WO2024008148A1 - 动力设备及压缩组件 - Google Patents

动力设备及压缩组件 Download PDF

Info

Publication number
WO2024008148A1
WO2024008148A1 PCT/CN2023/106071 CN2023106071W WO2024008148A1 WO 2024008148 A1 WO2024008148 A1 WO 2024008148A1 CN 2023106071 W CN2023106071 W CN 2023106071W WO 2024008148 A1 WO2024008148 A1 WO 2024008148A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression
cylinder body
reciprocating
chamber
cavity
Prior art date
Application number
PCT/CN2023/106071
Other languages
English (en)
French (fr)
Inventor
傅珂珂
李进
Original Assignee
浙江千机智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江千机智能科技有限公司 filed Critical 浙江千机智能科技有限公司
Publication of WO2024008148A1 publication Critical patent/WO2024008148A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/005Multi-stage pumps with two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/04Multi-stage pumps having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/102Adaptations or arrangements of distribution members the members being disc valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/122Cylinder block

Definitions

  • This application relates to the field of compression technology, and in particular to power equipment and compression components.
  • a power device and a compression assembly are provided.
  • the present application provides a compression assembly.
  • the compression assembly includes a compression cylinder and a piston.
  • a first compression chamber and a second compression chamber are formed in the compression cylinder.
  • the volume of the second compression chamber is smaller than the compression chamber.
  • the first compression chamber; the piston includes a first plug body and a second plug body connected to the first plug body, the first plug body is disposed in the first compression chamber, and the second plug body is connected to the first plug body.
  • the plug body is disposed in the second compression chamber, so that the first compression chamber is located on a side of the first plug body facing away from the second plug body to form a first rodless chamber, and the third compression chamber is formed as a first rodless chamber.
  • a side of a plug body facing the second plug body is formed as a first rod cavity, so that the second compression cavity is located on a side of the second plug body facing away from the first plug body.
  • a second rodless cavity is formed on the side of the second plug body facing the first plug body as a second rodless cavity; and a second rodless cavity is formed on the outer wall of the compression cylinder to communicate with the first rodless cavity.
  • a first channel and a second channel connected to the second rod cavity, and a first communication hole connected to the second rod cavity is provided on the inner wall of the first rod cavity.
  • the present application provides a power equipment.
  • the power equipment includes a compression component and a reciprocating component as described above.
  • the reciprocating component is connected to the piston, and the reciprocating component is used to drive the piston to reciprocate.
  • Figure 1 is a schematic structural diagram of power equipment in an embodiment
  • Figure 2 is a partially exploded view of the power equipment shown in Figure 1;
  • Figure 3 is a cross-sectional view of the power equipment shown in Figure 1 from one perspective;
  • Figure 4 is a cross-sectional view of the power equipment shown in Figure 3 from another perspective;
  • Figure 5 is a schematic structural diagram of the compression component in Figure 1;
  • Figure 6 is an exploded schematic diagram of the compression assembly shown in Figure 5;
  • Figure 7 is a cross-sectional view of the compression assembly shown in Figure 5 from one perspective;
  • Figure 8 is a cross-sectional view of the compression assembly shown in Figure 7 from another perspective;
  • Figure 9 is a partially exploded view of the reciprocating assembly and power source in Figure 1;
  • Figure 10 is a cross-sectional view of the reciprocating assembly and power source shown in Figure 9 from one perspective;
  • Figure 11 is a cross-sectional view of the reciprocating assembly and power source shown in Figure 10 from another perspective.
  • Reciprocating component 210. Power shaft; 211. Transmission sleeve; 212. Transmission shaft; 220. Reciprocating part; 221. Guide rod; 222. Reciprocating sleeve; 223. Limit sleeve; 224. Limiting body; 230. Reciprocating groove; 232, oil guide groove; 240, protective shell; 241, second guide hole; 242, lubricating oil chamber;
  • the power equipment 10 in an embodiment of the present invention can at least improve the compression efficiency and avoid the volume of the power equipment 10 from being set too large.
  • the power equipment 10 includes a power source 100, a reciprocating assembly 200 and a compression assembly 300.
  • the reciprocating assembly 200 includes a power shaft 210 and a reciprocating piece 220.
  • the power shaft 210 is in transmission cooperation with the reciprocating piece 220; the power source 100 is used to drive the power shaft 210.
  • the reciprocating member 220 is driven to reciprocate along the axis direction of the power shaft 210 .
  • the compression assembly 300 includes a compression cylinder 310 and a piston 320.
  • a first compression chamber 330 and a second compression chamber 340 are formed in the compression cylinder 310.
  • the second compression chamber 340 has a smaller volume than the first compression chamber 330, and the compression cylinder 310
  • a first passage 350 communicating with the first compression chamber 330 and a second passage 360 communicating with the second compression chamber 340 are formed on the outer wall of the piston 320;
  • the piston 320 includes a first plug body 321 and is connected to the first plug body 321
  • the second plug body 322, the first plug body 321 is disposed in the first compression chamber 330, and the second plug body 322 is disposed in the second compression chamber 340;
  • the piston 320 of the compression assembly 300 is connected to the reciprocating member 220, and the reciprocating member 220 It can drive the piston 320 to move back and forth.
  • the compressed material when the power equipment 10 is used as a compressor or an air pump, the compressed material can be sucked into the first compression chamber 330 from the first channel 350 and compressed into the second compression chamber 340 . discharge.
  • the power device 10 when the power device 10 is used as a vacuum pump or the like, gas is sucked in through the second channel 360 and discharged through the first channel 350 .
  • the power source 100 drives the reciprocating member 220 to reciprocate along the axis of the power shaft 210 , and further drives the piston 320 to reciprocate along the axis of the power shaft 210 . Since the first plug body 321 is disposed in the first compression chamber 330 and the second plug body 322 is disposed in the second compression chamber 340, for example, when the piston 320 moves in the direction toward the reciprocating member 220, the first plug body 321 moves the second plug body 321 into the second compression chamber 340. The gas in one compression chamber 330 is compressed into the second compression chamber 340.
  • the second plug body 322 compresses the gas medium in the second compression chamber 340 and discharges it through the second channel 360. , at this time the gas enters the first compression chamber 330 through the first channel 350 .
  • This reciprocating cycle achieves two-stage compression of the gas. Furthermore, when the piston 320 moves in the direction toward the reciprocating member 220, a first-level compression and a second-level air intake are achieved. When the piston 320 moves in a direction away from the reciprocating member 220, a second-level compression and a first-level air intake are achieved, and then It not only achieves two-stage compression of gas, but also achieves higher compression efficiency.
  • the number of reciprocating assemblies 200 is two, and the power source 100 is used to drive two power shafts 210 to respectively drive the reciprocating parts 220 to reciprocate along the axis direction of the power shaft 210; the number of compression assemblies 300 is two, The pistons 320 of the two compression assemblies 300 are respectively connected to two reciprocating parts 220, and a single reciprocating part 220 can drive the piston 320 connected to it to reciprocate.
  • the power shafts 210 of the two reciprocating components 200 are driven by the power source 100 , thereby achieving synchronous compression of the two compression components 300 , improving the compression efficiency, and through one power source 100 Achieving two-stage compression on both sides, the compression efficiency is higher, and the volume of the power equipment 10 is smaller Small.
  • the power shafts 210 of the two reciprocating assemblies 200 are respectively connected to opposite sides of the power source 100, and the two compression assemblies 300 are respectively located on one side of the two reciprocating assemblies 200 facing away from the power source 100.
  • the two reciprocating parts 220 are connected to the first plug bodies 321 of the two pistons 320 respectively.
  • the power equipment 10 also includes a transmission assembly.
  • the power shaft 210 is connected to the power source 100 through the transmission assembly.
  • the use of the transmission assembly facilitates a more stable transmission cooperation between the power shaft 210 and the power source 100, and facilitates synchronization of the two power shafts 210. Connected to power source 100.
  • the two reciprocating assemblies 200 can also be arranged on the same side of the power source 100, or arranged in other ways according to design requirements, and the two power shafts 210 are connected to the power source 100 through the transmission assembly.
  • the power equipment 10 further includes a connecting channel 410 , one end of the connecting channel 410 is connected to the first channel 350 of one compression component 300 , and the other end is connected to the second channel 360 of another compression component 300 .
  • the connecting channel 410 allows the gas after two-stage compression of the compression component 300 on one side to be discharged from the second channel 360 to the third gas of the compression component 300 on the other side.
  • the compression component 300 on the other side performs two-stage compression on the gas after two-stage compression, thereby achieving four-stage compression of the gas, with higher compression efficiency.
  • the power equipment 10 further includes a connecting pipe 420.
  • a connecting channel 410 is formed in the connecting pipe 420.
  • One end of the connecting pipe 420 is connected to the first channel 350 of a compression assembly 300, and the other end is connected to another At the second channel 360 of the compression assembly 300 .
