WO2024093340A1 - 动力设备 - Google Patents

动力设备 Download PDF

Info

Publication number
WO2024093340A1
WO2024093340A1 PCT/CN2023/106113 CN2023106113W WO2024093340A1 WO 2024093340 A1 WO2024093340 A1 WO 2024093340A1 CN 2023106113 W CN2023106113 W CN 2023106113W WO 2024093340 A1 WO2024093340 A1 WO 2024093340A1
Authority
WO
WIPO (PCT)
Prior art keywords
reciprocating
shaft
primary
compression
plug body
Prior art date
Application number
PCT/CN2023/106113
Other languages
English (en)
French (fr)
Inventor
傅珂珂
舒华勇
李进
Original Assignee
浙江千机智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江千机智能科技有限公司 filed Critical 浙江千机智能科技有限公司
Publication of WO2024093340A1 publication Critical patent/WO2024093340A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/12Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections

Definitions

  • the present application relates to the technical field of power structures, and in particular to power equipment.
  • a power device is provided.
  • the present application provides a power device, the power device includes a reciprocating power assembly and a compression assembly, the reciprocating power assembly includes a reciprocating unit, a linkage shaft and a power unit, the reciprocating unit includes a reciprocating shaft and a reciprocating member, the reciprocating member is transmission-arranged on the reciprocating shaft, the number of the reciprocating units is two; the opposite ends of the linkage shaft are respectively connected to one of the reciprocating shafts; the power unit includes a power source and a transmission member, the transmission member is transmission-connected to the linkage shaft, the power source is used to drive the linkage shaft through the transmission member to drive the two reciprocating shafts to rotate synchronously, the reciprocating shaft rotates to drive The reciprocating member reciprocates along the axial direction of the reciprocating shaft; the compression assembly includes a compression cylinder and a piston, a primary compression chamber is formed in the compression cylinder, and a first channel and a second channel connected to the primary compression chamber are formed on the outer wall of the compression cylinder, and the piston is arranged in the primary
  • FIG1 is a schematic structural diagram of a reciprocating power assembly in one embodiment omitting a transmission housing and a reciprocating housing;
  • FIG2 is a cross-sectional view of the reciprocating power assembly shown in FIG1 ;
  • FIG3 is an exploded view of the reciprocating unit in FIG2 ;
  • FIG4 is a schematic structural diagram of a reciprocating power assembly in another embodiment
  • FIG5 is a schematic diagram of the structure of a power device in one embodiment
  • FIG6 is a cross-sectional view of the power device shown in FIG5 at a certain viewing angle
  • FIG7 is a cross-sectional view of the power device shown in FIG5 from another perspective
  • FIG. 8 is a cross-sectional view of a compression assembly in one embodiment.
  • a reciprocating power assembly 100 in one embodiment of the present invention can at least improve transmission efficiency.
  • the reciprocating power assembly 100 includes a reciprocating unit 110, a linkage shaft 120 and a power unit 130.
  • the reciprocating unit 110 includes a reciprocating shaft 111 and a reciprocating member 112.
  • the reciprocating member 112 is transmission-arranged on the reciprocating shaft 111.
  • the opposite ends of the linkage shaft 120 are respectively connected to a reciprocating shaft 111.
  • the power unit 130 includes a power source 131 and a transmission member 132.
  • the transmission member 132 is transmission-connected to the linkage shaft 120.
  • the power source 131 is used to drive the linkage shaft 120 through the transmission member 132 to drive the two reciprocating shafts 111 to rotate synchronously.
  • the reciprocating shaft 111 rotates so that the reciprocating member 112 moves along the reciprocating shaft 111.
  • the shaft 111 reciprocates in the axial direction.
  • the reciprocating shafts 111 of the two reciprocating units 110 are respectively connected to the two ends of the linkage shaft 120, and the transmission member 132 of the power unit 130 is in transmission connection with the linkage shaft 120.
  • the power source 131 drives the transmission member 132 to drive the linkage shaft 120 to rotate
  • the reciprocating shafts 111 at both ends can be driven to rotate at the same time.
  • the reciprocating members 112 of the two reciprocating units 110 can be reciprocated simultaneously through one power source 131 and one linkage shaft 120, so that the reciprocating drive of the two components can be realized through the two reciprocating members 112, the transmission efficiency is better, and the transmission structure is more compact.
  • the two reciprocating shafts 111 are coaxially arranged with the linkage shaft 120.
  • the stability of the linkage shaft 120 driving the two reciprocating shafts 111 to rotate can be improved.
  • a single reciprocating shaft 111 is detachably connected to one end of the linkage shaft 120. Since the reciprocating member 112 can reciprocate relative to the reciprocating shaft 111, when the reciprocating shaft 111 is worn, it is convenient to replace the reciprocating shaft 111 relative to the linkage shaft 120.
  • the reciprocating shaft 111 can also be fixedly installed on the linkage shaft 120, or the reciprocating shaft 111 can also be integrally formed on the linkage shaft 120.
  • the two reciprocating members 112 move toward or away from each other at the same time. Since the movement directions of the two reciprocating members 112 are always opposite, the reciprocating accelerations applied by the two reciprocating members 112 to the reciprocating shaft 111 and the linkage shaft 120 can offset each other, thereby reducing the vibration of the reciprocating power assembly 100 and ensuring the stability of the transmission.
  • a reciprocating guide rail 113 with a closed curve track surrounding the axis of the reciprocating shaft 111 is provided on the reciprocating shaft 111, and the crests and troughs of the reciprocating guide rail 113 are arranged at intervals along the axis of the reciprocating shaft 111; the reciprocating member 112 is limited on the reciprocating guide rail 113 and can move on the reciprocating guide rail 113; the reciprocating shaft 111 rotates to drive the reciprocating member 112 to reciprocate along the axis direction of the reciprocating shaft 111 under the guidance of the reciprocating guide rail 113.
  • the reciprocating guide rail 113 on the reciprocating shaft 111 is used to facilitate the purpose of driving the reciprocating member 112 to reciprocate along the reciprocating shaft 111.
  • the reciprocating shaft 111 rotates, and the reciprocating member 112 can reciprocate between the crests and the troughs under the guidance of the reciprocating guide rail 113 with a curved trajectory, thereby achieving the purpose of reciprocating the reciprocating member 112 along the axial direction of the reciprocating shaft 111, and then the rotational motion of the reciprocating shaft 111 is converted into the linear motion of the reciprocating member 112, and there will be no yaw and runout problems like the crank structure or the eccentric drive structure, and the working stability is better and the transmission stability is good.
  • the two reciprocating shafts 111 are coaxially arranged with the linkage shaft 120, and the tracks of the reciprocating guide rails 113 on the two reciprocating shafts 111 are arranged in mirror symmetry with respect to the linkage shaft 120, so that the two reciprocating members 112 move toward or away from each other at the same time.
  • mirroring the reciprocating guide rails 113 on the two reciprocating shafts 111 it is convenient to realize the relative or opposite reciprocating movement of the two reciprocating members 112.
  • a reciprocating guide rail 113 with a closed curved track around the axis of the reciprocating shaft 111 may be provided on the inner wall of the reciprocating member 112, and a limiting structure is formed on the outer wall of the reciprocating shaft 111, and the limiting structure is limited to the reciprocating guide rail 113.
  • the reciprocating member 112 can be moved on the reciprocating guide rail 113. As long as the reciprocating member 112 can be reciprocated along the axial direction of the reciprocating shaft 111 by the rotation of the reciprocating shaft 111, it can be used.
  • the reciprocating guide rail 113 is a reciprocating groove
  • the reciprocating member 112 includes a rolling body 114 and a reciprocating body 115.
  • the reciprocating body 115 is sleeved on the reciprocating shaft 111, and the rolling body 114 is arranged between the reciprocating body 115 and the reciprocating shaft 111 and is limited on the reciprocating body 115.
