した導電性樹脂組成物とすることができる。本発明の実施形態に係る導電性樹脂組成物は、(A)成分が、平均粒径100nm以上350nm以下の銀粒子を含むことが好ましい。
 (A)銀含有粒子の平均粒径は、例えば走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いた観察により測定することができる。例えば、10,000倍から20,000倍の倍率で、(A)銀含有粒子のSEM写真又はSEM画像を得て、SEM写真又はSEM画像に存在する(A)銀含有粒子の輪郭を真円に近似させて、その真円の直径を測定し、任意の(A)銀含有粒子50個の直径の算術平均値を平均粒径とすることができる。
 (A)銀含有粒子の形状は、特に限定されず、例えば、球状、粒状、フレーク状、針状、又は鱗片状等のどのような形状であってもよい。
 (A)銀含有粒子の形状が鱗片状又は針状の場合には、鱗片状又は針状の長軸平均値を平均粒径とすることができる。導電性樹脂組成物の粘度やスプレー塗布性の観点から、(A)銀含有粒子は球形であることが好ましい。
 (A)銀含有粒子の製造方法は、特に限定されず、例えば、還元法、粉砕法、電解法、アトマイズ法、熱処理法、あるいはそれらの組合せによって製造することができる。例えば銀含有粒子についてもこれらの製造方法で製造することができる。フレーク状の銀含有粒子は、例えば、球状または粒状の銀含有粒子をボールミル等によって押し潰すことによって製造することができる。
 (A)銀含有粒子は、具体的には、メタロー テクノロジーズ ユーエスエイ(Metalor Technologies USA)社製の銀粉(品名:P620-7、P620-24)、DOWAエレクトロニクス株式会社製の銀粉(品名:Ag nano powder-2)等を用いることができる。
 (A)銀含有粒子は、導電性樹脂組成物中に固形分換算で、35質量%以上99質量%以下の範囲内で含まれることが好ましく、40質量%以上98質量%以下の範囲内で含まれていてもよく、45質量%以上92質量%以下の範囲内で含まれていてもよい。なお、固形分換算とは、溶剤等の揮発成分を除いた樹脂組成物のことを指す。
 (A)銀含有粒子は、後述する(C)溶剤に予め分散させたマスターバッチを用いてもよい。マスターバッチは、(A)銀含有粒子を(C)溶剤に予め分散させ、スラリー状にしたものである。導電性樹脂組成物に、(A)銀含有粒子を含むマスターバッチを用いることにより、シールド層が緻密な膜構造となり、電子部品などの表面に対する密着性を高めることができる。導電性樹脂組成物が、後述するようにさらに(C)成分として溶剤を含む場合には、マスターバッチに含まれる(C)溶剤に加えて、導電性樹脂組成物に(C)溶剤を添加してもよい。
 上記マスターバッチとしては、具体的には、DOWAエレクトロニクス株式会社製の銀粒子を含むスラリー(品名:nanoAg(SNM-007(NET92%))等を用いることができる。
(B)成分(熱硬化性樹脂又は熱可塑性樹脂)
 本発明の実施形態に係る導電性樹脂組成物は、(B)成分として、熱硬化性樹脂及び熱可塑性樹脂から選択される少なくとも一種(以下「(B)成分」又は「(B)樹脂」と称する場合がある。)を含む。
 (B)樹脂は、導電性樹脂組成物に接着性及び硬化性を付与する。(B)樹脂として、熱硬化性樹脂及び熱可塑性樹脂の両方を含んでいてもよい。(B)樹脂の含有量は、(A)銀含有粒子100質量部に対して、0.1質量部以上20質量部以下の範囲内であることが好ましく、1質量部以上10質量部以下の範囲内であることがより好ましく、1.5質量部以上8質量部以下がさらに好ましく、2質量部以上7質量部以下が特に好ましい。(B)樹脂の含有量が、(A)銀含有粒子100質量部に対して0.1質量部以上20質量部以下の範囲内であれば、導電性樹脂組成物が対象物全体を覆って密着し、略均一な電磁波シールド層を形成しやすくなる。
 (B)樹脂は、熱硬化性樹脂又は熱可塑性樹脂から選択される少なくとも一種を用いることができるが、接着性及び硬化性の観点から、導電性樹脂組成物中に、0.5質量%以上10質量%以下の範囲内で含まれることが好ましく、0.8質量%以上4.8質量%以下の範囲内で含まれていてもよい。
 導電性樹脂組成物に含まれる(B)樹脂は、熱硬化性樹脂を含むことが好ましい。熱硬化性樹脂としては、例えばエポキシ樹脂が挙げられる。すなわち、本発明の実施形態に係る導電性樹脂組成物において、(B)成分がエポキシ樹脂を含有することが好ましい。
 熱硬化性樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 エポキシ樹脂は、分子内に少なくとも1つのエポキシ基又はグリシジル基を有し、常温で液状であるものが好ましい。
 エポキシ樹脂は、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、脂環式エポキシ樹脂、アルコールエーテル型エポキシ樹脂、環状脂肪族型エポキシ樹脂、フルオレン型エポキシ樹脂、シロキサン系エポキシ樹脂、アミノフェノール型エポキシ樹脂、及びクレゾールノボラック型エポキシ樹脂等が挙げられる。
 また、エポキシ当量は、硬化性及び硬化物の弾性率の観点から、好ましくは100~400g/eq、より好ましくは180~350g/eqである。エポキシ当量がこの範囲であることにより樹脂の硬化性を制御し被着体に対する密着性が向上し、電気伝導性、シールド特性が両立しやすくなる。エポキシ樹脂のエポキシ当量が100g/eq以上であれば極性を持った反応基の量が十分となり、金属に対する密着性が向上し、樹脂の硬化速度が促進するため樹脂の硬化が銀含有粒子の焼結や銀含有粒子の導通パス形成を阻害するのを防ぐことができる。一方、エポキシ当量が400g/eq以下であればエポキシ樹脂の反応性に優れ、導電性やシールド特性が向上し、樹脂の硬化が不十分となった場合でも、密着性や耐久性の低下を抑制することができる。
 (B)成分が、柔軟骨格含有エポキシ樹脂を含むことが好ましい。エポキシ樹脂は、柔軟骨格を有するエポキシ樹脂(柔軟骨格含有エポキシ樹脂)であってもよく、導電性樹脂組成物が(B)樹脂として、柔軟骨格を有するエポキシ樹脂を含有してもよい。
 導電性樹脂組成物が(B)樹脂として、柔軟骨格を有するエポキシ樹脂を含有することにより、導電性樹脂組成物により塗膜を形成した場合にその柔軟性が高くなり、押し込み弾性率EITを特定の範囲にしやすくなる。柔軟骨格を有するエポキシ樹脂は(B)樹脂中に主剤として含有してもよい。