  • the second channel 360 of one compression component 300 is connected to the first channel 350 of another compression component 300 through the connection channel 410 through the connecting pipe 420 .
  • the power equipment 10 may further include a housing, and the connection channel 410 is formed by forming a groove on the inner wall of the housing.
  • the connection channel 410 can also be formed in other ways, as long as it can facilitate the communication between the first channel 350 of one compression component 300 and the second channel 360 of another compression component 300 .
  • the first compression chamber 330 is formed as a first rodless chamber 331 on the side of the first plug body 321 facing away from the second plug body 322 , and is located on the side of the first plug body 321 facing toward the second plug body 322 .
  • One side of the second plug body 322 is formed as a first rod-less cavity 332, and a second compression cavity 340 is located on a side of the second plug body 322 facing away from the first plug body 321 to form a second rodless cavity 341.
  • the side of the second plug body 322 facing the first plug body 321 is formed into a second rod cavity 342; a first channel 350 connected with the first rod cavity 332 and a second rod cavity 342 are formed on the outer wall of the compression cylinder 310.
  • the second channel 360 communicates with the cavity 342
  • the inner wall of the first rod cavity 332 is provided with a first communication hole 370 that communicates with the second rod cavity 342 .
  • a first channel 350 connected to the first rodless chamber 331 and a second channel 360 connected to the second rodless chamber 341 are formed on the outer wall of the compression cylinder 310, and a third channel 360 is formed on the piston 320.
  • Two communication holes 323 communicate with the first rodless cavity 331 and the second rodless cavity 341 .
  • the number of first channels 350 is at least two, at least another first channel 350 is connected to the first rodless cavity 331, and the number of second channels 360 is at least two. At least another second channel 360 is connected to the second rodless cavity 341 .
  • a second communication hole 323 is formed on the piston 320 . The second communication hole 323 communicates with the first rodless cavity 331 and the second rodless cavity 341 .
  • the first plug body 321 compresses the first rodless chamber 331 and the gas enters the second rodless chamber 341 through the second communication hole 323, and the gas enters the first rodless chamber 341 through the first channel 350.
  • the gas enters the first rodless cavity 331 through another first channel 350, and at the same time, the second plug body 322 compresses the second rodless cavity 331.
  • the gas in the rodless cavity 341 is exhausted through another second channel 360 .
  • all the first channels 350 of one compression component 300 are connected with all the second channels 360 of another compression component 300 through the connecting channels 410 .
  • the connecting channel 410 By connecting the two compression components 300 through the connecting channel 410 Through, four-stage uninterrupted compression of gas is achieved, and the compression efficiency is higher.
  • the compression cylinder 310 includes a first cylinder body 311 and a second cylinder body 312 .
  • the first compression chamber 330 is formed in the first cylinder body 311
  • the second compression chamber 340 is formed in the first cylinder body 311 .
  • a first channel 350 communicating with the first rodless cavity 331 is formed on the first cylinder body 311, and is connected with the first rodless cavity.
  • the first channel 350 connected with 332 is opened on the first cylinder body 311 or the second cylinder body 312.
  • the first communication hole 370 is opened on the side of the second cylinder body 312 facing the first cylinder body 311.
  • the second channels 360 are both Opened on the second cylinder body 312.
  • the first compression chamber 330 is easily formed by arranging the first cylinder body 311
  • the second compression chamber 340 is easily formed by arranging the second cylinder body 312 .
  • the first cylinder body 311 opens toward one side of the second cylinder body 312 , and a first passage 350 communicating with the first rod cavity 332 is opened on the second cylinder body 312 .
  • a first passage 350 communicating with the first rod cavity 332 is opened on the second cylinder body 312 .
  • the compression cylinder 310 also includes a valve plate 313.
  • the second cylinder body 312 opens on one side facing away from the first cylinder body 311.
  • the valve plate 313 is disposed at the opening of the second cylinder body 312 and is connected to the second cylinder body 312.
  • the second channel 360 connected to the rod cavity 341 is opened on the valve plate 313 .
  • the compression assembly 300 further includes an exhaust component 314.
  • the exhaust component 314 is disposed on a side of the second cylinder body 312 facing away from the first cylinder body 311.
  • An exhaust cavity 3141 is formed in the exhaust component 314.
  • the second channels 360 are all connected to the exhaust chamber 3141, and the exhaust member 314 is provided with an exhaust port 3142 connected to the exhaust chamber 3141. The provision of the exhaust component 314 facilitates the stable discharge of the compressed gas.
  • valve plate 313 is provided with a through hole, and a second passage 360 communicating with the second rod chamber 342 is formed in the inner wall of the second cylinder body 312, and the second passage 360 is connected with the through hole.
  • the exhaust member 314 is disposed on the side of the valve plate 313 facing away from the second cylinder body 312 , and the through hole is connected with the exhaust chamber 3141 of the exhaust member 314 .
  • the compression assembly 300 further includes an air inlet part 315.
  • the air inlet part 315 is disposed on the side of the first cylinder body 311 facing away from the second cylinder body 312.
  • An air inlet cavity 3151 is formed in the air inlet part 315.
  • the first channel 350 on the first cylinder body 311 communicates with the air intake chamber 3151, and an air inlet 3152 connected with the air intake chamber 3151 is formed on the outer wall of the air inlet member 315.
  • the first channel 350 communicating with the first rodless cavity 331 communicates with the air inlet cavity 3151.
  • the air intake part 315 is provided to facilitate air intake into the first channel 350 and improve the convenience of air intake.
  • each first channel 350 is connected with the air inlet cavity 3151 of the air inlet member 315, so as to achieve the purpose of air intake through different first channels 350 through one air inlet 3152.
  • the air inlet member 315 can also be omitted to achieve air intake through the first channel 350 .
  • the exhaust member 314 may be omitted.
  • the piston 320 further includes a connecting rod 324. Both ends of the connecting rod 324 are connected to the first plug body 321 and the second plug body 322 respectively.
  • the second connecting hole 323 is opened in the connecting rod 324, and the second connecting rod 324 is connected to the connecting rod 324.
  • the hole 323 penetrates the first plug body 321 and the second plug body 322 .
  • Part of the communication rod 324 is located in the first rod cavity 332 , and the other part is located in the second rod cavity 342 .
  • the connection between the first plug body 321 and the second plug body 322 is facilitated by providing the connecting rod 324 .
  • the reciprocating member 220 includes a guide rod 221 and a reciprocating sleeve 222.
  • the reciprocating sleeve 222 is set on the power shaft 210, and the guide rod 221 is provided on the outer wall of the reciprocating sleeve 222.
  • the compression cylinder 310 is provided with a first guide hole 316. One end of the guide rod 221 passes through the first guide hole 316 and is connected to the piston 320.
  • the power source 100 is used to drive the power shaft 210 to drive the reciprocating sleeve 222 along with the guide rod 221.
  • the axis direction of the power shaft 210 reciprocates.
  • the power shaft 210 drives the reciprocating sleeve 222 to reciprocate, it can drive the piston 320 to reciprocate through the guide rod 221, and since the guide rod 221 penetrates the first guide hole 316, the first guide hole 316 can also be the guide rod 221
  • the movement of the driven piston 320 provides a guiding function.
  • the compression cylinder 310 is provided with a first guide hole 316 that communicates with the first compression chamber 330 .
  • One end of the guide rod 221 passes through the first guide hole 316 and is inserted into the first compression chamber 330 and connected with the first guide hole 316 .
  • the first plug body 321 is connected.
  • the first guide hole 316 is opened in the first cylinder body 311 .
  • the first guide hole 316 penetrates from the air inlet 315 to the first cylinder body 311 .
  • the compression cylinder 310 is provided with a first guide hole 316 that communicates with the second compression chamber 340 .
  • One end of the guide rod 221 passes through the first guide hole 316 and is inserted into the second compression chamber 340 and connected with the first guide hole 316 .
  • the second plug body 322 is connected.
  • a limiting sleeve 223 is provided on the outer wall of the reciprocating sleeve 222 , and the guide rod 221 is penetrated and limited in the limiting sleeve 223 .
  • the connection between the guide rod 221 and the reciprocating sleeve 222 is facilitated by providing the limiting sleeve 223 .
  • the guide rod 221 can also be integrally formed on the reciprocating sleeve 222.
  • the number of guide rods 221 is at least two. Each guide rod 221 is evenly arranged on the outer wall of the reciprocating sleeve 222 around the axis of the power shaft 210.
  • the number of first guide holes 316 is consistent with the number of guide rods 221.
  • each guide rod 221 passes through a first guide hole 316 and is connected to the piston 320 .
  • the reliability of the reciprocating movement of the driving piston 320 can be improved.
  • the number of guide rods 221 is two, and the two guide rods 221 are evenly spaced on the outer wall of the reciprocating sleeve 222. In other embodiments, the number of guide rods 221 can also be one, three, etc. Other numbers.
  • the power shaft 210 is provided with a reciprocating guide rail, the trajectory of the reciprocating guide rail is a closed curve surrounding the axis of the power shaft 210, and the wave peaks and troughs of the reciprocating guide rail are spaced along the axis of the power shaft 210;
  • the reciprocating member 220 also It includes a limiting body 224, which is positioned on the inner wall of the reciprocating sleeve 222 and cooperates with the reciprocating guide rail guide.
  • the limiting body 224 can move on the reciprocating guide rail along the trajectory of the reciprocating guide rail.
