WO2017024866A1 - 压缩机、换热设备和压缩机的运行方法 - Google Patents

压缩机、换热设备和压缩机的运行方法 Download PDF

Info

Publication number
WO2017024866A1
WO2017024866A1 PCT/CN2016/084329 CN2016084329W WO2017024866A1 WO 2017024866 A1 WO2017024866 A1 WO 2017024866A1 CN 2016084329 W CN2016084329 W CN 2016084329W WO 2017024866 A1 WO2017024866 A1 WO 2017024866A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
cylinder
sub
compressor
compressor according
Prior art date
Application number
PCT/CN2016/084329
Other languages
English (en)
French (fr)
Inventor
杜忠诚
徐嘉
杨森
任丽萍
孔令超
张金圈
梁社兵
邓丽颖
丁宁
苏圣桐
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Publication of WO2017024866A1 publication Critical patent/WO2017024866A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members

Definitions

  • the invention relates to the technical field of heat exchange systems, in particular to a compressor, a heat exchange device and a method for operating a compressor.
  • Compressors of the prior art include compressors, expanders, and the like. Take the compressor as an example.
  • the position of the center of mass of the sub-rotary shaft and the cylinder during the movement is varied.
  • the motor drives the crankshaft to output power, and the crankshaft drives the piston to reciprocate in the cylinder to compress the gas or the liquid to perform work for the purpose of compressing the gas or the liquid.
  • the traditional piston compressor has many defects: due to the presence of the suction valve piece and the exhaust valve piece, the suction and exhaust resistance are increased, and the suction and exhaust noise is increased; the cylinder of the compressor is subjected to the lateral force. Large, lateral force does useless work, reducing compressor efficiency; crankshaft drives the piston to reciprocate, the eccentric mass is large, resulting in large compressor vibration; the compressor drives one or more pistons through the crank linkage mechanism, the structure is complex; the crankshaft and The piston is subjected to a large lateral force, and the piston is easily worn, resulting in a decrease in piston sealing performance.
  • the existing compressor has a volumetric efficiency due to the existence of a clearance volume, a large leak, and the like, and it is difficult to further improve.
  • a primary object of the present invention is to provide a method for operating a compressor, a heat exchange device, and a compressor to solve the problem of the prior art compressor having unstable motion, large vibration, and residual volume.
  • a compressor comprising: an upper flange; a lower flange; at least two cylinders, at least two cylinders sandwiched between an upper flange and a lower flange Any two adjacent cylinders are in communication with each other to form a multi-stage compressor; the rotating shaft assembly, the rotating shaft assembly sequentially passes through the upper flange, the cylinder and the lower flange, and the rotating shaft assembly includes each of the at least two cylinders a sub-rotating shaft corresponding to the set, the axis of the sub-rotating shaft and the axis of the cylinder corresponding to the sub-rotating shaft are eccentrically arranged and the eccentric distance is fixed; the piston assembly and the piston assembly have variable volume chambers corresponding to each cylinder, and the piston assembly
  • the cylinder is pivotally disposed within the cylinder and the at least one sub-rotary shaft is drivingly coupled to the piston assembly to vary the volume of the variable volume chamber.
  • the piston assembly includes: a piston sleeve that is pivotally disposed in the cylinder; at least two pistons that are slidably disposed within the piston sleeve to form a variable volume chamber, and the variable volume chamber is located in a sliding direction of the piston.
  • the cylinder, the sub-rotating shaft and the piston are each two, and one sub-rotating shaft is a driving shaft, and extends through the upper flange into a cylinder near one side of the upper flange, and is movably connected with the piston in the cylinder;
  • the sub-shaft is a passive shaft that extends through the lower flange into a cylinder near the side of the lower flange and is movably coupled to the piston in the cylinder.
  • the drive shaft is driven to rotate by the motor, and the driven shaft is driven indirectly by the drive shaft.
  • the piston has a sliding hole disposed along the axial direction of the sub-rotating shaft, and the sub-rotating shaft passes through the sliding hole, and the piston engaged with the driving shaft rotates with the driving shaft under the driving of the driving shaft while being perpendicular to the driving shaft.
  • the axial direction reciprocates in the piston sleeve; the piston engaged with the passive shaft rotates with the piston sleeve and drives the passive shaft to rotate under the driving of the piston sleeve, and the piston engaged with the passive shaft is in the piston sleeve along the axis perpendicular to the passive shaft. Slide back and forth.
  • the sliding hole is a long hole or a waist hole.
  • the piston has a pair of arcuate surfaces symmetrically disposed along the median plane of the piston, the arcuate surface being adapted to fit the inner surface of the cylinder, and the radius of curvature of the arcuate surface of the arcuate surface is equal to twice the inner diameter of the cylinder.
  • the piston is cylindrical.
  • the piston sleeve has a guiding hole disposed in a radial direction of the piston sleeve.
  • the guiding holes are at least two, and each of the guiding holes is correspondingly provided with a piston, and the piston is slidably disposed in the guiding hole to reciprocate linearly.
  • each of the guide holes is parallel.
  • a partition is formed between two adjacent guide holes in the piston sleeve, and the oil passage hole for connecting the adjacent two guide holes is opened in the partition.
  • the axis of the oil passage hole is parallel to the axis of the sub-rotation shaft.
  • the orthographic projection of the guiding hole at the lower flange has a pair of parallel straight segments, and a pair of parallel straight segments are formed by projecting a pair of parallel inner wall faces of the piston sleeve, and the piston has a pair with the guiding holes.
  • the parallel inner wall faces are shaped to fit and slip fit to the outer profile.
  • first thrust surface of the piston sleeve facing the lower flange side is in contact with the surface of the lower flange.
  • the sub-rotating shaft has a sliding section that is in sliding engagement with the piston assembly, the slip section is located at one end of the sub-rotating shaft near the cylinder, and the slip section has a slip fit surface.
  • slip fit surfaces are symmetrically disposed on both sides of the slip segment.
  • sliding mating surface is parallel to the axial plane of the sub-rotating shaft, and the sliding mating surface and the inner wall surface of the sliding hole of the piston are slidably engaged in an axial direction perpendicular to the sub-rotating shaft.
  • the compressor further includes an intermediate flow passage disposed on the cylinder, and the adjacent two cylinders communicate through the intermediate flow passage.
  • the cylinder wall of the low pressure stage cylinder of the at least two cylinders has an intake port and a communication port, and the communication port communicates with the intermediate flow path of the high pressure stage cylinder of the at least two cylinders through an intermediate flow path on the low pressure stage cylinder.
  • the inner wall surface of the cylinder wall of the low-pressure stage cylinder has a low-pressure stage intake buffer tank, and the low-pressure stage intake buffer tank communicates with the intake port.
  • the low-pressure stage intake buffer tank has an arc-shaped section in a radial plane of the low-pressure stage cylinder, and both ends of the low-pressure stage intake buffer tank extend from the inlet port to the position of the communication port.
  • the outer wall surface of the cylinder wall of the low-pressure stage cylinder has a communication groove, and the communication port communicates with the communication groove, the compressor further includes a sealing plate, and the sealing plate is disposed at the notch of the communication groove to close the communication groove, the communication groove and the communication port Forming an intermediate flow path for the low pressure stage cylinder.
  • the inner wall surface of the cylinder wall of the high-pressure stage cylinder has a high-pressure stage intake buffer tank and an exhaust port, and the high-pressure stage intake buffer tank communicates with the intermediate flow passage of the high-pressure stage cylinder, and the exhaust port communicates with the cavity of the compressor. .
  • the high-pressure stage cylinder further has an air supply port, and the air supply port is in communication with the high-pressure stage intake buffer groove.
  • the high-pressure stage intake buffer tank has an arc-shaped section in a radial plane of the high-pressure stage cylinder, and both ends of the high-pressure stage intake buffer tank extend from the air supply port to the position of the exhaust port.
  • the sub-rotating shaft has a lubricating oil passage including an internal oil passage disposed inside the sub-rotating shaft, an external oil passage disposed at the slip fitting surface, and an oil passage hole communicating the internal oil passage and the external oil passage.
  • adjacent two cylinders are disposed concentrically with each other.
  • the axis of the upper flange is eccentric with the axis of the cylinder disposed on the side close to the upper flange.
  • the axis of the lower flange is eccentric with the axis of the cylinder disposed on the side close to the lower flange.
  • the compressor further includes a support plate disposed on an end surface of the lower flange away from the cylinder side, and the support plate is disposed concentrically with the lower flange to support the rotating shaft assembly, and the support plate has a support for supporting the rotating shaft assembly.
  • the second thrust surface is disposed on an end surface of the lower flange away from the cylinder side, and the support plate is disposed concentrically with the lower flange to support the rotating shaft assembly, and the support plate has a support for supporting the rotating shaft assembly. The second thrust surface.
  • the compressor further includes at least two exhaust valve assemblies, and each of the communication port and the exhaust port is provided with an exhaust valve assembly.
  • the outer wall of the cylinder wall of the high-pressure stage cylinder is provided with a receiving groove, and the exhaust port penetrates the groove bottom of the receiving groove, and an exhaust valve assembly is disposed in the receiving groove.
  • each of the exhaust valve assemblies includes: an exhaust valve plate, the exhaust valve plate blocks the communication port or the exhaust port; the valve plate baffle, the valve plate baffle is stacked on the exhaust valve plate.
  • a heat exchange apparatus including a compressor, the compressor being the compressor described above.
  • the heat exchange device further includes a first heat exchanger, a second heat exchanger and a four-way valve, and the compressor, the first heat exchanger and the second heat exchanger form a circulating heat exchange pipeline through the four-way valve,
  • the heat device further comprises: a flasher, the flasher is disposed on the circulating heat exchange pipeline and located between the first heat exchanger and the second heat exchanger; the gas supplement branch, the first end of the gas supplementation branch is connected to the flasher The second end of the supplemental gas branch communicates with the air inlet of the high pressure stage cylinder of the compressor.
  • a method of operating a compressor comprising: rotating a sub-rotary shaft about an axis O 1 of a sub-rotary shaft; rotating the cylinder about an axis O 2 of the cylinder, and axially-centering the cylinder of the sub-rotating shaft
  • the shaft center is eccentrically disposed and the eccentric distance is fixed; the piston of the piston assembly rotates with the sub-rotation shaft under the driving of the sub-rotation shaft and simultaneously reciprocates in the piston sleeve of the piston assembly in the axial direction perpendicular to the sub-rotation shaft.
  • the running method adopts the principle of the cross slider mechanism, wherein the piston acts as a slider, and the slip matching surface of the sub-rotating shaft serves as the first connecting rod l 1 and the guiding hole of the piston sleeve as the second connecting rod l 2 .
  • any two adjacent cylinders communicate with each other to form a multi-stage compressor
  • the center of the sub-shaft in the rotating shaft assembly is eccentrically set with the axis of the cylinder corresponding to the sub-rotating shaft.
  • the eccentric distance is fixed, so that the sub-rotary shaft and the cylinder rotate around the respective axes during the movement, and the position of the center of mass is unchanged, so that the piston assembly can stably and continuously rotate when moving in the cylinder, thereby effectively alleviating the compressor.
  • the vibration and ensure that the volume change of the variable volume chamber has a regularity, reduce the clearance volume, thereby improving the operational stability of the compressor, thereby improving the operational reliability of the heat exchange equipment.
  • Figure 1 is a schematic view showing the structure of a compressor in the present invention
  • Figure 2 shows an exploded view of the pump body assembly of the present invention
  • Figure 3 is a schematic view showing the installation relationship of the sub-rotating shaft, the upper flange, the cylinder and the lower flange in the present invention
  • Figure 4 is a schematic view showing the internal structure of Figure 3;
  • Figure 5 is a schematic view showing the installation relationship of the piston sleeve, the piston and the sub-rotating shaft in the present invention
  • Figure 6 is a schematic view showing the mounting relationship of the upper flange, the piston sleeve, the piston and the sub-rotating shaft in the present invention
  • Figure 7 is a schematic view showing the structure of a sub-rotating shaft on the side close to the upper flange in the present invention.
  • Figure 8 is a schematic view showing the internal structure of the sub-rotating shaft of Figure 7;
  • Figure 9 is a schematic view showing the structure of the sub-rotating shaft near the side of the lower flange in the present invention.
  • Figure 10a is a schematic view showing the internal structure of the sub-rotating shaft of Figure 9;
  • Figure 10b shows a top view of the sub-rotary shaft of Figure 9;
  • Figure 11 is a view showing the structure of a piston in the present invention.
  • Figure 12 is a schematic view showing the structure of another angle of the piston of Figure 11;
  • Figure 13 is a view showing the structure of a support plate in the present invention.
  • Figure 14 is a view showing the structure of a piston sleeve in the present invention.
  • Figure 15 is a cross-sectional view showing a piston sleeve in the present invention.
  • Figure 16 is a view showing the structure of the upper flange in the present invention.
  • Figure 17 is a view showing the structure of the lower flange in the present invention.
  • Figure 18 is a schematic view showing the eccentric relationship between the axis of the sub-rotating shaft on the side of the lower flange and the axis of the piston sleeve at the lower flange of Figure 17;
  • Figure 19 is a view showing the structure of a high pressure stage cylinder in the present invention.
  • Figure 20 is a cross-sectional view showing the high pressure stage cylinder of Figure 19;
  • Figure 21 is a schematic view showing the assembly relationship of the high-pressure stage cylinder, the sub-rotating shaft, the piston sleeve and the piston in the present invention
  • Figure 22 is a view showing the structure of a low-pressure stage cylinder in the present invention.
  • Figure 23 is a cross-sectional view showing the low pressure stage cylinder of Figure 22;
  • Figure 24 is a cross-sectional view showing another angle of the low pressure stage cylinder of Figure 22;
  • Figure 25 is a view showing the assembly relationship of the low-pressure stage cylinder, the sub-rotating shaft, the piston sleeve and the piston in the present invention
  • Figure 26 is a schematic view showing the assembly relationship between the low-pressure stage cylinder and the high-pressure stage cylinder in the present invention.
  • Figure 27 shows an exploded view of Figure 26
  • Figure 28 is a cross-sectional view showing an angle in Figure 26;
  • Figure 29 is a view showing the working state of the piston in the present invention when it is ready to start inhaling
  • Figure 30 is a view showing the working state of the piston in the present invention in the process of inhalation
  • Figure 31 is a view showing the working state of the piston in the present invention when the suction is completed and the compression is started;
  • Figure 32 is a view showing the working state of the piston in the present invention when the gas is compressed and exhausted;
  • Figure 33 is a view showing the working state of the piston in the present invention when the exhaust gas is completed
  • Figure 34 is a view showing the structure of a heat exchange device in the present invention.