 より具体的には、柔軟骨格を有するエポキシ樹脂としては、1分子中に2個以上のエポキシ基を有し、分子の一部に、ポリオキシアルキレン骨格、ポリエチレングリコール骨格、ポリプロレピレングリコール骨格、ポリエーテル骨格、ポリプロピレンオキサイド骨格、ウレタン骨格、ポリブタジエン骨格、ニトリルゴム骨格から選択される少なくとも一の柔軟骨格を含むエポキシ樹脂が好ましい。柔軟骨格を有するエポキシ樹脂が、1分子中に2個以上のエポキシ基を有し、分子の一部に、ポリオキシアルキレン骨格、ポリエチレングリコール骨格、ポリプロレピレングリコール骨格、ポリエーテル骨格、ポリプロピレンオキサイド骨格、ウレタン骨格、ポリブタジエン骨格、ニトリルゴム骨格から選択される少なくとも一の柔軟骨格を含んだエポキシ樹脂とすることにより、導電性樹脂組成物により塗膜を形成した場合にその柔軟性が高くなり、押し込み弾性率EITを特定の範囲にしやすくなる。
 なかでも、より耐水性(耐加水分解性)に優れる観点から、ポリプロピレンオキサイド骨格、ウレタン骨格、ポリブタジエン骨格から選択される少なくとも一の柔軟骨格を含んだエポキシ樹脂を用いることが好ましい。
 全主剤中に、ビスフェノールAエポキシ樹脂やビスフェノールFエポキシ樹脂等の柔軟骨格を有しない成分を含めることができるが、押し込み弾性率EITを特定の範囲にする観点から、これらの成分は、主剤全体のうち50質量%以下とするとともに、この中でも柔軟骨格を有するエポキシ樹脂成分の割合が高い方が好ましく、柔軟骨格を有するエポキシ樹脂は、エポキシ樹脂全量に対し50質量%以上が好ましく、90質量%以上であることがより好ましく、100質量%とすることがより好ましい。
 エポキシ樹脂が柔軟骨格を有する場合、導電性樹脂組成物における押し込み弾性率を特定の範囲としやすく、導電性樹脂組成物により形成された電磁波シールド層の密着性を高めることに寄与している。 
 エポキシ樹脂の市販品の例としては、新日鉄住友化学株式会社製のビスフェノールF型エポキシ樹脂(品名:YDF8170)、DIC株式会社製のビスフェノールA型エポキシ樹脂(品名:EXA-850CRP)、DIC株式会社製のビスフェノールA型ビスフェノールF型混合エポキシ樹脂(品名:EXA-835LV)、三菱ケミカル株式会社製のアミノフェノール型エポキシ樹脂(グレード:JER630)、DIC株式会社製のクレゾールノボラック型エポキシ樹脂(品名:エピクロンN665-EXP)、ADEKA株式会社製のポリプロピレンオキサイド変性エポキシ樹脂(品名:EP4010S)、株式会社ダイセル製のポリブタジエン骨格含有エポキシ樹脂(品名:PB3600)、ADEKA株式会社製のウレタン骨格含有エポキシ樹脂(品名:EPU 7N)等が挙げられる。
 導電性樹脂組成物に含まれる(B)樹脂は、熱可塑性樹脂を含んでいてもよい。導電性樹脂組成物に含まれる(B)樹脂が熱可塑性樹脂を含む場合、熱可塑性樹脂としては、例えばポリスチレン樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、及びガラス転移温度が25℃以下であり、かつ液状又は有機溶媒に溶解してなる熱可塑性エラストマーからなる群から選択される少なくとも1種が挙げられる。
 アクリル樹脂としては、特に限定されず、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステルから選ばれる1種以上の単量体を重合して得られる重合体が例示される。好ましいアクリル樹脂は、アクリル酸又はメタクリル酸を重合して得られる重合体である。
 ポリカーボネート樹脂としては、特に限定されず、ジヒドロキシジアリール化合物とホスゲンとを反応させるホスゲン法、又はジヒドロキシジアリール化合物とジフェニルカーボネートのような炭酸エステルとを反応させるエステル交換法によって得られる重合体を用いることができる。
 ポリアミド樹脂としては、特に限定されず、ポリマーの主鎖中にアミド結合(-NH-CO-)を含む重合体であり、6ナイロン、66ナイロン、共重合ナイロンや、N-メトキシメチル化ナイロンのような変性ナイロンが例示される。
 ポリアミドイミド樹脂としては、特に限定されず、例えば、トリカルボン酸無水物とジアミン化合物又はジイソシアネートとを混合して重縮合させて得られるもの等が例示される。
 ガラス転移温度が25℃以下であり、かつ液状又は有機溶媒に溶解してなる液状の熱可塑性エラストマーとしては、アクリルゴム、ブタジエンゴム、シリコーンゴム、ニトリルゴム等が例示される。上記熱可塑性エラストマーとしては、公知の方法によって製造された市販品を用いてもよく、市販品としては、HUNTSMAN株式会社製のカルボキシル末端ブタジエンニトリルゴム(品名:HYPRO CTBN 1300×13)等が例示される。
(C)成分(溶剤)
 本発明の実施形態に係る導電性樹脂組成物は、さらに、(C)成分として、溶剤(以下「(C)成分」又は「(C)溶剤」と称する場合がある。)を含んでいてもよい。導電性樹脂組成物が(C)溶剤を含むことにより、銀含有粒子粘度を適切に調整し、スプレー塗布性を良好にすることができるとともに、硬化時に溶剤が揮発することで硬化膜の薄膜化を実現することができる。また、溶剤(C)は、マスターバッチを作製するための溶媒としてもよい。
 本発明の実施形態に係る導電性樹脂組成物にかかる(C)溶剤は、1種の(C)溶剤であってもよく、2種以上の(C)溶剤が含まれていてもよい。
 (C)溶剤としては、例えばターピノーレン、アルコキシシラン、リモネン、エチレングリコールモノフェニルエーテル(EPH)、ジエチレングリコールモノブチルエーテルアセテート(ブチルカルビトールアセテート:登録商標)及びジエチレングリコールモノブチルエーテル(ブチルカルビトール:登録商標)からなる群から選択される少なくとも1種を用いることができる。マスターバッチを作製した後、導電性樹脂組成物の粘度を調整するために(C)溶剤をさらに配合することもできる。
 (C)溶剤としては、具体的には、信越シリコーン株式会社製シリコーン系アルコキシシラン(品名:KBM103)、東邦化学工業製エチレングリコールモノフェニルエーテル(品名:ハイソルブEPH)を用いることができる。(A)銀含有粒子を含むマスターバッチに含まれる(C)溶剤は、(A)銀含有粒子の沈降が抑制され、スラリー状を維持することができる量であればよい。