  • the reciprocating guide rail is a reciprocating groove 230.
  • the trajectory of the reciprocating groove 230 is a closed curve surrounding the axis of the power shaft 210.
  • the limiting body 224 is disposed in the reciprocating groove 230.
  • the limiting body 224 can move in the reciprocating groove 230 along the trajectory of the reciprocating groove 230 .
  • the limiting body 224 can move in the reciprocating groove 230, so that the limiting body 224 can move between the peaks and troughs of the curved groove, so that the limiting body 224 drives the reciprocating sleeve 222 along the
  • the purpose of reciprocating the axial direction of the power shaft 210 is to drive the piston 320 to reciprocate along the axial direction of the power shaft 210 through the guide rod 221 .
  • the rotational motion of the power shaft 210 is converted into the linear motion of the reciprocating sleeve 222 and the guide rod 221 along the axis of the power shaft 210. There will be no yaw intersection problem of the crank structure or the eccentric drive structure, and the work stability is better.
  • the power shaft 210 includes a transmission sleeve 211 and a transmission shaft 212.
  • the transmission sleeve 211 is sleeved on the transmission shaft 212, and the reciprocating groove 230 is opened on the outer wall of the transmission sleeve 211; the compression cylinder 310 faces the corresponding connected reciprocating shaft.
  • a rotation hole 317 is formed on one side of the sleeve 222 .
  • One end of the transmission shaft 212 is inserted into the rotation hole 317 , and the other end is connected to the power source 100 .
  • the structural integrity of the transmission shaft 212 can be ensured, thereby ensuring the stability of the transmission rotation of the transmission shaft 212. And because the transmission shaft 212 is further penetrated through the rotation hole 317 of the compression cylinder 310, the rotation hole 317 can not only support the transmission shaft 212, but also ensure the rotation stability of the transmission shaft 212.
  • the reciprocating guide rail can also be a guide protrusion.
  • the trajectory of the guide protrusion is a closed strip curve surrounding the axis of the power shaft 210.
  • the limiting body 224 is disposed on the guide protrusion and can move along the guide protrusion. Move lengthwise.
  • each reciprocating guide rail is spaced along the axis of the power shaft 210 , and at least one limiting body 224 is provided on each reciprocating guide rail.
  • the power shaft 210 is also provided with a balance guide rail that is arranged opposite to the reciprocating guide rail along the axis of the power shaft 210.
  • the trajectory of the balance guide rail is a closed curve surrounding the axis of the power shaft 210, and the crest of the balance guide rail is along the axis direction.
  • the wave trough of the balance guide rail is opposite to the wave crest of the reciprocating guide rail along the axis direction.
  • a balance body is provided on the balance guide rail, and the balance body and the limiting body 224 are arranged oppositely along the axis of the power shaft 210 .
  • the balance body and the limiting body 224 move toward or away from each other.
  • the two-way acceleration during the movement of the balance body and the limiting body 224 can be offset, thereby reducing the vibration caused by acceleration.
  • the balance body is disposed on the side of the limiting body 224 facing the power source 100 .
  • the balance guide rail has the same structure as the reciprocating guide rail, and the balance guide rail is symmetrically arranged along the circumference of the power shaft 210 relative to the reciprocating guide rail.
  • the balance body and the limiting body 224 have the same structure.
  • the trajectory of a reciprocating groove 230 around the axis of the power shaft 210 is a sinusoidal curve, and the trajectory of the reciprocating groove 230 includes at least two sinusoidal cycles.
  • the number of limiting bodies 224 is consistent with the sinusoidal cycle of the reciprocating groove 230 .
  • the numbers are consistent, and each limiting body 224 is evenly spaced around the axis of the power shaft 210 .
  • there are two limiting bodies 224 and the two limiting bodies 224 are symmetrically arranged around the axis of the power shaft 210 .
  • the power shaft 210 rotates, it can drive each limiting body 224 to move in the same direction.
  • the stability of the transmission can be further improved by at least two limiting bodies 224 .
  • the number of limiting bodies 224 can also be other numbers.
  • Each limiting body 224 is evenly arranged around the axis of the power shaft 210 to ensure the stability of the force on the reciprocating body transmission.
  • the limiting body 224 is a sphere, and the limiting body 224 can roll in the reciprocating groove 230 .
  • the friction force of the limiting body 224 when moving can be reduced.
  • an oil guide groove 232 is formed on the inner wall of the reciprocating groove 230 .
  • Lubricating oil can be placed in the oil guide groove 232, so that when the limiting body 224 moves in the reciprocating groove 230, the lubricating oil is used to further reduce frictional resistance and ensure smooth transmission.
  • the oil guide groove 232 is a closed curved groove surrounding the axis of the power shaft 210 . Since the oil guide groove 232 is disposed on the inner wall of the reciprocating groove 230, the trajectory of the oil guide groove 232 is consistent with the trajectory of the reciprocating groove 230, ensuring that the lubricating oil is available anywhere in the reciprocating groove 230 when the limiting body 224 moves.
  • the reciprocating assembly 200 also includes a protective shell 240.
  • the power shaft 210 and the reciprocating member 220 are both located in the protective shell 240, and the first guide hole 316 is opened on the inner wall of the protective shell 240.
  • An end of the guide rod 221 facing away from the first plug body 321 is inserted into the second guide hole 241 opposite to the second guide hole 241 , and the guide rod 221 can move in the second guide hole 241 .
  • the protective shell 240 can further ensure the power shaft 210 and the reciprocating part 220, and ensure the transmission stability between the power shaft 210 and the reciprocating part 220.
  • a splicing cavity 318 is formed on the side of the compression cylinder 310 facing the reciprocating member 220, and the protective shell 240 opens on one side of the compression cylinder 310.
  • a lubricating oil chamber 242 is formed in the protective shell 240.
  • the opening side of the protective shell 240 Butt-connected with the compression cylinder 310 so that the splicing chamber 318 and the lubricating oil chamber 242 are connected correspondingly.
  • the power shaft 210 and the reciprocating part 220 are located in the space after the splicing chamber 318 and the lubricating oil chamber 242 are connected. During installation, the power shaft 210 and the reciprocating member 220 are disposed between the protective shell 240 and the compression cylinder 310, thereby improving installation convenience and ensuring a stable connection between the protective shell 240 and the air inlet 315.
  • a splicing cavity 318 is formed on the side of the air inlet member 315 facing away from the first cylinder body 311 , and the protective shell 240 is connected to the air inlet member 315 .
  • a splicing cavity 318 may be formed on the side of the exhaust member 314 facing away from the second cylinder body 312 , and the protective shell 240 is connected to the exhaust member 314 .
  • the power equipment 10 further includes an air storage bag, and the air storage bag is connected to the second channel 360 of the compression assembly 300.
  • the second channel 360 is connected to the space in the air storage bag.
  • the compressed gas can be discharged into the air storage bag through the second channel 360, and due to the flexible nature of the air storage bag, the space occupied by the air storage bag can be effectively reduced when not in use, further benefiting the power equipment 10. Miniature design.
  • the air storage bag is connected to the second channel 360 of a compression component 300 that is not connected to the connecting channel 410.
  • the second channel 360 is connected with the space inside the air storage bag.
  • the power equipment 10 in any of the above embodiments is a compressor to realize compression and discharge of gas.
  • the power equipment 10 may also be a vacuum pump. In any of the above embodiments, the power equipment 10 is used for air inlet and exhaust passages, and for air inlet and exhaust passages to achieve the purpose of vacuum evacuation.
  • the power device 10 may also be an air pump. In other embodiments, the power device 10 can also be used in other situations that require compression, pumping, or inflation.
  • an energy storage system includes the power equipment 10, a gas storage tank, a turbine and a generator in any of the above embodiments, and the gas storage tank is connected to the compressor.
  • the gas tank is connected to the generator through the turbine.
  • Power is supplied to the power equipment 10.
  • the power equipment 10 compresses the air and stores it in a gas storage tank, and then releases the compressed air when electricity is needed, and passes the turbine to the generator to generate electricity.
  • the power equipment 10 in this embodiment occupies a small area and has low unit cost.
  • One rotation of the power shaft 210 can complete the four-stage compression of gas, and the energy conversion efficiency is high.
  • the energy storage system further includes a regenerator, and the regenerator is connected to the turbine and the power equipment 10 .
  • the power equipment 10 releases heat during the process of compressing air.
  • the heat can be collected through a regenerator and used when the compressed air is released to generate electricity.
  • the turbine needs to absorb heat during the power generation process, thereby achieving higher energy conversion efficiency as a whole.
  • the energy storage system further includes a new energy generator, and the new energy generator is electrically connected to the power source 100 of the power equipment 10 .
  • the new energy generator can be a new energy power generation system such as a solar generator or a wind power generator.
  • the new energy generator provides motion power for the power equipment 10 .
  • the power source 100 of the power equipment 10 can also be connected to the mains power.
  • electricity can be supplied to the power source 100 of the power equipment 10 to work at night, and then the compressed air can be stored in the gas storage tank, and then During the day, during peak power consumption periods, compressed air is released to turbines and generators to generate electricity.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In the present invention, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

