WO2023226415A1 - 流体机械和换热设备 - Google Patents

流体机械和换热设备 Download PDF

Info

Publication number
WO2023226415A1
WO2023226415A1 PCT/CN2022/140989 CN2022140989W WO2023226415A1 WO 2023226415 A1 WO2023226415 A1 WO 2023226415A1 CN 2022140989 W CN2022140989 W CN 2022140989W WO 2023226415 A1 WO2023226415 A1 WO 2023226415A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder liner
exhaust
axial
fluid machine
slider
Prior art date
Application number
PCT/CN2022/140989
Other languages
English (en)
French (fr)
Inventor
张培林
杜忠诚
李直
宋雪威
于瑞波
任丽萍
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2023226415A1 publication Critical patent/WO2023226415A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present application relates to the technical field of heat exchange systems, specifically, to a fluid machine and heat exchange equipment.
  • Fluid machinery in related technologies includes compressors, expanders, etc. Take a compressor as an example.
  • a fluid machine including a crankshaft, a cylinder liner, a cross groove structure, a slide block and two flanges.
  • the crankshaft is provided with two eccentric parts along its axial direction; the crankshaft and the cylinder liner are eccentrically arranged And the eccentric distance is fixed; the cross-slot structure is rotatably arranged in the cylinder liner.
  • the cross-slot structure has two limit channels. The two limit channels are arranged sequentially along the axial direction of the crankshaft. The extension direction of the limit channels is perpendicular to the crankshaft.
  • the slider has a through hole, there are two sliders, the two eccentric parts extend into the two through holes of the two sliders, and the two sliders slide correspondingly and are arranged in the two limit channels and form
  • the variable volume chamber is located in the sliding direction of the slider.
  • the crankshaft rotates to drive the slider to slide back and forth in the limit channel while interacting with the cross groove structure, causing the cross groove structure and slider to rotate in the cylinder liner;
  • Two flanges are respectively provided at both axial ends of the cylinder liner. At least one of the two flanges is provided with a first axial exhaust hole, and at least one of the two flanges is provided with a second shaft.
  • the exhaust hole wherein, at least one of the two axial ends of the cylinder liner has an oblique cut at the edge of the inner circle, the oblique cut communicates with the first axial exhaust hole, and there is at least one exhaust hole on the side wall of the cylinder liner.
  • the exhaust port is connected with the second axial exhaust hole.
  • first axial exhaust hole and the second axial exhaust hole on the same flange are on the same radius of the flange, and the second axial exhaust hole is located on the outer periphery of the first axial exhaust hole. side.
  • a first axial exhaust hole is provided on the flange at one end of the cylinder liner with the oblique cutout, and the oblique cutout is arranged opposite to the first axial exhaust hole.
  • the geometric center line of the first axial exhaust hole passes through the geometric center of the oblique cut.
  • the projection of the slider in its sliding direction is part of a semicircle; and/or, the projection of the slider in the axial direction of the through hole has two relatively parallel straight line segments and an end connecting the two straight line segments.
  • the arc segment of the part; the exhaust port is set in the angle range of (arccos(2R/B) ⁇ 2 ⁇ arccos(2R/B)) in the circumferential direction of the cylinder liner, where R is the inner circle of the cylinder liner.
  • the radius, B is the distance between two relatively parallel straight line segments of the projection of the slider in the axial direction of the through hole.
  • an exhaust chamber is provided on the outer wall of the cylinder liner, and the exhaust port is connected to the exhaust chamber from the inner wall of the cylinder liner.
  • the fluid machine also includes an exhaust valve assembly, and the exhaust valve assembly is arranged in the exhaust chamber and It is provided corresponding to the exhaust port; a communication hole is also provided on the axial end face of the cylinder liner, the communication hole is connected with the exhaust chamber, and the communication hole is connected with the second axial exhaust hole.
  • the distance between the plane where the exhaust port is connected to the exhaust chamber and the axis of the cylinder liner is K, and the inner radius of the cylinder liner is R, where 1mm ⁇ K-R ⁇ 5mm.
  • the cross-sectional area of the exhaust chamber in the axial direction of the cylinder liner is S3
  • the height of the exhaust chamber in the axial direction of the cylinder liner is N
  • the displacement of the fluid machine is V, where 0.2 ⁇ (N ⁇ S3)/V ⁇ 5.
  • an exhaust chamber is provided on the outer wall of the cylinder liner, and a boss structure is provided on the wall surface of the exhaust chamber.
  • the exhaust port penetrates from the inner wall of the cylinder liner to the boss structure and is connected with the exhaust chamber.
  • the thickness of the boss structure in the extension direction of the exhaust port is M, where 0.05mm ⁇ M ⁇ 3mm.
  • the cross-sectional area of the hole section of the exhaust port is S1
  • the volume of a single variable volume cavity is V1 where 750 ⁇ V1/S1 ⁇ 3300.
  • the inclined direction of the oblique cut is to extend along the end surface of one axial end of the cylinder liner close to the axis of the cylinder liner, and the angle between the oblique cut and the end surface of the cylinder liner is ⁇ , where 15° ⁇ 60°.
  • the equivalent diameter of the circle where the oblique cut is located is D
  • the volume of a single variable volume cavity is V1, where 400 ⁇ V1/D ⁇ 1000.
  • the longitudinal section of the oblique cut passing through the diameter of the cylinder liner coincides with the longitudinal section of the exhaust port passing through the diameter of the cylinder liner.
  • the cross-sectional area of the hole section of the first axial exhaust port is S4, and the volume of a single variable volume cavity is V1, where 750 ⁇ V1/S4 ⁇ 3300; and/or the second axial exhaust port
  • the cross-sectional area of the hole section is S2, and the volume of a single variable volume cavity is V1, where 50 ⁇ V1/S2 ⁇ 250.
  • the exhaust chamber extends through the outer wall of the cylinder liner, and the fluid machine also includes an exhaust cover plate, which is connected to the cylinder liner and seals the exhaust chamber.
  • the eccentric amounts of the two eccentric parts are equal, and there is a phase difference of the second included angle B between the extension directions of the two limiting channels, Among them, the first included angle A is twice the second included angle B.
  • the first included angle A is 160 degrees to 200 degrees; the second included angle B is 80 degrees to 100 degrees.
  • the slide block has an extrusion surface facing the end of the limiting channel, and the projected area S of the extrusion surface in the sliding direction of the slide block is in contact with the end of the cylinder liner.
  • the area of the exhaust port between rows S satisfies: the value of S slider /S row is 8 to 25.
  • a heat exchange device including a fluid machine, and the fluid machine is the above-mentioned fluid machine.
  • Figure 1 shows a schematic diagram of the internal structure of a compressor according to Embodiment 1 of the present application.
  • FIG. 2 shows a schematic structural diagram of the pump body assembly of the compressor in FIG. 1 .
  • FIG. 3 shows an exploded structural view of the pump body assembly in FIG. 2 .
  • Figure 4 shows a schematic diagram of the assembly structure of the crankshaft, cross groove structure, and slide block in Figure 3.
  • FIG. 5 shows a schematic cross-sectional structural view of the crankshaft, cross groove structure, and slide block in FIG. 4 .
  • FIG. 6 shows a schematic structural diagram of the shaft body part of the crankshaft in FIG. 4 and the eccentricity of the two eccentric parts.
  • FIG. 7 shows a schematic cross-sectional structural view of the assembly eccentricity of the crankshaft and cylinder liner in FIG. 3 .
  • Figure 8 shows a structural schematic diagram of the eccentricity between the cylinder liner and the lower flange in Figure 3.
  • FIG. 9 shows a schematic structural view of the slider in FIG. 3 in the axial direction of the through hole.
  • FIG. 10 shows a schematic structural diagram of the compressor in FIG. 3 when suction starts.
  • FIG. 11 shows a schematic structural diagram of the compressor in FIG. 3 during the suction process.
  • FIG. 12 shows a schematic structural diagram of the state of the compressor in FIG. 3 when suction ends.
  • FIG. 13 shows a schematic structural diagram of the compressor in FIG. 3 when it is compressing gas.
  • FIG. 14 shows a schematic structural diagram of the compressor in FIG. 3 during the exhaust process.
  • Fig. 15 shows a schematic structural diagram of the state of the compressor in Fig. 3 when exhaust is completed.
  • FIG. 16 shows a schematic structural diagram of the cylinder liner in FIG. 3 .
  • FIG. 17 shows a schematic cross-sectional structural view of the cylinder liner in FIG. 3 , which shows the angular range of the exhaust port in the circumferential direction of the cylinder liner.
  • Figure 18 shows a schematic cross-sectional structural view of the cylinder liner in Figure 3.
  • a schematic diagram of the relationship between K and R is shown.
  • Figure 19 shows a schematic cross-sectional structural view of the cylinder liner in Figure 3. This figure shows the range of angles of the oblique cuts in the circumferential direction of the cylinder liner.
  • Figure 20 shows a schematic cross-sectional structural view of the cylinder liner in Figure 3 from another perspective. In this figure, the angle between the oblique cut and the end surface of the cylinder liner is shown.
  • FIG. 21 shows a schematic structural view of the upper flange in FIG. 3 from a top view.
  • Figure 22 shows a schematic cross-sectional structural view of the pump body assembly in Figure 2 from another perspective.
  • the assembly eccentricity between the crankshaft and the cylinder liner is shown to be e.
  • FIG. 23 shows a schematic structural diagram of the exhaust chamber side of the cylinder liner in FIG. 3 .
  • Figure 24 shows a schematic cross-sectional structural view of the cylinder liner in Figure 2.
  • the cross groove structure, slide block and crankshaft are omitted.
  • Figure 25 shows a schematic structural diagram of the exhaust chamber side of the cylinder liner according to an optional embodiment of the present application.
  • the exhaust port has a boss structure.
  • FIG. 26 shows a partial cross-sectional structural diagram of the cylinder liner in FIG. 25 .
  • FIG. 27 shows a schematic structural diagram of the cross-section of the slider in FIG. 3 in its sliding direction.
  • Figure 28 shows a schematic structural diagram of a pump body assembly according to Embodiment 2 of the present application.
  • Figure 29 shows a schematic structural diagram of a pump body assembly according to Embodiment 3 of the present application.
  • Figure 30 shows a schematic structural diagram of a pump body assembly according to Embodiment 4 of the present application.
  • Figure 31 shows a schematic structural diagram of a pump body assembly according to Embodiment 5 of the present application.
  • Figure 32 shows a schematic structural diagram of a pump body assembly according to Embodiment 6 of the present application.
  • Figure 33 shows a schematic structural diagram of a pump body assembly according to Embodiment 7 of the present application.
  • Figure 34 shows a schematic structural diagram of a pump body assembly according to Embodiment 8 of the present application.
  • Figure 35 shows a schematic diagram of the mechanism of compressor operation according to an optional embodiment of the present application.
  • Fig. 36 shows a schematic diagram of the mechanism of the operation of the compressor in Fig. 35.
  • Figure 37 shows a schematic diagram of the mechanism of compressor operation in the related art.
  • Figure 38 shows a schematic diagram of the mechanism of the improved compressor operation in the related art.
  • Figure 39 shows a schematic diagram of the mechanism of the operation of the compressor in Figure 38. In this figure, the force arm of the drive shaft driving the slider to rotate is shown.
  • Figure 40 shows a schematic diagram of the mechanism of operation of the compressor in Figure 38.
  • the center of the limiting groove structure coincides with the center of the eccentric portion.
  • Figure 41 shows a schematic diagram of the variation curves of the compressor's exhaust loss, COP, and clearance volume with V1/S1.
  • a compressor operating mechanism principle is proposed based on the cross slider mechanism, that is, point O1 is used as the cylinder center, point O2 is used as the drive shaft center, and point O3 is used as the slider center.
  • the cylinder and the drive shaft are eccentrically arranged, in which the slider center O 3 makes a circular motion on a circle with a diameter O 1 O 2 .
  • the cylinder center O 1 and the drive shaft center O 2 serve as the two rotation centers of the motion mechanism.
  • the midpoint O 0 of the line segment O 1 O 2 serves as the virtual center of the slider center O 3 , so that the slider While the block reciprocates relative to the cylinder, the slider also reciprocates relative to the drive shaft.
  • a motion mechanism with O 0 as the center of the drive shaft that is, the cylinder center O 1 and the drive shaft center O 0 are the two rotation centers of the motion mechanism.
  • the drive shaft has an eccentric part, the slider and the eccentric part are coaxially arranged, and the drive shaft is The assembly eccentricity of the cylinder is equal to the eccentricity of the eccentric part, so that the slider center O3 makes a circular motion with the drive shaft center O0 as the center and O1O0 as the radius .