 (C)溶剤は、導電性樹脂組成物中に、(A)銀含有粒子100質量部に対して、5質量部以上150質量部以下の範囲内で含まれることが好ましい。(C)溶剤が、導電性樹脂組成物中に、(A)銀含有粒子100質量部に対して、5質量部以上150質量部以下の範囲内で含まれることにより、スプレー(噴霧)塗布によりシールド層を形成することができ、(C)溶剤が揮発することによって、電磁波シールド効果を有するシールド層を形成することができる。導電性樹脂組成物中に含まれる(C)溶剤の量は、(A)銀含有粒子100質量部に対して、好ましく6質量部以上100質量部以下の範囲内であり、さらに好ましくは7質量部以上50質量部以下の範囲内であり、特に好ましくは、8質量部以上30質量部以下の範囲内である。(C)溶剤が、(A)銀含有粒子を含むマスターバッチに含まれる場合には、マスターバッチを用いた導電性樹脂組成物中の(C)溶剤の含有量が、導電性樹脂組成物中の(A)銀含有粒子100質量部に対して、4質量部以上100質量部以下、5質量部以上80質量部以下、6質量部以上70質量部以下、7質量部以上25質量部以下の範囲内であればよい。
(D)成分(硬化剤)
 本発明の実施形態に係る導電性樹脂組成物は、さらに、(D)成分として、硬化剤(以下「(D)成分」又は「(D)硬化剤」と称する場合がある。)を含んでいてもよい。
 (B)樹脂が熱硬化性樹脂を含む場合、導電性樹脂組成物には、(D)硬化剤をさらに含むことが好ましい。すなわち、導電性樹脂組成物は、(B)樹脂が熱硬化性樹脂を含み、(D)硬化剤をさらに含むことが好ましい。(D)硬化剤としては、酸無水物系硬化剤、フェノール系硬化剤、アミン系硬化剤及びイミダゾール系硬化剤からなる群から選択される少なくとも1種を含むことが好ましく、酸無水物系硬化剤、フェノール系硬化剤、及びアミン系硬化剤より選択される少なくとも一種を含むことがより好ましく、フェノール系硬化剤を含むことが更に好ましい。(D)硬化剤は、1種を単独で用いてもよく、2種以上を併用してもよい。(D)硬化剤は、少なくとも1種を(D)硬化剤として用い、他の1種を後述の(E)硬化促進剤として用いてもよい。
 酸無水物系硬化剤としては、フタル酸無水物、マレイン酸無水物、ドデセニルコハク酸無水物、トリメリット酸無水物、ベンゾフェノンテトラカルボン酸二無水物、テトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、メチルブテニルテトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物等が例示される。市販品としては、日立化成株式会社製のテトラヒドロ無水フタル酸(グレード:HN2000)、日立化成株式会社製のヘキサヒドロ無水フタル酸(グレード:HN5500)、三菱ケミカル株式会社製の酸無水物(グレード:YH306、YH307)が挙げられる。
 フェノール系硬化剤としては、フェノール樹脂が例示され、フェノール樹脂としては、エポキシ樹脂と反応し得るフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般を用いることができる。
 また、フェノール系硬化剤としては、液状のフェノール系硬化剤(液状フェノール樹脂)であることが好ましい。(D)硬化剤として液状フェノール樹脂を用いることで、硬化開始温度が高温側へシフトし、導電性樹脂組成物を硬化させた硬化物中の溶剤が抜けやすくなりボイドなどの塗膜欠陥が減少し、密着性が向上すると考えられる。
 フェノール樹脂としては、例えば、レゾール型フェノール樹脂、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールA型ノボラック樹脂、トリアジン変性フェノールノボラック樹脂等が例示される。市販品としては、群栄化学株式会社製のノボラック型フェノール樹脂(品名:レジトップ PSM4324)、群栄化学株式会社製液状フェノール樹脂(品名:XPL4437E)が挙げられる。
 アミン系硬化剤としては、例えばジエチレントリアミン、トリエチレンテトラアミン、テトラエチレンペンタミン、トリメチルヘキサメチレンジアミン、2-メチルペンタメチレンジアミン等の脂肪族ポリアミン、イソフォロンジアミン、1,3-ビスアミノメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ノルボルネンジアミン、1,2-ジアミノシクロヘキサン等の脂環式ポリアミン、N-アミノエチルピペラジン、1,4-ビス(2-アミノ-2-メチルプロピル)ピペラジン等のピペラジン型のポリアミン、ジアミノジフェニルメタン、m-フェニレンジアミン、m-キシレンジアミン、ジアミノジフェニルスルホン、ジエチルトルエンジアミン、トリメチレンビス(4-アミノベンゾエート)、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート等の芳香族ポリアミン等が挙げられる。市販品としては、日本化薬株式会社製の3,3’-ジエチル-4,4’-ジアミノジフェニルメタン(品名:KAYAHARD A-A(HDAA))アルベマール日本株式会社製の芳香族アミン(商品名:エタキュア100)が挙げられる。
 イミダゾール系硬化剤としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール等が挙げられる。変性イミダゾール系硬化剤も使用することができる。具体例としては、エポキシ-イミダゾールアダクト系化合物やアクリレート-イミダゾールアダクト化合物が挙げられる。市販品としては、株式会社ADEKA製のアクリレート-イミダゾールアダクト系化合物(品名:EH2021)が挙げられる。
 (D)硬化剤の量は、(B)樹脂としてエポキシ樹脂を用いる場合には、エポキシ樹脂の種類及び(D)硬化剤の種類によって異なる。以下に(D)硬化剤の種類によって好適な配合量を記載する。
 (D)硬化剤が酸無水物系硬化剤の場合は、エポキシ樹脂のエポキシ当量(g/eq)に対する、(D)硬化剤の酸無水物当量(g/eq)の比(酸無水物当量/エポキシ当量)が、好ましくは0.05~10、より好ましくは0.1~5、さらに好ましくは0.5~3となるように配合することが好ましい。
 (D)硬化剤がフェノール系硬化剤の場合は、エポキシ樹脂のエポキシ当量(g/eq)に対する、フェノール系硬化剤の水酸基当量(g/eq)の比(水酸基当量/エポキシ当量)が、好ましくは0.01~5、より好ましくは0.04~1.5、さらに好ましくは0.06~1.2となるように配合することが好ましい。
 (D)硬化剤がアミン系硬化剤の場合は、エポキシ樹脂のエポキシ当量(g/eq)に対する、アミン系硬化剤のアミン価(mgKOH/g)の比(アミン価/エポキシ当量)が、好ましくは0.001~3、より好ましくは0.01~2、さらに好ましくは0.05~1.5となるように配合することが好ましい。ここで、アミン価とは、アミン系硬化剤の固形分1gを中和するのに必要な塩酸と同モルの水酸化カリウムのmg数をいう。