一种动力设备(10)及压缩组件(300),动力设备(10)包括压缩组件(300)及往复组件(200),压缩组件(300)包括压缩缸体(310)及活塞(320)。当往复组件(200)用于驱动活塞(320)沿一方向往复移动时,气体通过第一通道(350)进入到第一有杆腔(320)内,第二塞体(322)压缩第二有杆腔(342)内的气体介质通过第二通道(360)排出;当往复组件(200)用于驱动活塞(320)沿另一方向往复移动时,第一塞体(321)将第一有杆腔(332)内的气体通过第一连通孔(370)压缩至第二有杆腔(342)内,依此往复循环,实现气体的二级压缩。进而当活塞(320)沿一方向往复移动时,实现的是一级进气,二级压缩,当活塞(320)沿另一方向往复移动时,实现二级进气,一级压缩,进而不仅实现气体的二级压缩,同时压缩效率更高。

Description

动力设备及压缩组件
相关申请
本申请要求2022年07月06日申请的,申请号为202210788771.6,名称为“动力设备及压缩组件”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及压缩技术领域,特别是涉及动力设备及压缩组件。
背景技术
目前,传统的泵体或压缩机等动力设备,大多是由电机带动活塞进行往复移动,实现吸介质与压缩排出。然而,传统的空气泵或活塞式动力设备在压缩过程中,一个往复移动行程内,一半的行程用于吸入介质,而另一半用于压缩排出,这就导致压缩效率低。
发明内容
根据本申请的各种实施例,提供一种动力设备及压缩组件。
一方面,本申请提供一种压缩组件,所述压缩组件包括压缩缸体及活塞,所述压缩缸体内形成有第一压缩腔及第二压缩腔,所述第二压缩腔的体积小于所述第一压缩腔;所述活塞包括第一塞体及与所述第一塞体相连接的第二塞体,所述第一塞体设置于所述第一压缩腔内,所述第二塞体设置于所述第二压缩腔内,以使所述第一压缩腔位于所述第一塞体背向于所述第二塞体的一侧形成为第一无杆腔,所述第一塞体朝向所述第二塞体的一侧形成为第一有杆腔,以使所述第二压缩腔位于所述第二塞体背向于所述第一塞体的一侧形成为第二无杆腔,所述第二塞体朝向所述第一塞体的一侧形成为第二有杆腔;所述压缩缸体的外壁上形成有与所述第一有杆腔连通的第一通道及与所述第二有杆腔连通的第二通道,且所述第一有杆腔的内壁上开设有与所述第二有杆腔连通的第一连通孔。
另一方面,本申请提供一种动力设备,所述动力设备包括如上所述的压缩组件及往复组件,所述往复组件连接于所述活塞,所述往复组件用于驱动所述活塞往复移动。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请 的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为一实施例中的动力设备的结构示意图;
图2为图1所示的动力设备的局部分解图;
图3为图1所示的动力设备在一视角下的剖视图;
图4为图3所示的动力设备在另一视角下的剖视图;
图5为图1中的压缩组件的结构示意图;
图6为图5所示的压缩组件的分解示意图;
图7为图5所示的压缩组件在一视角下的剖视图;
图8为图7所示的压缩组件在另一视角下的剖视图;
图9为图1中的往复组件及动力源的局部分解图;
图10为图9所示的往复组件及动力源在一视角下的剖视图;
图11为图10所示的往复组件及动力源在另一视角下的剖视图。
附图标记说明:
10、动力设备;100、动力源;
200、往复组件;210、动力轴;211、传动套;212、传动轴;220、往复件;221、导杆;222、往复套;223、限位套;224、限位体;230、往复槽;232、导油槽;240、保护壳;241、第二导向孔;242、润滑油腔;
300、压缩组件;310、压缩缸体;311、第一缸本体;312、第二缸本体;313、阀片;314、排气件;3141、排气腔;3142、排气口;315、进气件;3151、进气腔;3152、进气口;316、第一导向孔;317、转动孔;318、拼接腔;320、活塞;321、第一塞体;322、第二塞体;323、第二连通孔;324、连通杆;330、第一压缩腔;331、第一无杆腔;332、第一有杆腔;340、第二压缩腔;341、第二无杆腔;342、第二有杆腔;350、第一通道;360、第二通道;370、第一连通孔;
410、连接通道;420、连接管。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参阅图1至图4,本发明一实施例中的动力设备10,至少能够提高压缩效率,且避免动力设备10的体积设置的过大。
具体地,动力设备10包括动力源100、往复组件200及压缩组件300,往复组件200包括动力轴210及往复件220,动力轴210与往复件220传动配合;动力源100用于驱动动力轴210带动往复件220沿动力轴210的轴线方向往复移动。压缩组件300包括压缩缸体310及活塞320,压缩缸体310内形成有第一压缩腔330及第二压缩腔340,第二压缩腔340的体积小于第一压缩腔330,且压缩缸体310的外壁上形成有与第一压缩腔330连通的第一通道350及与第二压缩腔340连通的第二通道360;活塞320包括第一塞体321及与所述第一塞体321相连接的第二塞体322,第一塞体321设置于第一压缩腔330内,第二塞体322设置于第二压缩腔340内;压缩组件300的活塞320连接于往复件220,往复件220能够带动活塞320往复移动。
在本实施例中,动力设备10作为压缩机或充气泵使用时,压缩物质能够从所述第一通道350吸入第一压缩腔330内并压缩至第二压缩腔340内,由第二通道360排出。在另一实施例中,动力设备10作为真空泵等使用时,气体由第二通道360吸入并由第一通道350排出。
一实施例中,当动力设备10作为压缩机使用时,动力源100驱动动力源100带动往复件220沿动力轴210的轴线方向往复移动,进一步带动活塞320沿动力轴210的轴线往复移动。由于第一塞体321设置于第一压缩腔330内,第二塞体322设置于第二压缩腔340内,例如当活塞320朝朝向往复件220的方向移动时,第一塞体321将第一压缩腔330内的气体压缩至第二压缩腔340内,当活塞320朝远离往复件220的方向移动时,第二塞体322压缩第二压缩腔340内的气体介质通过第二通道360排出,此时气体通过第一通道350进入到第一压缩腔330内。依此往复循环,实现气体的二级压缩。进而当活塞320朝朝向往复件220的方向移动时,实现的是一级压缩,二级进气,当活塞320朝远离往复件220的方向移动时,实现二级压缩,一级进气,进而不仅实现气体的二级压缩,同时压缩效率更高。
在本实施例中,往复组件200的数量为两个,动力源100用于驱动两个动力轴210分别带动往复件220沿动力轴210的轴线方向往复移动;压缩组件300的数量为两个,两个压缩组件300的活塞320分别连接于两个往复件220,单个往复件220能够带动与之连接的活塞320往复移动。由于压缩组件300与往复组件200均为两个,两个往复组件200的动力轴210均通过动力源100驱动,进而实现两个压缩组件300的同步压缩,提高压缩效率,且通过一个动力源100实现双侧的二级压缩,压缩效率更高,动力设备10的体积更 小。
