WO2024004650A1 - 導波モード共鳴格子、光学部材、光学製品、及び導波モード共鳴格子の製造方法 - Google Patents

導波モード共鳴格子、光学部材、光学製品、及び導波モード共鳴格子の製造方法 Download PDF

Info

Publication number
WO2024004650A1
WO2024004650A1 PCT/JP2023/022040 JP2023022040W WO2024004650A1 WO 2024004650 A1 WO2024004650 A1 WO 2024004650A1 JP 2023022040 W JP2023022040 W JP 2023022040W WO 2024004650 A1 WO2024004650 A1 WO 2024004650A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
layer
waveguide
lattice
periodic
Prior art date
Application number
PCT/JP2023/022040
Other languages
English (en)
French (fr)
Inventor
義明 金森
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Publication of WO2024004650A1 publication Critical patent/WO2024004650A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to a waveguide mode resonance grating and an optical member or optical product using the same.
  • the present invention also relates to a method of manufacturing a guided mode resonant grating.
  • Structural color refers to the coloring phenomenon caused by microstructures at or below the wavelength of light, and unlike dyes and pigments, it has the characteristic of not easily fading due to aging. Color phenomena include thin film interference, multilayer film interference, diffraction, diffraction grating, scattering, and wavelength dispersion. These can also be found in the natural world, such as the wings of beetles, the scales of morpho butterflies, peacock feathers, seashells, and opals.
  • a color filter is an optical device that separates light by reflecting or transmitting light in a specific wavelength range.
  • Color filters are used in image sensors such as CCD (Charge-Coupled Device) image sensors and display devices such as liquid crystal displays (LCDs).
  • Color filters generally utilize the ability of dyes and pigments to absorb light in a specific wavelength range.
  • a guided-mode resonant grating (for example, Patent Document 1) is attracting attention as an optical element that is expected to exhibit the above-mentioned structural colors and be applied to color filters.
  • GMRG is a sub-wavelength grating wavelength selection filter. Theoretically, it has a reflectance of 100% in a narrow band.
  • a subwavelength grating is a diffraction grating whose period is shortened to below the wavelength of light. The order of the diffracted waves is suppressed, and only the 0th-order transmitted wave and reflected wave are generated.
  • GMRG can change reflectance and transmittance characteristics by controlling the grating period, grating width, etc., and its application to wavelength selection filters for optical communications, for example, has been reported.
  • a GMRG wavelength selection filter exhibits the same wavelength selectivity with a smaller number of laminated layers than a conventional thin film laminated wavelength selection filter, and more sophisticated optical design is possible by increasing the number of laminated layers.
  • optical characteristics are determined by the grating period and grating width, it is possible to fabricate multiple wavelength selective elements on the same substrate with various wavelength selective characteristics depending on the patterning of the grating even if the grating has the same height. It is possible.
  • GMRG 1 The basic configuration of GMRG is shown in Figure 1.
  • a layer made of a high refractive index material 12 is arranged on a substrate made of a low refractive index material 11, and the layer made of the high refractive index material has a grating with a constant period by nanoimprinting etc. (subwavelength grating) is formed. That is, a substrate made of a low refractive index material 11, a grating layer made of a high refractive index material 12, and a waveguide layer made of the high refractive index material 12 located between the substrate and the grating layer. It has three functional layers with different physical characteristics.
  • the GMRG 1 having this structure allows light of various wavelengths incident from the grating layer side to be filtered by controlling the grating period ⁇ and fill factor (w/ ⁇ ) (FIG. 2).
  • conventional GMRG requires a combination of a low refractive index material and a high refractive index material. This difference in refractive index characteristics is usually caused by differences in the physical and chemical properties of the materials, so conventional GMRG has a problem in that it is difficult to obtain sufficient interlayer adhesion. Furthermore, in terms of manufacturing GMRG, there is a problem in that it is difficult to form the layer structure in an integrated manner.
  • each functional layer of GMRG is made of a single material, each functional layer in conventional GMRG is We have discovered that by adopting a new laminated structure that is different from the laminated structure of , it is possible to provide a GMRG that selectively and highly efficiently reflects light of a desired wavelength.
  • the present invention has been completed after further studies based on this knowledge.
  • Waveguide mode resonance has a laminated structure of a grating layer and a waveguide layer, the refractive index difference between the grating layer and the waveguide layer is 0.1 or less, and light is incident from the waveguide layer side. lattice.
  • the waveguide mode resonant grating according to [1] which includes a substrate, the grating layer, and the waveguide layer in this order.
  • [4] The guided mode resonance grating according to [2], wherein the constituent material of the substrate, the constituent material of the grating layer, and the constituent material of the waveguide layer are the same.