  • Figure 35 is a view showing the operation state of the piston in the high-pressure stage cylinder in the present invention.
  • Fig. 36 is a view showing the operation of the compressor in the present invention.
  • orientation words such as “left and right” are generally referred to as left and right as shown in the drawings, and the “inside and outside” are relative to the outline of each component, unless otherwise stated.
  • the present invention provides a compressor and a heat exchange device, wherein the heat exchange device includes the following compressor.
  • a method of operating the compressor is also provided.
  • the compressor includes an upper flange 50, a lower flange 60, at least two cylinders, a rotating shaft assembly and a piston assembly, and at least two cylinders are sandwiched between the upper flange 50 and the lower flange 60.
  • the compressor is connected to each other to form a multi-stage compressor, and the rotating shaft assembly sequentially passes through the upper flange 50, the cylinder and the lower flange 60, and the rotating shaft assembly includes each cylinder of at least two cylinders.
  • the sub-rotating shaft 10 is disposed correspondingly, the axial center of the sub-rotating shaft 10 and the axial center of the cylinder corresponding to the sub-rotating shaft 10 are eccentrically arranged and the eccentric distance is fixed, and the piston assembly has a variable volume chamber 31 corresponding to each cylinder, the piston
  • the assembly is pivotally disposed within the cylinder and at least one sub-rotor 10 is drivingly coupled to the piston assembly to vary the volume of the variable volume chamber 31.
  • the upper flange 50 is fixed to the cylinder near the upper flange 50 by the second fastener 70, and the lower flange 60 is fixed to the cylinder near the lower flange 60 by the third fastener 80.
  • the second fastener 70 and/or the third fastener 80 are screws or bolts.
  • the upper flange 50 is provided with a first pump body screw hole through which the second fastener 70 is inserted.
  • the lower flange 60 is provided with four second pump body screw holes for the third fastener 80 to pass through.
  • the center of the first pump body screw hole on the upper flange 50 and the center of the upper flange 50 have a certain eccentricity e. This eccentricity determines the displacement of the cylinder near the upper flange 50.
  • V the gas displacement
  • S the cross-sectional area of the piston body structure.
  • any two adjacent cylinders communicate with each other to form a multi-stage compressor, and the eccentricity is fixed by eccentrically setting the axis of the sub-shaft 10 in the rotating shaft assembly to the axis of the cylinder corresponding to the sub-rotating shaft 10 Therefore, the sub-rotary shaft 10 and the cylinder are rotated around the respective axes during the movement, and the centroid position is unchanged, so that the piston assembly can stably and continuously rotate when moving in the cylinder, thereby effectively alleviating the vibration of the compressor, and The volume change of the variable volume chamber 31 is ensured to be regular, and the clearance volume is reduced, thereby improving the operating stability of the compressor, thereby improving the operational reliability of the heat exchange device.
  • the adjacent two cylinders are disposed concentrically with each other.
  • the axis of the upper flange 50 is eccentrically disposed from the axis of the cylinder disposed on the side close to the upper flange 50.
  • the axis of the lower flange 60 is eccentric from the axis of the cylinder disposed on the side close to the lower flange 60.
  • the sub-rotary shaft 10 in the present invention is slidably coupled to the piston assembly, and the volume of the variable volume chamber 31 varies with the rotation of the sub-rotary shaft 10. Since the sub-rotary shaft 10 of the present invention is slidably coupled with the piston assembly, the movement reliability of the piston assembly is ensured, and the problem of the movement of the piston assembly is effectively avoided, so that the volume change of the variable volume chamber 31 has a regular characteristic.
  • the piston assembly includes a piston sleeve 33 and at least two pistons 32.
  • the piston sleeve 33 is pivotally disposed in the cylinder, and the piston 32 is slidably disposed on the piston sleeve.
  • the variable volume chamber 31 is formed in the inside of the 33, and the variable volume chamber 31 is located in the sliding direction of the piston 32. Alternatively, the number of pistons 32 coincides with the number of cylinders.
  • the piston assembly is slidably engaged with the sub-rotary shaft 10, and as the sub-rotation shaft 10 rotates, the piston assembly has a linear motion tendency with respect to the sub-rotation shaft 10, thereby causing the rotation to become a local linear motion. Since the piston 32 is slidably coupled with the piston sleeve 33, the movement of the piston 32 is effectively prevented from being driven by the driving of the sub-rotating shaft 10, thereby ensuring the reliability of the movement of the piston 32, the sub-rotating shaft 10 and the piston sleeve 33, thereby improving the compressor. Operational stability.
  • the cylinder, the sub-rotating shaft 10, and the piston 32 are each two, and one sub-rotating shaft 10 as a driving shaft extends through the upper flange 50 into the upper flange 50.
  • the other sub-rotating shaft 10 as a passive shaft extends through the lower flange 60 into the cylinder near the side of the lower flange 60, and is in the cylinder
  • the piston 32 is in motion connection.
  • the cross slide mechanism is formed between the piston assembly, the cylinder and the sub-rotary shaft 10, the movement of the piston assembly and the cylinder is stabilized and continuous, and the volume change of the variable volume chamber 31 is regular, thereby ensuring the running stability of the compressor. Thereby improving the operational reliability of the heat exchange equipment.
  • the drive shaft is driven to rotate by the motor, and the driven shaft is driven indirectly by the drive shaft.
  • the piston 32 of the present invention has a sliding hole 321 disposed through the axial direction of the sub-rotating shaft 10, and the sub-rotating shaft 10 passes through the sliding hole 321, and the piston 32 engaged with the driving shaft rotates with the driving shaft under the driving of the driving shaft.
  • the piston 32 is reciprocally slid in the axial direction perpendicular to the driving shaft; the piston 32 engaged with the passive shaft rotates with the piston sleeve 33 under the driving of the piston sleeve 33 and drives the driven shaft to rotate, and the piston cooperates with the passive shaft.
  • 32 reciprocally slides within the piston sleeve 33 in an axial direction perpendicular to the passive shaft.
  • the eccentric mass reduces the lateral forces experienced by the sub-rotary 10 and the piston 32, thereby reducing the wear of the piston 32 and improving the sealing performance of the piston 32.
  • the piston sleeve 33 rotates and drives the piston 32 to rotate, and the piston 32 disposed on the side close to the lower flange 60 will Sliding in the piston sleeve 33 to change the volume of the corresponding variable volume chamber 31, while the sub-rotary shaft 10 near the side of the lower flange 60 is rotated by the driving of the piston 32, so that the piston sleeve 33 and the sub-rotating shaft 10 respectively Withstanding bending deformation and torsional deformation, the overall deformation of the individual parts is reduced, and the structural strength requirements for the sub-rotating shaft 10 are reduced.
  • the sliding hole 321 is a long hole or a waist hole.
  • the piston 32 in the present invention has a cylindrical shape.
  • the piston 32 is cylindrical or non-cylindrical.
  • the piston 32 has a pair of arcuate surfaces symmetrically disposed along the median plane of the piston 32.
  • the curved surface is adapted to the inner surface of the cylinder and the radius of curvature of the curved surface is curved. Two times equal to the inner diameter of the cylinder. In this way, a zero clearance volume can be achieved during the exhaust process.
  • the vertical plane of the piston 32 is the axial plane of the piston sleeve 33.
  • the main structure of the piston sleeve 33 in the present invention is a hollow cylinder having a certain roughness requirement.
  • the piston sleeve 33 has a guiding hole 311 extending through the radial direction of the piston sleeve 33 .
  • the guiding hole 311 is at least two, and each guiding hole 311 is correspondingly disposed.
  • a piston 32, the piston 32 is slidably disposed in the guide hole 311 to reciprocate linearly. Since the piston 32 is slidably disposed in the guiding hole 311, when the piston 32 moves left and right in the guiding hole 311, the volume of the variable volume chamber 31 can be continuously changed, thereby ensuring the suction and exhaust stability of the compressor.
  • the orthographic projection of the pilot hole 311 at the lower flange 60 has a pair of parallel straight segments, and a pair of parallel straight segments are a pair of parallel inner wall faces of the piston sleeve 33.
  • the projection is formed, and the piston 32 has an outer surface that is adapted to the shape of the pair of parallel inner wall faces of the guide hole 311 and that is slip-fitted.
  • the piston 32 and the piston sleeve 33 which are configured as described above, enable the piston 32 to smoothly slide in the piston sleeve 33 and maintain a sealing effect.
  • the orthographic projection of the pilot hole 311 at the lower flange 60 has a pair of arcuate segments joined to a pair of parallel straight segments to form an irregular cross-sectional shape.
  • the outer peripheral surface of the piston sleeve 33 is adapted to the shape of the inner wall surface of the cylinder. Therefore, the piston sleeve 33 and the cylinder, the pilot hole 311 and the piston 32 are sealed with a large face, and the whole machine seal is a large face seal, which is beneficial to reduce leakage.
  • the first thrust surface 332 of the piston sleeve 33 facing the lower flange 60 side is in contact with the surface of the lower flange 60. Thereby, the piston sleeve 33 and the lower flange 60 are reliably positioned.
  • a partition plate 34 is formed between the adjacent two guide holes 311 in the piston sleeve 33, and the oil passage hole 35 for communicating the adjacent two guide holes 311 is formed in the partition plate 34.
  • the oil passage hole 35 is for ensuring that the sub-rotary shaft 10 on both sides of the partition plate 34 can smoothly obtain lubrication of the lubricating oil.
  • the axis of the oil passage 35 is parallel to the axis of the sub-rotation shaft 10.
  • each of the at least two guiding holes 311 are parallel.
  • the sub-rotation shaft 10 has a slip section 11 that is slidably engaged with the piston assembly, the slip section 11 is located at one end of the sub-rotary shaft 10 near the cylinder, and the slip section 11 has a slip fit surface 111. Since the sub-rotating shaft 10 is slidably engaged with the sliding hole 321 of the piston 32 through the sliding mating surface 111, the motion reliability of the two is ensured, and the two are effectively prevented from being stuck.
  • the slip section 11 has two symmetrical arrangement of slip fit faces 111. Since the sliding mating faces 111 are symmetrically disposed, the forces of the two slip mating faces 111 are more uniform, and the reliability of the movement of the sub-rotating shaft 10 and the piston 32 is ensured.
  • the sub-rotating shaft 10 has a sliding section 11 that is slidably engaged with the piston assembly, the slip section 11 is located at one end of the sub-rotating shaft 10 near the cylinder, and the slip section 11 has two symmetrically disposed slips.
  • the mating surface 111 is moved.
  • the slip mating surface 111 is parallel to the axial plane of the sub-rotating shaft 10, and the slip mating surface 111 is slidably engaged with the inner wall surface of the sliding hole 321 of the piston 32 in the axial direction perpendicular to the sub-rotating shaft 10.
  • the sub-rotary shaft 10 in the present invention has a lubricating oil passage 13, and at least a part of the lubricating oil passage 13 is an internal oil passage of the sub-rotating shaft 10. Due to at least a part of the internal oil passage of the lubricating oil passage 13, the lubricating oil is effectively prevented from leaking out a large amount, and the flow reliability of the lubricating oil is improved.
  • the lubricating oil passage 13 at the slip fitting surface 111 is an outer oil passage. Since the lubricating oil passage 13 at the slip fitting surface 111 is an external oil passage, the lubricating oil can be directly supplied to the sliding mating surface 111 and the piston 32, thereby effectively avoiding excessive friction and wear of the two, thereby improving the two. The smoothness of the movement.
  • the sub-rotary shaft 10 in the present invention has an oil passage hole 14, and the inner oil passage communicates with the outer oil passage through the oil passage hole 14. Since the oil passage hole 14 is provided, the inner and outer oil passages can be smoothly communicated, and oil can be injected into the lubricating oil passage 13 through the oil passage hole 14, thereby ensuring the oil filling convenience of the lubricating oil passage 13.
  • the compressor of the present invention further includes a support plate 61 which is disposed on an end surface of the lower flange 60 away from the cylinder side, and the support plate 61 and the lower flange 60 are disposed coaxially to support
  • the spindle assembly, the sub-rotor 10 is supported on the support plate 61 through a through hole in the lower flange 60, and the support plate 61 has a second thrust surface 611 for supporting the sub-rotation shaft 10. Since the support plate 61 is provided for supporting the sub-rotary shaft 10, the connection reliability between the components is improved.
  • the support plate 61 is disposed on the side of the lower flange 60, the support plate 61 is mainly used to support the sub-rotation shaft 10 disposed on the side close to the lower flange 60 to ensure the mounting reliability thereof.
  • the support plate 61 is coupled to the lower flange 60 by a fifth fastener 82.
  • the fifth fastener 82 is a bolt or a screw.
  • the lower flange 60 is provided with three support plate screw holes for the fifth fastener 82 to pass through.
  • the circle formed by the center of the four pump body screw holes on the lower flange 60 is eccentric to the center of mass of the lower flange 60, and the amount of eccentricity is e, which determines the assembly of the cylinder near the side of the lower flange 60.
  • the amount of eccentricity, one rotation of the piston sleeve 33, the gas displacement V 2*2e*S, Wherein S is the cross-sectional area of the main structure of the piston; the center of the screw hole of the support plate coincides with the axis of the lower flange 60, and the support plate 61 is fixed with the fifth fastener 82.
  • the support plate 61 has a cylindrical structure and is evenly distributed with three screw holes.
  • the end face of the support plate 61 has a certain roughness requirement, and is fitted to the bottom surface of the sub-rotary shaft 10 on the side close to the lower flange 60.
  • the compressor includes a dispenser member 90, a housing assembly 91, a motor assembly 92, a pump body assembly 93, an upper cover assembly 94, and a lower cover and mounting plate 95, wherein the dispenser member 90 is disposed
  • the upper cover assembly 94 is fitted to the upper end of the housing assembly 91
  • the lower cover and the mounting plate 95 are fitted to the lower end of the housing assembly 91
  • the motor assembly 92 and the pump body assembly 93 are both located at the housing assembly 91.
  • the interior of the pump assembly 93 is disposed.
  • the pump body assembly 93 of the compressor includes the upper flange 50, the lower flange 60, the cylinder, the shaft assembly, and the piston assembly described above.
  • the above components are joined by welding, hot jacketing, or cold pressing.
  • the assembly process of the entire pump body assembly 93 is as follows: the piston 32 is mounted in the guide hole 311, while the cylinder is mounted coaxially with the piston sleeve 33, the lower flange 60 is fixed to the cylinder, and the slip fit surface 111 of the sub-shaft 10 and the piston 32 are provided. A pair of parallel surfaces of the sliding holes 321 are fitted together, and the upper flange 50 fixes the driving shaft, while the upper flange 50 is fixed to the cylinder by screws. Thereby the assembly of the pump body assembly 93 is completed, as shown in FIG.
  • the compressor of the present invention is not provided with an intake valve piece, so that the suction resistance can be effectively reduced and the compression efficiency of the compressor can be improved.
  • the compressor of the present invention further includes an intermediate flow path 26 provided on the cylinder, and adjacent two cylinders communicate through the intermediate flow path 26. Since the two adjacent cylinders can communicate through the intermediate flow passage 26, the multi-stage compression reliability of the compressor is ensured.
  • the cylinder wall of the low-pressure stage cylinder 20 of the at least two cylinders has an intake port 21 and a communication port 24, and the communication port 24 passes through the intermediate flow path 26 on the low-pressure stage cylinder 20 and at least two.