在本实施例中,两个往复组件200的动力轴210分别连接于动力源100的相背对的两侧上,两个压缩组件300分别位于两个往复组件200背向于动力源100的一侧,两个往复件220分别连接于两个活塞320的第一塞体321。通过将往复组件200布置于动力源100相背对的两侧,便于实现对两个动力轴210的同步驱动,且减小驱动距离,有利于小型化设计。
具体地,动力设备10还包括传动组件,动力轴210通过传动组件连接于动力源100,利用传动组件便于实现动力轴210与动力源100更加稳定地传动配合,且便于实现两个动力轴210同步连接于动力源100。
在其他实施例中,两个往复组件200还可以布置于动力源100的同一侧,或者根据设计要求呈其他方式布置,两个动力轴210通过传动组件连接于动力源100。
一实施例中,动力设备10还包括连接通道410,连接通道410的一端与一压缩组件300的第一通道350连通,另一端与另一压缩组件300的第二通道360连通。由于在本实施例中,一个压缩组件300实现二级压缩,通过连接通道410使得一侧的压缩组件300经过二级压缩后的气体由第二通道360排出至另一侧的压缩组件300的第一通道350,另一侧的压缩组件300对经过二级压缩后的气体再次进行二级压缩,进而实现气体的四级压缩,压缩效率更高。
在本年实施例中,动力设备10还包括连接管420,连接管420内形成有连接通道410,连接管420的一端连接于一压缩组件300的第一通道350处,另一端连接于另一压缩组件300的第二通道360处。通过连接管420以使一压缩组件300的第二通道360通过连接通道410与另一压缩组件300的第一通道350连通。
在其他实施例中,动力设备10还可以包括壳体,连接通道410通过在壳体的内壁形成凹槽的方式形成。或在另一实施例中,连接通道410还可以通过其他方式形成,只要能够便于实现一压缩组件300的第一通道350与另一压缩组件300的第二通道360的连通即可。
参阅图5至图8,一实施例中,第一压缩腔330位于第一塞体321背向于第二塞体322的一侧形成为第一无杆腔331,位于第一塞体321朝向第二塞体322的一侧形成为第一有杆腔332,第二压缩腔340位于第二塞体322背向于第一塞体321的一侧形成为第二无杆腔341,位于第二塞体322朝向第一塞体321的一侧形成为第二有杆腔342;压缩缸体310的外壁上形成有与第一有杆腔332连通的第一通道350及与第二有杆腔342连通的第二通道360,且第一有杆腔332的内壁上开设有与第二有杆腔342连通的第一连通孔370。
如图7中的双点划线箭头所示,当活塞320朝朝向往复件220的方向移动时,气体通过第一通道350进入到第一有杆腔332内,第二塞体322压缩第二有杆腔342内的气体介质通过第二通道360排出;当活塞320朝远离往复件220的方向移动时,第一塞体321将第一有杆腔332内的气体通过第一连通孔370压缩至第二有杆腔342内,依此往复循环,实现气体的二级压缩。进而当活塞320朝朝向往复件220的方向移动时,实现的是一级进气,二级压缩,当活塞320朝远离往复件220的方向移动时,实现二级进气,一级压缩,进而不仅实现气体的二级压缩,同时压缩效率更高。
在另一实施例中,压缩缸体310的外壁上形成有与第一无杆腔331连通的第一通道350及与第二无杆腔341连通的第二通道360,活塞320上开设有第二连通孔323,第二连通孔323连通第一无杆腔331及第二无杆腔341。
如图7中的虚线箭头所示,当活塞320朝远离往复件220的方向移动时,气体通过第一通道350进入到第一无杆腔331内,第二塞体322压缩第二无杆腔341内的气体介质通过第二通道360排出;当活塞320朝朝向往复件220的方向移动时,第一塞体321将第一无杆腔331内的气体通过第二连通孔323压缩至第二无杆腔341内,依此往复循环,实现气体的二级压缩。进而当活塞320朝朝向往复件220的方向移动时,实现的是一级压缩,二级进气,当活塞320朝远离往复件220的方向移动时,实现二级压缩,一级进气,进而不仅实现气体的二级压缩,同时压缩效率更高。
如图7所示,在本实施例中,第一通道350的数量为至少两个,至少另一第一通道350与第一无杆腔331连通,第二通道360的数量为至少两个,至少另一第二通道360与第二无杆腔341连通,活塞320上开设有第二连通孔323,第二连通孔323连通第一无杆腔331及第二无杆腔341。
使用时,当活塞320朝往复件220的方向移动时,第一塞体321压缩第一无杆腔331气体通过第二连通孔323进入第二无杆腔341,气体通过第一通道350进入第一有杆腔332,且同时,第二塞体322压缩第二有杆腔342内的气体通过第二通道360排出;当活塞320朝背向于往复件220的方向移动时,第一塞体321压缩第一有杆腔332内的气体进入到第二有杆腔342内,气体通过另一第一通道350进入到第一无杆腔331内,且同时,第二塞体322压缩第二无杆腔341内的气体通过另一第二通道360排出。通过上述结构,能够实现二级气体的不间断的压缩,第一塞体321与第二塞体322在一个往复行程内同时实现进气及压缩,压缩效率更高。
如图3所示,具体地,一压缩组件300的所有第一通道350通过连接通道410与另一压缩组件300的所有第二通道360连通。通过将两个压缩组件300通过连接通道410的连 通,实现气体的四级不间断压缩,压缩效率更高。
参阅图5至图7,一实施例中,压缩缸体310包括第一缸本体311及第二缸本体312,第一压缩腔330形成于第一缸本体311内,第二压缩腔340形成于第二缸本体312内,且第二缸本体312设置于第一缸本体311上,与第一无杆腔331连通的第一通道350形成于第一缸本体311上,与第一有杆腔332连通的第一通道350开设于第一缸本体311或第二缸本体312上,第一连通孔370开设于第二缸本体312朝向第一缸本体311的一侧上,第二通道360均开设于第二缸本体312上。通过设置第一缸本体311便于形成第一压缩腔330,通过设置第二缸本体312便于形成第二压缩腔340。
在本实施例中,第一缸本体311朝向第二缸本体312的一侧开口,与第一有杆腔332连通的第一通道350开设于第二缸本体312上。通过第一缸本体311的一侧开口,便于设置第一塞体321在第一压缩腔330内。
具体地,压缩缸体310还包括阀片313,第二缸本体312背向于第一缸本体311的一侧开口,阀片313设置于第二缸本体312的开口处,且与第二无杆腔341连通的第二通道360开设于阀片313上。通过在第二缸本体312上开口,便于将第二塞体322设置于第二压缩腔340内。
一实施例中,压缩组件300还包括排气件314,排气件314设置第二缸本体312背向于第一缸本体311的一侧,排气件314内形成有排气腔3141,各个第二通道360均与排气腔3141连通,排气件314上开设有与排气腔3141连通的排气口3142。通过设置排气件314便于实现压缩后的气体的稳定排出。
具体地,阀片313上开设有通孔,与第二有杆腔342连通的第二通道360形成于第二缸本体312的内壁内,该第二通道360与通孔连通。进一步地,排气件314设置于阀片313背向于第二缸本体312的一侧,通孔与排气件314的排气腔3141连通。
一实施例中,压缩组件300还包括进气件315,进气件315设置于第一缸本体311背向于第二缸本体312的一侧,进气件315内形成有进气腔3151,第一缸本体311上的第一通道350与进气腔3151连通,进气件315的外壁上开设有与进气腔3151连通的进气口3152。具体地,与第一无杆腔331连通的第一通道350与进气腔3151连通。通过设置进气件315便于实现进气至第一通道350,提高进气的便利性。