  • [5] The guided mode resonant grating according to any one of [1] to [4], wherein the grating layer has a grating period of 0.26 to 0.60 ⁇ m.
  • [6] The guided mode resonance grating according to any one of [1] to [5], wherein the grating layer has a thickness of 0.20 ⁇ m or more.
  • [7] The guided mode resonant grating according to any one of [1] to [6], wherein the grating layer has a volume occupancy of 0.15 to 0.65.
  • a waveguide layer is formed on the lattice surface of the lattice periodic structure by a pressure bonding method, a spin coating method, a vapor deposition method, a sputtering method, or a method in which resin particles larger than the width of the opening of the lattice periodic structure are deposited on the lattice periodic structure.
  • the GMRG of the present invention has a new laminated structure that is different from conventional GMRGs, and is made of a single material or a combination of materials with a small refractive index difference, and can selectively transmit light of a desired wavelength. can be reflected with high efficiency. Furthermore, in the GMRG of the present invention, since the grating layer is located inside the waveguide layer without being exposed on the incident light side surface, the unevenness of the grating layer is not directly exposed to scratching or wiping during cleaning, for example. It also has excellent durability.
  • the optical member or product of the present invention has the GMRG of the present invention described above, and can further improve the stability (interlayer adhesion, durability) of the GMRG laminated structure, and as a result, the reliability of the optical properties is improved. It can be further enhanced.
  • FIG. 1 is a schematic diagram showing the basic configuration of a conventional waveguide mode resonance grating.
  • FIG. 2 is a reflection peak spectrum showing that a conventional guided mode resonant grating can filter light of various wavelengths by controlling the grating period ⁇ and fill factor (w/ ⁇ ).
  • FIG. 3 is a schematic diagram showing a preferred embodiment of the guided mode resonant grating of the present invention.
  • FIG. 4 is a graph showing the dependence of the reflection spectrum on the grating period ( ⁇ ) in a preferred embodiment of the guided mode resonant grating of the present invention.
  • FIG. 5 is a graph showing the grating width (w) dependence of the reflection spectrum in a preferred embodiment of the guided mode resonant grating of the present invention.
  • FIG. 6 is a graph showing the dependence of the reflection spectrum on the waveguide layer thickness (h 1 ) in a preferred embodiment of the waveguide mode resonant grating of the present invention.
  • FIG. 7 is a graph showing the grating layer thickness (h 2 ) dependence of the reflection spectrum in a preferred embodiment of the guided mode resonant grating of the present invention.
  • FIG. 8 shows an example of a reflection spectrum when parameters that achieve high reflection efficiency for each of RGB are adopted in a preferred embodiment of the guided mode resonant grating of the present invention.
  • FIG. 9 shows the volume occupancy dependence of the reflection spectrum in a preferred embodiment of the guided mode resonant grating of the present invention.
  • FIG. 10 shows the dependence of the reflection spectrum on the grating layer thickness (h 2 ) in a preferred embodiment of the guided mode resonant grating of the present invention.
  • FIG. 11 shows the dependence of the reflection spectrum on the waveguide layer thickness (h 1 ) in a preferred embodiment of the waveguide mode resonant grating of the present invention.
  • FIG. 12 shows the dependence of the reflection spectrum on the grating period ( ⁇ ) in a preferred embodiment of the guided mode resonant grating of the present invention.
  • FIG. 3 is an explanatory diagram showing an example of a method for manufacturing a waveguide mode resonance grating according to the present invention.
  • FIG. 3 is an explanatory diagram showing an example of a method for manufacturing a waveguide mode resonance grating according to the present invention.
  • FIG. 3 is an explanatory diagram showing an example of a method for manufacturing a waveguide mode resonance grating according to the present invention.
  • FIG. 3 is an explanatory diagram showing an example of a method for manufacturing a waveguide mode resonance grating according to the present invention.
  • FIG. 3 is an explanatory diagram showing an example of a method for manufacturing a waveguide mode resonance grating according to the present invention.
  • FIG. 3 is an explanatory diagram showing an example of a method for manufacturing a waveguide mode resonance grating according to the present invention.
  • FIG. 3 is an explanatory diagram showing an example of a method for manufacturing a waveguide mode resonance grating according to the present invention.
  • FIG. 2 is an explanatory diagram illustrating a method of calculating a filling factor (FF).
  • FF filling factor
  • the guided mode resonance grating (GMRG) of the present invention has a laminated structure of a grating layer and a waveguide layer, and has a refractive index difference (meaning the absolute value of the refractive index difference at 25°C) between the grating layer and the waveguide layer. ) is 0.1 or less. That is, the GMRG of the present invention is composed of a single material or a combination of materials having similar characteristics with a small difference in refractive index. The GMRG of the present invention is used in a form in which light is incident from the waveguide layer side.