  • the intermediate flow passage 26 of the high pressure stage cylinder 200 in the cylinder is in communication, and the intake port 21 is connected to the liquid separator part 90 of the compressor.
  • the inner wall surface of the cylinder wall of the low-pressure stage cylinder 20 of the present invention has a low-pressure stage intake buffer tank 29, and the low-pressure stage intake buffer tank 29 communicates with the intake port 21 (please refer to Figs. 22 to 25).
  • variable volume chamber 31 can be fully inhaled, so that the compressor can sufficiently inhale and when the intake is insufficient.
  • the storage gas can be supplied to the variable volume chamber 31 in time to ensure the compression efficiency of the compressor.
  • the low-pressure stage intake buffer tank 29 has an arc-shaped section in the radial plane of the low-pressure stage cylinder 20, and both ends of the low-pressure stage intake buffer tank 29 are directed by the intake port 21.
  • the position of the communication port 24 extends, and with respect to the air inlet 21, the arc length of the extension of the low-pressure stage intake buffer groove 29 in the same direction as the rotation direction of the piston sleeve 33 is smaller than the arc length of the extension in the opposite direction.
  • the outer wall surface of the cylinder wall of the low-pressure stage cylinder 20 has a communication groove 28, and the communication port 24 communicates with the communication groove 28.
  • the compressor further includes a sealing plate 81, and the sealing plate 81 is disposed. At the notch of the communication groove 28, the communication groove 28 is closed, and the communication groove 28 and the communication port 24 form the intermediate flow path 26 of the low-pressure stage cylinder 20.
  • the communication groove 28 is closed by the sealing plate 81 to form the intermediate flow path 26, thereby ensuring that the heat exchange medium flowing out through the communication port 24 can be guided to the high-pressure stage cylinder 200 through the intermediate flow path 26, thereby ensuring reliable operation of the compressor. Sex.
  • the compressor further includes a plurality of fourth fasteners 83 that secure the sealing plate 81 to the cylinder.
  • the fourth fastener 83 is a screw.
  • the inner wall surface of the cylinder wall of the high-pressure stage cylinder 200 has a high-pressure stage intake buffer tank 23 and an exhaust port 22, and a high-pressure stage intake buffer tank 23 and an intermediate flow passage 26 of the high-pressure stage cylinder 200.
  • the exhaust port 22 is in communication with the cavity of the compressor. Since the high-pressure stage intake buffer tank 23 is provided, a large amount of gas is stored therein, so that the variable volume chamber 31 can be fully inhaled, so that the compressor can sufficiently inhale and when the intake is insufficient.
  • the storage gas can be supplied to the variable volume chamber 31 in time to ensure the compression efficiency of the compressor.
  • the high-pressure stage cylinder 200 in the present invention further has a gas supply port 27 that communicates with the high-pressure stage intake buffer tank 23 (please refer to Figs. 19 to 21).
  • the gas discharged through the low-pressure stage cylinder 20 and the gas supplied from the air supply port 27 are mixed at the high-pressure stage intake buffer tank 23 to reduce the intake air temperature and then complete the compression in the high-pressure stage cylinder 200.
  • the high-pressure stage intake buffer tank 23 has an arc-shaped section in the radial plane of the high-pressure stage cylinder 200, and both ends of the high-pressure stage intake buffer tank 23 are supplemented.
  • the port 27 extends toward the position of the exhaust port 22, and with respect to the air inlet 27, the arc length of the extension of the high-pressure stage intake buffer groove 23 in the same direction as the rotation direction of the piston sleeve 33 is larger than the arc length of the extension in the opposite direction. .
  • the compressor further includes at least two exhaust valve assemblies 40, each of which is provided with an exhaust valve assembly 40 at each of the communication port 24 and the exhaust port 22. Since each of the communication port 24 and the exhaust port 22 is provided with an exhaust valve assembly 40, a large amount of gas leakage in the variable volume chamber 31 is effectively prevented, and the compression efficiency of the variable volume chamber 31 is ensured.
  • the outer wall of the cylinder wall of the high-pressure stage cylinder 200 is provided with a receiving groove 25 through which the exhaust port 22 passes, and an exhaust valve assembly 40 is disposed in the receiving groove 25.
  • the accommodating groove 25 for accommodating the vent valve assembly 40 is provided, the space occupied by the vent valve assembly 40 is reduced, and the components are properly arranged, thereby improving the space utilization of the cylinder.
  • each of the exhaust valve assemblies 40 includes an exhaust valve plate 41 and a valve flapper 42 that blocks the communication port 24 or the exhaust port 22, and the valve flapper 42 is stacked on the exhaust valve. On the valve plate 41. Since the valve flapper 42 is provided, the exhaust valve flap 41 is effectively prevented from being excessively opened, and the exhaust performance of the cylinder is ensured.
  • the exhaust valve flap 41 and the valve flapper 42 are connected by a first fastener 43.
  • the first fastener 43 is a screw.
  • the exhaust valve assembly 40 of the present invention is capable of separating the variable volume chamber 31 from the outer space of the pump body assembly 93 for back pressure exhaust: that is, when the variable volume chamber 31 and the communication port 24 or exhaust
  • the exhaust valve piece 41 is opened to start the exhaust; if it is connected, the variable volume chamber 31 is connected.
  • the pressure is still lower than the exhaust pressure, and the exhaust valve piece 41 is not operated at this time.
  • the compressor continues to operate and compress until the variable volume chamber 31 communicates with the exhaust port 22, and the gas in the variable volume chamber 31 is pressed into the external space to complete the exhaust process.
  • the exhaust mode of the exhaust port 22 is a forced exhaust method.
  • the compressor of the present invention is set using the principle of a cross slider mechanism.
  • the axis O 1 of the sub-rotating shaft 10 is eccentrically disposed with the axis O 2 of the cylinder, and the eccentricity of the two is fixed at e, and the two are respectively rotated about the respective axes.
  • the piston 32 corresponds to a slider in the cross slider mechanism, the distance from the axial center of the piston sleeve 33 to the axial center of the piston 32 and the distance from the axial center of the sub-rotating shaft 10 to the axial center of the piston 32 correspond to two connecting rods, respectively. 1 , l 2 , this constitutes the main structure of the principle of the cross slider.
  • the sub-rotary shaft 10 is rotated about the axis O 1 of the sub-rotary shaft 10; the cylinder 20 is rotated about the axis O 2 of the cylinder 20, and the axis and the cylinder of the sub-rotary shaft 10 are The axial center of 20 is eccentrically disposed and the eccentric distance is fixed; the piston 32 of the piston assembly rotates with the sub-rotating shaft 10 under the driving of the sub-rotating shaft 10 while simultaneously reciprocatingly sliding in the piston sleeve 33 of the piston assembly in the direction perpendicular to the axis of the sub-rotating shaft 10.
  • the compressor operated by the above method constitutes a cross slide mechanism, and the operation method adopts the principle of a cross slide mechanism, wherein the piston 32 serves as a slider, and the slip fit surface 111 of the sub-rotor shaft 10 serves as the first link l 1 , The guide hole 311 of the piston sleeve 33 serves as a second link 12 (refer to Fig. 36).
  • the axis O 1 of the sub-rotating shaft 10 corresponds to the center of rotation of the first link l 1
  • the axis O 2 of the cylinder 20 corresponds to the center of rotation of the second link 12
  • the slip fit of the sub-shaft 10 The surface 111 corresponds to the first link l 1
  • the guide hole 311 of the piston sleeve 33 corresponds to the second link l 2
  • the piston 32 corresponds to the slider.
  • the guiding hole 311 and the sliding mating surface 111 are perpendicular to each other; the piston 32 can only reciprocate relative to the guiding hole 311, and the piston 32 can only reciprocate relative to the sliding mating surface 111.
  • the piston 32 can be simplified to find the centroid, which running track is a circular motion, the circular cylinder axis O is 20 in the shaft 2 and the sub line connecting the axis O 10 is a circular diameter.
  • the slider When the second link 12 moves in a circular motion, the slider can reciprocate along the second link 12 ; at the same time, the slider can reciprocate along the first link 11 .
  • the first link and the second link l 1 l 2 remain vertically, so that the slider along the first link l 1 reciprocates along the direction perpendicular to the second slider link l 2 reciprocating direction.
  • the relative motion relationship between the first link l 1 and the second link l 2 and the piston 32 forms the principle of the cross slider mechanism.
  • the slider Under the motion method, the slider performs a circular motion whose angular velocity is equal to the rotational speed of the first link 11 and the second link 12 .
  • the slider runs in a circle.
  • the circle has a diameter centered on the center of rotation of the first link l 1 and the center of rotation of the second link l 2 .
  • the two cylinders are 180 degrees out of phase with each other.
  • the two pistons 32 form four variable volume chambers 31 during the reciprocating motion.
  • the two dispenser parts 90 corresponding to the two cylinders are arranged at an interval of 180 degrees.
  • the axial center 15 of the sub-rotating shaft near the lower flange side and the piston sleeve axial center 333 are separated by an eccentric distance e, and the piston centroid trajectory line 322 has a circular shape.
  • the motor assembly 92 drives the sub-rotating shaft 10 near the upper flange 50 to rotate, and the sliding mating surface 111 of the sub-rotating shaft 10 drives the piston 32 on the side close to the upper flange 50, and the piston 32 drives the piston sleeve 33 to rotate.
  • the piston 32 near the side of the lower flange 60 is rotated, and the sub-rotary shaft 10 near the side of the lower flange 60 is caused to rotate.
  • the piston sleeve 33 only moves in a circular motion, and the piston 32 reciprocates on the one hand with respect to the sub-rotation shaft 10 while reciprocating relative to the guide hole 311 of the piston sleeve 33, and the two reciprocating motions are perpendicular to each other and simultaneously
  • the reciprocating motion in both directions constitutes a motion of the cross slider mechanism.
  • the combined motion of the cross-type slider mechanism reciprocates the piston 32 relative to the piston sleeve 33, which reciprocates the cavity formed by the piston sleeve 33, the cylinder and the piston 32 periodically.
  • the circular motion causes the variable displacement chamber 31 formed by the piston sleeve 33, the cylinder and the piston 32 to periodically communicate with the intake port 21 and the exhaust port 22.
  • the compressor can complete the process of inhaling, compressing and exhausting.
  • the centroid trajectory of the piston 32 is circular, the diameter of the circle is equal to the eccentricity e, and the center of the circle is at the midpoint of the center of the sub-rotating shaft 10 and the center of the piston sleeve 33.
  • variable volume chamber 31 As shown in FIG. 29 to FIG. 33 and FIG. 36, taking a variable volume chamber 31 as an example, when the variable volume chamber 31 is in communication with the air supply port 27, air intake is started (please refer to FIG. 29 and FIG. 30); the piston sleeve 33 continues. The piston 32 and the sub-rotating shaft 10 are rotated clockwise. When the variable volume chamber 31 is separated from the air supply port 27, the entire inhalation is completed. At this time, the variable volume chamber 31 is completely sealed and starts to be compressed (refer to FIG. 31); the rotation continues, the gas continuously Compression, when the variable volume chamber 31 is in communication with the exhaust port 22, the exhaust gas is started (please refer to FIG.
  • variable volume chamber 31 is rotated by a certain angle and then connected to the air supply port 27 again.
  • the compressor of the present invention also has the advantages of zero clearance volume and high volumetric efficiency.
  • the heat exchange apparatus in the present invention further includes a first heat exchanger 96, a second heat exchanger 97, and a four-way valve 98, and the compressor, the first heat exchanger 96, and the second heat exchanger 97 are formed by the four-way valve 98.
  • the circulating heat exchange pipeline further comprises a flasher 99 and a supplemental gas branch, and the flasher 99 is disposed on the circulating heat exchange pipeline and located between the first heat exchanger 96 and the second heat exchanger 97.
  • the first end of the branch is in communication with the flasher 99, and the second end of the supplemental branch is in communication with the air inlet 27 of the high pressure stage cylinder 200 of the compressor.
  • the heat exchange apparatus further includes a tamping member 87, and the plenum branch communicates with the vent port 27 of the high pressure stage cylinder through the entanglement member 87.
  • the heat exchange apparatus of the present invention further includes a first throttle element 84, a second throttle element 85, and a shutoff valve 86.
  • the first throttle element 84 is disposed on the circulating heat exchange line and is located at the first Between heat exchanger 96 and flasher 99; second section The flow element 85 is disposed on the circulating heat exchange line and between the second heat exchanger 97 and the flasher 99; the shutoff valve 86 is disposed on the air supply branch to control the on and off of the air supply branch.
  • the heat exchange device of the present invention has two working modes, including a cooling mode and a heating mode.
  • the cooling mode the heat exchange working medium enters the first heat exchanger 96 via the four-way valve 98 under the action of the compressor ( That is, the condenser) is throttled by the first throttling element 84, the throttling is a first-stage throttling, and the heat-exchange medium after the first throttling enters the flasher 99 through the first liquid-passing port, and is in the flasher
  • the upper part of the flash chamber of 99 continuously absorbs heat and flashes, and the gaseous heat exchange medium after flashing flows into the air supply port 27 of the high pressure stage cylinder 200 of the compressor through the top vent, and the flash chamber of the flasher 99
  • the temperature is lowered to form a subcooled liquid heat exchange working medium, and the supercooled liquid heat exchange working medium enters the second throttling element 85 through the second liquid passing port, and passes through
  • the flow element 85 is throttled and then enters the second heat exchanger 97 (ie, the evaporator), and finally flows back to the compressor through the four-way valve 98; in the heating mode, the heat exchange medium is under the action of the compressor,
  • the four-way valve 98 enters the second heat exchanger 97 (ie, the condenser) and is throttled by the second throttle element 85, which is a first-stage throttling, one stage
  • the heat exchange working medium after the throttling enters the flasher 99 through the second liquid passing port, and the heat exchange medium in the upper part of the flashing chamber of the flasher 99 continuously absorbs heat and flashes, and the gas heat exchanger after flashing
  • the vent through the top of the flasher 99 flows into the gas supply port 27 of the high pressure stage cylinder 200 of the compressor, and the heat exchange medium in the lower portion of the flash chamber of the flasher 99 is exothermed and the temperature is lowered to form a supercooled liquid exchange.
  • the hot working medium, the supercooled liquid heat exchange medium enters the first throttle element 84 through the first liquid passing port, is throttled by the first throttle element 84, and then enters the first heat exchanger 96 (ie, the evaporator), and finally Through the four-way valve 98 back to the compressor, the heat exchange equipment is enhanced by two-stage compression, which improves the running performance of the heat exchange equipment.
  • the compressor of the present invention adopts a two-stage enhancement technology, which improves the low-temperature heating and high-temperature refrigeration capability of the compressor and the heat exchange equipment, and improves the reliability and energy efficiency ratio of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种压缩机包括:上法兰(50);下法兰(60);至少两个气缸(20,200),至少两个气缸(20,200)夹设在上法兰(50)与下法兰(60)之间,任意相邻两个气缸(20,200)相互联通以使压缩机形成多级压缩机;转轴组件,转轴组件依次穿过上法兰(50)、气缸(20,200)和下法兰(60),转轴组件包括与至少两个气缸(20,200)中的每个气缸(20,200)一一对应设置的子转轴(10),子转轴(10)的轴心与该子转轴(10)对应的气缸(20,200)的轴心偏心设置且偏心距离固定;活塞组件,活塞组件具有与每个气缸(20,200)一一对应的变容积腔(31),活塞组件可枢转地设置在气缸(20,200)内,且至少一个子转轴(10)与活塞组件驱动连接以改变变容积腔(31)的容积。以及包括压缩机的换热设备和压缩机的运行方法。这种压缩机能够有效缓解振动,并保证变容积腔的容积变化具有规律、减小了余隙容积,提高了压缩机的运行稳定性。