  • a set of operating mechanism including a cylinder, a limit groove structure, a slider and a drive shaft.
  • the limit groove structure is rotatably arranged in the cylinder, and the cylinder and the limit groove structure are coaxially arranged, that is, The center O1 of the cylinder is also the center of the limit groove structure.
  • the slider moves reciprocally relative to the limit groove structure.
  • the slider is coaxially assembled with the eccentric part of the drive shaft.
  • the slider makes circular motion around the shaft part of the drive shaft.
  • the movement process is: the drive shaft rotates, driving the slider to revolve around the center of the shaft part of the drive shaft.
  • the slider rotates relative to the eccentric part at the same time, and the slider reciprocates in the limit groove of the limit groove structure and pushes the limiter.
  • Bit slot structure rotation is: the drive shaft rotates, driving the slider to revolve around the center of the shaft part of the drive shaft.
  • the slider rotates relative to the eccentric part at the same time, and the slider reciprocates in the limit groove
  • this application proposes a new cross-slot structure with two limit channels and a double slider mechanism principle, and builds a new compressor based on this principle, which has high energy efficiency and low noise.
  • the compressor takes the compressor as an example to introduce in detail the fluid machinery based on the cross-groove structure with two limit channels and double sliders.
  • this application provides a fluid machinery, heat exchange equipment and an operating method of the fluid machinery, wherein the heat exchange equipment includes the following fluid machinery,
  • the fluid machinery operates using the following operating methods.
  • the fluid machine in the embodiment of the present application includes a crankshaft 10, a cylinder liner 20, a cross groove structure 30 and a slider 40.
  • the crankshaft 10 is provided with two eccentric parts 11 along its axial direction, and there is a third eccentric part 11 between the two eccentric parts 11. With a phase difference of an included angle A, the eccentricities of the two eccentric parts 11 are equal; the crankshaft 10 and the cylinder liner 20 are eccentrically arranged and the eccentric distance is fixed; the cross-slot structure 30 is rotatably disposed in the cylinder liner 20, and the cross-slot structure 30 has Two limiting channels 31 are arranged sequentially along the axial direction of the crankshaft 10 .
  • the extending direction of the limiting channels 31 is perpendicular to the axial direction of the crankshaft 10 , and the extending direction of the two limiting channels 31 is between There is a phase difference of the second included angle B, where the first included angle A is twice the second included angle B; the slider 40 has a through hole 41, there are two sliders 40, and the two eccentric parts 11 extend in accordingly In the two through holes 41 of the two sliders 40, the two sliders 40 are slidably arranged in the two limiting channels 31 and form a variable volume cavity 311.
  • the variable volume cavity 311 is located in the sliding direction of the slider 40.
  • the crankshaft 10 rotates to drive the slider 40 to slide back and forth in the limiting channel 31 and interact with the cross groove structure 30 so that the cross groove structure 30 and the slider 40 rotate in the cylinder liner 20 .
  • the two eccentric parts 11 of the crankshaft extend into the two through holes 41 of the two slide blocks 40 correspondingly.
  • the two sliders 40 are slidably arranged in the two limiting channels 31 and form a variable volume cavity 311. Since the first included angle A between the two eccentric parts 11 is the extension direction of the two limiting channels 31 twice the second included angle B, so that when one of the two sliders 40 is at the dead center position, that is, the driving torque of the eccentric portion 11 corresponding to the slider 40 at the dead center position is 0, the slider 40 at the dead center position cannot continue to rotate.
  • the driving torque of the other eccentric part 11 of the two eccentric parts 11 drives the corresponding slider 40 to the maximum value, ensuring the maximum driving rotation.
  • the eccentric portion 11 of the moment can normally drive the corresponding slider 40 to rotate, thereby driving the cross groove structure 30 to rotate through the slider 40, and then driving the slider 40 at the dead center position to continue to rotate through the cross groove structure 30, thus realizing
  • the stable operation of the fluid machinery avoids the dead center position of the movement mechanism, improves the movement reliability of the fluid machinery, and thereby ensures the working reliability of the heat exchange equipment.
  • the fluid machinery provided by the embodiments of the present application can operate stably, that is, it ensures high energy efficiency and low noise of the compressor, thereby ensuring the working reliability of the heat exchange equipment.
  • neither the first included angle A nor the second included angle B is zero.
  • crankshaft 10 rotates around the axis O 0 of the crankshaft 10; the cross groove structure 30 revolves around the axis O 0 of the crankshaft 10, and the axis O 0 of the crankshaft 10
  • the first slider 40 makes a circular motion with the axis O0 of the crankshaft 10 as the center, and the center O3 of the first slider 40 is in contact with the crankshaft.
  • the distance between the axis O 0 of the crankshaft 10 is equal to the eccentricity of the first eccentric portion 11 corresponding to the crankshaft 10 , and the eccentricity is equal to the eccentricity between the axis O 0 of the crankshaft 10 and the axis O 1 of the cross groove structure 30 distance, the crankshaft 10 rotates to drive the first slider 40 to perform circular motion, and the first slider 40 interacts with the cross groove structure 30 and slides back and forth in the limiting channel 31 of the cross groove structure 30; the second slider The block 40 makes a circular motion with the axis O 0 of the crankshaft 10 as the center, and the distance between the center O 4 of the second slide block 40 and the axis O 0 of the crankshaft 10 is equal to the corresponding second eccentric part 11 of the crankshaft 10
  • the eccentricity is equal to the eccentricity distance between the axis O 0 of the crankshaft 10 and the axis O 1 of the cross groove structure 30 .
  • the crankshaft 10 rotates to drive the second slider
  • the fluid machine operated as described above constitutes a cross slider mechanism.
  • This operating method adopts the principle of the cross slider mechanism, in which the two eccentric parts 11 of the crankshaft 10 serve as the first connecting rod L 1 and the second connecting rod L 2 respectively.
  • the two limiting channels 31 of the cross groove structure 30 serve as the third link L 3 and the fourth link L 4 respectively, and the lengths of the first link L 1 and the second link L 2 are equal (please refer to Figure 35 ).
  • first included angle A between the first link L 1 and the second link L 2
  • second included angle B between the third link L 3 and the fourth link L 4 .
  • the first included angle A is twice the second included angle B.
  • connection between the axis O 0 of the crankshaft 10 and the axis O 1 of the cross groove structure 30 is the connection O 0 O 1 , and the connection between the first connecting rod L 1 and the connection O 0 O 1
  • connection O 0 O 1 There is a third included angle C between them, and there is a fourth included angle D between the corresponding third connecting rod L 3 and the connection line O 0 O 1 , where the third included angle C is twice the fourth included angle D
  • there is a sixth included angle F between the corresponding fourth connecting rod L 4 and the connecting line O 0 O 1 where the fifth included angle Angle E is twice the sixth included angle F
  • the sum of the third included angle C and the fifth included angle E is the first included angle A
  • sum of the fourth included angle D and the sixth included angle F is the second included angle B.
  • the operation method also includes that the rotation angular speed of the slider 40 relative to the eccentric portion 11 is the same as the revolution angular speed of the slider 40 around the axis O 0 of the crankshaft 10 ; the revolution angular speed of the cross groove structure 30 around the axis O 0 of the crankshaft 10 This is the same as the rotation angular speed of the slider 40 relative to the eccentric portion 11 .
  • the axis O 0 of the crankshaft 10 is equivalent to the rotation center of the first connecting rod L 1 and the second connecting rod L 2
  • the axis O 1 of the cross groove structure 30 is equivalent to the third connecting rod L 3 and the fourth connecting rod L 3
  • the rotation center of connecting rod L 4 ; the two eccentric portions 11 of the crankshaft 10 serve as the first connecting rod L 1 and the second connecting rod L 2 respectively
  • the two limiting channels 31 of the cross groove structure 30 serve as the third connecting rod L respectively.
  • 3 and the fourth connecting rod L 4 and the lengths of the first connecting rod L 1 and the second connecting rod L 2 are equal.
  • the eccentric portion 11 on the crankshaft 10 drives the corresponding slider 40 around the crankshaft.
  • the axis O of 10 revolves at 0 , and at the same time the slider 40 can rotate relative to the eccentric part 11, and the relative rotation speed of the two is the same. Since the first slider 40 and the second slider 40 are in two corresponding limits respectively, The reciprocating movement in the position channel 31 drives the cross groove structure 30 to perform circular motion. Limited by the two limiting channels 31 of the cross groove structure 30, the movement direction of the two slide blocks 40 always has the phase of the second included angle B.
  • the eccentric part 11 used to drive the other of the two sliders 40 has the maximum driving torque, and the eccentric part 11 with the maximum driving torque can
  • the corresponding slider 40 is normally driven to rotate, thereby driving the cross groove structure 30 to rotate through the slider 40, and then driving the slider 40 at the dead center position to continue to rotate through the cross groove structure 30, achieving stable operation of the fluid machinery. It avoids the dead center position of the motion mechanism and improves the motion reliability of the fluid machinery, thus ensuring the working reliability of the heat exchange equipment.
  • the maximum moment arm of the driving torque of the eccentric portion 11 is 2e.
  • the running track of the slider 40 is a circle, and the circle has the axis O 0 of the crankshaft 10 as the center and the connecting line O 0 O 1 as the radius.
  • crankshaft 10 rotates 2 times to complete 4 suction and exhaust processes.
  • the present application provides a fluid machine and heat exchange equipment, wherein the heat exchange equipment includes a fluid machine, and the fluid machine is the above-mentioned and following fluids. mechanical.
  • the fluid machine also includes a flange 50.
  • the flange 50 is arranged at the axial end of the cylinder liner 20.
  • the crankshaft 10 and the flange 50 are arranged concentrically.
  • the cross groove structure 30 is concentric with the cylinder liner 20.
  • the assembly eccentricity of the crankshaft 10 and the cross groove structure 30 is determined by the relative positional relationship between the flange 50 and the cylinder liner 20.
  • the flange 50 is fixed on the cylinder liner 20 through fasteners, and the axis of the flange 50 is The relative position of the axis of the inner ring of the cylinder liner 20 is controlled by the alignment of the flange 50.
  • the relative position of the axis of the flange 50 and the axis of the inner ring of the cylinder liner 20 determines the axis of the crankshaft 10 and the cross groove structure 30.
  • the essence of adjusting the relative position of the axis through the flange 50 is to make the eccentricity of the eccentric portion 11 equal to the assembly eccentricity of the crankshaft 10 and the cylinder liner 20 .
  • the eccentricities of the two eccentric parts 11 are equal to e.
  • the assembly eccentricity between the crankshaft 10 and the cylinder liner 20 is e (due to the cross groove structure 30 and the cylinder liner 20 is coaxially arranged, the assembly eccentricity between the crankshaft 10 and the cross groove structure 30 is the assembly eccentricity between the crankshaft 10 and the cylinder liner 20), the flange 50 includes an upper flange 52 and a lower flange 53, as shown in Figure 8
  • the distance between the inner ring axis of the cylinder liner 20 and the inner ring axis of the lower flange 53 is e, that is, equal to the eccentricity of the eccentric portion 11 .
  • first assembly gap between the crankshaft 10 and the flange 50, and the first assembly gap ranges from 0.005mm to 0.05mm.
  • the first assembly gap ranges from 0.01 to 0.03 mm.
  • the two slide blocks 40 are respectively arranged concentrically with the two eccentric parts 11.
  • the slide blocks 40 make circular motion around the axis of the crankshaft 10.
  • the first rotation gap ranges from 0.005mm to 0.05mm.
  • the size of the second rotation gap is 0.005 mm to 0.1 mm.
  • the shaft portion 12 of the crankshaft 10 is integrally formed, and the shaft portion 12 has only one axis. This facilitates the one-time molding of the shaft portion 12 , thereby reducing the difficulty of processing and manufacturing the shaft portion 12 .
  • the shaft portion 12 of the crankshaft 10 includes a first section and a second section connected along its axial direction.
  • the first section and the second section are coaxially arranged, and the two eccentric portions 11 Set on the first and second paragraphs respectively.