  • the rolling body 114 is rotatably arranged in the reciprocating groove.
  • the reciprocating shaft 111 rotates so that the rolling body 114 drives the reciprocating body 115 to move on the reciprocating shaft 111, and the reciprocating movement direction of the reciprocating body 115 is consistent with the axial direction of the reciprocating shaft 111.
  • the rolling body 114 can roll in the reciprocating groove, so that the rolling body 114 can move between the crests and troughs of the curved groove, so as to achieve the purpose of reciprocating movement of the rolling body 114 along the axial direction of the reciprocating shaft 111, so as to drive the reciprocating body 115 to reciprocate along the axial direction of the reciprocating shaft 111, and the rotational motion of the reciprocating shaft 111 is converted into the linear motion of the reciprocating body 115, and the work stability is better.
  • the reciprocating guide rail 113 can also be a guide protrusion, which is a closed strip-shaped curved protrusion surrounding the axis of the reciprocating shaft 111, and the crests and troughs of the curved protrusion are arranged at intervals along the axis of the reciprocating shaft 111; the rolling body 114 is arranged on the guide protrusion and can move on the guide protrusion along the length direction.
  • each reciprocating guide rail 113 there are at least two reciprocating guide rails 113, each of which is arranged at intervals along the axis of the reciprocating shaft 111, and each reciprocating guide rail 113 is provided with at least one rolling body 114.
  • each reciprocating guide rail 113 is provided with at least one rolling body 114.
  • the number of rolling bodies 114 provided on a reciprocating guide rail 113 is at least two, and each rolling body 114 is arranged at intervals around the axis of the reciprocating shaft 111, and the reciprocating shaft 111 can drive each rolling body 114 on the reciprocating shaft 111 to move in the same direction.
  • there are two rolling bodies 114 and the two rolling bodies 114 are symmetrically arranged around the axis of the reciprocating shaft 111.
  • the reciprocating shaft 111 rotates, it can drive the two rolling bodies 114 to move in the same direction, and the two rolling bodies 114 are both limited on the reciprocating body 115.
  • the stability of the transmission can be further improved by two rolling bodies 114.
  • the number of rolling bodies 114 can also be one, three, or other numbers.
  • the rolling body 114 is a sphere, and the rolling body 114 can roll in the reciprocating groove.
  • the friction force of the rolling body 114 when moving can be reduced.
  • the reciprocating member 112 further includes a matching sleeve 116, which is sleeved on the rolling body 114 and installed on the reciprocating body 115.
  • a plurality of rolling balls 117 are arranged between the inner wall of the rolling body 114 and the matching sleeve 116.
  • the rolling body 114 is a sphere and can roll relative to the matching sleeve 116. Specifically, the plurality of balls 117 abut against the side of the rolling body 114 that is away from the reciprocating shaft 111.
  • the plurality of balls 117 facilitates further reducing the rolling friction, improving the smoothness of the rolling of the rolling body 114, and ensuring the stability of the transmission.
  • the transmission member 132 includes a first transmission wheel 133 and a second transmission wheel 134.
  • the first transmission wheel 133 is sleeved on the linkage shaft 120 and is located between the two reciprocating shafts 111.
  • the second transmission wheel 134 is transmission-coordinated with the first transmission wheel 133, and the second transmission wheel 134 is transmission-connected to the power source 131.
  • the power source 131 is located between the two reciprocating shafts 111.
  • the first transmission wheel 133 and the second transmission wheel 134 further facilitate the power source 131 to drive the linkage shaft 120 to rotate in the radial direction of the linkage shaft 120.
  • the power source 131 is a motor, which is located between the two reciprocating shafts 111, and the axis of the output shaft of the motor is perpendicular to the axis of the linkage shaft 120, and the second transmission wheel 134 is connected to the output shaft of the motor.
  • the motor is located on one side of the radial direction of the linkage shaft 120, which is conducive to realizing that both ends of the linkage shaft 120 drive the two reciprocating shafts 111 to rotate at the same time, and makes the structure more compact.
  • the first transmission wheel 133 is a bevel gear
  • the second transmission wheel 134 is a bevel gear.
  • the power source 131 drives the second transmission wheel 134 to rotate, and the first transmission wheel 133 and the second transmission wheel 134 are meshed to change the direction of the output shaft of the power source 131 to drive the linkage shaft 120 to rotate.
  • the first transmission wheel 133 and the second transmission wheel 134 are spur gears.
  • the power source 131 can be connected to the second transmission wheel 134 through a bevel gear set, thereby facilitating the transmission of power from the power source 131 to the first transmission wheel 133 to drive the linkage shaft 120 to rotate.
  • the power source 131 may also drive the linkage shaft 120 through a transmission member 132 of other structural forms, as long as the power source 131 can drive the linkage shaft 120 to rotate in the radial direction of the linkage shaft 120.
  • the axis of the output shaft of the power source 131 may also be parallel to the axis of the linkage shaft 120.
  • each linkage shaft 120 there are two linkage shafts 120, and both ends of each linkage shaft 120 are respectively connected to a reciprocating shaft 111 of a reciprocating unit 110, and the two linkage shafts 120 are connected by a transmission member 132.
  • the power source 131 is used to drive the two linkage shafts 120 to rotate synchronously through the transmission member 132.
  • the transmission member 132 may be a gear transmission group, as long as it can achieve the goal of simultaneously driving the two linkage shafts 120 to rotate synchronously through the power source 131 .
  • the reciprocating power assembly 100 further includes a transmission housing 140, in which the transmission member 132 and the linkage shaft 120 are disposed, and linkage holes are respectively provided on opposite side walls of the transmission housing 140; opposite ends of the linkage shaft 120 respectively pass through the two linkage holes.
  • the reciprocating power assembly 100 further includes a reciprocating shell 150, the number of the reciprocating shells 150 is two, the two reciprocating units 110 are respectively arranged in the two reciprocating shells 150, a first guide structure 151 is arranged in the reciprocating shell 150, and a second guide structure 118 is arranged on the reciprocating member 112, and the first guide structure 151 and the second guide structure 118 are guided and matched along the axial direction of the reciprocating shaft 111.
  • the reciprocating shaft 111 is further guaranteed to be stable. The reliability of the replica 112 moving along the axial direction of the reciprocating shaft 111.
  • the two reciprocating shells 150 are respectively disposed on the transmission shell 140 , so that the two linkage holes are respectively connected to the two reciprocating shells 150 , and the opposite ends of the linkage shaft 120 pass through the two linkage holes and penetrate into the reciprocating shells 150 .
  • the power equipment 10 includes the reciprocating transmission assembly 100 and the compression assembly 200 in any of the above embodiments, and the compression assembly 200 includes a compression cylinder 210 and a piston 220.
  • a primary compression chamber 211 is formed in the compression cylinder 210, and a first channel 212 and a second channel 213 connected to the primary compression chamber 211 are formed on the outer wall of the compression cylinder 210, and the piston 220 is arranged in the primary compression chamber 211; there are two compression assemblies 200, and the piston 220 of each compression assembly 200 is connected to a reciprocating member 112, and the reciprocating member 112 can drive the correspondingly connected piston 220 to reciprocate in the primary compression chamber 211, so that the gas flows from the first channel 212, the primary compression chamber 211 to the second channel 213.
  • each compression assembly 200 when there are two linkage shafts 120 and four reciprocating units 110, there are four compression assemblies 200, and the piston 220 of each compression assembly 200 is connected to a reciprocating member 112.
  • the two linkage shafts 120 are connected by transmission member 132, and the power source 131 is used to drive the two linkage shafts 120 to rotate synchronously through the transmission member 132.