Description

压缩机、换热设备和压缩机的运行方法 技术领域
本发明涉及换热系统技术领域,具体而言,涉及一种压缩机、换热设备和压缩机的运行方法。
背景技术
现有技术中的压缩机包括压缩机和膨胀机等。以压缩机为例。
现有技术中的活塞式压缩机的子转轴与气缸在运动过程中,二者的质心的位置是变化的。电机驱动曲轴输出动力,由曲轴驱动活塞在气缸内往复运动来压缩气体或液体做功,以达到压缩气体或液体的目的。
传统的活塞式压缩机存在诸多缺陷:由于吸气阀片和排气阀片的存在,导致吸、排气阻力加大,同时增加了吸排气噪音;压缩机的气缸所受侧向力较大,侧向力做无用功,降低压缩机效率;曲轴带动活塞往复运动,偏心质量较大,导致压缩机振动大;压缩机通过曲柄连杆机构带动一个或多个活塞工作,结构复杂;曲轴及活塞受到的侧向力较大,活塞容易磨损,导致活塞密封性降低。且现有的压缩机由于存在余隙容积,泄漏大等原因,容积效率低,且很难有进一步提高。
不仅如此,活塞式压缩机中的偏心部的质心做圆周运动产生一个大小不变、方向改变的离心力,该离心力导致压缩机振动加剧。
发明内容
本发明的主要目的在于提供一种压缩机、换热设备和压缩机的运行方法,以解决现有技术中的压缩机存在运动不稳、振动大、存在余隙容积的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种压缩机,包括:上法兰;下法兰;至少两个气缸,至少两个气缸夹设在上法兰与下法兰之间,任意相邻两个气缸相互连通以使压缩机形成多级压缩机;转轴组件,转轴组件依次穿过上法兰、气缸和下法兰,转轴组件包括与至少两个气缸中的每个气缸一一对应设置的子转轴,子转轴的轴心与该子转轴对应的气缸的轴心偏心设置且偏心距离固定;活塞组件,活塞组件具有与每个气缸一一对应的变容积腔,活塞组件可枢转地设置在气缸内,且至少一个子转轴与活塞组件驱动连接以改变变容积腔的容积。
进一步地,活塞组件包括:活塞套,活塞套可枢转地设置在气缸内;至少两个活塞,活塞滑动设置在活塞套内以形成变容积腔,且变容积腔位于活塞的滑动方向上。
进一步地,气缸、子转轴、活塞各为两个,一个子转轴为主动轴,穿过上法兰伸入靠近上法兰一侧的气缸内,并与该气缸内的活塞运动连接;另一个子转轴为被动轴,穿过下法兰伸入靠近下法兰一侧的气缸内,并与该气缸内的活塞运动连接。
进一步地,主动轴由电机驱动旋转,被动轴由主动轴间接驱动旋转。
进一步地,活塞具有沿子转轴的轴向贯通设置的滑移孔,子转轴穿过滑移孔,与主动轴配合的活塞在主动轴的驱动下随主动轴旋转并同时沿垂直于主动轴的轴线方向在活塞套内往复滑动;与被动轴配合的活塞,在活塞套的驱动下随活塞套旋转并驱动被动轴旋转,同时与被动轴配合的活塞沿垂直于被动轴的轴线方向在活塞套内往复滑动。
进一步地,滑移孔为长孔或腰形孔。
进一步地,活塞具有沿活塞的中垂面对称设置的一对弧形表面,弧形表面与气缸的内表面适应性配合,且弧形表面的弧面曲率半径的二倍等于气缸的内径。
进一步地,活塞呈柱形。
进一步地,活塞套中具有沿活塞套的径向贯通设置的导向孔,导向孔为至少两个,每个导向孔内对应设置有一个活塞,活塞滑动设置在导向孔内以往复直线运动。
进一步地,每个导向孔的轴线均平行。
进一步地,在活塞套中相邻两个导向孔之间形成隔板,隔板上开设有用于连通相邻两个导向孔的过油孔。
进一步地,过油孔的轴线与子转轴的轴线相平行。
进一步地,导向孔在下法兰处的正投影具有一对相平行的直线段,一对相平行的直线段为活塞套的一对相平行的内壁面投影形成,活塞具有与导向孔的一对相平行的内壁面形状相适配且滑移配合的外型面。
进一步地,活塞套的朝向下法兰一侧的第一止推面与下法兰的表面接触。
进一步地,子转轴具有与活塞组件滑动配合的滑移段,滑移段位于子转轴的靠近气缸的一端,且滑移段具有滑移配合面。
进一步地,滑移配合面对称设置在滑移段的两侧。
进一步地,滑移配合面与子转轴的轴向平面相平行,滑移配合面与活塞的滑移孔的内壁面在垂直于子转轴的轴线方向上滑动配合。
进一步地,压缩机还包括设置在气缸上的中间流道,相邻两个气缸通过中间流道连通。
进一步地,至少两个气缸中的低压级气缸的气缸壁具有进气口和连通口,连通口通过低压级气缸上的中间流道与至少两个气缸中的高压级气缸的中间流道连通。
进一步地,低压级气缸的气缸壁的内壁面具有低压级进气缓冲槽,低压级进气缓冲槽与进气口连通。
进一步地,低压级进气缓冲槽在低压级气缸的径向平面内呈弧形段,且低压级进气缓冲槽的两端均由进气口处向连通口所在位置延伸。
进一步地,低压级气缸的气缸壁的外壁面具有连通槽,连通口与连通槽连通,压缩机还包括封板,封板设置在连通槽的槽口处以将连通槽封闭,连通槽与连通口形成低压级气缸的中间流道。
进一步地,高压级气缸的气缸壁的内壁面具有高压级进气缓冲槽和排气口,高压级进气缓冲槽与高压级气缸的中间流道连通,排气口与压缩机的腔体连通。
进一步地,高压级气缸还具有补气口,补气口与高压级进气缓冲槽连通。
进一步地,高压级进气缓冲槽在高压级气缸的径向平面内呈弧形段,且高压级进气缓冲槽的两端均由补气口处向排气口所在位置延伸。
进一步地,子转轴具有润滑油道,润滑油道包括设置在子转轴内部的内部油道和设置在滑移配合面处的外部油道以及连通内部油道和外部油道的通油孔。
进一步地,相邻两个气缸彼此同轴心设置。
进一步地,上法兰的轴心与靠近上法兰一侧设置的气缸的轴心偏心设置。
进一步地,下法兰的轴心与靠近下法兰一侧设置的气缸的轴心偏心设置。
进一步地,压缩机还包括支撑板,支撑板设置在下法兰的远离气缸一侧的端面上,且支撑板与下法兰同轴心设置以支撑转轴组件,支撑板具有用于支撑转轴组件的第二止推面。
进一步地,压缩机还包括至少两个排气阀组件,连通口和排气口处均对应各设置有一个排气阀组件。
进一步地,高压级气缸的气缸壁的外壁上开设有容纳槽,排气口贯通容纳槽的槽底,一个排气阀组件设置在容纳槽内。
进一步地,每个排气阀组件均包括:排气阀片,排气阀片遮挡连通口或排气口;阀片挡板,阀片挡板叠置在排气阀片上。
根据本发明的另一方面,提供了一种换热设备,包括压缩机,压缩机是上述的压缩机。
进一步地,换热设备还包括第一换热器、第二换热器和四通阀,压缩机、第一换热器和第二换热器通过四通阀形成循环换热管路,换热设备还包括:闪蒸器,闪蒸器设置在循环换热管路上并位于第一换热器和第二换热器之间;补气支路,补气支路的第一端与闪蒸器连通,补气支路的第二端与压缩机的高压级气缸的补气口连通。
根据本发明的另一方面,提供了一种压缩机的运行方法,包括:子转轴绕子转轴的轴心O1转动;气缸绕气缸的轴心O2转动,且子转轴的轴心与气缸的轴心偏心设置且偏心距离固定;活塞组件的活塞在子转轴的驱动下随子转轴旋转并同时沿垂直于子转轴的轴线方向在活塞组件的活塞套内往复滑动。
进一步地,运行方法采用十字滑块机构原理,其中,活塞作为滑块,子转轴的滑移配合面作为第一连杆l1、活塞套的导向孔作为第二连杆l2
应用本发明的技术方案,任意相邻两个气缸之间相互连通以使压缩机形成多级压缩机,通过将转轴组件中的子转轴的轴心与该子转轴对应的气缸的轴心偏心设置且将偏心距离固定,从而使子转轴和气缸在运动过程中绕各自轴心旋转,且质心位置不变,因而使得活塞组件在气缸内运动时,能够稳定且连续地转动,有效缓解了压缩机的振动,并保证变容积腔的容积变化具有规律、减小了余隙容积,从而提高了压缩机的运行稳定性,进而提高了换热设备的工作可靠性。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了本发明中的压缩机的结构示意图;
图2示出了本发明中的泵体组件的爆炸图;
图3示出了本发明中的子转轴、上法兰、气缸和下法兰的安装关系示意图;
图4示出了图3的内部结构示意图;
图5示出了本发明中的活塞套、活塞和子转轴的安装关系示意图;
图6示出了本发明中的上法兰、活塞套、活塞和子转轴的安装关系示意图;
图7示出了本发明中的靠近上法兰一侧的子转轴的结构示意图;
图8示出了图7中的子转轴的内部结构示意图;
图9示出了本发明中的靠近下法兰一侧的子转轴的结构示意图;
图10a示出了图9中的子转轴的内部结构示意图;
图10b示出了图9中的子转轴的俯视图;
图11示出了本发明中的活塞的结构示意图;
图12示出了图11中的活塞的另一个角度的结构示意图;
图13示出了本发明中的支撑板的结构示意图;
图14示出了本发明中的活塞套的结构示意图;
图15示出了本发明中的活塞套的剖视图;
图16示出了本发明中的上法兰的结构示意图;
图17示出了本发明中的下法兰的结构示意图;
图18示出了在图17的下法兰处的靠近下法兰一侧的子转轴的轴心与活塞套轴心的偏心关系示意图;
图19示出了本发明中的高压级气缸的结构示意图;
图20示出了图19中的高压级气缸的剖视图;
图21示出了本发明中的高压级气缸、子转轴、活塞套和活塞的装配关系示意图;
图22示出了本发明中的低压级气缸的结构示意图;
图23示出了图22中的低压级气缸的剖视图;
图24示出了图22中的低压级气缸的另一个角度的剖视图;
图25示出了本发明中的低压级气缸、子转轴、活塞套和活塞的装配关系示意图;
图26示出了本发明中的低压级气缸与高压级气缸的装配关系示意图;
图27示出了图26的爆炸图;
图28示出了图26中的一个角度的剖视图;
图29示出了本发明中的活塞处于准备开始吸气时的工作状态示意图;
图30示出了本发明中的活塞处于吸气过程中的工作状态示意图;
图31示出了本发明中的活塞处于吸气完成并开始压缩时的工作状态示意图;
图32示出了本发明中的活塞处于气体压缩并排气时的工作状态示意图;
图33示出了本发明中的活塞处于排气完成时的工作状态示意图;
图34示出了本发明中的换热设备的结构示意图;
图35示出了本发明中的高压级气缸内的活塞的工作状态示意图;
图36示出了本发明中的压缩机的工作原理图。
其中,上述附图包括以下附图标记:
10、子转轴;11、滑移段;111、滑移配合面;13、润滑油道;14、通油孔;15、靠近下法兰一侧的子转轴的轴心;20、低压级气缸;21、进气口;22、排气口;23、高压级进气缓冲槽;24、连通口;25、容纳槽;26、中间流道;27、补气口;28、连通槽;29、低压级进气缓冲槽;200、高压级气缸;31、变容积腔;311、导向孔;32、活塞;321、滑移孔;33、活塞套;332、第一止推面;333、活塞套轴心;34、隔板;35、过油孔;40、排气阀组件;41、排气阀片;42、阀片挡板;43、第一紧固件;50、上法兰;60、下法兰;61、支撑板;611、第二止推面;70、第二紧固件;80、第三紧固件;81、封板;82、第五紧固件;83、第四紧固件;84、第一节流元件;85、第二节流元件;86、截止阀;87、增焓部件;322、活塞质心轨迹线;90、分液器部件;91、壳体组件;92、电机组件;93、泵体组件;94、上盖组件;95、下盖及安装板;96、第一换热器;97、第二换热器;98、四通阀;99、闪蒸器。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
在本发明中,在未作相反说明的情况下,使用的方位词如“左、右”通常是针对附图所示的左、右;“内、外”是指相对于各部件本身的轮廓的内、外,但上述方位词并不用于限制本发明。