  • first section and the second section are removably connected. In this way, the convenience of assembly and disassembly of the crankshaft 10 is ensured.
  • the shaft body portion 12 of the crankshaft 10 and the eccentric portion 11 are integrally formed. This facilitates the one-time molding of the crankshaft 10 , thereby reducing the difficulty of processing and manufacturing the crankshaft 10 .
  • the shaft portion 12 of the crankshaft 10 is detachably connected to the eccentric portion 11 . In this way, the installation and removal of the eccentric part 11 is facilitated.
  • both ends of the limiting channel 31 penetrate to the outer peripheral surface of the cross groove structure 30 . In this way, it is helpful to reduce the difficulty of processing and manufacturing the cross groove structure 30 .
  • the first included angle A is 160 degrees to 200 degrees; the second included angle B is 80 degrees to 100 degrees. In this way, as long as the relationship that the first included angle A is twice the second included angle B is satisfied.
  • the first included angle A is 160 degrees
  • the second included angle B is 80 degrees.
  • the first included angle A is 165 degrees
  • the second included angle B is 82.5 degrees.
  • the first included angle A is 170 degrees
  • the second included angle B is 85 degrees.
  • the first included angle A is 175 degrees
  • the second included angle B is 87.5 degrees.
  • the first included angle A is 180 degrees
  • the second included angle B is 90 degrees
  • the first included angle A is 185 degrees
  • the second included angle B is 92.5 degrees.
  • the first included angle A is 190 degrees
  • the second included angle B is 95 degrees.
  • the first included angle A is 195 degrees
  • the second included angle B is 97.5 degrees.
  • the eccentric portion 11 has an arc surface, and the central angle of the arc surface is greater than or equal to 180 degrees. In this way, it is ensured that the arc surface of the eccentric portion 11 can exert effective driving force on the slider 40 , thereby ensuring the movement reliability of the slider 40 .
  • the eccentric portion 11 is cylindrical.
  • the proximal end of the eccentric portion 11 is flush with the outer circle of the shaft body portion 12 of the crankshaft 10 .
  • the proximal end of the eccentric portion 11 protrudes from the outer circle of the shaft body portion 12 of the crankshaft 10 .
  • the proximal end of the eccentric portion 11 is located inside the outer circle of the shaft body portion 12 of the crankshaft 10 .
  • the slider 40 includes a plurality of substructures, and the plurality of substructures are spliced to form a through hole 41 .
  • the two eccentric portions 11 are spaced apart in the axial direction of the crankshaft 10 . In this way, during the process of assembling the crankshaft 10, the cylinder liner 20 and the two slide blocks 40, it is ensured that the distance between the two eccentric portions 11 can provide an assembly space for the cylinder liner 20 to ensure ease of assembly.
  • the cross groove structure 30 has a central hole 32 , and the two limiting channels 31 are connected through the central hole 32 .
  • the diameter of the central hole 32 is larger than the diameter of the shaft body portion 12 of the crankshaft 10 . In this way, it is ensured that the crankshaft 10 can pass through the central hole 32 smoothly.
  • the diameter of the central hole 32 is larger than the diameter of the eccentric portion 11 . In this way, it is ensured that the eccentric portion 11 of the crankshaft 10 can pass through the center hole 32 smoothly.
  • the axial projection of the slider 40 in the through hole 41 has two relatively parallel straight line segments and an arc segment connecting the ends of the two straight line segments.
  • the limiting channel 31 has a set of oppositely arranged first sliding surfaces that are in sliding contact with the slider 40 .
  • the slider 40 has a second sliding surface that cooperates with the first sliding surface.
  • the slider 40 has a surface facing the limiting channel 31
  • the extrusion surface 42 at the end serves as the head of the slider 40.
  • the two second sliding surfaces are connected through the extrusion surface 42, and the extrusion surface 42 faces the variable volume chamber 311.
  • the projection of the second sliding surface of the slider 40 in the axial direction of the through hole 41 is a straight line segment, and at the same time, the projection of the pressing surface 42 of the slider 40 in the axial direction of the through hole 41 is an arc segment.
  • the extrusion surface 42 is an arc surface, and the distance between the arc center of the arc surface and the center of the through hole 41 is equal to the eccentricity of the eccentric portion 11 .
  • the center of the through hole 41 of the slider 40 is O slider , and the distance between the arc centers of the two arc surfaces and the center of the through hole 41 is e, that is, the eccentricity of the eccentric portion 11.
  • the X dashed line represents the circle where the arc centers of the two arc surfaces are located.
  • the radius of curvature of the arc surface is equal to the radius of the inner circle of the cylinder liner 20 .
  • the radius of curvature of the arc surface and the radius of the inner circle of the cylinder liner 20 have a difference, and the difference ranges from -0.05mm to 0.025mm.
  • the difference range is -0.02 ⁇ 0.02mm.
  • the projected area S of the extrusion surface 42 in the sliding direction of the slider 40 slider and the area S row of the compression exhaust port 22 of the cylinder liner 20 satisfy: the value of S slider /S row is 8 ⁇ 25.
  • the value of S slider /S row is 12 ⁇ 18.
  • the fluid machine shown in this embodiment is a compressor.
  • the compressor includes a liquid dispenser component 80, a housing component 81, a motor component 82, a pump body component 83, an upper cover component 84 and a lower cover component 85.
  • the dispenser component 80 is arranged outside the housing assembly 81
  • the upper cover assembly 84 is assembled on the upper end of the housing assembly 81
  • the lower cover assembly 85 is assembled on the lower end of the housing assembly 81
  • the motor assembly 82 and the pump body assembly 83 They are all located inside the housing assembly 81 , where the motor assembly 82 is located above the pump body assembly 83 , or the motor assembly 82 is located below the pump body assembly 83 .
  • the pump body assembly 83 of the compressor includes the above-mentioned crankshaft 10, cylinder liner 20, cross groove structure 30, slide block 40, upper flange 52 and lower flange 53.
  • the above components are connected by welding, thermal sheathing, or cold pressing.
  • the assembly process of the entire pump body assembly 83 is as follows: the lower flange 53 is fixed on the cylinder liner 20, the two slide blocks 40 are respectively placed in the two corresponding limit channels 31, and the two eccentric parts 11 of the crankshaft 10 are respectively extended into In the two corresponding through holes 41 of the two slide blocks 40, place the assembled crankshaft 10, the cross groove structure 30 and the two slide blocks 40 in the cylinder liner 20, and one end of the crankshaft 10 is installed on the lower flange 53 , the other end of the crankshaft 10 is disposed through the upper flange 52, see Figures 2 and 3 for details.
  • variable volume chamber 311 the closed space surrounded by the slider 40, the limiting channel 31, the cylinder liner 20 and the upper flange 52 (or lower flange 53) is the variable volume chamber 311.
  • the pump body assembly 83 has a total of four Variable volume chamber 311, when the crankshaft 10 rotates, the crankshaft 10 rotates 2 times, and a single variable volume chamber 311 completes one suction and exhaust process. For the compressor, the crankshaft 10 rotates 2 times, completing 4 suction and exhaust times in total. gas process.
  • the extrusion surface 42 of the head of the slider 40 , the two side wall surfaces and the bottom surface of the passage 31 , part of the inner wall surface of the cylinder liner 20 , and part of the surface of the upper flange 52 facing the cylinder liner 20 (or part of the surface of the lower flange 53 facing the cylinder liner 20 ) is the variable volume chamber 311 .
  • the slider 40 rotates relative to the cylinder liner 20 while reciprocating in the limiting channel 31.
  • the slider 40 moves clockwise from 0 degrees to 180 degrees.
  • the variable volume chamber 311 increases.
  • the variable volume chamber 311 is connected with the suction chamber 23 of the cylinder liner 20.
  • the variable volume chamber 311 is enlarged.
  • the volume of 311 reaches the maximum value.
  • the variable volume chamber 311 is separated from the suction chamber 23, thereby completing the suction operation.
  • the slider 40 continues to rotate clockwise from 180 degrees to 360 degrees.
  • variable volume chamber 311 decreases, and the slider 40 compresses the gas in the variable volume chamber 311.
  • the slider 40 rotates to the point where the variable volume chamber 311 is connected to the compression exhaust port 22, and when the variable volume chamber 311
  • the exhaust valve plate 61 of the exhaust valve assembly 60 is opened to start the exhaust operation until the next cycle is entered after the compression is completed.
  • Figure 11 shows the process of the slider 40 rotating clockwise from 0 degrees to 180 degrees.
  • the rotation of the slider 40 The angle is ⁇ 1, and the corresponding rotation angle of the crankshaft 10 is 2 ⁇ 1.
  • Figure 13 shows the process of the slider 40 continuing to rotate clockwise from 180 degrees to 360 degrees.
  • the rotation angle of the slider 40 is 180°+ ⁇ 2, and the corresponding The angle of rotation of the crankshaft 10 is 360°+2 ⁇ 2.
  • Figure 14 shows that the slider 40 continues to rotate clockwise from 180 degrees to 360 degrees, and the variable volume chamber 311 is connected to the compression exhaust port 22, and the slider 40 rotates The angle is 180°+ ⁇ 3, and the corresponding rotation angle of the crankshaft 10 is 360°+2 ⁇ 3, that is, the slider 40 rotates 1 turn, and the corresponding crankshaft 10 rotates 2 turns, where ⁇ 1 ⁇ 2 ⁇ 3.
  • the motor assembly 82 drives the crankshaft 10 to rotate, and the two eccentric portions 11 of the crankshaft 10 drive the corresponding two slide blocks 40 to move.
  • the slide blocks 40 revolve around the axis of the crankshaft 10
  • the slide blocks 40 Rotates relative to the eccentric part 11, and the slider 40 reciprocates along the limit channel 31, and drives the cross groove structure 30 to rotate in the cylinder liner 20. While the slider 40 revolves, it reciprocates along the limit channel 31 to form a cross slide. Block mechanism movement mode.
  • this application combines the exhaust at the end of flange 50 and the exhaust at the side of cylinder liner 20 to reduce the exhaust loss of the compressor, as follows:
  • At least one flange 50 of the two flanges 50 is provided with a first axial exhaust hole 511
  • at least one of the two flanges 50 is provided with a second axial exhaust hole 511
  • Exhaust hole 512 wherein, at least one of the two axial ends of the cylinder liner 20 has an oblique cutout 27 at the edge of the inner circle, and the oblique cutout 27 is connected to the first axial exhaust hole 511, and the side wall surface of the cylinder liner 20
  • the inner circle edge of at least one of the two axial ends of the cylinder liner 20 has an oblique cutout 27.
  • the oblique cutout 27 is connected to the first axial exhaust hole 511.
  • the side wall of the cylinder liner 20 has at least one exhaust port 22. , the exhaust port 22 is connected with the second axial exhaust hole 512, thus ensuring the exhaust reliability of the fluid machine, thereby reducing the exhaust loss of the fluid machine, and helping to improve the efficiency of the fluid machine.
  • the first axial exhaust hole 511 and the second axial exhaust hole 512 on the same flange 50 are on the same radius of the flange 50, and the second axial exhaust hole 512 Located on the outer peripheral side of the first axial exhaust hole 511 .
  • it is helpful to reduce the throttling loss, thereby improving the performance of the compressor.
  • it reduces the difficulty of designing and manufacturing the flange 50, making it easier to find and analyze the causes of subsequent abnormal situations.
  • a first axial exhaust hole 511 is opened on the flange 50 at one end of the cylinder liner 20 with the oblique cutout 27 , and the oblique cutout 27 is opposite to the first axial exhaust hole 511 . In this way, the exhaust reliability of the variable volume chamber 311 connected with the oblique cutout 27 is ensured.
  • the geometric centerline of the first axial exhaust hole 511 passes through the geometric center of the oblique cutout 27 . In this way, it is helpful to reduce the exhaust loss, thereby ensuring that the efficiency of the compressor can be optimized.
  • the projection of the slider 40 in its sliding direction is a part of a semicircle.
  • the axial projection of the slider 40 in the through hole 41 has two relatively parallel straight line segments and an arc segment connecting the ends of the two straight line segments; the exhaust port 22
  • the installation position in the circumferential direction of the cylinder liner 20 is within the angular range of (arccos(2R/B) ⁇ 2 ⁇ arccos2R/B), where R is the inner radius of the cylinder liner 20, and B is the position of the slider 40 in the through hole.
  • the distance between two relatively parallel straight line segments of the axial projection of 41 is helpful to avoid over-compression or under-compression of the compressor.
  • the angle range of ⁇ in Figure 17 is (arccos(2R/B) ⁇ 2 ⁇ arccos2R/B), that is, the exhaust port 22 can be provided within the above-mentioned range in the circumferential direction of the cylinder liner 20 .
  • an exhaust chamber 25 is provided on the outer wall of the cylinder liner 20.