  • the GMRG of the present invention has a structure including a substrate, the grating layer, and the waveguide layer in this order.
  • the refractive index difference between the substrate and the grating layer is not particularly limited.
  • the substrate may be made of a transparent material such as transparent resin, silica, quartz, etc., and may be chromatic or achromatic. Considering the improvement of manufacturing efficiency and interlayer adhesion, it is preferable that the substrate and the lattice layer have similar characteristics, and from this point of view, it is also preferable that the refractive index difference between the substrate and the lattice layer is 0.08 or less.
  • the substrate, the grating layer, and the waveguide layer are arranged in this order, and the constituent material of the substrate, the constituent material of the grating layer, and the waveguide layer are arranged in this order. All layers are made of the same material.
  • FIG. 3 is a perspective view schematically showing a preferred embodiment of the GMRG of the present invention.
  • the GMRG of the present invention has a laminated structure of a grating layer and a waveguide layer.
  • the GMRG has a substrate on the opposite side of the grating layer from the waveguide layer.
  • the substrate, grating layer, and waveguide layer are made of the same material (polymethyl methacrylate (PMMA), refractive index 1.5). Therefore, as described later, the substrate and the grating layer or the grating layer and the waveguide layer can be formed integrally.
  • PMMA polymethyl methacrylate
  • the grating period ( ⁇ ) of the grating layer, the grating width (w) of the grating layer, the thickness of the waveguide layer (h 1 ), and the thickness of the grating layer (h 2 ) were changed.
  • 4 to 7 show the results of simulating the reflection characteristics for incident light from the waveguide layer side using the RCWA (Rigorous Coupled-Wave Analysis) method.
  • RCWA Ragorous Coupled-Wave Analysis
  • DiffractMOD manufactured by Synopsys was used as numerical calculation software.
  • the setting values in the simulation are as follows.
  • the lattice shape of the lattice layer is a so-called one-dimensional shape (one-dimensional periodic structure), and cavities are formed linearly in the depth direction from the front in FIG.
  • the incident light is TE polarized light (the electric field of the incident light is parallel to the grooves of the grating).
  • the shape of the waveguide layer or substrate side of the cavity may be tapered.
  • the lattice width (w) in the one-dimensional lattice shape is an element substantially equivalent to the volume occupancy rate, which will be described later. It is the main factor that determines the effective refractive index of the grating layer (the average refractive index of the entire grating layer).
  • FIG. 8 shows the reflection spectrum with these parameters. As shown in FIG. 8, the maximum reflection efficiency in the blue region (B) is 99.9%, the maximum reflection efficiency in the green region (G) is 99.9%, and the maximum reflection efficiency in the red region (R) is 98.9%. It was 8%.
  • the waveguide layer has the function of confining light, it needs to have a higher refractive index than the surrounding medium.
  • the grating layer is made of a material with the same refractive index as the waveguide layer, but the effective refractive index is an average refractive index that depends on the volume occupancy of the grating material and the material (e.g., air) in the gap between the gratings.
  • the refractive index of the waveguide layer is higher than the effective refractive index of the grating layer, and it is considered that the condition of the magnitude relationship of the refractive index for functioning as a waveguide layer is satisfied.
  • the grating layer has wavelength selectivity and functions as an optical input/output coupler to the waveguide layer, and the optical propagation mode of the grating layer and the waveguide layer (the optical propagation mode is a near-field light from the surface of each layer). If they are close enough to overlap (approximately one wavelength), they will be optically coupled.
  • the key point of the present invention is that the light confined in the waveguide layer (the optical propagation mode of the waveguide layer is about one wavelength as near-field light, seeping out of the waveguide layer) is not optically coupled to the substrate. Therefore, by increasing the thickness of the grating layer to a certain extent, this problem could be avoided and GMRG could be realized using a single material including the substrate.
  • the substrate, the lattice layer, and the waveguide layer are made of PMMA in the same manner as above.
  • the square lattice is a lattice shape in which the holes (spaces) in the recesses are square when the lattice layer is observed in plan from the incident light side in FIG. 3 assuming that the waveguide layer is removed. If a desired reflection spectrum can be achieved by making the grating shape into a two-dimensional shape, it will be possible to eliminate polarization dependence at the time of vertical incidence, which will increase its practical advantage.
  • TE polarized light that can be used with the above software is used as the incident light.
  • the grating width (w) is changed by setting the grating period ( ⁇ ) of the grating layer to 0.340 ⁇ m, the grating layer thickness (h 2 ) to 1.00 ⁇ m, and the waveguide layer thickness (h 1 ) to 0.15 ⁇ m.