  • the two linkage shafts 120 are driven by a power source 131, and the transmission member 132 is used to realize the synchronous rotation of the two linkage shafts 120, thereby realizing the synchronous compression of the four compression assemblies 200.
  • the axes of the two linkage shafts 120 are arranged in parallel, and the power source 131 is arranged between the two linkage shafts 120.
  • the number of the first channel 212 and the second channel 213 are both two, one first channel 212 and one second channel 213 are connected to the primary compression chamber 211 on one side of the piston 220, and the other first channel 212 and the other second channel 213 are connected to the primary compression chamber 211 on the other side of the piston 220.
  • the gas in the primary compression chamber 211 on this side can be compressed and discharged from the second channel 213 connected to this side, and at the same time, the gas can be introduced into the primary compression chamber 211 on the other side from the first channel 212 connected to the other primary compression chamber 211.
  • the gas in the primary compression chamber 211 on one side of the piston 220 toward the reciprocating member 112 can be compressed and discharged from the second channel 213 connected to this side, and at the same time, the gas on the other side can enter the primary compression chamber on this side, so that one side compresses the other intake air within one stroke of the piston 220, effectively improving the compression efficiency.
  • the compression assembly 200 further includes a discharge member 230, in which a discharge chamber 232 is formed.
  • the discharge member 230 is mounted on the compression cylinder 210 so that both the second passages 213 are in communication with the discharge chamber 232.
  • a discharge port 234 in communication with the discharge chamber 232 is also formed on the discharge member 230. Since there are two second passages 213 on one compression assembly 200, the two second passages 213 can be connected through the discharge member 230, so that the gas discharged through the two second passages 213 can enter the discharge chamber 232 and can be discharged through the discharge port 234.
  • the discharge member 230 can be a pipe-like structure, or the discharge member 230 can also be a shell-like structure. Of course, in other embodiments, the discharge member 230 can also be a shell-like structure. To be omitted.
  • the power source 131 is located on one side of the linkage shaft 120 in the radial direction, and the discharge member 230 and the power source 131 are both located on the same side of the linkage shaft 120.
  • the structure of the power device 10 can be made more compact.
  • the compression assembly 200 further includes a heat sink 240, which is disposed on the outer wall of the discharge member 230.
  • the heat sink 240 can be used to reduce the temperature of the discharge member 230, thereby reducing the temperature of the compression cylinder 210.
  • the heat sink 240 is a fan.
  • the heat sink 240 can also be a heat dissipation structure such as a heat dissipation fin structure.
  • the power source 131 is located on one side of the linkage shaft 120 in the radial direction, and the discharge member 230, the heat sink 240 and the power source 131 are all located on the same side of the linkage shaft 120.
  • a secondary compression chamber 214 connected to the primary compression chamber 211 is also formed in the compression cylinder 210, the volume of the secondary compression chamber 214 is smaller than that of the primary compression chamber 211, and the first channel 212 is connected to the primary compression chamber 211, and the second channel 213 is connected to the secondary compression chamber 214;
  • the piston 220 includes a primary plug body 221 and a secondary plug body 222 connected to the primary plug body 221, the primary plug body 221 is arranged in the primary compression chamber 211, and the secondary plug body 222 is arranged in the secondary compression chamber 214, the primary plug body 221 is connected to the reciprocating member 112 on the side facing away from the secondary plug body 222, and the reciprocating member 112 can drive the primary plug body 221 and the secondary plug body 222 to reciprocate synchronously.
  • the power source 131 drives the linkage shaft 120 to drive the two reciprocating shafts to rotate, so as to drive the two reciprocating parts 112 to move back and forth along the axis of the reciprocating shafts, and further drive the piston 220 to move back and forth along the axis of the reciprocating shafts. Since the primary plug body 221 is arranged in the primary compression chamber 211, and the secondary plug body 222 is arranged in the secondary compression chamber 214, when the piston 220 moves in a direction away from the reciprocating part 112, the secondary plug body 222 compresses the gas in the secondary compression chamber 214 and discharges it through the second channel 213, and the gas enters the primary compression chamber 211 through the first channel 212.
  • the primary plug body 221 compresses the gas in the primary compression chamber 211 into the secondary compression chamber 214, and the gas is compressed in this reciprocating cycle to achieve secondary compression of the gas.
  • the piston 220 moves toward the reciprocating member 112
  • primary compression and secondary air intake are achieved.
  • the piston 220 moves away from the reciprocating member 112, secondary compression and primary air intake are achieved.
  • first channel 212 of one compression assembly 200 of the two compression assemblies 200 when the first channel 212 of one compression assembly 200 of the two compression assemblies 200 is connected to the second channel 213 of the other compression assembly 200, four-stage compression of the gas can be achieved.
  • the first-stage plug body 221 is in sealed contact with the inner wall of the first-stage compression chamber 211
  • the second-stage plug body 222 is in sealed contact with the inner wall of the first-stage compression chamber 211.
  • the inner walls of the secondary compression chamber 214 are in sealed contact with each other, thereby ensuring the sealing performance during the gas compression process and further ensuring the stability of the gas compression.
  • the piston 220 further includes a connecting pipe, one end of which is connected to the primary plug body 221, and the other end is connected to the secondary plug body 222, so that the space of the primary plug body 221 facing away from the secondary plug body 222 is connected with the space of the secondary plug body 222 facing away from the primary plug body 221.
  • the connecting pipe facilitates the connection between the primary compression chamber 211 and the secondary compression chamber 214, and when the piston 220 moves toward the direction of the entry member, the gas in the primary compression chamber 211 enters the secondary compression chamber 214 through the connecting pipe.
  • a one-way valve is provided at the connecting pipe, and the one-way valve ensures that when the piston 220 moves toward the direction of the discharge member 230, the gas in the secondary compression chamber 214 will not enter the primary compression chamber 211 through the connecting pipe.
  • the power device 10 in any of the above embodiments is a compressor to achieve compression and discharge of gas.
  • the power device 10 may also be a vacuum pump.
  • the power device 10 in any of the above embodiments is used to exhaust the air intake channel and to intake the air exhaust channel to achieve the purpose of vacuum extraction.
  • the power device 10 can also be an air pump. In other embodiments, the power device 10 can also be used in other occasions that require compression or air extraction or air inflation.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present utility model, the meaning of "plurality” is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
  • the terms “install”, “connect”, “connect”, The terms “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • install can be a fixed connection, a detachable connection, or an integral connection
  • it can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium
  • it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • the specific meanings of the above terms in this utility model can be understood according to specific circumstances.
  • a first feature being “above” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium.
  • a first feature being “above”, “above” or “above” a second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • a first feature being “below”, “below” or “below” a second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is lower in level than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transmission Devices (AREA)