  • the exhaust port 22 is connected to the exhaust chamber 25 from the inner wall of the cylinder liner 20.
  • the fluid machine also includes an exhaust valve assembly.
  • the air valve assembly is arranged in the exhaust chamber 25 and corresponding to the exhaust port 22 . In this way, the exhaust chamber 25 is used to accommodate the exhaust valve assembly, which effectively reduces the space occupied by the exhaust valve assembly, enables reasonable arrangement of components, and improves the space utilization of the cylinder liner 20 .
  • a communication hole 26 is also provided on the axial end surface of the cylinder liner 20 .
  • the communication hole 26 communicates with the exhaust chamber 25 , and the communication hole 26 communicates with the second axial exhaust hole 512 . In this way, the exhaust reliability of the cylinder liner 20 is ensured.
  • the fluid machine also includes an exhaust cover plate 70 .
  • the exhaust cover plate 70 is connected to the cylinder liner 20 and seals the exhaust chamber 25 . In this way, the exhaust cover 70 serves to separate the variable volume chamber 311 from the external space of the pump body assembly 83 .
  • the exhaust cover plate 70 is fixed on the cylinder liner 20 through fasteners.
  • the fasteners are screws.
  • the outer contour of the exhaust cover 70 is adapted to the outer contour of the exhaust chamber 25 .
  • the distance between the plane where the exhaust port 22 communicates with the exhaust chamber 25 and the axis of the cylinder liner 20 is K
  • the inner radius of the cylinder liner 20 is R, where 1mm ⁇ K-R ⁇ 5mm.
  • the strength of the cylinder liner wall at 22 is insufficient, and the subsequent high-frequency impact of the valve plate in the exhaust valve assembly can easily cause the cylinder liner wall at the exhaust port 22 to break; on the other hand, it also avoids the exhaust port caused by excessive K-R
  • the thickness of the cylinder liner wall at position 22 is too thick.
  • the cross-sectional area of the exhaust chamber 25 in the axial direction of the cylinder liner 20 is S3, the height of the exhaust chamber 25 in the axial direction of the cylinder liner 20 is N, and the displacement of the fluid machine is V, where 0.2 ⁇ (N ⁇ S3)/V ⁇ 5.
  • the unit of S3 is square millimeter
  • the unit of N is mm.
  • an exhaust chamber 25 is provided on the outer wall of the cylinder liner 20, and an exhaust chamber 25 is provided on the wall of the exhaust chamber 25.
  • the boss structure 29 and the exhaust port 22 penetrate from the inner wall of the cylinder liner 20 to the boss structure 29 and are connected with the exhaust chamber 25 .
  • the boss structure 29 has an outwardly convex structural form.
  • the thickness of the boss structure 29 in the extending direction of the exhaust port 22 is M, where 0.05mm ⁇ M ⁇ 3mm.
  • the thickness of the cylinder liner wall at the exhaust port 22 is increased to ensure that the strength of the cylinder liner wall there is sufficient; on the other hand, the opening loss of the exhaust valve plate of the exhaust valve assembly can be reduced.
  • the cross-sectional area of the cross section of the slider 40 in its sliding direction is S.
  • the cross-sectional area of the hole section of the exhaust port 22 is S1, and the volume of the single variable volume cavity 311 is V1, where 750 ⁇ V1/S1 ⁇ 3300.
  • the ratio range between the volume V1 of the single variable volume cavity 311 and the cross-sectional area S1 of the hole cross-section of the exhaust port 22 it is ensured that the cross-sectional area S1 of the hole cross-section of the exhaust port 22 can be within a reasonable range, avoiding the problem of Because the exhaust port 22 is too small, the exhaust rate is large, resulting in increased exhaust loss. This can avoid the large clearance volume caused by the exhaust port 22 being too large (see Figure 41), where V1 The unit of S1 is cubic millimeter, and the unit of S1 is square millimeter.
  • the COP in Figure 41 refers to the ratio of the compressor's cooling capacity or heating capacity to the compressor's power consumption. It is a parameter that reflects the performance and energy saving of the compressor.
  • the value range of the above-mentioned ratio V1/S1 is a ratio of numerical values without a unit.
  • the longitudinal section of the oblique cut 27 passing through the diameter of the cylinder liner 20 coincides with the longitudinal section of the exhaust port 22 passing through the diameter of the cylinder liner 20.
  • the oblique cutout 27 is set in an angular range of (arccos(2R/B) ⁇ 2 ⁇ arccos2R/B) in the circumferential direction of the cylinder liner 20, where R is the inner radius of the cylinder liner 20, and B is the sliding The distance between two relatively parallel straight line segments of the axial projection of the block 40 on the through hole 41.
  • the angle range of ⁇ in Figure 19 is (arccos(2R/B) ⁇ 2 ⁇ arccos2R/B), that is, the oblique cutout 27 can be provided within the above-mentioned range in the circumferential direction of the cylinder liner 20 .
  • the inclined direction of the oblique cutout 27 extends along the end surface of one axial end of the cylinder liner 20 close to the axis of the cylinder liner 20, and the angle between the oblique cutout 27 and the end surface of the cylinder liner 20 is ⁇ , Among them, 15° ⁇ 60°. In this way, it is helpful to reduce the exhaust loss, thereby improving the performance of the compressor.
  • the oblique cutout 27 can play a role in guiding the air flow, but the oblique cutout 27 will increase the clearance of the compressor, causing the performance of the compressor to decrease. Due to the gas The flow of gas has resistance and loss. By reasonably optimizing the angle ⁇ between the oblique cut 27 and the end surface of the cylinder liner 20, the optimal point can be found between the gas flow loss and the increase in clearance.
  • the equivalent diameter of the circle where the oblique cut 27 is located is D
  • the volume of a single variable volume cavity 311 is V1
  • 400 ⁇ V1/D ⁇ 1000 where the unit of D is mm.
  • the ratio of V1/D can satisfy: 400 ⁇ V1/D ⁇ 1000, which reduces gas flow loss and increases Find the optimal point between large gaps.
  • the value range of the above ratio V1/D is a ratio of numerical values without a unit.
  • the cross-sectional area of the hole section of the first axial exhaust port 22 is S4, and the volume of the single variable volume cavity 311 is V1, where 750 ⁇ V1/S4 ⁇ 3300. In this way, the balance between exhaust loss and clearance volume is taken into consideration to ensure that the COP of the compressor can be optimized.
  • the value range of the above-mentioned ratio V1/S4 is a ratio of numerical values without a unit.
  • the cross-sectional area of the hole section of the second axial exhaust port 22 is S2, and the volume of the single variable volume cavity 311 is V1, where 50 ⁇ V1/S2 ⁇ 250. In this way, the balance between exhaust loss and clearance volume is taken into consideration to ensure that the COP of the compressor can be optimized.
  • the value range of the above-mentioned ratio V1/S2 is a ratio of numerical values without a unit.
  • the cylinder liner 20 has a radial suction hole 21 and a suction chamber 23 , and the suction chamber 23 is connected with the radial suction hole 21 .
  • the suction chamber 23 can store a large amount of gas, so that the variable volume chamber 311 can be filled with suction air, so that the compressor can suction a sufficient amount of air, and when the suction air is insufficient, the stored gas can be supplied in time.
  • a variable volume chamber 311 is provided to ensure the compression efficiency of the compressor.
  • the suction chamber 23 is a cavity formed by being hollowed out in the radial direction on the inner wall surface of the cylinder liner 20. There may be one suction chamber 23, or there may be two upper and lower suction chambers.
  • the suction chamber 23 extends a first preset distance around the circumference of the inner wall surface of the cylinder liner 20 to form an arc-shaped suction chamber 23 . In this way, it is ensured that the volume of the suction chamber 23 is large enough to store a large amount of gas.
  • FIG. 2 Figure 10 to Figure 20, Figure 22 and Figure 24, there are two suction chambers 23.
  • the two suction chambers 23 are spaced apart along the axial direction of the cylinder liner 20.
  • the cylinder liner 20 also has a suction connection.
  • the two suction cavities 23 are both connected to the suction communication cavity 24 , and the radial suction hole 21 is connected to the suction cavity 23 through the suction communication cavity 24 . In this way, it is beneficial to increase the volume of the suction chamber 23, thereby reducing the suction pressure pulsation.
  • the suction communication cavity 24 extends along the axial direction of the cylinder liner 20 for a second preset distance, and at least one end of the suction communication cavity 24 penetrates the axial end surface of the cylinder liner 20 . In this way, it is convenient to open the suction communication cavity 24 from the end surface of the cylinder liner 20, ensuring the convenience of processing the suction communication cavity 24.
  • an exhaust port 22 is provided on the side wall of the cylinder liner 20 close to the lower flange 53, and an oblique cutout 27 is provided on the inner circle of the end of the cylinder liner 20 facing the upper flange 52.
  • the upper flange 52 has a first axial exhaust hole 511 and a second axial exhaust hole 512, wherein the exhaust port 22 passes through the exhaust chamber 25, the communication hole 26 and the second axial exhaust hole. 512 is connected, and the oblique cutout 27 is connected with the first axial exhaust hole 511.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that, as shown in Figure 28, the exhaust port 22 on the side wall of the cylinder liner 20 is close to the upper flange 52, and there is an inner circle at the end of the cylinder liner 20 facing the lower flange 53. Oblique cutout 27, at the same time, the lower flange 53 has a first axial exhaust hole 511, and the upper flange 52 has a second axial exhaust hole 512, wherein the exhaust port 22 passes through the exhaust cavity 25 and the communication hole. 26 is connected with the second axial exhaust hole 512, and the oblique cutout 27 is connected with the first axial exhaust hole 511.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that, as shown in Figure 29, the exhaust port 22 on the side wall of the cylinder liner 20 is close to the upper flange 52, and the inner circle of the end of the cylinder liner 20 facing the lower flange 53 is provided with Oblique cutout 27, at the same time, the lower flange 53 has a first axial exhaust hole 511 and a second axial exhaust hole 512, wherein the exhaust port 22 passes through the exhaust chamber 25, the communication hole 26 and the second axial exhaust hole 511. The exhaust hole 512 is connected, and the oblique cutout 27 is connected with the first axial exhaust hole 511 .
  • the exhaust port 22 is provided on the side wall of the cylinder liner 20 close to the upper flange 52 , and the inner circle of the end of the cylinder liner 20 facing the upper flange 52 is opened.
  • the upper flange 52 and The lower flange 53 has a first axial exhaust hole 511 and a second axial exhaust hole 512, wherein the exhaust port 22 on the upper side of the cylinder liner 20 communicates with the upper flange through the exhaust chamber 25, the communication hole 26
  • the second axial exhaust hole 512 on the upper flange 52 is connected, and the oblique cutout 27 on the upper end surface of the cylinder liner 20 is connected with the first axial exhaust hole 511 on the upper flange 52; the exhaust port 22 on the lower side of the cylinder liner 20 passes through
  • the exhaust chamber 25 and the communication hole 26 are connected with the second axial exhaust hole 512 on the lower flange 53 , and the oblique cutout 27 on the lower end surface of the cylinder liner 20 is connected with the first axial exhaust hole 511 on the lower flange 53 .
  • the cylinder liner 20 has two radial suction holes 21 , and the two radial suction holes 21 are spaced apart along the axial direction of the cylinder liner 20 .
  • the two radial suction holes 21 are respectively connected with the suction chamber 23 on the corresponding side.
  • the cylinder liner 20 has two radial suction holes 21, and the two radial suction holes 21 are spaced apart along the axial direction of the cylinder liner 20.
  • the two radial suction holes 21 are respectively connected with the suction chamber 23 on the corresponding side.
  • the cylinder liner 20 has two radial suction holes 21, and the two radial suction holes 21 are spaced apart along the axial direction of the cylinder liner 20.
  • the two radial suction holes 21 are respectively connected with the suction chamber 23 on the corresponding side.
  • the cylinder liner 20 has two radial suction holes 21, and the two radial suction holes 21 are spaced apart along the axial direction of the cylinder liner 20.
  • the two radial suction holes 21 are respectively connected with the suction chamber 23 on the corresponding side.
  • the upper flange 52 and the lower flange 53 may also be used for air suction through the flange 50 , or one of the two flanges 50 may be used for suction. Inhale and match the cylinder liner 20 to inhale.
  • spatially relative terms can be used here, such as “on", “on", “on the upper surface of", “above”, etc., to describe what is shown in the figure.
  • the exemplary term “over” may include both orientations “above” and “below.”
  • the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种流体机械和换热设备。流体机械包括曲轴(10)、缸套(20)、交叉槽结构(30)、滑块(40)和两个法兰(50),曲轴(10)有两个偏心部(11);曲轴(10)与缸套(20)偏心且偏心距离固定;交叉槽结构(30)可转动地设在缸套(20)内,交叉槽结构(30)的两个限位通道(31)沿轴向顺次设置,限位通道(31)垂直于曲轴(10)的轴向延伸;两个偏心部(11)对应伸入两个滑块(40)的两个通孔(41)内,至少一个法兰(50)有第一轴向排气孔(511),至少一个法兰(50)有第二轴向排气孔(512);缸套(20)至少一端的内圆的边缘处具有斜切口(27),斜切口(27)与第一轴向排气孔(511)连通,缸套(20)的侧壁面有至少一个排气口(22),排气口(22)与第二轴向排气孔(512)连通。该流体机械能效较高,噪音较小,运行稳定。