 (D)硬化剤がイミダゾール系硬化剤の場合は、エポキシ樹脂100質量部に対して、イミダゾール系硬化剤が、好ましくは0.1質量部以上50質量部以下の範囲内となり、より好ましくは0.25質量部以上30質量部以下の範囲内となり、さらに好ましくは0.5質量部以上20質量部以下の範囲内となるように配合することが好ましい。
(E)成分(硬化促進剤)
 本発明の実施形態に係る導電性樹脂組成物は、さらに、(E)成分として、硬化促進剤(以下「(E)成分」又は「(E)硬化促進剤」と称する場合がある。)を含んでいてもよい。
 硬化促進剤は、熱硬化性樹脂の硬化を促進するために配合するものであり、(B)樹脂としてエポキシ樹脂を使用する場合、例えば、イミダゾール類、トリフェニルホスフィン又はテトラフェニルホスフィンの塩類などを用いることができる。
 具体的には、四国化成工業株式会社製2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(品名:キュアゾール2P4MHZ-PW)、四国化成工業株式会社製の2-エチル-4-メチルイミダゾール(品名:2E4MZ)、四国化成工業株式会社製の2-フェニル-4-メチルイミダゾール(品名:2P4MZ)などを用いることができる。
 本発明の実施形態に係る導電性樹脂組成物が(D)成分及び(E)成分を含む場合、(B)成分、(D)成分、及び(E)成分からなる組成物を示差走査熱量測定(DSC:Differential Scanning Calorimetry)したときのチャート(DSCチャート)における発熱ピークの極大値が175~250℃の範囲であることが好ましい。DSCチャートにおける発熱ピークの極大値が175~250℃の範囲であることにより、低抵抗化の効果が得られる。これは熱硬化性樹脂の硬化開始温度が高温側になることで銀含有粒子の焼結が先に始まり、熱硬化性樹脂の硬化反応に伴う流動性低下の影響を受けにくくなるため、銀含有粒子の焼結が進行し抵抗値が下がりやすくなるものと推定される。また、熱硬化性樹脂の硬化開始温度が高温側になることで、導電性樹脂組成物を硬化させた硬化物中の溶剤が抜けやすくなりボイドなどの塗膜欠陥が減少し、密着性が向上すると考えられる。
(F)成分(添加剤)
 本発明の実施形態に係る導電性樹脂組成物は、さらに、(F)成分として、種々の添加剤(以下「(F)成分」又は「(F)添加剤」と称する場合がある。)を含んでいてもよい。
 (F)添加剤としては、例えば、シランカップリング剤、消泡剤、分散剤などを配合することができる。
 シランカップリング剤は、導電性樹脂組成物の耐熱性や接着強度を高めるために配合するものであり、例えば、エポキシ系、アミノ系、ビニル系、メタクリル系、アクリル系、メルカプト系などの各種シランカップリング剤を用いることができる。これらの中でも、エポキシ基を有するエポキシ系シランカップリング剤、メタクリル基を有するメタクリル系シランカップリング剤が好ましい。
 具体的には、信越化学製エポキシ系シランカップリング剤(3-グリシドキシプロピルトリメトキシシラン)(品名:KBM403)、信越化学製メタクリル系シランカップリング剤(3-メタクリロキシプロピルトリメトキシシラン)(品名:KBM503)などを用いることができる。
 シランカップリング剤を添加する場合は、(A)銀含有粒子100質量部に対して、好ましくは0.01質量部以上5質量部以下の範囲内であり、好ましくは0.05質量部以上3質量部以下の範囲内である。
 消泡剤は、導電性樹脂組成物中の泡の発生を防止するために配合するものであり、例えば、アクリル系、シリコーン系及びフルオロシリコーン系などの消泡剤を用いることができる。
 具体的には、旭化成ワッカーシリコーン製シリコーン系消泡剤(品名:WACKER AF98/1000)などを用いることができる。
 消泡剤を添加する場合は、(A)銀含有粒子100質量部に対して、0.001質量部以上5質量部以下の範囲内で添加することができる。
 分散剤としては、他の成分との相溶性等の観点から、アクリル酸系分散剤、リン酸エステル塩系分散剤及び多官能型イオン性分散剤からなる群から選択される少なくとも1種であることが好ましい。導電性樹脂組成物中に(F)成分として、分散剤が含まれていると、導電性樹脂組成物中の(A)銀含有粒子及びその他の成分の分散性を向上することができる。
 アクリル系分散剤は、例えばポリイソブチルメタクリレートが挙げられる。リン酸エステル塩系分散剤は、市販品としては、例えばビックケミー社製のBYK-145が挙げられる。多官能型イオン性分散剤は、例えば日油株式会社製のマリアリム(登録商標)シリーズ又はマリアリム(登録商標)SCシリーズのSC1015Fが挙げられる。日油株式会社製のマリアリム(登録商標)シリーズの分散剤は、主鎖にイオン性基、グラフト鎖にポリオキシアルキレン鎖を有する多官能櫛型の分散剤である。
 分散剤を添加する場合は、(A)銀含有粒子100質量部に対して、0.001質量部以上5質量部以下の範囲内で添加することができる。
 分散剤が、導電性樹脂組成物中に、(A)銀含有粒子100質量部に対して、0.5質量部以上10質量部以下の範囲内で含まれることにより、(A)銀含有粒子の沈降を抑制して、(A)銀粒含有子を略均一に分散させた状態でシールド層を形成することができる。導電性樹脂組成物中に含まれる分散剤の量は、(A)銀含有粒子100質量部に対して、好ましく1質量部以上8質量部以下の範囲内であり、さらに好ましくは1.5質量部以上7質量部以下の範囲内である。
 (F)成分として、分散剤は、予め(A)銀含有粒子をスラリー状に分散させたマスターバッチに含まれていてもよい。マスターバッチに(F)成分として、分散剤が含まれていると、(A)銀含有粒子の沈降を抑制して、(A)銀含有粒子を略均一に分散させた状態でシールド層を形成することができる。分散剤は、マスターバッチに含まれている場合であっても、導電性樹脂組成物中に含まれる(A)銀含有粒子100質量部に対して、0.5質量部以上10質量部以下の範囲内で含まれていればよい。
 導電性樹脂組成物中の添加剤の量は、導電性樹脂組成物100質量部に対して、好ましくは0.01質量部以上5質量部以下の範囲内であり、好ましくは0.05質量部以上3質量部以下の範囲内である。マスターバッチに添加する場合においても、マスターバッチを添加した導電性樹脂組成物中の添加剤の量が、導電性樹脂組成物100質量部に対して、0.01質量部以上5質量部以下の範囲内であればよい。