Abstract

一种动力设备(10),包括往复动力组件(100)及压缩组件(200)。往复动力组件(100)的往复单元(110)的数量为两个,且两个往复单元(110)的往复轴(111)分别连接于联动轴(120)的两端上,而动力单元(130)的传动件(132)与联动轴(120)传动连接。当动力源(131)驱动传动件(132)带动联动轴(120)转动时,能够同时带动两端的往复轴(111)转动。每一往复件(112)与一压缩组件(200)的活塞(220)连接,能够驱动活塞(220)在压缩缸体(210)的一级压缩腔(211)内往复移动,以实现气体由第一通道(212)、一级压缩腔(211)至第二通道(213)流通。

Description

动力设备
相关申请
本申请要求2022年11月02日申请的,申请号为202222905078.0,名称为“动力设备”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及动力结构技术领域,特别是涉及动力设备。
背景技术
目前,传统的泵体或压缩机等动力设备,大多是由电机带动活塞进行往复移动,实现吸介质与压缩排出。然而,传统的空气泵或活塞式动力设备在压缩过程中,一般都需要动力驱动结构,而一个动力驱动结构往往仅能够驱动一个活塞进行压缩,这就导致压缩效率低。
发明内容
根据本申请的实施例,提供一种动力设备。
本申请提供一种动力设备,所述动力设备包括往复动力组件及压缩组件,所述往复动力组件包括往复单元、联动轴及动力单元,所述往复单元包括往复轴及往复件,所述往复件传动设置于所述往复轴上,所述往复单元的数量为两个;所述联动轴的相对两端分别与一所述往复轴连接;所述动力单元包括动力源及传动件,所述传动件与所述联动轴传动连接,所述动力源用于通过所述传动件驱动所述联动轴带动两个所述往复轴同步转动,所述往复轴转动以驱动所述往复件沿所述往复轴的轴线方向往复移动;所述压缩组件包括压缩缸体及活塞,所述压缩缸体内形成有一级压缩腔,且所述压缩缸体的外壁上形成有与所述一级压缩腔连通的第一通道及第二通道,所述活塞设置于所述一级压缩腔内;所述压缩组件为两个,每一所述压缩组件的所述活塞对应于一所述往复件连接,所述往复件能够带动对应连接的所述活塞在所述一级压缩腔内往复移动,以使气体在由所述第一通道、所述一级压缩腔至所述第二通道流通。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请 的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为一实施例中的往复动力组件省略传动壳及往复壳的结构示意图;
图2为图1所示的往复动力组件的剖视图;
图3为图2中的往复单元的的分解图;
图4为另一实施例中的往复动力组件的结构示意图;
图5为一实施例中动力设备的结构示意图;
图6为图5所示的动力设备在一视角下的剖视图;
图7为图5所示的动力设备在另一视角下的剖视图;
图8为一实施例中的压缩组件的剖视图。
附图标记说明:
100、往复动力组件;110、往复单元;111、往复轴;112、往复件;113、往复导轨;
114、滚动体;115、往复体;116、配合套;117、滚珠;118、第二导向结构;120、联动轴;130、动力单元;131、动力源;132、传动件;133、第一传动轮;134、第二传动轮;140、传动壳;150、往复壳;151、第一导向结构;
10、动力设备;200、压缩组件;210、压缩缸体;211、一级压缩腔;212、第一通道;
213、第二通道;214、二级压缩腔;220、活塞;221、一级塞体;222、二级塞体;230、排出件;232、排出腔;234、排出口;240、散热件。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参阅图1至图3,本实用新型一实施例中的往复动力组件100,至少能够提高传动效率。
具体地,往复动力组件100包括往复单元110、联动轴120及动力单元130,往复单元110包括往复轴111及往复件112,往复件112传动设置于往复轴111上,往复单元110的数量为两个;联动轴120的相对两端分别与一往复轴111连接;动力单元130包括动力源131及传动件132,传动件132与联动轴120传动连接,动力源131用于通过传动件132驱动联动轴120带动两个往复轴111同步转动,往复轴111转动以所述往复件112沿往复 轴111的轴线方向往复移动。
由于往复单元110的数量为两个,且两个往复单元110的往复轴111分别连接于联动轴120的两端上,而动力单元130的传动件132与联动轴120传动连接。进而当动力源131驱动传动件132带动联动轴120转动时,能够同时带动两端的往复轴111转动。进而通过一个动力源131及一个联动轴120实现两个往复单元110的往复件112同时往复移动,便于通过两个往复件112实现对两个部件的往复驱动,传动效率更好,使得传动结构更加紧凑。
具体地,两个往复轴111与联动轴120同轴设置。通过将两个往复轴111与联动轴120同轴设置,能够提高联动轴120带动两个往复轴111转动的稳定性。在本实施例中,单个往复轴111可拆卸地连接于联动轴120的一端上,由于往复件112相对于往复轴111可往复移动,进而当往复轴111磨损后,便于往复轴111相对于联动轴120的更换。在另一实施例中,往复轴111还可以固定安装于联动轴120上,或者往复轴111还可以一体成型在联动轴120上。
一实施例中,两个往复件112同时相向或相背移动。由于两个往复件112的运动方向总是相反的,进而使得两个往复件112对往复轴111及联动轴120施加的往复运动加速度能够相互抵消,以减小往复动力组件100的振动,保证传动的稳定性。
一实施例中,往复轴111上设置有环绕往复轴111轴线的闭合曲线形轨迹的往复导轨113,且往复导轨113的波峰与波谷沿往复轴111的轴线间隔设置;往复件112限位在往复导轨113上并能够在往复导轨113上移动;往复轴111转动以驱动往复件112在往复导轨113的导向作用下沿往复轴111的轴线方向往复移动。利用往复轴111上的往复导轨113,便于实现驱动往复件112沿往复轴111往复移动的目的。