为了解决现有技术中的压缩机存在运动不稳、振动大、存在余隙容积的问题,本发明提供了一种压缩机和换热设备,其中,换热设备包括下述的压缩机。另外,还提供了一种压缩机的运行方法。
如图2至图33所示,压缩机包括上法兰50、下法兰60、至少两个气缸、转轴组件和活塞组件,至少两个气缸夹设在上法兰50与下法兰60之间,任意相邻两个气缸相互连通以使压缩机形成多级压缩机,转轴组件依次穿过上法兰50、气缸和下法兰60,转轴组件包括与至少两个气缸中的每个气缸一一对应设置的子转轴10,子转轴10的轴心与该子转轴10对应的气缸的轴心偏心设置且偏心距离固定,活塞组件具有与每个气缸一一对应的变容积腔31,活塞组件可枢转地设置在气缸内,且至少一个子转轴10与活塞组件驱动连接以改变变容积腔31的容积。其中,上法兰50通过第二紧固件70与靠近上法兰50一侧的气缸固定,下法兰60通过第三紧固件80与靠近下法兰60一侧的气缸固定。
优选地,第二紧固件70和/或第三紧固件80为螺钉或螺栓。
优选地,上法兰50上设置有供第二紧固件70穿设的第一泵体螺钉孔。下法兰60上设置有四个供第三紧固件80穿设的第二泵体螺钉孔。
需要说明的是,上法兰50上的第一泵体螺钉孔的中心与上法兰50的质心存在一定偏心距e。此偏心距决定了靠近上法兰50一侧的气缸的排量,当气缸旋转一周,气体排量为V=2*2e*S,其中S为活塞主体结构横截面积。
任意相邻两个气缸之间相互连通以使压缩机形成多级压缩机,通过将转轴组件中的子转轴10的轴心与该子转轴10对应的气缸的轴心偏心设置且将偏心距离固定,从而使子转轴10和气缸在运动过程中绕各自轴心旋转,且质心位置不变,因而使得活塞组件在气缸内运动时,能够稳定且连续地转动,有效缓解了压缩机的振动,并保证变容积腔31的容积变化具有规律、减小了余隙容积,从而提高了压缩机的运行稳定性,进而提高了换热设备的工作可靠性。
需要说明的是,相邻两个气缸彼此同轴心设置。优选地,上法兰50的轴心与靠近上法兰50一侧设置的气缸的轴心偏心设置。优选地,下法兰60的轴心与靠近下法兰60一侧设置的气缸的轴心偏心设置。以上述方式安装的气缸,能够保证气缸与子转轴10或上法兰50的偏心距固定,从而使活塞组件具有运动稳定性好的特点。
本发明中的子转轴10与活塞组件滑动连接,且变容积腔31的容积随子转轴10的转动而变化。由于本发明中的子转轴10与活塞组件滑动连接,因而保证了活塞组件的运动可靠性,有效避免活塞组件运动卡死的问题,从而使变容积腔31的容积变化具有规律的特点。
如图2、图5至图6、图21、图25所示,活塞组件包括活塞套33和至少两个活塞32,活塞套33可枢转地设置在气缸内,活塞32滑动设置在活塞套33内以形成变容积腔31,且变容积腔31位于活塞32的滑动方向上。可选地,活塞32的个数与气缸的个数一致。
在该具体实施例中,活塞组件与子转轴10滑动配合,且随着子转轴10的转动,活塞组件相对于子转轴10具有直线运动趋势,从而使转动变为局部的直线运动。由于活塞32与活塞套33滑动连接,因而在子转轴10的驱动下,有效避免活塞32运动卡死,从而保证了活塞32、子转轴10和活塞套33的运动可靠性,进而提高了压缩机的运行稳定性。
在图1至图33、图36所示的优选实施方式中,气缸、子转轴10、活塞32各为两个,一个子转轴10作为主动轴穿过上法兰50伸入靠近上法兰50一侧的气缸内,并与该气缸内的活塞32运动连接;另一个子转轴10作为被动轴穿过下法兰60伸入靠近下法兰60一侧的气缸内,并与该气缸内的活塞32运动连接。由于活塞组件、气缸和子转轴10之间形成十字滑块机构,因而使活塞组件与气缸的运动稳定且连续,并保证变容积腔31的容积变化具有规律,从而保证了压缩机的运行稳定性,进而提高了换热设备的工作可靠性。
主动轴由电机驱动旋转,被动轴由主动轴间接驱动旋转。
本发明中的活塞32具有沿子转轴10的轴向贯通设置的滑移孔321,子转轴10穿过滑移孔321,与主动轴配合的活塞32在主动轴的驱动下随主动轴旋转并同时沿垂直于主动轴的轴线方向在活塞套33内往复滑动;与被动轴配合的活塞32,在活塞套33的驱动下随活塞套33旋转并驱动被动轴旋转,同时与被动轴配合的活塞32沿垂直于被动轴的轴线方向在活塞套33内往复滑动。由于使活塞32相对于子转轴10做直线运动而非旋转往复运动,因而有效降低 了偏心质量,降低了子转轴10和活塞32受到的侧向力,从而降低了活塞32的磨损、提高了活塞32的密封性能。
对于上述的被动轴,也就是设置在靠近下法兰60一侧的气缸内的子转轴10而言,活塞套33转动并带动活塞32转动,而靠近下法兰60一侧设置的活塞32会在活塞套33内滑动以改变相应的变容积腔31的容积,同时靠近下法兰60一侧的子转轴10在该活塞32的驱动作用下转动,从而使活塞套33和该子转轴10分别承受弯曲变形和扭转变形,降低了单个零件的整体变形,降低了对子转轴10的结构强度要求。
优选地,滑移孔321为长孔或腰形孔。
本发明中的活塞32呈柱形。优选地,活塞32呈圆柱形或非圆柱形。
如图11和图12所示,活塞32具有沿活塞32的中垂面对称设置的一对弧形表面,弧形表面与气缸的内表面适应性配合,且弧形表面的弧面曲率半径的二倍等于气缸的内径。这样,可以使得排气过程中可实现零余隙容积。需要说明的是,当活塞32放置在活塞套33内时,活塞32的中垂面为活塞套33的轴向平面。
本发明中的活塞套33的主体结构为有一定粗糙度要求的空心圆柱体。
在图14和图15所示的优选实施方式中,活塞套33中具有沿活塞套33的径向贯通设置的导向孔311,导向孔311为至少两个,每个导向孔311内对应设置有一个活塞32,活塞32滑动设置在导向孔311内以往复直线运动。由于活塞32滑动设置在导向孔311内,因而当活塞32在导向孔311内左右运动时,可以使变容积腔31的容积不断变化,从而保证压缩机的吸气、排气稳定性。
为了防止活塞32在活塞套33内旋转,导向孔311在下法兰60处的正投影具有一对相平行的直线段,一对相平行的直线段为活塞套33的一对相平行的内壁面投影形成,活塞32具有与导向孔311的一对相平行的内壁面形状相适配且滑移配合的外型面。如上述结构配合的活塞32和活塞套33,能够使使活塞32在活塞套33内平稳滑动且保持密封效果。
优选地,导向孔311在下法兰60处的正投影具有一对弧形线段,该一对弧形线段与一对相平行的直线段相连接以形成不规则的截面形状。
如图2所示,活塞套33的外周面与气缸的内壁面形状相适配。从而使得活塞套33与气缸之间、导向孔311与活塞32之间为大面密封,且整机密封均为大面密封,有利于减小泄漏。
如图5所示,活塞套33的朝向下法兰60一侧的第一止推面332与下法兰60的表面接触。从而使活塞套33与下法兰60可靠定位。
如图14和图15所示,在活塞套33中相邻两个导向孔311之间形成隔板34,隔板34上开设有用于连通相邻两个导向孔311的过油孔35。该过油孔35用于保证隔板34两侧的子转轴10能够顺利得到润滑油的润滑。
优选地,过油孔35的轴线与子转轴10的轴线相平行。
优选地,至少两个导向孔311中的每个导向孔311的轴线均平行。
如图7至图10所示,子转轴10具有与活塞组件滑动配合的滑移段11,滑移段11位于子转轴10的靠近气缸的一端,且滑移段11具有滑移配合面111。由于子转轴10通过滑移配合面111与活塞32的滑移孔321滑动配合,因而保证了二者的运动可靠性,有效避免二者卡死。
特别是靠近下法兰60一侧设置的子转轴10,该子转轴10上的滑移配合面111与对应的活塞32的滑移孔321的孔壁面配合,以使活塞32驱动该子转轴10转动。
优选地,滑移段11具有两个对称设置的滑移配合面111。由于滑移配合面111对称设置,因而使得两个滑移配合面111的受力更加均匀,保证了子转轴10与活塞32的运动可靠性。
如图7至图10所示,子转轴10具有与活塞组件滑动配合的滑移段11,滑移段11位于子转轴10的靠近气缸的一端,且滑移段11具有两个对称设置的滑移配合面111。
优选地,滑移配合面111与子转轴10的轴向平面相平行,滑移配合面111与活塞32的滑移孔321的内壁面在垂直于子转轴10的轴线方向上滑动配合。
本发明中的子转轴10具有润滑油道13,润滑油道13的至少一部分为子转轴10的内部油道。由于润滑油道13的至少一部分内部油道,因而有效避免润滑油大量外泄,提高了润滑油的流动可靠性。
如图7至图10所示,在滑移配合面111处的润滑油道13为外部油道。由于滑移配合面111处的润滑油道13为外部油道,因而使得润滑油可以直接供给给滑移配合面111和活塞32,有效避免二者摩擦力过大而磨损,从而提高了二者的运动平滑性。
本发明中的子转轴10具有通油孔14,内部油道通过通油孔14与外部油道连通。由于设置有通油孔14,因而使得内外油道可以顺利连通,且通过通油孔14处也可以向润滑油道13处注油,从而保证了润滑油道13的注油便捷性。
如图2所述,本发明中的压缩机还包括支撑板61,支撑板61设置在下法兰60的远离气缸一侧的端面上,且支撑板61与下法兰60同轴心设置以支撑转轴组件,子转轴10穿过下法兰60上的通孔支撑在支撑板61上,支撑板61具有用于支撑子转轴10的第二止推面611。由于设置有支撑板61用于支撑子转轴10,因而提高了各部件间的连接可靠性。
由于支撑板61设置在下法兰60一侧,因而支撑板61主要用于支撑靠近下法兰60一侧设置的子转轴10,以保证其的安装可靠性。
如图2和图4所示,支撑板61通过第五紧固件82与下法兰60连接。
优选地,第五紧固件82为螺栓或螺钉。
优选地,下法兰60上设置有三个供第五紧固件82穿设的支撑板螺钉孔。下法兰60上的四个泵体螺钉孔的中心所构成的圆与下法兰60的质心存在偏心,其偏心量大小为e,此量决定靠近下法兰60一侧的气缸的装配的偏心量,在活塞套33旋转一周,气体排量V=2*2e*S, 其中S为活塞主体结构横截面积;支撑板螺钉孔的中心与下法兰60的轴心重合,与第五紧固件82配合固定支撑板61。
如图2和图13所示,支撑板61为圆柱体结构,均匀分布三个螺钉孔。支撑板61的端面具有一定的粗糙度要求,与靠近下法兰60一侧的子转轴10的底面配合。
如图1所示,该压缩机包括分液器部件90、壳体组件91、电机组件92、泵体组件93、上盖组件94和下盖及安装板95,其中,分液器部件90设置在壳体组件91的外部,上盖组件94装配在壳体组件91的上端,下盖及安装板95装配在壳体组件91的下端,电机组件92和泵体组件93均位于壳体组件91的内部,且电机组件92设置在泵体组件93的上方。压缩机的泵体组件93包括上述的上法兰50、下法兰60、气缸、转轴组件和活塞组件。
优选地,上述各部件通过焊接、热套、或冷压的方式连接。
整个泵体组件93的装配过程如下:活塞32安装在导向孔311中,同时气缸与活塞套33同轴安装,下法兰60固定于气缸上,子转轴10的滑移配合面111与活塞32的滑移孔321的一对相平行的表面配合安装,上法兰50固定主动轴,同时上法兰50通过螺钉固定于气缸上。从而完成泵体组件93的装配,如图4所示。
优选地,本发明中的压缩机不设置吸气阀片,从而能够有效减少吸气阻力,提高压缩机的压缩效率。
需要说明的是,在该具体实施方式中,在一个活塞32完成一周的运动时,会吸气、排气两次,从而使压缩机具有压缩效率高的特点。与同排量的单缸滚子压缩机相比,由于将原来的一次压缩分为两次压缩,因而本发明中的压缩机的力矩波动相对较小,运行时,具有排气阻力小,有效消除了排气噪音。