(G)成分(炭素粒子)
 本発明の実施形態に係る導電性樹脂組成物は、さらに、(G)成分として、炭素粒子を含んでいてもよい。炭素粒子の種類としては、例えば、カーボンブラック、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ、グラフェン、グラファイト、フラーレン等が挙げられ、硬化後のシールド層の靭性を向上させ、信頼性試験後の密着性を向上させる観点からグラフェンが好ましい。
 グラフェンは、密に充填された1原子厚さのシートに、原子が六角形のパターンに配置された純粋な炭素からなる物質である。
 本発明の実施形態に係る導電性樹脂組成物において、炭素粒子は平均粒径(D50)が、0.1~10μmであることが好ましく、0.5~5μmがより好ましく、1~3μmであることが更に好ましい。(G)成分の平均粒径がこの範囲であることにより、硬化後のシールド層に対し強靭性を付与し、かつスプレー塗布性も良好なものとすることができる。
 導電性樹脂組成物中に炭素粒子が含まれていると、導電性樹脂組成物を対象物に塗布して電磁波シールド層を形成した際に、電磁波シールド層の靭性を向上させ、信頼性試験後の密着性を向上させることができる。炭素粒子の市販品としては、例えば、株式会社中越黒鉛工業所製のグラファイト(鱗片状黒鉛)(品名:CX3000)、XGScience社製のグラフェン粉末(グレード:XGnP-R10)、グラフェンプラットフォーム株式会社製のグラフェン(品名:GNH-XA)が挙げられる。
 導電性樹脂組成物中の(A)成分100質量部に対し(G)成分の含有量は、1~50質量部であることが好ましく、3~30質量部であることがより好ましく、5~25質量部であることがさらに好ましい。
 導電性樹脂組成物中に炭素粒子が、前記範囲内で含まれていると、導電性樹脂組成物の対象物に対する密着性を低下させることなく電磁波シールド層の靭性を向上させることができ、電磁波シールド効果が高く、かつ耐久性に優れた電磁波シールド層を形成し得る。
(粘度)
 導電性樹脂組成物の粘度は、例えば東機産業株式会社製の回転粘度計(品番:TVE-22H)を用いて、25℃、回転数10rpmで測定した粘度が10mPa・s以上であることが好ましく、15mPa・s以上であることがより好ましく、20mPa・s以上であることがさらに好ましく、25mPa・s以上であることがよりさらに好ましく、30mPa・s以上であることが特により好ましい。また、粘度の上限値は、10,000mPa・s以下であることが好ましく、5000mPa・s以下であることがより好ましく、1000mPa・s以下であることがさらに好ましく、900mPa・s以下であることがよりさらに好ましく、850mPa・s以下であることが特により好ましい。25℃、10rpmで測定した導電性樹脂組成物の粘度が、10mPa・s以上10,000mPa・s以下の範囲内であれば、スプレー(噴霧)塗布がしやすい導電性樹脂組成物とすることができるため好ましい。
 導電性樹脂組成物の粘度は、(C)溶剤の種類や配合割合を変えることにより調整することができる。
 なお、本発明の粘度は25℃におけるものである。
<導電性樹脂組成物の製造方法>
 導電性樹脂組成物の製造は、例えば(A)銀含有粒子、(B)樹脂、必要に応じて(C)溶剤、必要に応じて(D)硬化剤、必要に応じて(E)硬化促進剤、必要に応じて(F)添加剤、及び必要に応じて(G)炭素粒子を配合し、公知の装置を用いて、撹拌混合することにより製造することができる。公知の装置としては、例えば、ヘンシェルミキサー、ロールミル、三本ロールミルなどを用いることができる。導電性樹脂組成物を構成する各成分は、それらを同時に装置に投入して混合してもよく、その一部を先に装置に投入して混合し、残りを後から装置に投入して混合してもよい。
<マスターバッチの製造方法>
 本発明の実施形態においては、(A)銀含有粒子と、(C)溶剤とを、予め撹拌混合して、スラリー状のマスターバッチを製造し、導電性樹脂組成物の製造に供してもよい。マスターバッチには、(F)成分として分散剤を含んでいてもよく、必要に応じて他の添加剤を含んでいてもよい。マスターバッチに含まれる(A)銀含有粒子と(C)溶剤は、前述の公知の装置を用いて撹拌混合することができる。
<塗布方法>
 本発明の実施形態に係る導電性樹脂組成物は、塗布等により電磁波シールド層を形成することができる。
 例えば、導電性樹脂組成物は、電子部品などにスプレー(噴霧)塗布し、電子部品などの外面に電磁波シールド層を形成することができる。また、導電性樹脂組成物は、例えば、従来公知のスプレーコーティング機などで電子部品に塗布することができる。また、導電性樹脂組成物は、エアゾール缶などに充填して塗布してもよい。導電性樹脂組成物を電子部品にスプレー塗布して形成した電磁波シールド層の厚さは、0.5μm以上30μm以下の範囲内でもよく、0.5μm以上20μm以下の範囲内でもよく、0.5μm以上10μm以下の範囲内でもよい。
<電磁波シールド層>
 本発明の実施形態に係る電磁波シールド層は、上記導電性樹脂組成物により形成された電磁波シールド層である。
 本発明の実施形態に係る電磁波シールド層は、上記導電性樹脂組成物により形成することができ、導電性樹脂組成物を用いたスプレー塗布により形成することが好ましい。
 本発明の実施形態に係る導電性樹脂組成物により形成した電磁波シールド層は、優れた電磁波シールド効果を有するため、電磁波を有効に遮蔽することができる。
 本発明の実施形態に係る電磁波シールド層は、37dB以上、好ましくは50dB以上、特に好ましくは60dB以上の電磁波シールド効果を有する。
 この電磁波シールド効果は、ASTM D4935に準拠して測定することができる。
 本発明の実施形態に係る電磁波シールド層は、部品の放熱性の観点から熱伝導率が、7W/mK以上であることが好ましく、14W/mK以上であることがより好ましく、16W/mK以上であることがさらに好ましい。なお、熱伝導率の向上のためには銀含有粒子の含有率を増やす、または高温で処理することで銀含有粒子の焼結を促進するなどの手法が考えられるが、いずれの方法も塗膜の脆化を招き、密着性が低下するおそれがある。従って、密着性や塗膜の強度の観点から、熱伝導率は400W/mK以下であることが好ましく、100W/mK以下であることがより好ましく、40W/mK以下であることがさらに好ましい。
 この熱伝導率は、NETZSCH社製LFA447フラッシュアナライザーを用いて25℃での熱伝導率を測定した値である。計算に使用する比熱は硬化物をNETZSCH社製示差走査熱量計DSC204F1を用いてDSC法にて測定し、硬化物比重はアルキメデス法にて測定することができる。