Description

流体机械和换热设备
相关申请
本申请要求2022年05月23日申请的,申请号为202210565477.9,名称为“流体机械和换热设备”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及换热系统技术领域,具体而言,涉及一种流体机械和换热设备。
背景技术
相关技术中的流体机械包括压缩机和膨胀机等。以压缩机为例。
根据国家节能环保政策及消费者对空调舒适性要求,空调行业一直在追求高效和低噪。压缩机作为空调的心脏,对空调的能效和噪音水平有直接影响。滚动转子式压缩机作为主流的家用空调压缩机,经过近百年发展,已相对成熟,受结构原理限制,优化空间有限。
发明内容
本发明的主要目的在于提供一种流体机械和换热设备。根据本申请的一个方面,提供了一种流体机械,包括曲轴、缸套、交叉槽结构、滑块和两个法兰,曲轴沿其轴向设置有两个偏心部;曲轴与缸套偏心设置且偏心距离固定;交叉槽结构可转动地设置在缸套内,交叉槽结构具有两个限位通道,两个限位通道沿曲轴的轴向顺次设置,限位通道的延伸方向垂直于曲轴的轴向;滑块具有通孔,滑块为两个,两个偏心部对应伸入两个滑块的两个通孔内,两个滑块对应滑动设置在两个限位通道内并形成变容积腔,变容积腔位于滑块的滑动方向上,曲轴转动以带动滑块在限位通道内往复滑动的同时与交叉槽结构相互作用,使得交叉槽结构、滑块在缸套内转动;两个法兰分别设置在缸套的轴向两端,两个法兰中至少一个法兰上开设有第一轴向排气孔,两个法兰中至少一个法兰上开设有第二轴向排气孔;其中,缸套的轴向两端中至少一端的内圆的边缘处具有斜切口,斜切口与第一轴向排气孔连通,缸套的侧壁面上具有至少一个排气口,排气口与第二轴向排气孔连通。
可选的,同一法兰上的第一轴向排气孔与第二轴向排气孔在法兰的同一半径上,且第二轴向排气孔位于第一轴向排气孔的外周侧。
可选的,缸套具有斜切口一端的法兰上开设有第一轴向排气孔,且斜切口与第一轴向排气孔相对设置。
可选的,第一轴向排气孔的几何中心线经过斜切口的几何中心。
可选的,滑块在其滑动方向上的投影为半圆形的一部分;和/或,滑块在通孔的轴向的投影具有两条相对平行的直线段以及连接两条直线段的端部的弧线段;排气口在缸套的周向上的设置位置为(arccos(2R/B)~2×arccos(2R/B))的角度范围内,其中,R为缸套的内圆半径,B为滑块在通孔的轴向的投影的两条相对平行的直线段之间的距离。
可选的,缸套的外壁上开设有排气腔,排气口由缸套的内壁连通至排气腔处,流体机械还包括排气阀组件,排气阀组件设置在排气腔内并对应排气口设置;缸套的轴向端面上还设置有连通孔,连通孔与排气腔连通,连通孔与第二轴向排气孔连通。
可选的,排气口与排气腔连通的一端所在的平面与缸套的轴线之间的距离为K,缸套的内圆半径为R,其中,1mm≦K-R≦5mm。
可选的,排气腔在缸套的轴向上的腔截面积为S3,排气腔在缸套的轴向上的高度为N,流体机械的排量为V,其中,0.2≦(N×S3)/V≦5。
可选的,缸套的外壁上开设有排气腔,排气腔的腔壁面上设置有凸台结构,排气口由缸套的内壁贯通至凸台结构处,并与排气腔连通。
可选的,凸台结构在排气口的延伸方向上的厚度为M,其中,0.05mm≦M≦3mm。
可选的,排气口的孔截面的截面积为S1,单个变容积腔的容积为V1,其中,750≦V1/S1≦3300。
可选的,斜切口的倾斜方向为沿缸套的轴向一端的端面向靠近缸套的轴线延伸,且斜切口与缸套的端面之间的夹角为α,其中,15°≦α≦60°。
可选的,斜切口所在圆的当量直径为D,单个变容积腔的容积为V1,其中,400≦V1/D≦1000。
可选的,斜切口过缸套的直径的纵截面与排气口过缸套的直径的纵截面重合。
可选的,第一轴向排气口的孔截面的截面积为S4,单个变容积腔的容积为V1,其中,750≦V1/S4≦3300;和/或,第二轴向排气口的孔截面的截面积为S2,单个变容积腔的容积为V1,其中,50≦V1/S2≦250。
可选的,排气腔贯通至缸套的外壁面,流体机械还包括排气盖板,排气盖板与缸套连接并密封排气腔。
可选的,两个偏心部之间具有第一夹角A的相位差,两个偏心部的偏心量相等,且两个限位通道的延伸方向之间具有第二夹角B的相位差,其中,第一夹角A为第二夹角B的二倍。
可选的,所述第一夹角A为160度-200度;所述第二夹角B为80度-100度。
可选的,所述滑块具有朝向所述限位通道的端部的挤压面,所述挤压面在所述滑块滑动方向上的投影面积S 滑块与所述缸套的所述排气口的面积S 之间满足:S 滑块/S 的值为8~25。
根据本申请的另一方面,提供了一种换热设备,包括流体机械,流体机械为上述的流体机械。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1示出了根据本申请的实施例一的压缩机的内部结构示意图。
图2示出了图1中的压缩机的泵体组件的结构示意图。
图3示出了图2中的泵体组件的分解结构示意图。
图4示出了图3中的曲轴、交叉槽结构、滑块的装配结构示意图。
图5示出了图4中的曲轴、交叉槽结构、滑块的剖视结构示意图。
图6示出了图4中的曲轴的轴体部分和两个偏心部的偏心量的结构示意图。
图7示出了图3中的曲轴和缸套的装配偏心量的剖视结构示意图。
图8示出了图3中的缸套和下法兰之间的偏心量的结构示意图。
图9示出了图3中的滑块在通孔轴向上的结构示意图。
图10示出了图3中的压缩机处于吸气开始时的状态结构示意图。
图11示出了图3中的压缩机处于吸气过程中的状态结构示意图。
图12示出了图3中的压缩机处于吸气结束时的状态结构示意图。
图13示出了图3中的压缩机处于压缩气体时的状态结构示意图。
图14示出了图3中的压缩机处于排气过程中的状态结构示意图。
图15示出了图3中的压缩机处于排气结束时的状态结构示意图。
图16示出了图3中的缸套的结构示意图。
图17示出了图3中的缸套的剖视结构示意图,该图中,示出了排气口在缸套的周向上的设置角度范围。
图18示出了图3中的缸套的剖视结构示意图,该图中,示出了K与R的关系示意图。
图19示出了图3中的缸套的剖视结构示意图,该图中,示出了斜切口在缸套的周向上的设置角度范围。
图20示出了图3中的缸套的另一个视角的剖视结构示意图,该图中,示出了斜切口与缸套的端面之间的夹角。
图21示出了图3中的上法兰的俯视视角的结构示意图。
图22示出了图2中的泵体组件的另一个视角的剖视结构示意图,该图中,示出了曲轴与缸套之间的装配偏心量为e。
图23示出了图3中的缸套的排气腔侧的结构示意图。
图24示出了图2中的缸套的剖视结构示意图,该图中,省略了交叉槽结构、滑块和曲轴。
图25示出了根据本申请的一种可选实施例的缸套的排气腔侧的结构示意图,该图中,排气口处具有凸台结构。
图26示出了图25中的缸套的部分剖视结构示意图。
图27示出了图3中的滑块在其滑动方向上的横截面的结构示意图。
图28示出了根据本申请的实施例二的泵体组件的结构示意图。
图29示出了根据本申请的实施例三的泵体组件的结构示意图。
图30示出了根据本申请的实施例四的泵体组件的结构示意图。
图31示出了根据本申请的实施例五的泵体组件的结构示意图。
图32示出了根据本申请的实施例六的泵体组件的结构示意图。
图33示出了根据本申请的实施例七的泵体组件的结构示意图。
图34示出了根据本申请的实施例八的泵体组件的结构示意图。
图35示出了根据本申请的一种可选实施例的压缩机运行的机构原理示意图。
图36示出了图35中的压缩机运行的机构原理示意图。
图37示出了相关技术中的压缩机运行的机构原理示意图。
图38示出了相关技术中改进后的压缩机运行的机构原理示意图。
图39示出了图38中的压缩机运行的机构原理示意图,该图中,示出了驱动轴驱动滑块旋转的力臂。
图40示出了图38中的压缩机运行的机构原理示意图,该图中,限位槽结构的中心和偏心部的中心重合。
图41示出了压缩机的排气损失、COP、余隙容积随V1/S1的变化曲线示意图。
其中,上述附图包括以下附图标记:
10、曲轴;11、偏心部;12、轴体部分;20、缸套;21、径向吸气孔;22、排气口;23、吸气腔;24、吸气连通腔;25、排气腔;26、连通孔;27、斜切口;29、凸台结构;30、交叉槽结构;31、限位通道;311、变容积腔;32、中心孔;40、滑块;41、通孔;42、挤压面;50、法兰;511、第一轴向排气孔;512、第二轴向排气孔;52、上法兰;53、下法兰;70、排气盖板;80、分液器部件;81、壳体组件;82、电机组件;83、泵体组件;84、上盖组件;85、下盖组件。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
相关技术中,如图37所示,基于十字滑块机构提出了一种压缩机运行机构原理,即,以点O 1作为气缸中心、点O 2作为驱动轴中心、点O 3作为滑块中心,气缸与驱动轴偏心设置,其中,滑块中心O 3在直径为O 1O 2的圆上作圆周运动。
上述的运行机构原理中,气缸中心O 1和驱动轴中心O 2作为运动机构的两个旋转中心,同时,线段O 1O 2的中点O 0作为滑块中心O 3的虚拟中心,使得滑块相对于气缸作往复运动的同时,滑块还相对于驱动轴作往复运动。
由于线段O 1O 2的中点O 0为虚拟中心,无法设置平衡系统,导致压缩机高频振动特性恶化的问题,在上述运行机构原理的基础上,如图38所示,提出了一种以O 0作为驱动轴中心的运动机构,即,气缸中心O 1和驱动轴中心O 0作为运动机构的两个旋转中心,驱动轴具有偏心部,滑块与偏心部同轴设置,驱动轴与气缸的装配偏心量等于偏心部的偏心量,使得滑块中心O 3以驱动轴中心O 0为圆心并以O 1O 0为半径做圆周运动。
对应的提出了一套运行机构,包括气缸、限位槽结构、滑块和驱动轴,其中,限位槽结构可转动地设置在气缸内,且气缸与限位槽结构同轴设置,即,气缸中心O 1也是限位槽结构的中心,滑块相对于限位槽结构往复运动,滑块与驱动轴的偏心部同轴装配,滑块绕驱动轴的轴体部分做圆周运动,具体地运动过程为:驱动轴转动,带动滑块绕驱动轴的轴体部分的中心公转,滑块同时相对于偏心部自转,且滑块在限位槽结构的限位槽内往复运动,并推动限位槽结构旋转。
但是,如图39所示,驱动轴驱动滑块旋转的力臂L的长度为L=2e×cosθ×cosθ,其中,e为偏心部的偏心量,θ为O 1O 0连线与滑块在限位槽内滑动方向之间的夹角。
如图40所示,当气缸中心O 1(即,限位槽结构的中心)和偏心部的中心重合时,驱动轴的驱动力的合力经过限位槽结构的中心,即,施加在限位槽结构上的转矩为零,限位槽结构无法转动,此时的运动机构处于死点位置,无法驱动滑块旋转。
基于此,本申请提出了一种全新的具备两个限位通道的交叉槽结构和双滑块的机构原理,并基于该原理构建了一种全新的压缩机,该压缩机具备能效高、噪音小的特点,下面以压缩机为例,具体介绍基于具备两个限位通道的交叉槽结构和双滑块的流体机械。
为了解决相关技术中的压缩机的能效较低、噪音较大的问题,本申请提供了一种流体机械、换热设备和流体机械的运行方法,其中,换热设备包括下述的流体机械,而流体机械采用下述的运行方法运行。
本申请实施例中的流体机械包括曲轴10、缸套20、交叉槽结构30和滑块40,其中,曲轴10沿其轴向设置有两个偏心部11,两个偏心部11之间具有第一夹角A的相位差,两个偏心部11的偏心量相等;曲轴10与缸套20偏心设置且偏心距离固定;交叉槽结构30可转动地设置在缸套20内,交叉槽结构30具有两个限位通道31,两个限位通道31沿曲轴10的轴向顺次设置,限位通道31的延伸方向垂直于曲轴10的轴向,且两个限位通道31的延伸方向之间具有第二夹角B的相位差,其中,第一夹角A为第二夹角B的二倍;滑块40具有通孔41,滑块40为两个,两个偏心部11对应伸入两个滑块40的两个通孔41内,两个滑块40对应滑动设置在两个限位通道31内并形成变容积腔311,变容积腔311位于滑块40的滑动方向上,曲轴10转动以带动滑块40在限位通道31内往复滑动的同时与交叉槽结构30相互作用,使得交叉槽结构30、滑块40在缸套20内转动。
通过将交叉槽结构30设置成具有两个限位通道31的结构形式,并对应设置两个滑块40,曲轴的两个偏心部11对应伸入两个滑块40的两个通孔41内,同时,两个滑块40对应滑动设置在两个限位通道31内并形成变容积腔311,由于两个偏心部11之间的第一夹角A为两个限位通道31的延伸方向之间的第二夹角B的二倍,这样,当两个滑块40中的一个处于死点位置时,即,与处于死点位置处的滑块40对应的偏心部11的驱动转矩为0,处于死点位置处的滑块40无法继续旋转,而此时两个偏心部11中的另一个偏心部11驱动对应的滑块40的驱动转矩为最大值,确保具有最大驱动转矩的偏心部11能够正常驱动对应的滑块40旋转,从而通过该滑块40来带动交叉槽结构30转动,进而通过交叉槽结构30带动处于死点位置处的滑块40继续旋转,实现了流体机械的稳定运行,避开了运动机构的死点位置,提升了流体机械的运动可靠性,从而确保换热设备的工作可靠性。
此外,由于本申请实施例提供的流体机械能够稳定运行,即,确保了压缩机的能效较 高、噪音较小,从而确保换热设备的工作可靠性。
在本申请实施例中,第一夹角A和第二夹角B均不为零。
如图35和图36所示,当上述的流体机械运行时,曲轴10绕曲轴10的轴心O 0自转;交叉槽结构30绕曲轴10的轴心O 0公转,曲轴10的轴心O 0与交叉槽结构30的轴心O 1偏心设置且偏心距离固定;第一个滑块40以曲轴10的轴心O 0为圆心做圆周运动,且第一个滑块40的中心O 3与曲轴10的轴心O 0之间的距离等于曲轴10对应的第一个偏心部11的偏心量,且偏心量等于曲轴10的轴心O 0与交叉槽结构30的轴心O 1之间的偏心距离,曲轴10转动以带动第一个滑块40做圆周运动,且第一个滑块40与交叉槽结构30相互作用并在交叉槽结构30的限位通道31内往复滑动;第二个滑块40以曲轴10的轴心O 0为圆心做圆周运动,且第二个滑块40的中心O 4与曲轴10的轴心O 0之间的距离等于曲轴10对应的第二个偏心部11的偏心量,且偏心量等于曲轴10的轴心O 0与交叉槽结构30的轴心O 1之间的偏心距离,曲轴10转动以带动第二个滑块40做圆周运动,且第二个滑块40与交叉槽结构30相互作用并在交叉槽结构30的限位通道31内往复滑动。
如上述方法运行的流体机械,构成了十字滑块机构,该运行方法采用十字滑块机构原理,其中,曲轴10的两个偏心部11分别作为第一连杆L 1和第二连杆L 2,交叉槽结构30的两个限位通道31分别作为第三连杆L 3和第四连杆L 4,且第一连杆L 1和第二连杆L 2的长度相等(请参考图35)。
如图35所示,第一连杆L 1和第二连杆L 2之间具有第一夹角A,第三连杆L 3和第四连杆L 4之间具有第二夹角B,其中,第一夹角A为第二夹角B的二倍。
如图36所示,曲轴10的轴心O 0与交叉槽结构30的轴心O 1之间的连线为连线O 0O 1,第一连杆L 1与连线O 0O 1之间具有第三夹角C,对应的第三连杆L 3与连线O 0O 1之间具有第四夹角D,其中,第三夹角C为第四夹角D的二倍;第二连杆L 2与连线O 0O 1之间具有第五夹角E,对应的第四连杆L 4与连线O 0O 1之间具有第六夹角F,其中,第五夹角E为第六夹角F的二倍;第三夹角C与第五夹角E之和是第一夹角A,第四夹角D和第六夹角F之和是第二夹角B。
进一步地,运行方法还包括滑块40相对于偏心部11的自转角速度与滑块40绕曲轴10的轴心O 0的公转角速度相同;交叉槽结构30绕曲轴10的轴心O 0的公转角速度与滑块40相对于偏心部11的自转角速度相同。