  • FIG. 9 shows the reflection spectra when the volume occupancy of the PMMA portion in the lattice layer (FF PMMA , FF is an abbreviation for filling factor) is changed.
  • volume occupancy simply means the ratio of the lattice material portion (for example, the PMMA portion) to the volume of the entire lattice layer (the lattice material portion + the space portion).
  • FF PMMA volume occupancy
  • FIG. 19 is an explanatory diagram schematically showing a periodic structure of a square grating when the grating layer is observed in a plan view from the side on which incident light enters, assuming that the waveguide layer is removed.
  • the volume occupancy (FF Air ) of the space (air) constituting the lattice layer (square lattice periodic structure) in the lattice layer is determined by the following formula (1).
  • required by the said formula (2). FF Air ( ⁇ -w)/ ⁇ (3)
  • the thickness of the grating layer is determined by setting the grating period ( ⁇ ) of the grating layer to 0.340 ⁇ m, the thickness (h 1 ) of the waveguide layer to 0.15 ⁇ m, and the grating width (w) of the grating layer to 0.108 ⁇ m.
  • FIG. 10 shows the reflection spectra when (h 2 ) is changed. As shown in FIG. 10, it can be seen that as the thickness (h 2 ) of the grating layer becomes thinner, the height of the reflection peak decreases while the position of the reflection peak remains the same. From this result, in order to achieve a high reflectance of over 95%, for example, it is necessary to set the thickness (h 2 ) of the grating layer to a certain degree and reduce the influence of the substrate on the waveguide layer. I understand.
  • the thickness of the waveguide layer is determined by setting the grating period ( ⁇ ) of the grating layer to 0.340 ⁇ m, the thickness (h 2 ) of the grating layer to 1.00 ⁇ m, and the grating width (w) of the grating layer to 0.108 ⁇ m.
  • FIG. 11 shows the reflection spectra when (h 1 ) is changed. As shown in FIG. 11, it can be seen that as the thickness (h 1 ) of the waveguide layer increases, the reflection peak wavelength shifts to the longer wavelength side.
  • the lattice of the grating layer was set as follows: the thickness of the waveguide layer (h 1 ) was 0.3 ⁇ m, the grating width (w) of the grating layer was 0.08 ⁇ m, and the thickness of the grating layer (h 2 ) was 0.5 ⁇ m.
  • FIG. 12 shows the reflection spectra when the period ( ⁇ ) is changed. As shown in FIG. 12, even if the thickness of the grating layer (h 2 ) is reduced to 0.5 ⁇ m, when the thickness of the waveguide layer (h 1 ) is increased to 0.3 ⁇ m, the ratio exceeds 98%. It was found that it is possible to achieve such excellent reflectance. It was also found that the smaller the lattice period ( ⁇ ) of the lattice layer, the more the reflection peak wavelength shifts to the lower wavelength side, and the more the peak tends to become higher and sharper.
  • the grating period ( ⁇ ) of the grating layer, the thickness of the waveguide layer (h 1 ), and the grating width of the grating layer It can be seen that by controlling the relationship between (w) and FF, it is possible to provide a GMRG that reflects light of a desired wavelength with extremely high efficiency.
  • the above study mainly focused on adjusting the reflection peak wavelength in the blue wavelength region, but by controlling the grating period ( ⁇ ), grating width (w), or FF, the reflection peak wavelength can be adjusted in the green wavelength region or red wavelength region.
  • the grating period of the grating layer can be appropriately designed according to the target reflection peak wavelength within a range that functions as the GMRG.
  • the grating period of the grating layer is preferably 0.26 to 0.60 ⁇ m, and 0.27 to 0.56 ⁇ m from the results of FIGS. 4 and 12. It is more preferable that Further, the volume occupancy of the lattice layer is preferably 0.15 to 0.65, more preferably 0.20 to 0.60, based on the results shown in FIG. Further, the thickness of the grating layer is preferably 0.20 ⁇ m or more from the results shown in FIG.
  • the thickness is 20 ⁇ m.
  • the thickness of the waveguide layer is preferably 0.05 to 1.00 ⁇ m, more preferably 0.05 to 0.90 ⁇ m, even more preferably 0.05 to 0.40 ⁇ m, and even more preferably 0.10 ⁇ m from the results shown in FIG. 0.30 ⁇ m is more preferable, and 0.20 to 0.30 ⁇ m is particularly preferable as a range in which a single peak appears.
  • the lattice shape of the lattice layer (the shape of the holes (spaces) in the recesses when observed in plan view in the same manner as above) is not particularly limited. It is also preferable that the lattice shape of the lattice layer is rectangular (in the present invention, "rectangular” includes both squares and rectangles), and in this case, square is more preferable. Note that in the present invention, the term "rectangular” means a substantially rectangular shape. For example, in addition to a shape in which all four corners are right angles, the four corners may be at an angle of approximately 90 degrees or may be rounded as long as equivalent characteristics are achieved.