如图19至图33所示,本发明中的压缩机还包括设置在气缸上的中间流道26,相邻两个气缸通过中间流道26连通。由于相邻两个气缸可以通过中间流道26连通,因而保证了压缩机的多级压缩可靠性。
如图22至图25所示,至少两个气缸中的低压级气缸20的气缸壁具有进气口21和连通口24,连通口24通过低压级气缸20上的中间流道26与至少两个气缸中的高压级气缸200的中间流道26连通,进气口21与压缩机的分液器部件90连接。本发明中的低压级气缸20的气缸壁的内壁面具有低压级进气缓冲槽29,低压级进气缓冲槽29与进气口21连通(请参考图22至图25)。由于设置有低压级进气缓冲槽29,因而在该处会蓄存有大量的气体,以使变容积腔31能够饱满吸气,从而使压缩机能够足量吸气,并在吸气不足时,能够及时供给蓄存气体给变容积腔31,以保证压缩机的压缩效率。
如图22至图25所示,低压级进气缓冲槽29在低压级气缸20的径向平面内呈弧形段,且低压级进气缓冲槽29的两端均由进气口21处向连通口24所在位置延伸,且相对于进气口21,低压级进气缓冲槽29在与活塞套33的转动方向同向上的延伸段的弧长小于相反方向的延伸段弧长。
在图22至图25所示的优选实施方式中,低压级气缸20的气缸壁的外壁面具有连通槽28,连通口24与连通槽28连通,压缩机还包括封板81,封板81设置在连通槽28的槽口处以将连通槽28封闭,连通槽28与连通口24形成低压级气缸20的中间流道26。通过封板81将连通槽28封闭以形成中间流道26,从而保证了经连通口24流出的换热工质能够通过中间流道26导向高压级气缸200处,从而保证了压缩机的工作可靠性。
如图2所示,压缩机还包括多个第四紧固件83,第四紧固件83将封板81固定在气缸上。优选地,第四紧固件83是螺钉。
如图19至图21所示,高压级气缸200的气缸壁的内壁面具有高压级进气缓冲槽23和排气口22,高压级进气缓冲槽23与高压级气缸200的中间流道26连通,排气口22与压缩机的腔体连通。由于设置有高压级进气缓冲槽23,因而在该处会蓄存有大量的气体,以使变容积腔31能够饱满吸气,从而使压缩机能够足量吸气,并在吸气不足时,能够及时供给蓄存气体给变容积腔31,以保证压缩机的压缩效率。
本发明中的高压级气缸200还具有补气口27,补气口27与高压级进气缓冲槽23连通(请参考图19至图21)。经低压级气缸20排出的气体与补气口27补入的气体在高压级进气缓冲槽23处混合,以降低吸气温度后在高压级气缸200内完成压缩。
在图19至图21所示的优选实施方式中,高压级进气缓冲槽23在高压级气缸200的径向平面内呈弧形段,且高压级进气缓冲槽23的两端均由补气口27处向排气口22所在位置延伸,且相对于补气口27,高压级进气缓冲槽23在与活塞套33的转动方向同向上的延伸段的弧长大于相反方向的延伸段弧长。
优选地,压缩机还包括至少两个排气阀组件40,连通口24和排气口22处均对应各设置有一个排气阀组件40。由于连通口24和排气口22处均对应各设置有一个排气阀组件40,因而有效避免变容积腔31内气体大量泄漏,保证了变容积腔31的压缩效率。
在图19所示的优选实施方式中,高压级气缸200的气缸壁的外壁上开设有容纳槽25,排气口22贯通容纳槽25的槽底,一个排气阀组件40设置在容纳槽25内。由于设置有用于容纳排气阀组件40的容纳槽25,因而减少了排气阀组件40的占用空间,使部件合理设置,从而提高了气缸的空间利用率。
具体而言,每个排气阀组件40均包括排气阀片41和阀片挡板42,排气阀片41遮挡连通口24或排气口22,阀片挡板42叠置在排气阀片41上。由于设置有阀片挡板42,因而有效避免排气阀片41过度开启,保证了气缸的排气性能。
优选地,排气阀片41和阀片挡板42通过第一紧固件43连接。进一步地,第一紧固件43是螺钉。
需要说明的是,本发明中的排气阀组件40能够将变容积腔31与泵体组件93的外部空间隔开,为背压排气:即当变容积腔31与连通口24或排气口22连通时后,变容积腔31的压力大于外部空间压力(排气压力)时,排气阀片41打开,开始排气;若连通后变容积腔31 的压力仍低于排气压力,则此时排气阀片41不工作。此时,压缩机继续运转、压缩,直至变容积腔31与排气口22连通,将变容积腔31内的气体压入外部空间,完成排气过程。排气口22的排气方式为强制排气方式。
下面对压缩机的运行进行具体介绍,以顺时针转动为例:
如图36所示,本发明中的压缩机采用十字滑块机构原理设置。其中,子转轴10的轴心O1与气缸的轴心O2偏心设置,而二者的偏心距固定为e,且二者分别绕各自的轴心旋转。活塞32相当于十字滑块机构中的滑块,活塞套33的轴心到活塞32的轴心的距离以及子转轴10的轴心到活塞32的轴心的距离分别相当于两根连杆l1、l2,这样就构成十字滑块原理的主体结构。
如图36所示,当上述结构的压缩机运行时,子转轴10绕子转轴10的轴心O1转动;气缸20绕气缸20的轴心O2转动,且子转轴10的轴心与气缸20的轴心偏心设置且偏心距离固定;活塞组件的活塞32在子转轴10的驱动下随子转轴10旋转并同时沿垂直于子转轴10的轴线方向在活塞组件的活塞套33内往复滑动。
如上述方法运行的压缩机,构成了十字滑块机构,该运行方法采用十字滑块机构原理,其中,活塞32作为滑块,子转轴10的滑移配合面111作为第一连杆l1、活塞套33的导向孔311作为第二连杆l2(请参考图36)。
具体而言,子转轴10的轴心O1相当于第一连杆l1的旋转中心,气缸20的轴心O2相当于第二连杆l2的旋转中心;子转轴10的滑移配合面111相当于第一连杆l1,活塞套33的导向孔311相当于第二连杆l2;活塞32相当于滑块。导向孔311与滑移配合面111相互垂直;活塞32相对与导向孔311只能往复运动,活塞32相对于滑移配合面111只能往复运动。活塞32简化为质心后可以发现,其运行轨迹为圆周运动,该圆是以气缸20的轴心O2与子转轴10的轴心O1的连线为直径的圆。
当第二连杆l2作圆周运动时,滑块可以沿第二连杆l2往复运动;同时,滑块可以沿第一连杆l1往复运动。第一连杆l1和第二连杆l2始终保持垂直,使得滑块沿第一连杆l1往复运动方向与滑块沿第二连杆l2往复运动方向相互垂直。第一连杆l1和第二连杆l2及活塞32的相对运动关系,形成十字滑块机构原理。
在该运动方法下,滑块作圆周运动,其角速度与第一连杆l1和第二连杆l2的转动速度相等。滑块运行轨迹为圆。该圆以第一连杆l1的旋转中心与第二连杆l2的旋转中心的中心距为直径。
如图3所示的具体实施方式中,两个气缸相差180度交错布置。两个活塞32在往复运动过程中形成四个变容积腔31。且这两个气缸对应的两个分液器部件90交错180度布置。当然,也可以考虑将两个分液器部件90设置在同一侧,这样,两个气缸也应无错位设置,完全重合叠置。
如图18和图35、图36所示,其中,靠近下法兰一侧的子转轴的轴心15与活塞套轴心333之间相差偏心距离e,活塞质心轨迹线322呈圆形。
具体而言,电机组件92带动靠近上法兰50一侧的子转轴10转动,子转轴10的滑移配合面111驱动靠近上法兰50一侧的活塞32运动,活塞32带动活塞套33转动,进而带动靠近下法兰60一侧的活塞32转动,并促使靠近下法兰60一侧的子转轴10转动。在整个运动部件中,活塞套33仅作圆周运动,而活塞32一方面相对于子转轴10往复运动,同时又相对于活塞套33的导向孔311往复运动,而两个往复运动相互垂直且同时进行,从而使两个方向的往复运动构成十字滑块机构运动方式。这种类十字滑块机构的复合运动使活塞32相对于活塞套33作往复运动,该往复运动使活塞套33、气缸与活塞32形成的腔体周期性的变大、缩小。而活塞32相对于气缸作圆周运动,该圆周运动使活塞套33、气缸与活塞32形成的变容积腔31周期性地与进气口21、排气口22连通。在以上两个相对运动的共同作用下,使压缩机可以完成吸气、压缩、排气的过程。在往复运动的过程中,活塞32的质心轨迹线为圆形,圆直径等于偏心量e,圆心在子转轴10的中心与活塞套33的中心连线的中点上。
如图29至图33、图36所示,以一个变容积腔31为例,当变容积腔31与补气口27连通时,开始吸气(请参考图29和图30);活塞套33继续带动活塞32、子转轴10顺时针旋转,当变容积腔31脱离补气口27后,整个吸气结束,此时变容积腔31完全密封,开始压缩(请参考图31);继续旋转,气体不断压缩,当变容积腔31与排气口22连通时,开始排气(请参考图32);继续旋转,不断压缩的同时不断排气,直到变容积腔31完全脱离排气口22,完成整个吸气、压缩、排气过程(请参考图32至图33);随后变容积腔31旋转一定角度后再次连接补气口27。压缩机的总排量为V=2*2*(2e*S)。
此外,本发明中的压缩机还具有零余隙容积,高容积效率的优点。
本发明中的换热设备还包括第一换热器96、第二换热器97和四通阀98,压缩机、第一换热器96和第二换热器97通过四通阀98形成循环换热管路,换热设备还包括闪蒸器99和补气支路,闪蒸器99设置在循环换热管路上并位于第一换热器96和第二换热器97之间,补气支路的第一端与闪蒸器99连通,补气支路的第二端与压缩机的高压级气缸200的补气口27连通。
如图1和图34所示,换热设备还包括增焓部件87、补气支路通过增焓部件87与高压级气缸的补气口27连通。
如图34所示,本发明中的换热设备还包括第一节流元件84、第二节流元件85和截止阀86,第一节流元件84设置在循环换热管路上并位于第一换热器96和闪蒸器99之间;第二节 流元件85设置在循环换热管路上并位于第二换热器97和闪蒸器99之间;截止阀86设置在补气支路上,以控制补气支路的通断。
本发明中的换热设备具有两种工作模式,包括制冷模式和制热模式,在制冷模式下,换热工质在压缩机的作用下,经四通阀98进入第一换热器96(即冷凝器),并经第一节流元件84节流,该节流为一级节流,一级节流后的换热工质通过第一通液口进入闪蒸器99,并在闪蒸器99的闪蒸腔的上部不断吸热、闪发,闪发后的气态换热工质通过顶部的通气口流入压缩机的高压级气缸200的补气口27处,闪蒸器99的闪蒸腔的下部的换热工质放热后温度降低,形成过冷液态的换热工质,过冷液态的换热工质通过第二通液口进入第二节流元件85中,并经第二节流元件85节流后进入第二换热器97(即蒸发器),最后通过四通阀98流回至压缩机内;在制热模式下,换热工质在压缩机的作用下,经四通阀98进入第二换热器97(即冷凝器),并经第二节流元件85节流,该节流为一级节流,一级节流后的换热工质通过第二通液口进入闪蒸器99,并在闪蒸器99的闪蒸腔的上部的换热工质不断吸热、闪发,闪发后的气态换热工质通过闪蒸器99的顶部的通气口流入压缩机的高压级气缸200的补气口27处,闪蒸器99的闪蒸腔的下部的换热工质放热后温度降低,形成过冷液态的换热工质,过冷液态的换热工质通过第一通液口进入第一节流元件84,经第一节流元件84节流后进入第一换热器96(即蒸发器),最后通过四通阀98流回至压缩机内,换热设备通过两级压缩增焓,提高了换热设备的运行性能。
此外,本发明中的压缩机采用双级增焓技术,提高了压缩机和换热设备的低温制热、高温制冷能力,提高系统的可靠性及能效比。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (37)