在其他实施例中,各个第一通道350均与进气件315的进气腔3151连通,便于实现通过一个进气口3152实现通过不同第一通道350进气的目的。
在另一实施例中,进气件315还可以省略,实现通过第一通道350进气。在其他实施例中,排气件314还可以省略。
一实施例中,活塞320还包括连通杆324,连通杆324的两端分别连接于第一塞体321及第二塞体322,第二连通孔323开设于连通杆324内,且第二连通孔323贯穿第一塞体321及第二塞体322。连通杆324的部分位于第一有杆腔332内,另一部分位于第二有杆腔342内。通过设置连通杆324便于实现第一塞体321与第二塞体322的连接。
参阅图4及图8至图10,一实施例中,往复件220包括导杆221及往复套222,往复套222套设置于动力轴210上,导杆221设置于往复套222的外壁上,压缩缸体310上开设有第一导向孔316,导杆221的一端穿过第一导向孔316并与活塞320相连接,动力源100用于驱动动力轴210带动往复套222与导杆221沿动力轴210的轴线方向往复移动。当动力轴210带动往复套222往复移动时,能够通过导杆221带动活塞320往复移动,且由于导杆221穿设于第一导向孔316内,进而第一导向孔316还能够为导杆221带动活塞320的移动提供导向作用。
在本实施例中,压缩缸体310上开设有与第一压缩腔330连通的第一导向孔316,导杆221的一端穿过第一导向孔316并穿设于第一压缩腔330内与第一塞体321相连接。具体地,第一导向孔316开设于第一缸本体311上。在本实施例中,第一导向孔316由进气件315贯穿至第一缸本体311。
在其他实施例中,压缩缸体310上开设有与第二压缩腔340连通的第一导向孔316,导杆221的一端穿过第一导向孔316并穿设于第二压缩腔340内与第二塞体322相连接。
在本实施例中,往复套222的外壁上设置有限位套223,导杆221穿设并限位于限位套223内。通过设置限位套223便于实现导杆221与往复套222的连接。在其他实施例中,导杆221还可以一体成型于往复套222上。
一实施例中,导杆221的数量为至少两个,各个导杆221绕动力轴210的轴线均匀布置于往复套222的外壁上,第一导向孔316的数量与导杆221的数量相一致,每一导杆221对应穿过一第一导向孔316并与活塞320连接。通过设置至少两个导杆221与活塞320连接,能够提高驱动活塞320往复移动的可靠性。在本实施例中,导杆221的数量为两个,两个导杆221均匀间隔设置于往复套222的外壁上,在其他实施例中,导杆221的数量还可以为一个或三个等其他数目个。
一实施例中,动力轴210上设置有往复导轨,往复导轨的轨迹为环绕动力轴210轴线的闭合曲线,且所述往复导轨的波峰与波谷沿动力轴210的轴线间隔设置;往复件220还包括限位体224,限位体224定位于往复套222的内壁上并与往复导轨导向配合,限位体224能够在往复导轨上沿着往复导轨的轨迹移动。在本实施例中,往复导轨为往复槽230,往复槽230的轨迹为环绕动力轴210轴线的闭合曲线,限位体224穿设于往复槽230内, 限位体224能够在往复槽230沿着往复槽230的轨迹移动。
动力轴210转动时,限位体224能够在往复槽230内移动,使得限位体224能够在呈曲线形槽的波峰与波谷之间的运动,以实现限位体224带动往复套222沿着动力轴210的轴线方向往复移动的目的,进而通过导杆221带动活塞320沿着动力轴210的轴线方向往复移动。动力轴210的旋转运动转化为往复套222及导杆221的沿动力轴210轴线的直线运动,不会出现曲柄结构或偏心驱动结构的偏摆交问题,做功稳定性更好。
一实施例中,动力轴210包括传动套211及传动轴212,传动套211套设于传动轴212上,且往复槽230开设于传动套211的外壁上;压缩缸体310朝向对应连接的往复套222的一侧开设有转动孔317,传动轴212的一端穿设于转动孔317内,另一端连接于动力源100。通过将往复槽230开设于传动套211上,能够保证传动轴212的结构完整,进而保证传动轴212传递转动的稳定。且由于传动轴212进一步穿设于压缩缸体310的转动孔317,通过转动孔317不仅能够支撑传动轴212,保证传动轴212的转动稳定性。
另一实施例中,往复导轨还可以为导向凸起,导向凸起的轨迹为环绕动力轴210轴线的闭合条状曲线,限位体224设置于导向凸起上并能够在导向凸起上沿长度方向移动。
一实施例中,往复导轨为至少两个,各个往复导轨沿着动力轴210的轴线间隔设置,每一往复导轨上均设置有至少一限位体224。通过设置至少两个往复导轨,能够提高通过往复套222及导杆221带动活塞320移动的稳定性。
在另一实施例中,动力轴210上还设置有与往复导轨沿动力轴210轴线间隔相对设置的平衡导轨,平衡导轨的轨迹为环绕动力轴210轴线的闭合曲线,平衡导轨的波峰沿轴线方向与往复导轨的波谷相对,平衡导轨的波谷沿轴线方向与往复导轨的波峰相对。平衡导轨上设置有平衡体,平衡体与限位体224沿动力轴210的轴线相对设置。进而动力轴210转动时,平衡体与限位体224相向或相背移动。通过设置平衡导轨与平衡体,能够使得平衡体与限位体224移动过程双向加速度抵消,减少加速度产生的振动。
具体地,平衡体设置于限位体224朝向动力源100的一侧。进一步地,平衡导轨与往复导轨的结构一致,平衡导轨相对于往复导轨沿动力轴210的周线对称设置。在本实施例中,平衡体与限位体224结构一致。
在本实施例中,一往复槽230绕动力轴210轴线的轨迹为正弦曲线,且往复槽230的轨迹包括至少两个正弦曲线周期数,限位体224的数量与往复槽230的正弦曲线周期数一致,且各个限位体224绕动力轴210的轴线均匀间隔设置。具体地,限位体224为两个,两个限位体224绕动力轴210的轴线对称设置。动力轴210转动时,能够带动各个限位体224同方向移动。通过至少两个限位体224能够进一步提高传动的稳定性。在其他实施例 中,限位体224的数量还可以为其他数目个。各个限位体224绕动力轴210的轴线均匀布置,保证对往复体传动受力的稳定性。
一实施例中,限位体224为球体,限位体224能够在往复槽230内滚动。通过将限位体224设置为球体,能够降低限位体224在移动时的摩擦力。
一实施例中,往复槽230的内壁上开设有导油槽232。导油槽232内可以设置润滑油,进而限位体224在往复槽230内移动时,利用润滑油进一步降低摩擦阻力,保证传动的顺畅。
具体地,导油槽232为环绕动力轴210轴线的闭合曲线形槽。由于导油槽232设置于往复槽230的内壁上,进而使得导油槽232的轨迹与往复槽230的轨迹一致,保证了限位体224移动至往复槽230内任一处均有润滑油。
参阅图2至图4,一实施例中,往复组件200还包括保护壳240,动力轴210及往复件220均位于保护壳240内,且保护壳240的内壁上开设有与第一导向孔316相对设置的第二导向孔241,导杆221背向于第一塞体321的一端穿设于第二导向孔241内,且导杆221能够在第二导向孔241内移动。通过在保护壳240内设置第二导向孔241,能够进一步保证导杆221移动的稳定性,进一步保证活塞320往复移动的稳定性。且通过保护壳240还能够进一步保证动力轴210与往复件220,保证动力轴210与往复件220之间的传动稳定性。