  • the lattice shape of the lattice layer may be circular or elliptical.
  • the lattice shape of the lattice layer has a structure in which the unevenness is inverted from the above structure, that is, when observed in plan view in the same manner as above, the shape of the convex portions (lattice material part) is rectangular or circular as above. , an elliptical shape, etc. is also preferable.
  • FF Air in the above calculation formula becomes FF PMMA .
  • the grating layer and the waveguide layer are preferably made of resin (preferably thermoplastic resin).
  • resins include transparent resins, such as acrylic resins, polystyrene resins, ABS resins, polyethylene resins, polypropylene resins, polycarbonate resins, fluororesins, vinyl chloride resins, and nylon resins.
  • the constituent material of the substrate is not particularly limited.
  • the substrate is formed of a transparent material, examples include silica, quartz, resin, etc. etc.
  • the constituent material of the substrate examples thereof include acrylic resin, polystyrene resin, ABS resin, polyethylene resin, polypropylene resin, polycarbonate resin, fluororesin, vinyl chloride resin, nylon resin, and the like.
  • FIGS. 13 and 14 are schematic explanatory views for explaining the GMRG manufacturing method of the present invention.
  • a resist film 3 formed on a substrate 2 is patterned to form a periodic lattice structure ((a), (b) in FIG. 13), and the lattice surface of the periodic lattice structure is thermally melted.
  • a waveguide layer is formed by deforming the surface and its vicinity and joining adjacent gratings (FIG. 13(c)).
  • FIG. 14 shows the steps (b) to (c) in FIG. 13 in more detail.
  • a waveguide layer by applying heat to the upper part of the grating in a periodic grating structure, melting and deforming only the grating surface (the upper surface of the grating in FIG. 14) or its vicinity, and joining adjacent gratings together.
  • the above heating can be performed, for example, by pressing a hot plate onto the grating surface while cooling the substrate 2.
  • the surface of the lattice the tip of the lattice
  • the effective melting point or glass transition temperature becomes low. Therefore, if the entire grating is heated, the grating tips will begin to deform first.
  • a waveguide layer by heating the entire grating at a suitable temperature between the glass transition temperature and the melting point of the grating material.
  • the grating layer and the waveguide layer are made of the same material (eg, acrylic resin).
  • the substrates can also be made of the same material.
  • a resist film on a substrate is patterned in a lattice shape to form a periodic lattice structure, a resin film is further provided on the surface of the periodic lattice structure, and the resin film is
  • An example of this method is to use it as a waveguide layer. An example thereof will be explained with reference to FIG. 15.
  • a resist film 3 is applied onto a substrate 2, and the resist film is patterned into a desired lattice shape by electron beam (EB) writing to form a lattice periodic structure ((a) in FIG. 15). ), (b)).
  • EB electron beam
  • a resist (3, resin) for forming a waveguide layer is applied on the base material 5 such as silicone resin ((c) in FIG. 15).
  • the base material 5 is peeled off (FIG. 15(e)).
  • the resist film (3, resin) on the substrate 2 and the resist film (3, resin) for forming the waveguide layer are made of the same material, the grating layer and the waveguide layer will be formed of the same material (for example, acrylic resin). GMRG can be obtained. Further, the substrate 2 can also be made of the same material.
  • FIG. 16 utilizes nanoimprint technology.
  • a mold 7 is pressed onto the resin base material 6 (FIGS. 16(a) and (b)), and then the mold 7 is removed to form a lattice periodic structure on the resin base material 6 (FIG. 16(c)). ).
  • a waveguide layer (8, resin film) is formed on the grating surface of this grating periodic structure, a laminated structure (FIG. 16(d)) of the substrate, the grating layer, and the waveguide layer can be formed.
  • methods for forming the resin film that will become the waveguide layer 8 include melting and deforming only the grating surface or its vicinity and joining adjacent gratings, and a method using a resist film for forming the waveguide layer ( Examples include a method (crimping method) of compressing (for example, thermocompression bonding) a resin film).
  • the resin film that will become the waveguide layer 8 can also be formed using a spin coating method. That is, by using the centrifugal force of spin coating, the waveguide layer 8 can be formed by coating the dropped resin so as to cover the surface without completely filling the grooves (holes) of the periodic lattice structure. .
  • the resin film that will become the waveguide layer 8 can also be formed using a vapor deposition method or a sputtering method. That is, the resin particles are formed into particles by vapor deposition or sputtering, and the resin particles are attached to the periodic lattice structure from an oblique direction by, for example, tilting the resin base material on which the periodic lattice structure has been formed. It is possible to form a film so as to close the opening of the periodic grating structure without penetrating the bottom of the groove (hole), and the obtained film can function as the waveguide layer 8. Alternatively, as shown in FIG.