  1. 一种压缩机,其特征在于,包括:
    上法兰(50);
    下法兰(60);
    至少两个气缸,所述至少两个气缸夹设在所述上法兰(50)与所述下法兰(60)之间,任意相邻两个所述气缸相互连通以使压缩机形成多级压缩机;
    转轴组件,所述转轴组件依次穿过所述上法兰(50)、所述气缸和所述下法兰(60),所述转轴组件包括与所述至少两个气缸中的每个所述气缸一一对应设置的子转轴(10),所述子转轴(10)的轴心与该所述子转轴(10)对应的所述气缸的轴心偏心设置且偏心距离固定;
    活塞组件,所述活塞组件具有与每个所述气缸一一对应的变容积腔(31),所述活塞组件可枢转地设置在所述气缸内,且至少一个所述子转轴(10)与所述活塞组件驱动连接以改变所述变容积腔(31)的容积。
  2. 根据权利要求1所述的压缩机,其特征在于,所述活塞组件包括:
    活塞套(33),所述活塞套(33)可枢转地设置在所述气缸内;
    至少两个活塞(32),所述活塞(32)滑动设置在所述活塞套(33)内以形成所述变容积腔(31),且所述变容积腔(31)位于所述活塞(32)的滑动方向上。
  3. 根据权利要求2所述的压缩机,其特征在于,所述气缸、所述子转轴(10)、所述活塞(32)各为两个,
    一个所述子转轴(10)为主动轴,穿过所述上法兰(50)伸入靠近所述上法兰(50)一侧的所述气缸内,并与该所述气缸内的所述活塞(32)运动连接;
    另一个所述子转轴(10)为被动轴,穿过所述下法兰(60)伸入靠近所述下法兰(60)一侧的所述气缸内,并与该所述气缸内的所述活塞(32)运动连接。
  4. 根据权利要求3所述的压缩机,其特征在于,所述主动轴由电机驱动旋转,所述被动轴由所述主动轴间接驱动旋转。
  5. 根据权利要求4所述的压缩机,其特征在于,所述活塞(32)具有沿所述子转轴(10)的轴向贯通设置的滑移孔(321),所述子转轴(10)穿过所述滑移孔(321),
    与所述主动轴配合的所述活塞(32)在所述主动轴的驱动下随所述主动轴旋转并同时沿垂直于所述主动轴的轴线方向在所述活塞套(33)内往复滑动;
    与所述被动轴配合的所述活塞(32),在所述活塞套(33)的驱动下随所述活塞套(33)旋转并驱动所述被动轴旋转,同时与所述被动轴配合的所述活塞(32)沿垂直于所述被动轴的轴线方向在所述活塞套(33)内往复滑动。
  6. 根据权利要求5所述的压缩机,其特征在于,所述滑移孔(321)为长孔或腰形孔。
  7. 根据权利要求2所述的压缩机,其特征在于,所述活塞(32)具有沿所述活塞(32)的中垂面对称设置的一对弧形表面,所述弧形表面与所述气缸的内表面适应性配合,且所述弧形表面的弧面曲率半径的二倍等于所述气缸的内径。
  8. 根据权利要求2所述的压缩机,其特征在于,所述活塞(32)呈柱形。
  9. 根据权利要求2所述的压缩机,其特征在于,所述活塞套(33)中具有沿所述活塞套(33)的径向贯通设置的导向孔(311),所述导向孔(311)为至少两个,每个所述导向孔(311)内对应设置有一个所述活塞(32),所述活塞(32)滑动设置在所述导向孔(311)内以往复直线运动。
  10. 根据权利要求9所述的压缩机,其特征在于,每个所述导向孔(311)的轴线均平行。
  11. 根据权利要求9所述的压缩机,其特征在于,在所述活塞套(33)中相邻两个所述导向孔(311)之间形成隔板(34),所述隔板(34)上开设有用于连通相邻两个所述导向孔(311)的过油孔(35)。
  12. 根据权利要求11所述的压缩机,其特征在于,所述过油孔(35)的轴线与所述子转轴(10)的轴线相平行。
  13. 根据权利要求9所述的压缩机,其特征在于,所述导向孔(311)在所述下法兰(60)处的正投影具有一对相平行的直线段,所述一对相平行的直线段为所述活塞套(33)的一对相平行的内壁面投影形成,所述活塞(32)具有与所述导向孔(311)的所述一对相平行的内壁面形状相适配且滑移配合的外型面。
  14. 根据权利要求2所述的压缩机,其特征在于,所述活塞套(33)的朝向所述下法兰(60)一侧的第一止推面(332)与所述下法兰(60)的表面接触。
  15. 根据权利要求5所述的压缩机,其特征在于,所述子转轴(10)具有与所述活塞组件滑动配合的滑移段(11),所述滑移段(11)位于所述子转轴(10)的靠近所述气缸的一端,且所述滑移段(11)具有滑移配合面(111)。
  16. 根据权利要求15所述的压缩机,其特征在于,所述滑移配合面(111)对称设置在所述滑移段(11)的两侧。
  17. 根据权利要求16所述的压缩机,其特征在于,所述滑移配合面(111)与所述子转轴(10)的轴向平面相平行,所述滑移配合面(111)与所述活塞(32)的所述滑移孔(321)的内壁面在垂直于所述子转轴(10)的轴线方向上滑动配合。
  18. 根据权利要求1至17中任一项所述的压缩机,其特征在于,所述压缩机还包括设置在所述气缸上的中间流道(26),相邻两个所述气缸通过所述中间流道(26)连通。
  19. 根据权利要求18所述的压缩机,其特征在于,所述至少两个气缸中的低压级气缸(20)的气缸壁具有进气口(21)和连通口(24),所述连通口(24)通过所述低压级气缸(20)上的中间流道(26)与所述至少两个气缸中的高压级气缸(200)的中间流道(26)连通。
  20. 根据权利要求19所述的压缩机,其特征在于,所述低压级气缸(20)的气缸壁的内壁面具有低压级进气缓冲槽(29),所述低压级进气缓冲槽(29)与所述进气口(21)连通。
  21. 根据权利要求20所述的压缩机,其特征在于,所述低压级进气缓冲槽(29)在所述低压级气缸(20)的径向平面内呈弧形段,且所述低压级进气缓冲槽(29)的两端均由所述进气口(21)处向所述连通口(24)所在位置延伸。
  22. 根据权利要求19所述的压缩机,其特征在于,所述低压级气缸(20)的气缸壁的外壁面具有连通槽(28),所述连通口(24)与所述连通槽(28)连通,所述压缩机还包括封板(81),所述封板(81)设置在所述连通槽(28)的槽口处以将所述连通槽(28)封闭,所述连通槽(28)与所述连通口(24)形成所述低压级气缸(20)的中间流道(26)。
  23. 根据权利要求19所述的压缩机,其特征在于,所述高压级气缸(200)的气缸壁的内壁面具有高压级进气缓冲槽(23)和排气口(22),所述高压级进气缓冲槽(23)与所述高压级气缸(200)的中间流道(26)连通,所述排气口(22)与所述压缩机的腔体连通。
  24. 根据权利要求23所述的压缩机,其特征在于,所述高压级气缸(200)还具有补气口(27),所述补气口(27)与所述高压级进气缓冲槽(23)连通。
  25. 根据权利要求24所述的压缩机,其特征在于,所述高压级进气缓冲槽(23)在所述高压级气缸(200)的径向平面内呈弧形段,且所述高压级进气缓冲槽(23)的两端均由所述补气口(27)处向所述排气口(22)所在位置延伸。
  26. 根据权利要求15所述的压缩机,其特征在于,所述子转轴(10)具有润滑油道(13),所述润滑油道(13)包括设置在所述子转轴(10)内部的内部油道和设置在所述滑移配合面(111)处的外部油道以及连通所述内部油道和所述外部油道的通油孔(14)。
  27. 根据权利要求1至17中任一项所述的压缩机,其特征在于,相邻两个所述气缸彼此同轴心设置。
  28. 根据权利要求27所述的压缩机,其特征在于,所述上法兰(50)的轴心与靠近所述上法兰(50)一侧设置的所述气缸的轴心偏心设置。
  29. 根据权利要求28所述的压缩机,其特征在于,所述下法兰(60)的轴心与靠近所述下法兰(60)一侧设置的所述气缸的轴心偏心设置。
  30. 根据权利要求1至17中任一项所述的压缩机,其特征在于,所述压缩机还包括支撑板(61),所述支撑板(61)设置在所述下法兰(60)的远离所述气缸一侧的端面上,且所述支撑板(61)与所述下法兰(60)同轴心设置以支撑所述转轴组件,所述支撑板(61)具有用于支撑所述转轴组件的第二止推面(611)。
  31. 根据权利要求23所述的压缩机,其特征在于,所述压缩机还包括至少两个排气阀组件(40),所述连通口(24)和所述排气口(22)处均对应各设置有一个所述排气阀组件(40)。
  32. 根据权利要求31所述的压缩机,其特征在于,所述高压级气缸(200)的气缸壁的外壁上开设有容纳槽(25),所述排气口(22)贯通所述容纳槽(25)的槽底,一个所述排气阀组件(40)设置在所述容纳槽(25)内。
  33. 根据权利要求31所述的压缩机,其特征在于,每个所述排气阀组件(40)均包括:
    排气阀片(41),所述排气阀片(41)遮挡所述连通口(24)或所述排气口(22);
    阀片挡板(42),所述阀片挡板(42)叠置在所述排气阀片(41)上。
  34. 一种换热设备,包括压缩机,其特征在于,所述压缩机是权利要求1至33中任一项所述的压缩机。
  35. 根据权利要求34所述的换热设备,其特征在于,所述换热设备还包括第一换热器(96)、第二换热器(97)和四通阀(98),所述压缩机、所述第一换热器(96)和所述第二换热器(97)通过所述四通阀(98)形成循环换热管路,所述换热设备还包括:
    闪蒸器(99),所述闪蒸器(99)设置在所述循环换热管路上并位于所述第一换热器(96)和所述第二换热器(97)之间;
    补气支路,所述补气支路的第一端与所述闪蒸器(99)连通,所述补气支路的第二端与所述压缩机的高压级气缸(200)的补气口(27)连通。
  36. 一种压缩机的运行方法,其特征在于,包括:
    子转轴(10)绕所述子转轴(10)的轴心O1转动;
    气缸(20)绕所述气缸(20)的轴心O2转动,且所述子转轴(10)的轴心与所述气缸(20)的轴心偏心设置且偏心距离固定;
    活塞组件的活塞(32)在所述子转轴(10)的驱动下随所述子转轴(10)旋转并同时沿垂直于所述子转轴(10)的轴线方向在所述活塞组件的活塞套(33)内往复滑动。
  37. 根据权利要求36所述的运行方法,其特征在于,所述运行方法采用十字滑块机构原理,其中,所述活塞(32)作为滑块,所述子转轴(10)的滑移配合面(111)作为第一连杆l1、所述活塞套(33)的导向孔(311)作为第二连杆l2
PCT/CN2016/084329 2015-08-07 2016-06-01 压缩机、换热设备和压缩机的运行方法 WO2017024866A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510482483.8A CN106438359B (zh) 2015-08-07 2015-08-07 压缩机、换热设备和压缩机的运行方法
CN201510482483.8 2015-08-07