在往复件112往复移动的过程中,往复轴111转动,往复件112能够在呈曲线形轨迹的往复导轨113导向作用下在波峰与波谷之间往复移动,实现往复件112沿着往复轴111的轴线方向往复移动的目的,进而往复轴111的旋转运动转化为往复件112的直线运动,不会出现像曲柄结构或偏心驱动结构的偏摆交问题,做功稳定性更好,传动稳定性好。
在本实施例中,两个往复轴111与联动轴120同轴设置,两个往复轴111上的往复导轨113的轨迹相对于联动轴120镜像对称设置,以使两个往复件112同时相向或相背移动。通过将两个往复轴111上的往复导轨113镜像设置,便于实现两个往复件112的相对或相背往复移动。
在另一实施例中,往复件112的内壁上可以设置有环绕往复轴111轴线的闭合曲线形轨迹的往复导轨113,往复轴111的外壁上形成有限位结构,限位结构限位在往复导轨113 上并能够在往复导轨113上移动。只要能够通过往复轴111的转动实现往复件112沿往复轴111轴线方向的往复移动即可。
一实施例中,往复导轨113为往复凹槽,往复件112包括滚动体114及往复体115,往复体115套设于往复轴111上,滚动体114设置于往复体115与往复轴111之间且限位于往复体115上,滚动体114可滚动地设置于往复凹槽内,往复轴111转动以使滚动体114带动往复体115在往复轴111上移动,往复体115的往复移动方向与往复轴111的轴线方向一致。
往复轴111转动时,滚动体114能够在往复凹槽内滚动,进而使得滚动体114能够在呈曲线形槽的波峰与波谷之间的运动,以实现滚动体114沿着往复轴111的轴线方向往复移动的目的,以带动往复体115沿着往复轴111的轴线方向往复移动,往复轴111的旋转运动转化为往复体115的直线运动,做功稳定性更好。
另一实施例中,往复导轨113还可以为导向凸起,导向凸起为环绕往复轴111轴线的闭合条状曲线形凸起,且曲线形凸起的波峰与波谷沿往复轴111的轴线间隔设置;滚动体114设置于导向凸起上并能够在导向凸起上沿长度方向移动。
一实施例中,往复导轨113为至少两个,各个往复导轨113沿着往复轴111的轴线间隔设置,每一往复导轨113上均设置有至少一滚动体114。通过设置至少两个往复导轨113,能够提高滚动体114带动往复体115移动的稳定性。
在本实施例中,一往复导轨113上设置有的滚动体114的数量为至少两个,各个滚动体114绕往复轴111的轴线间隔设置,且一往复轴111能够驱动该往复轴111上的各个滚动体114同方向移动。具体地,滚动体114为两个,两个滚动体114绕往复轴111的轴线对称设置。往复轴111转动时,能够带动两个滚动体114同方向移动,两个滚动体114均限位于往复体115上。通过两个滚动体114能够进一步提高传动的稳定性。在其他实施例中,滚动体114的数量还可以为一个、三个等其他数目个。
一实施例中,滚动体114为球体,滚动体114能够在往复凹槽内滚动。通过将滚动体114设置为球体,能够降低滚动体114在移动时的摩擦力。
一实施例中,往复件112还包括配合套116,配合套116套设于滚动体114上,并安装于往复体115上,滚动体114与配合套116的内壁之间设置有多个可滚动的滚珠117,滚动体114为球体,并相对于配合套116可滚动。具体地,多个滚珠117抵接于滚动体114背向于往复轴111的一侧。当滚动体114相对于配合套116滚动时,利用多个滚珠117便于进一步降低滚动摩擦力,提高滚动体114滚动的顺滑程度,保证传动的稳定性。
参阅图1及图2,一实施例中,所述传动件132包括第一传动轮133及第二传动轮134, 第一传动轮133套设于联动轴120上并位于两个往复轴111之间,第二传动轮134与第一传动轮133传动配合,且第二传动轮134传动连接于动力源131。具体地,动力源131位于两个往复轴111之间。通过第一传动轮133与第二传动轮134进一步便于实现动力源131从联动轴120的径向方向驱动联动轴120转动。
具体地,动力源131为电机,电机位于两个往复轴111之间,且电机的输轴的轴线与联动轴120的轴线垂直,第二传动轮134传动连接于电机的输出轴。电机位于联动轴120的径向方向的一侧,有利于实现联动轴120的两端同时驱动两个往复轴111转动,且使得结构更加紧凑。
参阅图1及图2,一实施例中,第一传动轮133为锥齿轮,第二传动轮134为锥齿轮。动力源131驱动第二传动轮134转动,利用第一传动轮133与第二传动轮134的啮合,实现动力源131输出轴方向的改变实现驱动联动轴120转动。
参阅图4,一实施例中,第一传动轮133及第二传动轮134为直齿轮。动力源131可以通过锥齿轮组连接于第二传动轮134,进而便于动力源131的动力传输到第一传动轮133上,以驱动联动轴120转动。
在其他实施例中,动力源131还可以通过其他结构形式的传动件132驱动联动轴120,只要能够实现动力源131从联动轴120的径向方向上驱动联动轴120转动即可。在其他实施例中,动力源131的输出轴的轴线还可以与联动轴120的轴线平行。
一实施例中,联动轴120的数量为两个,每一联动轴120的两端上均分别与一往复单元110的往复轴111连接,两个联动轴120通过传动件132传动连接,动力源131用于通过传动件132驱动两个联动轴120同步转动。通过设置两个联动轴120通过传动件132传动连接,能够便于同时实现四个往复件112的同步往复移动,进一步提高传动效率。
具体地,传动件132可以为齿轮传动组,只要能够实现通过动力源131同时驱动两个联动轴120同步转动即可。
参阅图1及图6,一实施例中,往复动力组件100还包括传动壳140,传动件132及联动轴120设置于传动壳140内,且传动壳140的相对两侧壁上分别开设有联动孔;联动轴120的相对两端分别穿过两个联动孔。通过设置传动壳140,能够有效保证传动件132与联动轴120连接的可靠性,保证传动件132传动的稳定性。