 本発明の実施形態に係る導電性樹脂組成物により形成した電磁波シールド層は、下記実施例に示すテープ密着性及び信頼性試験において、いずれも4B以上のテープ密着性を有する。このようなテープ密着性を有することにより、電子部品の外面に形成した電磁波シールド層が剥がれ落ちにくくなる。
<電子部品>
 本発明の実施形態に係る電子部品は、本発明の実施形態に係る電磁波シールド層を含む。
 本発明の実施形態に係る導電性樹脂組成物は、スプレー塗布などにより電子部品に塗布して用いることができる。本発明は、上述の導電性樹脂組成物を用いた電子部品にも関する。
 本発明の実施形態に係る導電性樹脂組成物を用いた電子部品としては、例えば携帯電話、スマートフォン、ノートパソコン、タブレット端末などの電子機器に用いられる、パワーアンプ、Wi-Fi/Bluetoothモジュール、フラッシュメモリなどを挙げることができる。導電性樹脂組成物を電子部品に用いる場合には、個々の電子部品に導電性樹脂組成物を塗布した後に、各電子部品を基板上に実装してもよく、また、各電子部品を基板上に実装した後に導電性樹脂組成物を塗布してもよい。
 以下、本発明を実施例により具体的に説明する。本発明は、これらの実施例に限定されるものではない。
 実施例及び比較例の導電性樹脂組成物を製造するにあたり、以下の原料を用いた。
(A)銀含有粒子
A1:nanoAg(SNM-007(NET92%))、球状、平均粒径100nm、BC(ブチルカルビトール)スラリー、DOWAエレクトロニクス株式会社製(表1及び2中、nano-Agスラリーより溶剤として、ジエチレングリコールモノブチルエーテル(ブチルカルビトール:登録商標))分8質量%を除去して算出した値を使用量として記載した)
 なお、(A)銀含有粒子の平均粒径は、走査型電子顕微鏡(SEM)を用いて観察し、10,000倍から20,000倍の倍率のSEM写真又はSEM画像から任意に50個の粒子を選択し、各粒子の輪郭を真円に近似させて、その真円の直径を測定し、その算術平均値を平均粒径とした。(A)導電性充填剤の形状がフレーク(鱗片状)である場合には、任意の50個の粒子の長軸平均値を平均粒径とした。
(B)樹脂
B1:AER9000(ポリプロピレンオキサイド変性エポキシ樹脂)、旭化成株式会社製、エポキシ当量:380g/eq
B2:EP4010S (ポリプロピレンオキサイド変性エポキシ樹脂)、ADEKA株式会社製、エポキシ当量:350g/eq
B3:PB3600(ポリブタジエン骨格含有エポキシ樹脂)、株式会社ダイセル製、エポキシ当量:199g/eq
B4:EPU 7N(ウレタン骨格含有エポキシ樹脂)、ADEKA株式会社製、エポキシ当量:230g/eq
B5:CTBN 1300×13(CTBN(カルボキシル末端ブタジエンニトリルゴム)、HUNTSMAN株式会社製
B6:AK601(ビスフェノールA型エポキシ樹脂)、日本化薬株式会社製
(C)溶剤
C1:KBM 103、信越シリコーン株式会社製
C2:Terpinolene、日本テルペン化学株式会社製
C3:ブチルカルビトール
(D)硬化剤
D1:ヘキサヒドロ無水フタル酸(HN5500)、酸無水物系硬化剤、日立化成株式会社製
D2:XPL4437E、フェノール系硬化剤、群栄化学株式会社製
(E)硬化促進剤
E1:2E4MZ、2-エチル-4-メチルイミダゾール、四国化成工業株式会社製
E2:2P4MZ、四国化成工業株式会社製
(F)添加剤
F1:マリアリムSC1015F、高分子ポリカルボン酸系分散剤、日油株式会社製
(G)炭素粒子
グラフェン(GNH-XA)、粒径2.5μm、グラフェンプラットフォーム株式会社製
実施例1~9、比較例1~3
 下記各表に示す配合割合となるように各原料を、3本ロールミルを使用して混合・分散して導電性樹脂組成物を製造した。表中に示す(A)から(G)の各成分の数値及び合計の数値は、質量部である。表中に単位の記載がない数値は質量部を表す。
<粘度>
 実施例及び比較例の各導電性樹脂組成物の粘度は、東機産業株式会社製粘度計TVE-22H形粘度計 (1°34’コーン、R24)を用い、試料1mlを測り取り、25℃で10rpmで1分間回転させた後の値を読み取り測定値とした。
<比抵抗値>
 扁平なアルミナ基板上に50mm×2mmとなる線状の印刷パターンが得られる膜厚50μmの孔版を用意し、実施例及び比較例の各導電性樹脂組成物を試料として印刷した。試料を印刷したアルミナ基板を200℃20分で硬化させた硬化物のライン抵抗をデジタルマルチメーターで測定し、試料膜厚を東京精密製サーフコム1500表面粗さ計を用いて実測し、比抵抗値を算出した。
<テープ密着性>
 エポキシ樹脂硬化物上に膜厚が150μm程度になるように実施例及び比較例の各導電性樹脂組成物を試料として塗布し、200℃×20分で硬化させて得られた試験片に対し、ASTM D3359-97に準拠した手順でクロスカット試験を行い、テープ密着性を評価した。
 具体的には10mm×10mmのサイズの平面版に試料を塗布し、200℃×20分の硬化条件で硬化させたものに縦方向、横方向にそれぞれ1mm間隔で6本の切れ込みをカッターで入れて1mm×1mmの格子を25個(5mm×5mm)形成した。得られた試験片にテープを貼付け、ASTM D3359-97に記載の方法で剥がした時に、5mm×5mm格子総面積内で剥離した個数から剥離面積の割合を算出して剥離状態を評価した。
 テープ密着性は、テープ剥離後の剥離面を1B~5Bの5段階で評価した。5B以上の場合は「優」と評価し、4Bの場合は「良」、3B~0Bの場合は「不可」である。
 5B:剥離なし
 4B:剥離面積が5mm×5mm格子総面積内の5%以下
 3B:剥離面積が5mm×5mm格子総面積内の5%超、15%以下
 2B:剥離面積が5mm×5mm格子総面積内の15%超、35%以下
 1B:剥離面積が5mm×5mm格子総面積内の35%超、65%以下
 0B:剥離面積が5mm×5mm格子総面積内の65%超
<信頼性試験>
 エポキシ樹脂硬化物上に膜厚が150μm程度になるように実施例及び比較例の各導電性樹脂組成物を試料として塗布し、200℃×20分で硬化させて得られた試験片を130℃/85%RHのHAST(High Accelerated Stress Test(高加速寿命試験))試験条件に24時間投入し、試験後の密着性を<テープ密着性>におけるクロスカット試験と同様に評価した。
<熱伝導率>