Publications (1)

Publication Number Publication Date
WO2017024866A1 true WO2017024866A1 (zh) 2017-02-16

Family

ID=57983121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084329 WO2017024866A1 (zh) 2015-08-07 2016-06-01 压缩机、换热设备和压缩机的运行方法

Country Status (2)

Country Link
CN (1) CN106438359B (zh)
WO (1) WO2017024866A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107327997A (zh) * 2017-08-01 2017-11-07 广东美的制冷设备有限公司 空调系统
CN108061039A (zh) * 2017-10-23 2018-05-22 武汉凌达压缩机有限公司 压缩机的补气结构及压缩机
CN115711213A (zh) * 2022-12-06 2023-02-24 郑州轻工业大学 基于内容积比可调节的回转活塞式补气压缩机及空调系统
WO2023226409A1 (zh) * 2022-05-23 2023-11-30 珠海格力电器股份有限公司 流体机械和换热设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106438356B (zh) * 2015-08-07 2019-01-08 珠海格力电器股份有限公司 压缩机、换热设备和压缩机的运行方法
CN107559176B (zh) * 2017-08-22 2024-02-27 珠海格力电器股份有限公司 泵体组件及具有其的压缩机
CN116241471A (zh) * 2021-12-07 2023-06-09 珠海格力电器股份有限公司 流体机械和换热设备
CN117145768A (zh) * 2022-05-23 2023-12-01 珠海格力电器股份有限公司 流体机械和换热设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158385U (zh) * 1981-03-31 1982-10-05
JPS59155580A (ja) * 1983-02-25 1984-09-04 Hitachi Ltd 容量制御型圧縮機
JPS6062601A (ja) * 1983-09-17 1985-04-10 Masahiro Funaya 相対的往復運動を行う回転機構
JPH06272671A (ja) * 1993-03-16 1994-09-27 Nippon Haazen Kk 回転ピストン機械
JP2001065472A (ja) * 1999-08-26 2001-03-16 Isao Suzuki ポンプの構造
US20080019849A1 (en) * 2006-07-19 2008-01-24 Chien-Ming Huang Pumping device
JP2011085128A (ja) * 2009-10-16 2011-04-28 Naoya Togashi ロータリーポンプ
JP2012087772A (ja) * 2010-10-15 2012-05-10 Naoya Togashi ロータリーポンプ
CN204877941U (zh) * 2015-08-07 2015-12-16 珠海格力节能环保制冷技术研究中心有限公司 压缩机和换热设备
CN205064265U (zh) * 2015-08-07 2016-03-02 珠海格力节能环保制冷技术研究中心有限公司 流体机械和换热设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145379A (ja) * 1983-02-04 1984-08-20 Hitachi Ltd 流体機械
JP2000009072A (ja) * 1998-06-22 2000-01-11 Samsung Electron Co Ltd 複数の圧縮室を備えて多段圧縮を行うことができる回転圧縮機
GB0018928D0 (en) * 2000-08-03 2000-09-20 Troup Alan Multi-stage dry vacuum pump
CN2688922Y (zh) * 2004-02-24 2005-03-30 刘军科 双转缸空气压缩机
CN103574852B (zh) * 2012-08-02 2016-07-27 珠海格力电器股份有限公司 空调循环系统以及双级压缩机补气量控制方法
CN104454021B (zh) * 2014-11-15 2019-11-15 南通金鼎天轮动力科技有限公司 具有转轮活塞同步回旋机构的流体动力机械
CN204371674U (zh) * 2014-12-24 2015-06-03 珠海格力节能环保制冷技术研究中心有限公司 压缩机
CN106438356B (zh) * 2015-08-07 2019-01-08 珠海格力电器股份有限公司 压缩机、换热设备和压缩机的运行方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158385U (zh) * 1981-03-31 1982-10-05
JPS59155580A (ja) * 1983-02-25 1984-09-04 Hitachi Ltd 容量制御型圧縮機
JPS6062601A (ja) * 1983-09-17 1985-04-10 Masahiro Funaya 相対的往復運動を行う回転機構
JPH06272671A (ja) * 1993-03-16 1994-09-27 Nippon Haazen Kk 回転ピストン機械
JP2001065472A (ja) * 1999-08-26 2001-03-16 Isao Suzuki ポンプの構造
US20080019849A1 (en) * 2006-07-19 2008-01-24 Chien-Ming Huang Pumping device
JP2011085128A (ja) * 2009-10-16 2011-04-28 Naoya Togashi ロータリーポンプ
JP2012087772A (ja) * 2010-10-15 2012-05-10 Naoya Togashi ロータリーポンプ
CN204877941U (zh) * 2015-08-07 2015-12-16 珠海格力节能环保制冷技术研究中心有限公司 压缩机和换热设备
CN205064265U (zh) * 2015-08-07 2016-03-02 珠海格力节能环保制冷技术研究中心有限公司 流体机械和换热设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107327997A (zh) * 2017-08-01 2017-11-07 广东美的制冷设备有限公司 空调系统
CN107327997B (zh) * 2017-08-01 2023-09-08 广东美的制冷设备有限公司 空调系统
CN108061039A (zh) * 2017-10-23 2018-05-22 武汉凌达压缩机有限公司 压缩机的补气结构及压缩机
WO2023226409A1 (zh) * 2022-05-23 2023-11-30 珠海格力电器股份有限公司 流体机械和换热设备
CN115711213A (zh) * 2022-12-06 2023-02-24 郑州轻工业大学 基于内容积比可调节的回转活塞式补气压缩机及空调系统

Also Published As

Publication number Publication date
CN106438359A (zh) 2017-02-22
CN106438359B (zh) 2019-01-08

Similar Documents

Publication Publication Date Title
WO2017024866A1 (zh) 压缩机、换热设备和压缩机的运行方法
CN204877938U (zh) 流体机械和换热设备
WO2017024867A1 (zh) 压缩机、换热设备和压缩机的运行方法
WO2017024863A1 (zh) 流体机械、换热设备和流体机械的运行方法
CN204877939U (zh) 流体机械和换热设备
WO2017024868A1 (zh) 流体机械、换热设备和流体机械的运行方法
CN204877940U (zh) 流体机械和换热设备
CN106704183B (zh) 流体机械、换热设备和流体机械的运行方法
WO2017140208A1 (zh) 流体机械和换热设备
CN205064265U (zh) 流体机械和换热设备
CN204877941U (zh) 压缩机和换热设备
WO2017024862A1 (zh) 流体机械、换热设备和流体机械的运行方法
WO2020015284A1 (zh) 泵体组件、流体机械及换热设备
CN105485007A (zh) 单机二级压缩的旋转式压缩机
CN116241466A (zh) 流体机械、换热设备、流体机械的运行方法
WO2023226414A1 (zh) 流体机械和换热设备
WO2023226415A1 (zh) 流体机械和换热设备
WO2023226413A1 (zh) 流体机械和换热设备
WO2023103871A1 (zh) 流体机械和换热设备
WO2023103876A1 (zh) 流体机械和换热设备
WO2023226409A1 (zh) 流体机械和换热设备
WO2023103863A1 (zh) 流体机械、换热设备和流体机械的运行方法
CN117145765A (zh) 流体机械和换热设备
CN117145770A (zh) 流体机械和换热设备
CN117145769A (zh) 流体机械和换热设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16834491

Country of ref document: EP

Kind code of ref document: A1