  • the resin film that becomes the waveguide layer 8 can be formed by depositing resin particles larger than the width of the opening of the periodic grating structure on the periodic grating structure.
  • the resin particles deposited on the periodic lattice structure are subjected to heat treatment, pressure treatment, etc., the adhesion between the resin particles and the adhesion between the resin particles and the lattice layer can be further improved.
  • a resin layer 6a is formed by coating a resin on a base material 4 such as silica or quartz, and a lattice periodic structure is formed on this resin layer 6a by nanoimprint technology as described above.
  • a laminated structure of the waveguide layer and the grating layer is formed on the base material 4 ((a) and (b) of FIG. 18).
  • a GMRG having a laminated structure of a grating layer and a waveguide layer can be obtained.
  • the side of this lattice periodic structure is bonded to a separately prepared substrate 6b by thermocompression bonding or the like (FIG. 18(c)), and then, by removing the base material 4, , a GMRG consisting of a laminated structure of a substrate, a grating layer, and a waveguide layer can be obtained ((d) in FIG. 18).
  • the GMRG of the present invention functions as a "reflection filter" that selectively reflects incident light at a desired wavelength with high efficiency. Furthermore, in the GMRG of the present invention, since the grating layer is located inside the waveguide layer without being exposed on the incident light side surface, the unevenness of the grating layer is not directly exposed to scratching or wiping during cleaning, for example. It also has excellent durability. Moreover, the GMRG of the present invention can be incorporated into an optical member.
  • optical members include, for example, structural color developing members, wavelength selection filters, dye-less paints, polarizing filters, colored glass, neutral density filters, dimming filters, fiber materials (colored), and metal materials (producing metallic colors). materials), hue control members, spectral control members, etc.
  • products or semi-finished products that include such optical members include, for example, optical sensors (robots, automobiles, IoT, wearable devices, etc.), decorative products, body coatings for automobiles, automobile components, displays, spectrometers, and communications.
  • the optical member, product, or semi-finished product of the present invention has the GMRG of the present invention described above, and can further improve the stability (interlayer adhesion, durability) of the GMRG laminated structure, and as a result, , the reliability of optical properties is further improved.