 1mm厚の銅板上に硬化後の膜厚が100~150μmとなるように実施例及び比較例の各導電性樹脂組成物を試料として塗布し、200℃×20分で硬化させて得られた硬化物の表面にカーボンスプレーを塗布して試験片を作製した。作製した試験片を、NETZSCH社製LFA447フラッシュアナライザーを用いて25℃での熱伝導率を測定した。計算に使用する比熱は硬化物をNETZSCH社製示差走査熱量計DSC204F1を用いてDSC法にて測定し、硬化物比重はアルキメデス法にて測定した。
<押し込み弾性率>
 スライドガラス上に硬化膜の膜厚が50μmになるように実施例及び比較例の各導電性樹脂組成物を試料として塗布し、200℃×20分で硬化させて試験片(硬化物)を作製した。測定はエリオニクス社製ナノインデンテーション試験装置、ENT-NEXUSを用いて行った。このように200℃×20分で硬化させたときの試験片に対し、バーコビッチ型圧子で、10秒かけて最大荷重200mNで荷重をかけ、その荷重で10秒保持し、10秒かけて除荷した。試料膜厚50μmに対し押し込み深さはおよそ1/10の5μm程度とし、スライドガラスの影響を受けない領域で測定した。
 この条件でナノインデンテーション試験を行い、荷重-変位曲線を得る。得られた荷重-変位曲線からISO14577に定義される押し込み弾性率EITを算出した。
<電磁波シールド効果>
 電磁波シールド効果は、ASTM D4935に準拠して測定した。精密ディスペンス装置(ノードソンアシムテック社製S2-920P)にディスペンス・バブル(ノードソンアシムテック社製DJ-2200)を装着し、試料をポリイミド基板(厚さ1mm)上に硬化後の膜厚が15μmとなるように塗布し、200℃×20分間加熱して試験片を作製した。作成した試験片はキーコム社製「同軸管タイプ シールド効果測定システム(500MHz~18Ghz)」にて測定した。
 電磁波シールド効果が50dB以上の場合は「◎(優)」と評価し、30dB以上50dB未満の場合は「〇(良)」30dB未満の場合は「△(可)」と評価した。
<スプレー塗布性>
 精密ディスペンス装置(品名:スペクトラムIIディスペンサ、型番:S2-920P、ノードソンアシムテック社製)にディスペンス・バブル(品名:ディスペンスジェット、型番:DJ-2200、ノードソンアシムテック社製)を装着し、実施例及び比較例の各導電性樹脂組成物を平面上に噴霧した。この時ノズル径24Gのニードルを使用し、ニードルのノズル詰まりや吐出切れ、カスレなどを評価した。スプレーにより噴霧化され、直線状に塗布される状態を「〇(良好)」と評価し、吐出されない状態又はスプレーにより直線の途中で途切れた状態を「×(不十分)」と評価した。
 実施例及び比較例の各導電性樹脂組成物及び上記評価結果について、表1及び2に示す。また、実施例1及び実施例2における(B)成分、(D)成分、及び(E)成分を含む組成物をそれぞれ200℃20分で硬化させた硬化物を、NETZSCH社製示差走査熱量計DSC204F1を用いて測定したDSCチャート(樹脂ベースDSC)を図1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び2に示すように、実施例1~9に係る導電性樹脂組成物は、(A)銀含有粒子、(B)樹脂を含む導電性樹脂組成物であって、押し込み弾性率EITが10~20GPaの範囲であるので、スプレーコーティングによって導電性樹脂組成物を塗布すると、電子部品等の対象物に対して、密着性の高い塗膜を形成することができ、優れた電磁波シールド効果を有していた。
 また、実施例2は、実施例1と比較して、硬化剤としてフェノール樹脂を用いることで、信頼性試験後の密着性が優れることが示された。これは、図1のDSCチャート(樹脂ベースDSC)に示すように、(D)硬化剤として液状フェノール樹脂を用いることで、硬化開始温度が高温側へシフトし、導電性樹脂組成物を硬化させた硬化物中の溶剤が抜けやすくなりボイドなどの塗膜欠陥が減少し、密着性が向上すると考えられる。
 比較例1に係る導電性樹脂組成物は、押し込み弾性率EITが10GPa未満であるので、信頼性試験の結果、密着性が低下し、高温高湿環境下においては経時により十分な密着性が得られなくなることが判った。これは比較例1に使用した(B)樹脂が反応性に乏しく、硬化不足のため、初期の抵抗値が上昇したためと考えられる。また、比較例1は、信頼性試験による熱による熱収縮が大きく、信頼性試験後の密着性試験では剥離が生じたものと考えられる。
 (B)成分を含有しない比較例2に係る導電性樹脂組成物は、押し込み弾性率EITが20GPa超であり、密着性及び信頼性が十分ではなかった。
 比較例3に係る導電性樹脂組成物は、押し込み弾性率EITが20GPa超であり、信頼性が十分ではなかった。
 本発明の実施形態に係る導電性樹脂組成物は、電子部品にスプレー(噴霧)塗布により電磁波シールド層を形成することができ、携帯電話、スマートフォン、ノートパソコン、タブレット端末などの電子機器に用いられる、パワーアンプ、Wi-Fi/Bluetoothモジュール、フラッシュメモリなどの電子部品に好適に使用することができる。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2022年7月8日出願の日本特許出願(特願2022-110666)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (19)

  1. (A)成分として、銀含有粒子、及び
    (B)成分として、熱硬化性樹脂又は熱可塑性樹脂の少なくとも一方
    を含む導電性樹脂組成物であって、
    以下の手順のナノインデンテーション試験により得られる荷重-変位曲線から求められる押し込み弾性率EITが10~20GPaである、
    導電性樹脂組成物。
    [手順]
    (1)スライドガラス上に導電性樹脂組成物を塗布し、200℃で20分間加熱し厚さ50μmの塗膜を形成し試験片を得る。
    (2)(1)で得られた試験片の塗膜面に、バーコビッチ型圧子で、10秒かけて最大荷重200mNまで荷重をかけ、その最大荷重で10秒保持し、その後10秒かけて除荷する条件でナノインデンテーション試験を行い、荷重-変位曲線を得る。
  2.  前記(A)成分が、平均粒径100nm以上350nm以下の銀粒子を含む、請求項1に記載の導電性樹脂組成物。
  3.  前記(B)成分がエポキシ樹脂を含有する、請求項1又は2に記載の導電性樹脂組成物。
  4.  前記(B)成分が、柔軟骨格含有エポキシ樹脂を含む、請求項1~3のいずれか一項に記載の導電性樹脂組成物。