具体地,压缩缸体310朝向往复件220的一侧形成有拼接腔318,保护壳240朝向压缩缸体310的一侧开口,保护壳240内形成有润滑油腔242,保护壳240的开口侧与压缩缸体310对接连接,以使拼接腔318与润滑油腔242对应连通,动力轴210及往复件220位于拼接腔318与润滑油腔242连通后的空间内。在安装时,以使动力轴210与往复件220设置于保护壳240与压缩缸体310之间,提高的安装便利性,且保证保护壳240与进气件315之间的稳定连接。
在本实施例中,进气件315背向于第一缸本体311的一侧形成拼接腔318,保护壳240与进气件315相连接。在另一实施例中,可以为排气件314背向于第二缸本体312的一侧形成拼接腔318,保护壳240与排气件314相连接。
一实施例中,动力设备10还包括储气袋,所述储气袋连接于压缩组件300的第二通道360处,该第二通道360与所述储气袋内的空间连通。压缩后气体可以通过第二通道360排入到储气袋内,且由于储气袋为柔性的特点,在不使用时,能够有效降低储气袋对空间的占用,进一步有利于动力设备10的小型化设计。
具体地,所述储气袋连接于未与连接通道410连通的一压缩组件300的第二通道360 处,该第二通道360与所述储气袋内的空间连通。
在本实施例中,上述任一实施例中的动力设备10为压缩机,实现气体的压缩与排出。
一实施例中,动力设备10还可以为真空泵,上述任一实施例中的动力设备10用于进气的通道排气,用于排气的通道进气,实现真空抽气的目的。
在另一实施例中,动力设备10还可以为充气泵。在其他实施例中,动力设备10还可以为其他需要压缩或需要抽气或需要充气的场合中。
参阅图1至图4,一实施例中,一种储能系统包括上述任一实施例中的动力设备10、储气罐、透平机及发电机,所述储气罐连接于所述压缩缸体310的所述第二通道360处;所述储气罐通过所述透平机连接所述发电机。供电给动力设备10,动力设备10将空气经过压缩后储存在储气罐中,然后等到需要用电时释放压缩空气,通过透平机到发电机发电。在本实施例中的动力设备10占地面积小,单机成本低,动力轴210转一圈,即可完成气体的四级压缩做功,能源转换效率高。
一实施例中,储能系统还包括回热器,所述回热器连接于所述透平机及所述动力设备10。动力设备10压缩空气过程中会释放热量,热量可通过回热器收集起来,待到释放压缩空气发电时使用,透平机发电过程中需要吸收热量,从而整体达到更高的能源转换效率。
一实施例中,储能系统还包括新能源发电器,所述新能源发电器电性连接于所述动力设备10的动力源100。具体地,新能源发电器可以为太阳能发电器、风能发电器等新能源发电系统。通过新能源发电器为动力设备10提供运动电力。
在其他实施例中,动力设备10的动力源100还可以连接于市电,例如,可以晚上电进供给动力设备10的动力源100工作,然后通过压缩空气存贮在储气罐内,再到白天用电高峰锋值电时进行释放压缩空气到透平机到发电机进行发电。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于 附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种压缩组件,其特征在于,所述压缩组件包括:
    压缩缸体,所述压缩缸体内形成有第一压缩腔及第二压缩腔,所述第二压缩腔的体积小于所述第一压缩腔;及
    活塞,所述活塞包括第一塞体及与所述第一塞体相连接的第二塞体,所述第一塞体设置于所述第一压缩腔内,所述第二塞体设置于所述第二压缩腔内,以使所述第一压缩腔位于所述第一塞体背向于所述第二塞体的一侧形成为第一无杆腔,所述第一塞体朝向所述第二塞体的一侧形成为第一有杆腔,以使所述第二压缩腔位于所述第二塞体背向于所述第一塞体的一侧形成为第二无杆腔,所述第二塞体朝向所述第一塞体的一侧形成为第二有杆腔;
    所述压缩缸体的外壁上形成有与所述第一有杆腔连通的第一通道及与所述第二有杆腔连通的第二通道,且所述第一有杆腔的内壁上开设有与所述第二有杆腔连通的第一连通孔。
  2. 根据权利要求1所述的压缩组件,其特征在于,所述第一通道的数量为至少两个,至少另一所述第一通道与所述第一无杆腔连通,所述第二通道的数量为至少两个,至少另一所述第二通道与所述第二无杆腔连通,所述活塞上开设有第二连通孔,所述第二连通孔连通所述第一无杆腔及所述第二无杆腔。
  3. 根据权利要求2所述的压缩组件,其特征在于,所述压缩缸体包括第一缸本体及第二缸本体,所述第一压缩腔形成于所述第一缸本体内,所述第二压缩腔形成于所述第二缸本体内,且所述第二缸本体设置于所述第一缸本体上,与所述第一无杆腔连通的所述第一通道形成于所述第一缸本体上,与所述第一有杆腔连通的所述第一通道开设于所述第一缸本体或所述第二缸本体上,所述第一连通孔开设于所述第二缸本体朝向所述第一缸本体的一侧上,所述第二通道均开设于所述第二缸本体上。
  4. 根据权利要求3所述的压缩组件,其特征在于,所述压缩缸体还包括阀片,所述第二缸本体背向于所述第一缸本体的一侧开口,所述阀片设置于所述第二缸本体的开口处,且与所述第二无杆腔连通的所述第二通道开设于所述阀片上。
  5. 根据权利要求3所述的压缩组件,其特征在于,所述第一缸本体朝向所述第二缸本体的一侧开口,与所述第一有杆腔连通的所述第一通道开设于所述第二缸本体上。
  6. 根据权利要求3所述的压缩组件,其特征在于,所述压缩组件还包括排气件,所述排气件设置所述第二缸本体背向于所述第一缸本体的一侧,所述排气件内形成有排气腔,各个所述第二通道均与所述排气腔连通,所述排气件上开设有与所述排气腔连通的排气口。
  7. 根据权利要求3所述的压缩组件,其特征在于,所述压缩组件还包括进气件,所述进气件设置于所述第一缸本体背向于所述第二缸本体的一侧,所述进气件内形成有进气腔,所述第一缸本体上的所述第一通道与所述进气腔连通,所述进气件的外壁上开设有与所述进气腔连通的进气口。
  8. 根据权利要求2-7任一项所述的压缩组件,其特征在于,所述活塞还包括连通杆,所述连通杆的两端分别连接于所述第一塞体及所述第二塞体,所述第二连通孔开设于所述连通杆内,且所述第二连通孔贯穿所述第一塞体及所述第二塞体。
  9. 一种动力设备,其特征在于,所述动力设备包括:
    如权利要求1-8任一项所述的压缩组件;及
    往复组件,所述往复组件连接于所述活塞,所述往复组件用于驱动所述活塞往复移动。
  10. 根据权利要求9所述的动力设备,其特征在于,所述往复组件包括动力源、动力轴、导杆及往复套,所述往复套套设置于所述动力轴上,所述导杆设置于所述往复套的外壁上,所述压缩缸体上开设有与所述第一无杆腔连通的第一导向孔,所述导杆的一端穿过所述第一导向孔并穿设于所述第一无杆腔内与所述第一塞体相连接,所述动力源用于驱动所述动力轴带动所述往复套与所述导杆沿所述动力轴的轴线方向往复移动。
  11. 根据权利要求10所述的动力设备,其特征在于,所述导杆的数量为至少两个,各个所述导杆绕所述动力轴的轴线均匀布置于所述往复套的外壁上,所述第一导向孔的数量与所述导杆的数量相一致,每一所述导杆对应穿过一所述第一导向孔与所述活塞连接。
PCT/CN2023/106071 2022-07-06 2023-07-06 动力设备及压缩组件 WO2024008148A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210788771.6A CN114992083A (zh) 2022-07-06 2022-07-06 动力设备及压缩组件
CN202210788771.6 2022-07-06