具体而言,曲轴10的轴心O 0相当于第一连杆L 1和第二连杆L 2的旋转中心,交叉槽结构30的轴心O 1相当于第三连杆L 3和第四连杆L 4的旋转中心;曲轴10的两个偏心部11分别作为第一连杆L 1和第二连杆L 2,交叉槽结构30的两个限位通道31分别作为第三连杆L 3和第四连杆L 4,且第一连杆L 1和第二连杆L 2的长度相等,这样,曲轴10转动的同时,曲轴10上的偏心部11带动对应的滑块40绕曲轴10的轴心O 0公转,同时滑块40相对于偏心部11能够自转,且二者的相对转动速度相同,由于第一个滑块40和第二个滑块40分别在两个对应的限位通道31内往复运动,并带动交叉槽结构30做圆周运动,受交叉槽结构30的两个限位通道31的限位,两个滑块40的运动方向始终具有第二夹角B的相位差,当两个滑块40中的一个处于死点位置时,用于驱动两个滑块40中的另一个的偏心部11具有最大的驱动转矩,具有最大驱动转矩的偏心部11能够正常驱动对应的滑块40旋转,从而通过该滑块40来带动交叉槽结构30转动,进而通过交叉槽结构30带动处于死点位置处的滑块40继续旋转,实现了流体机械的稳定运行,避开了运动机构的死点位置,提升了流体机械的运动可靠性,从而确保换热设备的工作可靠性。
在本申请中,偏心部11的驱动转矩的最大力臂为2e。
在该运动方法下,滑块40的运行轨迹为圆,且该圆以曲轴10的轴心O 0为圆心以连线O 0O 1为半径。
在本申请中,在曲轴10转动的过程中,曲轴10转动2圈,完成4次吸排气过程。
为了解决相关技术中的压缩机的能效较低、噪音较大的问题,本申请提供了一种流体 机械和换热设备,其中,换热设备包括流体机械,流体机械为上述和下述的流体机械。
实施例一
如图1至图27所示,流体机械还包括法兰50,法兰50设置在缸套20的轴向的端部,曲轴10与法兰50同心设置,交叉槽结构30与缸套20同轴设置,曲轴10与交叉槽结构30的装配偏心量由法兰50和缸套20相对位置关系确定,其中,法兰50通过紧固件固定在缸套20上,法兰50的轴心与缸套20内圈的轴心的相对位置通过法兰50调心控制,法兰50的轴心与缸套20内圈的轴心的相对位置决定了曲轴10的轴心和交叉槽结构30的轴心的相对位置,通过法兰50调心的本质就是使得偏心部11的偏心量等于曲轴10与缸套20的装配偏心量。
具体地,如图6所示,两个偏心部11的偏心量均等于e,如图7所示,曲轴10和缸套20之间的装配偏心量为e(由于交叉槽结构30与缸套20同轴设置,曲轴10和交叉槽结构30之间的装配偏心量即曲轴10和缸套20之间的装配偏心量),法兰50包括上法兰52和下法兰53,如图8所示,缸套20的内圈轴心与下法兰53的内圈轴心之间的距离为e,即,等于偏心部11的偏心量。
可选地,曲轴10与法兰50之间具有第一装配间隙,第一装配间隙的范围为0.005mm~0.05mm。
可选地,第一装配间隙的范围为0.01~0.03mm。
可选地,两个滑块40分别与两个偏心部11同心设置,滑块40绕曲轴10的轴心做圆周运动,通孔41的孔壁与偏心部11之间具有第一转动间隙,第一转动间隙的范围为0.005mm~0.05mm。
可选地,交叉槽结构30的外周面与缸套20的内壁面之间具有第二转动间隙,第二转动间隙的尺寸为0.005mm~0.1mm。
如图2至图7所示,曲轴10的轴体部分12一体成型,且轴体部分12仅具有一个轴心。这样,便于轴体部分12的一次成型,从而降低了轴体部分12的加工制造难度。
在本申请一个未图示的实施例中,曲轴10的轴体部分12包括沿其轴向连接的第一段和第二段,第一段与第二段同轴设置,两个偏心部11分别设置在第一段和第二段上。
可选地,第一段与第二段可拆卸地连接。这样,确保曲轴10的装配和拆卸的便捷性。
如图2至图7所示,曲轴10的轴体部分12与偏心部11一体成型。这样,便于曲轴10的一次成型,从而降低了曲轴10的加工制造难度。
在本申请一个未图示的实施例中,曲轴10的轴体部分12与偏心部11可拆卸地连接。这样,便于偏心部11的安装和拆卸。
如图3和图4所示,限位通道31的两端贯通至交叉槽结构30的外周面。这样,有利于降低交叉槽结构30的加工制造难度。
在本申请中,第一夹角A为160度-200度;第二夹角B为80度-100度。这样,只要满足第一夹角A是第二夹角B的二倍的关系即可。
可选地,第一夹角A为160度,第二夹角B为80度。
可选地,第一夹角A为165度,第二夹角B为82.5度。
可选地,第一夹角A为170度,第二夹角B为85度。
可选地,第一夹角A为175度,第二夹角B为87.5度。
可选地,第一夹角A为180度,第二夹角B为90度。
可选地,第一夹角A为185度,第二夹角B为92.5度。
可选地,第一夹角A为190度,第二夹角B为95度。
可选地,第一夹角A为195度,第二夹角B为97.5度。
在本申请中,偏心部11具有圆弧面,圆弧面的圆心角大于等于180度。这样,确保偏心部11的圆弧面能够对滑块40施加有效驱动力的作用,从而确保滑块40的运动可靠性。
如图2至图7所示,偏心部11为圆柱形。
可选地,偏心部11的近端与曲轴10的轴体部分12的外圆平齐。
可选地,偏心部11的近端突出于曲轴10的轴体部分12的外圆。
可选地,偏心部11的近端位于曲轴10的轴体部分12的外圆的内侧。
在本申请一个未图示的实施例中,滑块40包括多个子结构,多个子结构拼接后围成通孔41。
如图2至图7所示,两个偏心部11在曲轴10的轴向上间隔设置。这样,在装配曲轴10、缸套20和两个滑块40的过程中,确保两个偏心部11之间的间隔距离能够为缸套20提供装配空间,以确保装配便捷性。
如图3所示,交叉槽结构30具有中心孔32,两个限位通道31通过中心孔32连通,中心孔32的孔径大于曲轴10的轴体部分12的直径。这样,确保曲轴10能够顺利地穿过中心孔32。
可选地,中心孔32的孔径大于偏心部11的直径。这样,确保曲轴10的偏心部11能够顺利地穿过中心孔32。
如图9所示,滑块40在通孔41的轴向的投影具有两条相对平行的直线段以及连接两条直线段的端部的弧线段。限位通道31具有与滑块40滑动接触的一组相对设置的第一滑移面,滑块40具有与第一滑移面配合的第二滑移面,滑块40具有朝向限位通道31的端部的挤压面42,挤压面42作为滑块40的头部,两个第二滑移面通过挤压面42连接,挤压面42朝向变容积腔311。这样,滑块40的第二滑移面在其通孔41的轴向的投影为直线段,同时,滑块40的挤压面42在其通孔41的轴向的投影为弧线段。
具体地,挤压面42为弧面,弧面的弧心与通孔41的中心之间的距离等于偏心部11的偏心量。图9中,滑块40的通孔41中心为O 滑块,两个弧面的弧心与通孔41的中心之间的距离均为e,即,偏心部11的偏心量,图9中的X虚线表示两个弧面的弧心所在的圆。
可选地,弧面的曲率半径与缸套20的内圆的半径相等。
可选地,弧面的曲率半径与缸套20的内圆的半径具有差值,差值的范围为-0.05mm~0.025mm。
可选地,差值的范围为-0.02~0.02mm。
在本申请中,挤压面42在滑块40滑动方向上的投影面积S 滑块与缸套20的压缩排气口22的面积S 之间满足:S 滑块/S 的值为8~25。
可选地,S 滑块/S 的值为12~18。
本实施例示出的流体机械为压缩机,如图1所示,压缩机包括分液器部件80、壳体组件81、电机组件82、泵体组件83、上盖组件84和下盖组件85,其中,分液器部件80设置在壳体组件81的外部,上盖组件84装配在壳体组件81的上端,下盖组件85装配在壳体组件81的下端,电机组件82和泵体组件83均位于壳体组件81的内部,其中,电机组件82位于泵体组件83的上方,或者,电机组件82位于泵体组件83的下方。压缩机的泵体组件83包括上述的曲轴10、缸套20、交叉槽结构30、滑块40、上法兰52和下法兰53。
可选地,上述各部件通过焊接、热套、或冷压的方式连接。
整个泵体组件83的装配过程如下:下法兰53固定在缸套20上,两个滑块40分别置于对应的两个限位通道31内,曲轴10的两个偏心部11分别伸入对应的两个滑块40的两个通孔41内,再将组装好的曲轴10、交叉槽结构30和两个滑块40置于缸套20内,曲轴10的一端安装在下法兰53上,曲轴10的另一端穿过上法兰52设置,具体可参见图2和图3。
在本实施例中,滑块40、限位通道31、缸套20和上法兰52(或下法兰53)围成的封闭空间即为变容积腔311,泵体组件83共具有4个变容积腔311,在曲轴10转动的过程中,曲轴10转动2圈,单个变容积腔311完成1次吸排气过程,对压缩机而言,曲轴10转动2圈,共计完成4次吸排气过程。
进一步地,滑块40的头部的挤压面42、限位通道31的两个侧壁面和通道底面、缸套 20的部分内壁面、上法兰52的朝向缸套20一侧的部分表面(或下法兰53朝向缸套20一侧的部分表面)围成的封闭空间即为变容积腔311。
如图10至图15所示,滑块40在限位通道31内往复运动的过程中,同时相对于缸套20旋转,图10至图12中,滑块40顺时针从0度向180度转动的过程中,变容积腔311增大,在变容积腔311增大的过程中,变容积腔311与缸套20的吸气腔23连通,滑块40转动至180度时,变容积腔311的容积达到最大值,此时的变容积腔311与吸气腔23脱离,由此完成吸气作业,图13至图15中,滑块40继续沿顺时针方向从180度向360度转动的过程中,变容积腔311减小,滑块40对变容积腔311内的气体进行压缩,当滑块40转动至该变容积腔311与压缩排气口22连通,且当变容积腔311内的气体达到排气压力时,排气阀组件60的排气阀片61开启,开始排气作业,直至压缩结束后进入下一个周期。
如图10至图15所示,以M标记的点作为滑块40与曲轴10相对运动的参考点,图11表示滑块40顺时针从0度向180度转动的过程,滑块40转动的角度为θ1,对应的曲轴10转动的角度为2θ1,图13中表示滑块40继续沿顺时针方向从180度向360度转动的过程,滑块40转动的角度为180°+θ2,对应的曲轴10转动的角度为360°+2θ2,图14中表示滑块40继续沿顺时针方向从180度向360度转动的过程,且变容积腔311与压缩排气口22连通,滑块40转动的角度为180°+θ3,对应的曲轴10转动的角度为360°+2θ3,即,滑块40转1圈,对应的曲轴10转2圈,其中,θ1<θ2<θ3。
下面对压缩机的运行进行具体介绍:
如图1所示,电机组件82带动曲轴10转动,曲轴10的两个偏心部11分别驱动对应的两个滑块40运动,滑块40绕曲轴10的轴心做公转的同时,滑块40相对于偏心部11自转,且滑块40沿限位通道31往复运动,并带动交叉槽结构30在缸套20内转动,滑块40公转的同时沿限位通道31进行往复运动而构成十字滑块机构运动方式。
针对如何降低排气损失的问题,本申请通过法兰50端面排气和缸套20侧排气相结合,以降低压缩机的排气损失,具体如下:
如图1至图27所示,两个法兰50中至少一个法兰50上开设有第一轴向排气孔511,两个法兰50中至少一个法兰50上开设有第二轴向排气孔512;其中,缸套20的轴向两端中至少一端的内圆的边缘处具有斜切口27,斜切口27与第一轴向排气孔511连通,缸套20的侧壁面上具有至少一个排气口22,排气口22与第二轴向排气孔512连通。
通过将两个法兰50中至少一个法兰50上开设有第一轴向排气孔511,两个法兰50中至少一个法兰50上开设有第二轴向排气孔512;同时,缸套20的轴向两端中至少一端的内圆的边缘处具有斜切口27,斜切口27与第一轴向排气孔511连通,缸套20的侧壁面上具有至少一个排气口22,排气口22与第二轴向排气孔512连通,这样,确保流体机械的排气可靠性,从而降低流体机械的排气损失,有利于提升流体机械的效率。
如图2和图21所示,同一法兰50上的第一轴向排气孔511与第二轴向排气孔512在法兰50的同一半径上,且第二轴向排气孔512位于第一轴向排气孔511的外周侧。这样,有利于减小节流损失,从而提升压缩机的性能,此外,降低了法兰50的设计难度以及加工制造难度,后续出现异常情况便于查找原因并进行分析。
如图2和图16所示,缸套20具有斜切口27一端的法兰50上开设有第一轴向排气孔511,且斜切口27与第一轴向排气孔511相对设置。这样,确保与斜切口27连通的变容积腔311的排气可靠性。
进一步地,第一轴向排气孔511的几何中心线经过斜切口27的几何中心。这样,有利于降低排气损失,从而确保压缩机的效率能够最优。
可选的,滑块40在其滑动方向上的投影为半圆形的一部分。
如图2、图9和图17所示,滑块40在通孔41的轴向的投影具有两条相对平行的直线段以及连接两条直线段的端部的弧线段;排气口22在缸套20的周向上的设置位置为(arccos(2R/B)~2×arccos2R/B)的角度范围内,其中,R为缸套20的内圆半径,B为滑块 40在通孔41的轴向的投影的两条相对平行的直线段之间的距离。这样,通过合理地优化排气口22在缸套20的周向上的设置位置,有利于避免压缩机过压缩或者欠压缩,图17中的θ的角度范围即为(arccos(2R/B)~2×arccos2R/B),也就是说,排气口22能够在缸套20的周向上的上述范围内进行设置。
如图10至图18所示,缸套20的外壁上开设有排气腔25,排气口22由缸套20的内壁连通至排气腔25处,流体机械还包括排气阀组件,排气阀组件设置在排气腔25内并对应排气口22设置。这样,排气腔25用于容纳排气阀组件,有效减少了排气阀组件的占用空间,使得部件合理布置,提高了缸套20的空间利用率。
如图10至图18所示,缸套20的轴向端面上还设置有连通孔26,连通孔26与排气腔25连通,连通孔26与第二轴向排气孔512连通。这样,确保缸套20的排气可靠性。
进一步地,如图2所示,排气腔25贯通至缸套20的外壁面,流体机械还包括排气盖板70,排气盖板70与缸套20连接并密封排气腔25。这样,排气盖板70起到将变容积腔311与泵体组件83的外部空间隔开的作用。
可选地,排气盖板70通过紧固件固定在缸套20上。
可选地,紧固件为螺钉。
可选地,排气盖板70的外轮廓与排气腔25的外轮廓相适配。
如图18所示,排气口22与排气腔25连通的一端所在的平面与缸套20的轴线之间的距离为K,缸套20的内圆半径为R,其中,1mm≦K-R≦5mm。这样,通过合理地优化K-R的取值范围,符合压缩机的可靠性要求,一方面,避免了因K-R过小而导致排气口22处的缸套壁的厚度越薄,致使排气口22处的缸套壁的强度不足,后续排气阀组件中的阀片高频撞击容易导致排气口22处的缸套壁断裂;另一方面,还避免了因K-R过大而导致排气口22处的缸套壁的厚度过厚,虽然排气口22处的缸套壁的强度能够满足要求,但是导致了余隙容积增大,致使压缩机的能效降低幅度增大。
如图23和图24所示,排气腔25在缸套20的轴向上的腔截面积为S3,排气腔25在缸套20的轴向上的高度为N,流体机械的排量为V,其中,0.2≦(N×S3)/V≦5。这样,通过合理优化排气腔25的容积与压缩机(流体机械)的排量V的比值范围,确保排气腔25能够起到降低排气噪音和降低压缩机高速运行时的油循环率,其中,S3的单位为平方毫米,N的单位为mm。
在本实施例中,还可出了另外一个可选的实施例,如图25和图26所示,缸套20的外壁上开设有排气腔25,排气腔25的腔壁面上设置有凸台结构29,排气口22由缸套20的内壁贯通至凸台结构29处,并与排气腔25连通。这样,凸台结构29为外凸的结构形式,通过设置凸台结构29有利于减小排气阀组件的排气阀片因润滑油粘滞而导致开启损失。