  • Waveguide mode resonance grating 11
  • Low refractive index material 12
  • High refractive index material 2
  • Substrate 3 Resist film 4
  • Base material silicon, quartz
  • Base material silicone resin
  • Resin base material 6
  • Resin layer thermoplastic resin layer
  • Resin substrate 7
  • Mold molding (mold for forming a periodic lattice structure)
  • Waveguide layer 8

Abstract

格子層と導波層との積層構造を有し、前記格子層と前記導波層との屈折率差が0.1以下であり、前記導波層側から光を入射させる導波モード共鳴格子及びその製造方法、並びに前記導波モード共鳴格子を有する光学部材ないし光学製品。

Description

導波モード共鳴格子、光学部材、光学製品、及び導波モード共鳴格子の製造方法
 本発明は、導波モード共鳴格子、及びこれを用いた光学部材ないし光学製品に関する。また、本発明は、導波モード共鳴格子の製造方法に関する。
 構造色とは、光の波長またはそれ以下の微細構造による発色現象のことを指し、色素や顔料とは異なり経年劣化による退色を生じにくい特徴がある。発色現象としては薄膜干渉、多層膜干渉、回折、回折格子、散乱、波長分散が挙げられる。これらは玉虫の翅、モルフォチョウの鱗粉、クジャクの羽、貝殻、オパールなど自然界でも見ることができる。
 カラーフィルタは特定の波長域の光を反射または透過することで、分光する光学デバイスである。カラーフィルタはCCD(Charge-Coupled Device)イメージセンサなどの撮像素子や、液晶ディスプレイ(Liquid Crystal Display:LCD)などの表示装置に利用されている。カラーフィルタは一般に、染料や顔料による特定波長域の光の吸収能を利用している。他方、上記の構造色の発現と同じように、染料や顔料を用いなくても、特定波長の光を反射するようなナノレベルの光学設計によりカラーフィルタを製造することも可能である。
 上記の構造色の発現やカラーフィルタへの応用が期待される光学素子として、導波モード共鳴格子(Guided-mode resonant grating:GMRG)(例えば特許文献1)が注目されている。GMRGはサブ波長格子の波長選択フィルタである。理論値では狭帯域で100%の反射率を持つ。サブ波長格子は、回折格子の周期を光の波長以下まで短くしたものである。回折波の次数が抑えられ、0次の透過波と反射波しか生じない。GMRGは格子周期や格子幅などを制御することによって反射率や透過率特性を変化させることができ、例えば、光通信用の波長選択フィルタへの応用が報告されている。GMRGによる波長選択フィルタは、従来の薄膜積層型波長選択フィルタと比較して、少ない積層数で同等の波長選択性を示し、積層数を増やすことでより高度な光学設計が可能となる。また、光学特性は格子周期や格子幅で決まるため、同一高さの格子であっても格子のパターニング次第で様々な波長選択特性を持つ複数の波長選択素子を同一基板上に一括製作することが可能である。
 GMRGの基本構成を図1に示す。図1に示すGMRG1では、低屈折率材料11で構成した基板上に高屈折率材料12で構成した層が配され、この高屈折率材料で構成した層にはナノインプリントなどによって一定の周期の格子(サブ波長格子)が形成されている。つまり、低屈折率材料11で構成した基板と、高屈折率材料12で構成した格子層と、基板と格子層との間に位置し、高屈折率材料12で構成した導波層という、光学的特性の異なる3つの機能層を有する。この構造のGMRG1により、格子層側から入射する種々の波長の光を、格子周期Λ及びフィルファクタ(w/Λ)を制御することによりフィルタリングすることが可能となる(図2)。
国際公開第2019/039371号
 従来のGMRGは上記の通り、低屈折率材料と高屈折率材料とを組合せることが必要である。この屈折率特性の相違は、通常は材料種の物理・化学的特性の違いに起因するため、従来のGMRGは十分な層間密着性が得られにくい問題がある。また、GMRGの製造面においても、層構成の一体的な形成が難しいという問題がある。
 本発明は、単一の材料で、あるいは屈折率差の小さな材料の組合せで構成したGMRG及びその製造方法を提供することを課題とする。また本発明は、当該GMRGを有する光学部材、及びこの光学部材を有する製品を提供することを課題とする。
 本発明者は上記課題に鑑み鋭意検討を重ねた結果、GMRGの各機能層を単一材料で構成する場合であっても、入射光が入射する側を基準として、従来のGMRGにおける各機能層の積層構成とは発想の異なる新たな積層構成を採用することにより、所望の波長の光を選択的に、高効率に反射するGMRGを提供できることを見出した。本発明は当該知見に基づきさらに検討を重ねて完成させるに至ったものである。
 本発明の上記課題は、下記の手段により解決された。
〔1〕
 格子層と導波層との積層構造を有し、前記格子層と前記導波層との屈折率差が0.1以下であり、前記導波層側から光を入射させる、導波モード共鳴格子。
〔2〕
 基板と前記格子層と前記導波層とをこの順に有する、〔1〕に記載の導波モード共鳴格子。
〔3〕
 前記格子層の構成材料と前記導波層の構成材料が同じである、〔1〕又は〔2〕に記載の導波モード共鳴格子。
〔4〕