  5.  前記柔軟骨格含有エポキシ樹脂が、分子の一部に、ポリオキシアルキレン骨格、ポリエチレングリコール骨格、ポリプロレピレングリコール骨格、ポリエーテル骨格、ポリプロピレンオキサイド骨格、ウレタン骨格、ポリブタジエン骨格、ニトリルゴム骨格から選択される少なくとも一の柔軟骨格を含む、請求項4に記載の導電性樹脂組成物。
  6.  前記(B)成分の含有量が、前記(A)成分100質量部に対し、0.1質量部以上20質量部以下である、請求項1~5のいずれか一項に記載の導電性樹脂組成物。
  7.  さらに、(C)成分として、溶剤を含む請求項1~6のいずれか一項に記載の導電性樹脂組成物。
  8.  さらに、(D)成分として、硬化剤を含む、請求項1~7のいずれか一項に記載の導電性樹脂組成物。
  9.  前記(D)成分が、酸無水物系硬化剤、フェノール系硬化剤、及びアミン系硬化剤より選択される少なくとも一種を含む、請求項8に記載の導電性樹脂組成物。
  10.  さらに、(E)成分として硬化促進剤を含む、請求項8又は9に記載の導電性樹脂組成物。
  11.  さらに(G)成分として、炭素粒子を含む、請求項1~10のいずれか一項に記載の導電性樹脂組成物。
  12.  前記(G)成分の平均粒径が、0.1~10μmである、請求項11に記載の導電性樹脂組成物。
  13.  前記(G)成分の含有量が、前記(A)成分100質量部に対し、1~50質量部である、請求項11又は12に記載の導電性樹脂組成物。
  14.  前記(B)成分、前記(D)成分、及び前記(E)成分からなる組成物を示差走査熱量測定したときのチャートにおける発熱ピークの極大値が175~250℃の範囲である、請求項10に記載の導電性樹脂組成物。
  15.  25℃10rpmにおける粘度が10~10,000mPa・s以下である、請求項1~14のいずれか一項に記載の導電性樹脂組成物。
  16.  前記導電性樹脂組成物がスプレー塗布用である、請求項1~15のいずれか一項に記載の導電性樹脂組成物。
  17.  前記導電性樹脂組成物が電磁波シールド用スプレー塗布剤である、請求項1~15のいずれか一項に記載の導電性樹脂組成物。
  18.  請求項1~17のいずれか一項に記載の導電性樹脂組成物により形成された電磁波シールド層。
  19.  請求項18に記載の電磁波シールド層を含む電子部品。
PCT/JP2023/023680 2022-07-08 2023-06-26 導電性樹脂組成物、電磁波シールド層、及び電子部品 WO2024009833A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022110666 2022-07-08
JP2022-110666 2022-07-08

Publications (1)

Publication Number Publication Date
WO2024009833A1 true WO2024009833A1 (ja) 2024-01-11

Family

ID=89453400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023680 WO2024009833A1 (ja) 2022-07-08 2023-06-26 導電性樹脂組成物、電磁波シールド層、及び電子部品

Country Status (1)

Country Link
WO (1) WO2024009833A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019056104A (ja) * 2017-09-20 2019-04-11 矢崎総業株式会社 導電性組成物及びそれを用いた配線板
JP2021107476A (ja) * 2019-12-27 2021-07-29 京セラ株式会社 ペースト組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019056104A (ja) * 2017-09-20 2019-04-11 矢崎総業株式会社 導電性組成物及びそれを用いた配線板
JP2021107476A (ja) * 2019-12-27 2021-07-29 京セラ株式会社 ペースト組成物

Similar Documents

Publication Publication Date Title
TWI550053B (zh) 導電性組成物
TWI646558B (zh) 銀膏組成物及其製造方法、導電體以及電子零件
JP6243135B2 (ja) 加熱硬化型導電性ペースト組成物
EP3885062A1 (en) Magnetic paste
JP2011171523A (ja) 硬化性電磁波シールド性接着性フィルムおよびその製造方法
CN110922741B (zh) 树脂组合物
JP6962480B2 (ja) 磁性ペースト
WO2016116959A1 (ja) 導電性樹脂組成物および半導体装置
WO2015083332A1 (ja) 熱硬化型導電性ペースト組成物
JP7185289B2 (ja) 電磁波シールド用スプレー塗布剤
JP5859823B2 (ja) 加熱硬化型導電性ペースト組成物
JP2013114837A (ja) 加熱硬化型導電性ペースト組成物
US20200339782A1 (en) Coated particle
EP3985691A1 (en) Magnetic paste
CN111349314A (zh) 树脂组合物
TW201807090A (zh) 導電性塗料及使用其之屏蔽封裝體之製造方法
WO2024009833A1 (ja) 導電性樹脂組成物、電磁波シールド層、及び電子部品
WO2020189778A1 (ja) 樹脂組成物
JP2012227406A (ja) ペースト組成物、磁性体組成物およびインダクタ
JP2013112807A (ja) 導電性インク組成物、及び導電性パターンの製造方法
JP2020055977A (ja) 導電性塗料
JP2020102556A (ja) 積層体、電子部品、及びインバータ
WO2022014626A1 (ja) 導電性接着剤組成物
TW202239616A (zh) 硬化性樹脂組成物
WO2022107730A1 (ja) 電磁波シールド用組成物及び電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835366

Country of ref document: EP

Kind code of ref document: A1