进一步地,如图26所示,凸台结构29在排气口22的延伸方向上的厚度为M,其中,0.05mm≦M≦3mm。这样,一方面,增加了排气口22处的缸套壁厚度,确保该处的缸套壁的强度足够;另一方面,还能够降低排气阀组件的排气阀片的开启损失。
在本申请中,如图27所示,滑块40在其滑动方向上的横截面的截面积为S,如图22所示,交叉槽结构30的装配偏心量为e,根据压缩机运行原理可得出:单个变容积腔311的容积V1=4eS,整个压缩机的工作容积为V,且V=4V1=16eS,即,压缩机的排量V为16eS,单位为立方毫米。
在本申请中,如图23和图41所示,排气口22的孔截面的截面积为S1,单个变容积腔311的容积为V1,其中,750≦V1/S1≦3300。这样,通过合理的优化单个变容积腔311的容积V1与排气口22的孔截面的截面积S1的比值范围,确保排气口22的孔截面的截面积S1能够在合理范围内,避免了因排气口22过小而导致排气速率较大,致使排气损失增大,话能够避免了因排气口22过大而导致余隙容积较大(可参见图41),其中,V1的单位为立方毫米,S1的单位为平方毫米。
图41中的COP是指压缩机的制冷量或制热量与压缩机的功耗的比值,是反映压缩机的性能与节能的参数。
在本申请中,上述的比值V1/S1的取值范围是数值的比值,不带单位。
如图2和图19所示,斜切口27过缸套20的直径的纵截面与排气口22过缸套20的直径的纵截面重合,具体而言,如图19所示,该图示出了斜切口27在缸套20的周向上的设置位置为(arccos(2R/B)~2×arccos2R/B)的角度范围内,其中,R为缸套20的内圆半径,B为滑块40在通孔41的轴向的投影的两条相对平行的直线段之间的距离。这样,通过合理地优化斜切口27在缸套20的周向上的设置位置,有利于避免压缩机过压缩或者欠压缩,图19中的β的角度范围即为(arccos(2R/B)~2×arccos2R/B),也就是说,斜切口27能够在缸套20的周向上的上述范围内进行设置。
如图20所示,斜切口27的倾斜方向为沿缸套20的轴向一端的端面向靠近缸套20的轴线延伸,且斜切口27与缸套20的端面之间的夹角为α,其中,15°≦α≦60°。这样,有利于减小排气损失,从而提升压缩机性能,此外,斜切口27能够起到引导气流的作用,但斜切口27会增加压缩机的余隙,使得压缩机的性能降低,由于气体的流动是有阻力和损失的,通过合理地优化斜切口27与缸套20的端面之间的夹角α,使得气体流动损失和增大余隙之间能够找到最优点。
如图20所示,斜切口27所在圆的当量直径为D,单个变容积腔311的容积为V1,其中,400≦V1/D≦1000,其中,D的单位为mm。这样,有利于尽可能地降低排气噪音,通过合理地优化斜切口27所在圆的当量直径D,使得V1/D的比值能够满足:400≦V1/D≦1000,在减少气体流动损失和增大余隙之间找到最优点。
在本申请中,上述的比值V1/D的取值范围是数值的比值,不带单位。
如图21所示,第一轴向排气口22的孔截面的截面积为S4,单个变容积腔311的容积为V1,其中,750≦V1/S4≦3300。这样,兼顾排气损失和余隙容积两者之间的平衡,确保压缩机的COP能够达到最优。
在本申请中,上述的比值V1/S4的取值范围是数值的比值,不带单位。
如图21所示,第二轴向排气口22的孔截面的截面积为S2,单个变容积腔311的容积为V1,其中,50≦V1/S2≦250。这样,兼顾排气损失和余隙容积两者之间的平衡,确保压缩机的COP能够达到最优。
在本申请中,上述的比值V1/S2的取值范围是数值的比值,不带单位。
如图2、图10至图20、图22和图24所示,缸套20具有一个径向吸气孔21和吸气腔23,吸气腔23与径向吸气孔21连通。这样,确保吸气腔23能够蓄存有大量的气体,以使的变容积腔311能够饱满吸气,从而使得压缩机能够足量吸气,并在吸气不足时,能够及时供给蓄存气体给变容积腔311,以保证压缩机的压缩效率。
可选地,吸气腔23为在缸套20的内壁面沿径向挖空形成的腔体,吸气腔23可以是1个,也可以是上下2个。
具体而言,吸气腔23绕缸套20的内壁面的周向延伸第一预设距离,以构成弧形吸气腔23。这样,确保吸气腔23的容积足够大,以蓄存大量的气体。
如图2、图10至图20、图22和图24所示,吸气腔23为两个,两个吸气腔23沿缸套20的轴向间隔设置,缸套20还具有吸气连通腔24,两个吸气腔23均与吸气连通腔24连通,且径向吸气孔21通过吸气连通腔24与吸气腔23连通。这样,有利于增大吸气腔23的容积,从而减小吸气压力脉动。
进一步地,如图2所示,吸气连通腔24沿缸套20的轴向延伸第二预设距离,吸气连通腔24的至少一端贯通缸套20的轴向端面。这样,便于从缸套20的端面上开设吸气连通腔24,确保吸气连通腔24的加工便捷性。
在本实施例中,如图2所示,缸套20靠近下法兰53的侧壁上开设有排气口22,缸套20朝向上法兰52一端的端部内圆上开设有斜切口27,同时,上法兰52上具有第一轴向 排气孔511和第二轴向排气孔512,其中,排气口22通过排气腔25、连通孔26与第二轴向排气孔512连通,斜切口27与第一轴向排气孔511连通。
实施例二
本实施例与实施例一的区别在于,如图28所示,缸套20靠近上法兰52的侧壁上排气口22,缸套20朝向下法兰53一端的端部内圆上开设有斜切口27,同时,下法兰53上具有第一轴向排气孔511,上法兰52上具有第二轴向排气孔512,其中,排气口22通过排气腔25、连通孔26与第二轴向排气孔512连通,斜切口27与第一轴向排气孔511连通。
实施例三
本实施例与实施例一的区别在于,如图29所示,缸套20靠近上法兰52的侧壁上排气口22,缸套20朝向下法兰53一端的端部内圆上开设有斜切口27,同时,下法兰53上具有第一轴向排气孔511和第二轴向排气孔512,其中,排气口22通过排气腔25、连通孔26与第二轴向排气孔512连通,斜切口27与第一轴向排气孔511连通。
实施例四
本实施例与实施例一的区别在于,如图30所示,缸套20靠近上法兰52的侧壁上排气口22,以及缸套20朝向上法兰52一端的端部内圆上开设有斜切口27,缸套20靠近下法兰53的侧壁上排气口22,以及缸套20朝向下法兰53一端的端部内圆上开设有斜切口27,同时,上法兰52和下法兰53上均具有第一轴向排气孔511和第二轴向排气孔512,其中,缸套20上侧的排气口22通过排气腔25、连通孔26与上法兰52上的第二轴向排气孔512连通,缸套20上端面的斜切口27与上法兰52上的第一轴向排气孔511连通;缸套20下侧的排气口22通过排气腔25、连通孔26与下法兰53上的第二轴向排气孔512连通,缸套20下端面的斜切口27与下法兰53上的第一轴向排气孔511连通。
实施例五
本实施例与实施例一的区别在于,如图31所示,缸套20具有两个径向吸气孔21,且两个径向吸气孔21沿缸套20的轴向间隔设置,两个径向吸气孔21分别于对应侧的吸气腔23连通。
实施例六
本实施例与实施例二的区别在于,如图32所示,缸套20具有两个径向吸气孔21,且两个径向吸气孔21沿缸套20的轴向间隔设置,两个径向吸气孔21分别于对应侧的吸气腔23连通。
实施例七
本实施例与实施例三的区别在于,如图33所示,缸套20具有两个径向吸气孔21,且两个径向吸气孔21沿缸套20的轴向间隔设置,两个径向吸气孔21分别于对应侧的吸气腔23连通。
实施例八
本实施例与实施例四的区别在于,如图34所示,缸套20具有两个径向吸气孔21,且两个径向吸气孔21沿缸套20的轴向间隔设置,两个径向吸气孔21分别于对应侧的吸气腔23连通。
当然,在本申请的一个未图示的实施例中,也可以是通过法兰50进行上法兰52、下法兰53进行吸气,或者,两个法兰50中的一个法兰50进行吸气并搭配缸套20吸气。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法 和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种流体机械,其特征在于,包括:
    曲轴(10),所述曲轴(10)沿其轴向设置有两个偏心部(11);
    缸套(20),所述曲轴(10)与所述缸套(20)偏心设置且偏心距离固定;
    交叉槽结构(30),所述交叉槽结构(30)可转动地设置在所述缸套(20)内,所述交叉槽结构(30)具有两个限位通道(31),两个所述限位通道(31)沿所述曲轴(10)的轴向顺次设置,所述限位通道(31)的延伸方向垂直于所述曲轴(10)的轴向;
    滑块(40),所述滑块(40)具有通孔(41),所述滑块(40)为两个,两个所述偏心部(11)对应伸入两个所述滑块(40)的两个所述通孔(41)内,两个所述滑块(40)对应滑动设置在两个所述限位通道(31)内并形成变容积腔(311),所述变容积腔(311)位于滑块(40)的滑动方向上,所述曲轴(10)转动以带动所述滑块(40)在所述限位通道(31)内往复滑动的同时与所述交叉槽结构(30)相互作用,使得所述交叉槽结构(30)、所述滑块(40)在所述缸套(20)内转动;
    两个法兰(50),两个所述法兰(50)分别设置在所述缸套(20)的轴向两端,两个所述法兰(50)中至少一个所述法兰(50)上开设有第一轴向排气孔(511),两个所述法兰(50)中至少一个所述法兰(50)上开设有第二轴向排气孔(512);
    其中,所述缸套(20)的轴向两端中至少一端的内圆的边缘处具有斜切口(27),所述斜切口(27)与所述第一轴向排气孔(511)连通,所述缸套(20)的侧壁面上具有至少一个排气口(22),所述排气口(22)与所述第二轴向排气孔(512)连通。
  2. 根据权利要求1所述的流体机械,其特征在于,同一所述法兰(50)上的所述第一轴向排气孔(511)与所述第二轴向排气孔(512)在所述法兰(50)的同一半径上,且所述第二轴向排气孔(512)位于所述第一轴向排气孔(511)的外周侧。
  3. 根据权利要求1所述的流体机械,其特征在于,所述缸套(20)具有所述斜切口(27)一端的所述法兰(50)上开设有所述第一轴向排气孔(511),且所述斜切口(27)与所述第一轴向排气孔(511)相对设置。
  4. 根据权利要求3所述的流体机械,其特征在于,所述第一轴向排气孔(511)的几何中心线经过所述斜切口(27)的几何中心。
  5. 根据权利要求1所述的流体机械,其特征在于,
    所述滑块(40)在其滑动方向上的投影为半圆形的一部分;和/或,
    所述滑块(40)在所述通孔(41)的轴向的投影具有两条相对平行的直线段以及连接两条所述直线段的端部的弧线段,
    所述排气口(22)在所述缸套(20)的周向上的设置位置为(arccos(2R/B)~2×arccos(2R/B))的角度范围内,其中,R为所述缸套(20)的内圆半径,B为所述滑块(40)在所述通孔(41)的轴向的投影的两条相对平行的直线段之间的距离。
  6. 根据权利要求1所述的流体机械,其特征在于,
    所述缸套(20)的外壁上开设有排气腔(25),所述排气口(22)由所述缸套(20)的内壁连通至所述排气腔(25)处,所述流体机械还包括排气阀组件,所述排气阀组件设置在所述排气腔(25)内并对应所述排气口(22)设置;
    所述缸套(20)的轴向端面上还设置有连通孔(26),所述连通孔(26)与所述排气腔(25)连通,所述连通孔(26)与所述第二轴向排气孔(512)连通。
  7. 根据权利要求6所述的流体机械,其特征在于,所述排气口(22)与所述排气腔(25)连通的一端所在的平面与所述缸套(20)的轴线之间的距离为K,所述缸套(20)的内圆半径为R,其中,1mm≦K-R≦5mm。
  8. 根据权利要求6所述的流体机械,其特征在于,所述排气腔(25)在所述缸套(20)的轴向上的腔截面积为S3,所述排气腔(25)在所述缸套(20)的轴向上的高度为N,所 述流体机械的排量为V,其中,0.2≦(N×S3)/V≦5。
  9. 根据权利要求1所述的流体机械,其特征在于,所述缸套(20)的外壁上开设有排气腔(25),所述排气腔(25)的腔壁面上设置有凸台结构(29),所述排气口(22)由所述缸套(20)的内壁贯通至所述凸台结构(29)处,并与所述排气腔(25)连通。
  10. 根据权利要求9所述的流体机械,其特征在于,所述凸台结构(29)在所述排气口(22)的延伸方向上的厚度为M,其中,0.05mm≦M≦3mm。
  11. 根据权利要求1所述的流体机械,其特征在于,所述排气口(22)的孔截面的截面积为S1,单个所述变容积腔(311)的容积为V1,其中,750≦V1/S1≦3300。
  12. 根据权利要求1所述的流体机械,其特征在于,所述斜切口(27)的倾斜方向为沿所述缸套(20)的轴向一端的端面向靠近所述缸套(20)的轴线延伸,且所述斜切口(27)与所述缸套(20)的端面之间的夹角为α,其中,15°≦α≦60°。
  13. 根据权利要求1所述的流体机械,其特征在于,所述斜切口(27)所在圆的当量直径为D,单个所述变容积腔(311)的容积为V1,其中,400≦V1/D≦1000。
  14. 根据权利要求1所述的流体机械,其特征在于,所述斜切口(27)过所述缸套(20)的直径的纵截面与所述排气口(22)过所述缸套(20)的直径的纵截面重合。
  15. 根据权利要求1所述的流体机械,其特征在于,
    所述第一轴向排气口(22)的孔截面的截面积为S4,单个所述变容积腔(311)的容积为V1,其中,750≦V1/S4≦3300;和/或,
    所述第二轴向排气口(22)的孔截面的截面积为S2,单个所述变容积腔(311)的容积为V1,其中,50≦V1/S2≦250。
  16. 根据权利要求6所述的流体机械,其特征在于,所述排气腔(25)贯通至所述缸套(20)的外壁面,所述流体机械还包括排气盖板(70),所述排气盖板(70)与所述缸套(20)连接并密封所述排气腔(25)。
  17. 根据权利要求1至16中任一项所述的流体机械,其特征在于,两个所述偏心部(11)之间具有第一夹角(A)的相位差,两个所述偏心部(11)的偏心量相等,且两个所述限位通道(31)的延伸方向之间具有第二夹角(B)的相位差,其中,所述第一夹角(A)为所述第二夹角(B)的二倍。
  18. 根据权利要求17所述的流体机械,其特征在于,所述第一夹角(A)为160度-200度;所述第二夹角(B)为80度-100度。
  19. 根据权利要求1至18中任一项所述的流体机械,其特征在于,所述滑块(40)具有朝向所述限位通道(31)的端部的挤压面(42),所述挤压面(42)在所述滑块(40)滑动方向上的投影面积S 滑块与所述缸套(20)的所述排气口(22)的面积S 之间满足:S 滑块/S 的值为8~25。
  20. 一种换热设备,包括流体机械,其特征在于,所述流体机械为权利要求1至19中任一项所述的流体机械。
PCT/CN2022/140989 2022-05-23 2022-12-22 流体机械和换热设备 WO2023226415A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210565477.9 2022-05-23
CN202210565477.9A CN117145768A (zh) 2022-05-23 2022-05-23 流体机械和换热设备