一实施例中,往复动力组件100还包括往复壳150,往复壳150的数量为两个,两个往复单元110分别设置于两个往复壳150内,往复壳150内设置有第一导向结构151,往复件112上设置有第二导向结构118,第一导向结构151与第二导向结构118沿往复轴111的轴线方向导向配合。通过第一导向结构151与第二导向结构118的配合,进一步保证往 复件112沿往复轴111轴线方向移动的可靠性。
具体地,两个往复壳150分别设置于传动壳140上,以使两个联动孔分别与两个往复壳150连通,联动轴120的相对两端分别穿过两个联动孔并穿入往复壳150内。
参阅图5至图7,一实施例中,动力设备10包括上述任一实施例中的往复传动组件100及压缩组件200,压缩组件200包括压缩缸体210及活塞220,压缩缸体210内形成有一级压缩腔211,且压缩缸体210的外壁上形成有与一级压缩腔211连通的第一通道212及第二通道213,活塞220设置于一级压缩腔211内;压缩组件200为两个,每一压缩组件200的活塞220对应于一往复件112连接,往复件112能够带动对应连接的活塞220在一级压缩腔211内往复移动,以使气体在由第一通道212、一级压缩腔211至第二通道213流通。
一实施例中,当联动轴120为两个,往复单元110为四个时,压缩组件200的数量为四个,每一压缩组件200的活塞220与一往复件112连接。两个联动轴120通过传动件132传动连接,动力源131用于通过传动件132驱动两个联动轴120同步转动。通过一个动力源131驱动,并利用传动件132实现两个联动轴120的同步转动,进而实现四个压缩组件200的同步压缩。具体地,两个联动轴120的轴线平行设置,动力源131设置于两个联动轴120之间。
一实施例中,第一通道212与第二通道213的数量均为两个,一第一通道212与一第二通道213与活塞220一侧所述一级压缩腔211连通,另一第一通道212与另一第二通道213与活塞220另一侧的一级压缩腔211连通。如图6所示,当往复件112带动活塞220朝背离往复件112的方向移动时,能够压缩该侧的一级压缩腔211内的气体从与该侧连通的第二通道213排出,而同时气体能够从与另一的一级压缩腔211连通的第一通道212进气另一侧的一级压缩腔211内。当往复件112带动活塞220朝朝向往复件112的方向移动时,能够压缩活塞220朝向往复件112的一侧的一级压缩腔211内的气体从与该侧连通的第二通道213排出,同时另一侧的气体能够进入到该侧的一级压缩内,实现在活塞220的一个行程内,一侧压缩另一个进气,有效提高压缩的效率。
一实施例中,压缩组件200还包括排出件230,排出件230内形成有排出腔232,排出件230安装于压缩缸体210上以使两个第二通道213均与排出腔232连通,排出件230上还形成有与排出腔232连通的排出口234。由于一个压缩组件200上具有两个第二通道213,通过排出件230能够连通两个第二通道213,以使通过两个第二通道213排出的气体均能够进入到排出腔232,并均能够通过排出口234排出。具体地,排出件230可以为管道状结构,或者排出件230还可以为壳状结构。当然,在其他实施例中,排出件230还可 以省略。
在本实施例中,动力源131位于联动轴120径向方向的一侧,排出件230与动力源131均位于联动轴120的同一侧。通过将动力源131与排出件230设置于联动轴120的同一侧能够使得动力设备10的结构更加紧凑。
一实施例中,压缩组件200还包括散热件240,散热件240设置于排出件230的外壁上。通过散热件240能够便于降低排出件230的温度,进而降低压缩缸体210的温度。具体地,散热件240为风扇。在其他实施例中,散热件240还可以为散热翅片结构等散热结构。
一实施例中,动力源131位于联动轴120径向方向的一侧,排出件230、散热件240与动力源131均位于联动轴120的同一侧。通过将动力源131、排出件230及散热件240均设置于联动轴120的同一侧,能够更进一步提高动力设备10结构的紧凑性,有利于结构的小型化。
参阅图6及图8,一实施例中,压缩缸体210内还形成有与一级压缩腔211连通的二级压缩腔214,二级压缩腔214的体积小于一级压缩腔211,且第一通道212与一级压缩腔211连通,第二通道213与二级压缩腔214连通;活塞220包括一级塞体221及与一级塞体221相连接的二级塞体222,一级塞体221设置于一级压缩腔211内,二级塞体222设置于二级压缩腔214内,一级塞体221背向于二级塞体222的一侧与往复件112连接,往复件112能够带动一级塞体221与二级塞体222同步往复移动。
上述动力设备10作为压缩机在使用时,动力源131驱动联动轴120带动两个往复轴转动,以分别带动两个往复件112沿往复轴的轴线方向往复移动,进一步带动活塞220沿往复轴的轴线往复移动。由于一级塞体221设置于一级压缩腔211内,二级塞体222设置于二级压缩腔214内,当活塞220朝远离往复件112的方向移动时,二级塞体222压缩二级压缩腔214内的气体通过第二通道213排出,气体通过第一通道212进入到一级压缩腔211内。当活塞220朝朝向往复件112的方向移动时,一级塞体221将一级压缩腔211内的气体压缩至二级压缩腔214内,依此往复循环,实现气体的二级压缩。进而当活塞220朝朝向往复件112的方向移动时,实现的是一级压缩,二级进气,当活塞220朝远离往复件112的方向移动时,实现二级压缩,一级进气,进而不仅实现气体的二级压缩,同时压缩效率更高。
一实施例中,当两个压缩组件200中的一压缩组件200的第一通道212与另一压缩组件200的第二通道213连通时,便可以实现气体的四级压缩。
一实施例中,一级塞体221与一级压缩腔211的内壁之间密封接触,二级塞体222与 二级压缩腔214的内壁之间密封接触。通过密封接触保证压缩气体的过程中的密封性,进而保证气体压缩的稳定性。