Publications (1)

Publication Number Publication Date
WO2024008148A1 true WO2024008148A1 (zh) 2024-01-11

Family

ID=83020634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106071 WO2024008148A1 (zh) 2022-07-06 2023-07-06 动力设备及压缩组件

Country Status (2)

Country Link
CN (1) CN114992083A (zh)
WO (1) WO2024008148A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115652A (ja) * 2000-10-11 2002-04-19 Matsushita Electric Ind Co Ltd リニアコンプレッサ
CN103256201A (zh) * 2013-04-09 2013-08-21 北京康斯特仪表科技股份有限公司 同轴同向运动气体增压机构及气体增压方法
CN103343737A (zh) * 2013-07-17 2013-10-09 四川金星压缩机制造有限公司 直线电机往复活塞式压缩机
CN110094319A (zh) * 2019-05-08 2019-08-06 北京理工大学 多级联双缸式直线压缩机
CN110318975A (zh) * 2019-08-09 2019-10-11 尹智 一种非对称两级双作用活塞式压缩缸及压缩方法
CN210218021U (zh) * 2019-08-09 2020-03-31 尹智 一种非对称两级双作用活塞式压缩缸
CN213928665U (zh) * 2020-12-29 2021-08-10 山东泰展机电科技股份有限公司 一种能全程做功的二级压缩气缸
CN217813789U (zh) * 2022-07-06 2022-11-15 浙江千机智能科技有限公司 动力设备及压缩组件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115652A (ja) * 2000-10-11 2002-04-19 Matsushita Electric Ind Co Ltd リニアコンプレッサ
CN103256201A (zh) * 2013-04-09 2013-08-21 北京康斯特仪表科技股份有限公司 同轴同向运动气体增压机构及气体增压方法
CN103343737A (zh) * 2013-07-17 2013-10-09 四川金星压缩机制造有限公司 直线电机往复活塞式压缩机
CN110094319A (zh) * 2019-05-08 2019-08-06 北京理工大学 多级联双缸式直线压缩机
CN110318975A (zh) * 2019-08-09 2019-10-11 尹智 一种非对称两级双作用活塞式压缩缸及压缩方法
CN210218021U (zh) * 2019-08-09 2020-03-31 尹智 一种非对称两级双作用活塞式压缩缸
CN213928665U (zh) * 2020-12-29 2021-08-10 山东泰展机电科技股份有限公司 一种能全程做功的二级压缩气缸
CN217813789U (zh) * 2022-07-06 2022-11-15 浙江千机智能科技有限公司 动力设备及压缩组件

Also Published As

Publication number Publication date
CN114992083A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2024008141A1 (zh) 动力设备及储能系统
WO2024008143A1 (zh) 动力设备
KR20100010448A (ko) 압축기
WO2024093340A1 (zh) 动力设备
WO2024008137A1 (zh) 用泵设备及柱塞泵
CN217813789U (zh) 动力设备及压缩组件
CN217813792U (zh) 动力设备及储能系统
WO2024008136A1 (zh) 动力设备
WO2024008148A1 (zh) 动力设备及压缩组件
CN205533217U (zh) 一种压缩机泵体结构及压缩机
CN212774687U (zh) 一种空压机
CN208089488U (zh) 一种活塞空压机
CN207935085U (zh) 压缩机
CN1256558C (zh) 储氢合金反应系统的氢移动用泵装置
CN217976597U (zh) 一种密闭压缩机用泵体以及密闭压缩机
CN214944794U (zh) 一种多转子复合一体型真空泵
CN217462551U (zh) 转子压缩机及制冷设备
CN213511114U (zh) 一种带有润滑机构的制冷设备用压缩机
CN220791428U (zh) 一种往复式气体泵
CN215719293U (zh) 一种柱塞式液压一体泵
JP4406787B2 (ja) ピストン式エアーコンプレッサーを用いた温乾エアー吹付型乾燥装置
CN209586619U (zh) 一种活塞式压缩机
CN218717386U (zh) 气泵
CN209083480U (zh) 一种变频冰箱压缩机
CN213808044U (zh) 一种流体泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834915

Country of ref document: EP

Kind code of ref document: A1