Publications (1)

Publication Number Publication Date
WO2023226415A1 true WO2023226415A1 (zh) 2023-11-30

Family

ID=88901348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140989 WO2023226415A1 (zh) 2022-05-23 2022-12-22 流体机械和换热设备

Country Status (2)

Country Link
CN (1) CN117145768A (zh)
WO (1) WO2023226415A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1133014A (fr) * 1955-06-30 1957-03-20 Compresseur-pulsateur à basses pressions pour fluides
JPS59155580A (ja) * 1983-02-25 1984-09-04 Hitachi Ltd 容量制御型圧縮機
US6352418B1 (en) * 1999-05-12 2002-03-05 Hitachi, Ltd. Displacement type fluid machine
CN106438359A (zh) * 2015-08-07 2017-02-22 珠海格力节能环保制冷技术研究中心有限公司 压缩机、换热设备和压缩机的运行方法
CN106704183A (zh) * 2015-08-07 2017-05-24 珠海格力节能环保制冷技术研究中心有限公司 流体机械、换热设备和流体机械的运行方法
CN106704182A (zh) * 2015-08-07 2017-05-24 珠海格力节能环保制冷技术研究中心有限公司 流体机械、换热设备和流体机械的运行方法
CN106704181A (zh) * 2015-08-07 2017-05-24 珠海格力节能环保制冷技术研究中心有限公司 流体机械、换热设备和流体机械的运行方法
CN111963435A (zh) * 2020-07-24 2020-11-20 珠海格力电器股份有限公司 一种压缩机和空调器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1133014A (fr) * 1955-06-30 1957-03-20 Compresseur-pulsateur à basses pressions pour fluides
JPS59155580A (ja) * 1983-02-25 1984-09-04 Hitachi Ltd 容量制御型圧縮機
US6352418B1 (en) * 1999-05-12 2002-03-05 Hitachi, Ltd. Displacement type fluid machine
CN106438359A (zh) * 2015-08-07 2017-02-22 珠海格力节能环保制冷技术研究中心有限公司 压缩机、换热设备和压缩机的运行方法
CN106704183A (zh) * 2015-08-07 2017-05-24 珠海格力节能环保制冷技术研究中心有限公司 流体机械、换热设备和流体机械的运行方法
CN106704182A (zh) * 2015-08-07 2017-05-24 珠海格力节能环保制冷技术研究中心有限公司 流体机械、换热设备和流体机械的运行方法
CN106704181A (zh) * 2015-08-07 2017-05-24 珠海格力节能环保制冷技术研究中心有限公司 流体机械、换热设备和流体机械的运行方法
CN111963435A (zh) * 2020-07-24 2020-11-20 珠海格力电器股份有限公司 一种压缩机和空调器

Also Published As

Publication number Publication date
CN117145768A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
WO2017024866A1 (zh) 压缩机、换热设备和压缩机的运行方法
WO2017024863A1 (zh) 流体机械、换热设备和流体机械的运行方法
WO2017024867A1 (zh) 压缩机、换热设备和压缩机的运行方法
WO2017024868A1 (zh) 流体机械、换热设备和流体机械的运行方法
WO2017024862A1 (zh) 流体机械、换热设备和流体机械的运行方法
WO2023103874A1 (zh) 流体机械、换热设备、流体机械的运行方法
WO2023226415A1 (zh) 流体机械和换热设备
JP7066012B2 (ja) ポンプ本体ユニット、流体機械、及び熱交換装置
WO2023226414A1 (zh) 流体机械和换热设备
WO2023226409A1 (zh) 流体机械和换热设备
WO2023226413A1 (zh) 流体机械和换热设备
WO2023226411A1 (zh) 流体机械和换热设备
WO2023103871A1 (zh) 流体机械和换热设备
WO2023103876A1 (zh) 流体机械和换热设备
WO2023226407A1 (zh) 流体机械和换热设备
WO2023103863A1 (zh) 流体机械、换热设备和流体机械的运行方法
WO2023103872A1 (zh) 流体机械、换热设备和流体机械的运行方法
US10774834B2 (en) Spherical compressor
CN117145765A (zh) 流体机械和换热设备
CN117145769A (zh) 流体机械和换热设备
CN117145770A (zh) 流体机械和换热设备
US11566619B2 (en) Rotary cylinder piston compressor pump and compressor with rotary cylinder piston compressor pump
CN116241467A (zh) 具有轴承的流体机械和换热设备
CN116241468A (zh) 具有轴承的流体机械和换热设备
CN116241469A (zh) 具有轴承的流体机械和换热设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943600

Country of ref document: EP

Kind code of ref document: A1