一实施例中,活塞220还包括连通管,连通管的一端连接于一级塞体221,另一端连接于二级塞体222,以使一级塞体221背向于二级塞体222的空间与二级塞体222背向于一级塞体221的空间连通。通过连通管便于连通一级压缩腔211与二级压缩腔214,当活塞220朝进入件的方向移动时,以使一级压缩腔211内的气体通过连通管进入到二级压缩腔214内。具体地,连通管处设置有单向阀,单向阀保证当活塞220朝向排出件230的方向移动,二级压缩腔214内的气体不会通过连通管进入到一级压缩腔211内。
在本实施例中,上述任一实施例中的动力设备10为压缩机,实现气体的压缩与排出。
一实施例中,动力设备10还可以为真空泵,上述任一实施例中的动力设备10用于进气的通道排气,用于排气的通道进气,实现真空抽气的目的。
在另一实施例中,动力设备10还可以为充气泵。在其他实施例中,动力设备10还可以为其他需要压缩或需要抽气或需要充气的场合中。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本实用新型的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对实用新型专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变形和改进,这些都属于本实用新型的保护范围。因此,本实用新型专利的保护范围应以所附权利要求为准。
在本实用新型的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本实用新型的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本实用新型中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、 “固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。
在本实用新型中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种动力设备,其特征在于,所述动力设备包括:
    往复动力组件,所述往复动力组件包括往复单元、联动轴及动力单元,所述往复单元包括往复轴及往复件,所述往复件传动设置于所述往复轴上,所述往复单元的数量为两个;所述联动轴的相对两端分别与一所述往复轴连接;所述动力单元包括动力源及传动件,所述传动件与所述联动轴传动连接,所述动力源用于通过所述传动件驱动所述联动轴带动两个所述往复轴同步转动,所述往复轴转动以驱动所述往复件沿所述往复轴的轴线方向往复移动;及
    压缩组件,所述压缩组件包括压缩缸体及活塞,所述压缩缸体内形成有一级压缩腔,且所述压缩缸体的外壁上形成有与所述一级压缩腔连通的第一通道及第二通道,所述活塞设置于所述一级压缩腔内;所述压缩组件为两个,每一所述压缩组件的所述活塞对应于一所述往复件连接,所述往复件能够带动对应连接的所述活塞在所述一级压缩腔内往复移动,以使气体在由所述第一通道、所述一级压缩腔至所述第二通道流通。
  2. 根据权利要求1所述的动力设备,其特征在于,所述第一通道与所述第二通道的数量均为两个,一所述第一通道与一所述第二通道与所述活塞一侧所述一级压缩腔连通,另一所述第一通道与另一所述第二通道与所述活塞另一侧的所述一级压缩腔连通。
  3. 根据权利要求2所述的动力设备,其特征在于,所述压缩组件还包括排出件,所述排出件内形成有排出腔,所述排出件安装于所述压缩缸体上以使两个所述第二通道均与所述排出腔连通,所述排出件上还形成有与所述排出腔连通的排出口。
  4. 根据权利要求3所述的动力设备,其特征在于,所述压缩组件还包括散热件,所述散热件设置于所述排出件的外壁上。
  5. 根据权利要求4所述的动力设备,其特征在于,所述动力源位于所述联动轴径向方向的一侧,所述排出件、所述散热件与所述动力源均位于所述联动轴的同一侧。
  6. 根据权利要求1所述的动力设备,其特征在于,所述压缩缸体内还形成有与所述一级压缩腔连通的二级压缩腔,所述二级压缩腔的体积小于所述一级压缩腔,且所述第一通道与所述一级压缩腔连通,所述第二通道与所述二级压缩腔连通;所述活塞包括连通管、一级塞体及与所述一级塞体相连接的二级塞体,所述连通管的一端连接于所述一级塞体,另一端连接于所述二级塞体,以使所述一级塞体背向于所述二级塞体的空间与所述二级塞体背向于所述一级塞体的空间连通;所述一级塞体设置于所述一级压缩腔内,所述二级塞体设置于所述二级压缩腔内,所述一级塞体背向于所述二级塞体的一侧与所述往复件连接,所述往复件能够带动所述一级塞体与所述二级塞体同步往复移动。
  7. 根据权利要求2-6任一项所述的动力设备,其特征在于,所述传动件包括第一传动轮及第二传动轮,所述第一传动轮套设于所述联动轴上并位于两个所述往复轴之间,所述第二传动轮与所述第一传动轮传动配合,且所述第二传动轮传动连接于所述动力源;所述动力源位于两个所述往复轴之间。
  8. 根据权利要求7所述的动力设备,其特征在于,所述往复轴上设置有环绕所述往复轴轴线的闭合曲线形的往复导轨,且所述往复导轨的波峰与波谷沿所述往复轴的轴线间隔设置;所述往复件限位在所述往复导轨上并能够在所述往复导轨上移动。
  9. 根据权利要求8所述的动力设备,其特征在于,两个所述往复轴与所述联动轴同轴设置,两个所述往复轴上的往复导轨的轨迹相对于所述联动轴镜像对称设置,以使两个所述往复件同时相向或相背移动。
  10. 根据权利要求1-6任一项所述的动力设备,其特征在于,所述联动轴的数量为两个,每一所述联动轴的两端上均分别与一所述往复单元的所述往复轴连接,两个所述联动轴通过所述传动件传动连接,所述动力源用于通过所述传动件驱动两个所述联动轴同步转动;所述压缩组件的数量为四个,每一所述压缩组件的所述活塞与一所述往复件连接。
PCT/CN2023/106113 2022-11-02 2023-07-06 动力设备 WO2024093340A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222905078.0U CN218760303U (zh) 2022-11-02 2022-11-02 动力设备
CN202222905078.0 2022-11-02

Publications (1)

Publication Number Publication Date
WO2024093340A1 true WO2024093340A1 (zh) 2024-05-10

Family

ID=85645303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106113 WO2024093340A1 (zh) 2022-11-02 2023-07-06 动力设备

Country Status (2)

Country Link
CN (1) CN218760303U (zh)
WO (1) WO2024093340A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217813791U (zh) * 2022-07-06 2022-11-15 浙江千机智能科技有限公司 动力设备
CN218760303U (zh) * 2022-11-02 2023-03-28 浙江千机智能科技有限公司 动力设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208757A (ja) * 2007-02-26 2008-09-11 Gijutsu Kaihatsu Sogo Kenkyusho:Kk 直動式ポンプ装置
CN107131110A (zh) * 2017-06-02 2017-09-05 三六度(中国)有限公司 丝杆式气泵结构及气垫鞋
CN110242537A (zh) * 2019-06-27 2019-09-17 张谭伟 一种丝杆螺母空压机
CN113719439A (zh) * 2021-08-24 2021-11-30 浙江千机智能科技有限公司 传动结构、传动连接机构及空压机
EP3981983A1 (de) * 2020-10-12 2022-04-13 Mehrer Compression GmbH Kompressor zum komprimieren von gasen
CN114992084A (zh) * 2022-07-06 2022-09-02 浙江千机智能科技有限公司 动力设备及储能系统
CN115013283A (zh) * 2022-07-06 2022-09-06 浙江千机智能科技有限公司 动力设备
CN115095516A (zh) * 2022-07-06 2022-09-23 浙江千机智能科技有限公司 用泵设备及柱塞泵
CN218760288U (zh) * 2022-11-02 2023-03-28 浙江千机智能科技有限公司 往复动力组件及泵机构
CN218760303U (zh) * 2022-11-02 2023-03-28 浙江千机智能科技有限公司 动力设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208757A (ja) * 2007-02-26 2008-09-11 Gijutsu Kaihatsu Sogo Kenkyusho:Kk 直動式ポンプ装置
CN107131110A (zh) * 2017-06-02 2017-09-05 三六度(中国)有限公司 丝杆式气泵结构及气垫鞋
CN110242537A (zh) * 2019-06-27 2019-09-17 张谭伟 一种丝杆螺母空压机
EP3981983A1 (de) * 2020-10-12 2022-04-13 Mehrer Compression GmbH Kompressor zum komprimieren von gasen
CN113719439A (zh) * 2021-08-24 2021-11-30 浙江千机智能科技有限公司 传动结构、传动连接机构及空压机
CN114992084A (zh) * 2022-07-06 2022-09-02 浙江千机智能科技有限公司 动力设备及储能系统
CN115013283A (zh) * 2022-07-06 2022-09-06 浙江千机智能科技有限公司 动力设备
CN115095516A (zh) * 2022-07-06 2022-09-23 浙江千机智能科技有限公司 用泵设备及柱塞泵
CN218760288U (zh) * 2022-11-02 2023-03-28 浙江千机智能科技有限公司 往复动力组件及泵机构
CN218760303U (zh) * 2022-11-02 2023-03-28 浙江千机智能科技有限公司 动力设备

Also Published As

Publication number Publication date
CN218760303U (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
WO2024093340A1 (zh) 动力设备
WO2024008141A1 (zh) 动力设备及储能系统
WO2017140206A1 (zh) 一种压缩机泵体结构及压缩机
CN107152392B (zh) 泵体组件、流体机械及换热设备
WO2024008143A1 (zh) 动力设备
WO2017024867A1 (zh) 压缩机、换热设备和压缩机的运行方法
WO2024093343A1 (zh) 往复动力组件及泵机构
WO2017024866A1 (zh) 压缩机、换热设备和压缩机的运行方法
WO2017024868A1 (zh) 流体机械、换热设备和流体机械的运行方法
JPH0261628B2 (zh)
CN113719439A (zh) 传动结构、传动连接机构及空压机
WO2024008136A1 (zh) 动力设备
KR20040063759A (ko) 왕복동형 펌프 및 진공 펌프
CN107237754B (zh) 一种具有补气结构的转子压缩机及压缩方法
CN217813789U (zh) 动力设备及压缩组件
CN217813792U (zh) 动力设备及储能系统
CN109209879B (zh) 一种封闭式转子压缩机
CN113464433B (zh) 压气装置
CN111287961B (zh) 压缩机及制冷设备
CN112324661A (zh) 一种新型无油空气压缩机
WO2024008148A1 (zh) 动力设备及压缩组件
CN218717386U (zh) 气泵
KR20030064637A (ko) 용적형 기계
WO2023226409A1 (zh) 流体机械和换热设备
KR20010016078A (ko) 다단 배기시스템을 구비한 사축식 압축장치