 前記基板の構成材料と前記格子層の構成材料と前記導波層の構成材料が同じである、〔2〕に記載の導波モード共鳴格子。
〔5〕
 前記格子層の格子周期が0.26~0.60μmである、〔1〕~〔4〕のいずれかに記載の導波モード共鳴格子。
〔6〕
 前記格子層の厚さが0.20μm以上である、〔1〕~〔5〕のいずれかに記載の導波モード共鳴格子。
〔7〕
 前記格子層の体積占有率が0.15~0.65である、〔1〕~〔6〕のいずれかに記載の導波モード共鳴格子。
〔8〕
 前記導波層の厚さが0.05~1.00μmである、〔1〕~〔7〕のいずれかに記載の導波モード共鳴格子。
〔9〕
 前記格子層の周期構造が二次元周期構造である、〔1〕~〔8〕のいずれかに記載の導波モード共鳴格子。
〔10〕
 〔1〕~〔9〕のいずれかに記載の導波モード共鳴格子を有する光学部材。
〔11〕
 前記光学部材が構造色発現部材又は波長選択フィルタである、〔10〕に記載の光学部材。
〔12〕
 〔10〕又は〔11〕に記載の光学部材を有する光学製品。
〔13〕
 基板上のレジスト膜をパターニングして格子周期構造を形成し、又は、樹脂基材にモールドをプレスして格子周期構造を形成し、
 前記格子周期構造の格子表面を熱溶融して該表面及びその近傍を変形させて隣り合う格子同士を接合することにより導波層を形成することを含む、〔1〕~〔9〕のいずれかに記載の導波モード共鳴格子の製造方法。
〔14〕
 基板上のレジスト膜をパターニングして格子周期構造を形成し、又は、樹脂基材にモールドをプレスして格子周期構造を形成し、
 前記格子周期構造の格子表面に、圧着法、スピンコート法、蒸着法、スパッタ法、又は格子周期構造の開口部の幅よりも大きい樹脂粒子を格子周期構造の上に堆積させる方法により導波層を形成することを含む、〔1〕~〔9〕のいずれかに記載の導波モード共鳴格子の製造方法。
〔15〕
 基材上の樹脂層にモールドをプレスして格子周期構造を形成し、次いで前記基材層を取り除くことを含む、〔1〕~〔9〕のいずれかに記載の導波モード共鳴格子の製造方法。
〔16〕
 基材上の樹脂層にモールドをプレスして格子周期構造を形成し、該格子周期構造の側を基板上に接合し、次いで前記基材を取り除くことを含む、〔1〕~〔9〕のいずれかに記載の導波モード共鳴格子の製造方法。
 本発明のGMRGは、従来のGMRGとは発想の異なる新しい積層構成を有し、単一の材料で、あるいは屈折率差の小さな材料の組合せで構成されながらも、所望の波長の光を選択的に、高効率に反射することができる。また、本発明のGMRGは、格子層が入射光側表面に露出せずに導波層の内側に位置するため、例えばクリーニングの際に、格子層の凹凸が引っ掻きやふき取りに直接さらされることがなく、耐久性にも優れる。本発明の光学部材ないし製品は、上記の本発明のGMRGを有し、GMRGの積層構造の安定性(層間密着性、耐久性)をより高めることができ、その結果、光学特性の信頼性がより高められる。
図1は、従来の導波モード共鳴格子の基本構成を示す模式図である。 図2は、従来の導波モード共鳴格子が、格子周期Λ及びフィルファクタ(w/Λ)を制御することにより、種々の波長の光をフィルタリングできることを示す、反射ピークスペクトルである。 図3は、本発明の導波モード共鳴格子の好ましい一実施形態を示す模式図である。 図4は、本発明の導波モード共鳴格子の好ましい一実施形態において、反射スペクトルの格子周期(Λ)依存性を示したグラフである。 図5は、本発明の導波モード共鳴格子の好ましい一実施形態において、反射スペクトルの格子幅(w)依存性を示したグラフである。 図6は、本発明の導波モード共鳴格子の好ましい一実施形態において、反射スペクトルの導波層厚さ(h)依存性を示したグラフである。 図7は、本発明の導波モード共鳴格子の好ましい一実施形態において、反射スペクトルの格子層厚さ(h)依存性を示したグラフである。 図8は、本発明の導波モード共鳴格子の好ましい一実施形態において、RGBそれぞれについて高い反射効率を実現するパラメータを採用した場合の反射スペクトルの一例を示すものである。 図9は、本発明の導波モード共鳴格子の好ましい一実施形態において、反射スペクトルの体積占有率依存性を示すものである。 図10は、本発明の導波モード共鳴格子の好ましい一実施形態において、反射スペクトルの格子層厚さ(h)依存性を示すものである。 図11は、本発明の導波モード共鳴格子の好ましい一実施形態において、反射スペクトルの導波層厚さ(h)依存性を示すものである。 図12は、本発明の導波モード共鳴格子の好ましい一実施形態において、反射スペクトルの格子周期(Λ)依存性を示すものである。 本発明の導波モード共鳴格子の製造方法の一例を示す説明図である。 本発明の導波モード共鳴格子の製造方法の一例を示す説明図である。 本発明の導波モード共鳴格子の製造方法の一例を示す説明図である。 本発明の導波モード共鳴格子の製造方法の一例を示す説明図である。 本発明の導波モード共鳴格子の製造方法の一例を示す説明図である。 本発明の導波モード共鳴格子の製造方法の一例を示す説明図である。 フィリングファクター(FF)の算出方法を説明する説明図である。
[導波モード共鳴格子]
 本発明の導波モード共鳴格子(GMRG)は、格子層と導波層との積層構造を有し、格子層と導波層との屈折率差(25℃における屈折率差の絶対値を意味する、以降も同様。)が0.1以下である。つまり、本発明のGMRGは、単一の材料であるか、あるいは屈折率差の小さな特性の類似した材料の組合せで構成されるものである。本発明のGMRGは、導波層側から光を入射させる形態で用いられるものである。
 本発明のGMRGは、基板と前記格子層と前記導波層とをこの順に有する構造であることも好ましい。この場合、基板と前記格子層との屈折率差は特に制限されない。基板は透明樹脂、シリカ、石英などのように透明性の材料で構成されていてもよく、また、有彩色でもよく、無彩色でもよい。製造効率や層間密着性の向上を考慮すると、基板と格子層とは類似した特性の樹脂が好ましく、この観点からは、基板と格子層との屈折率差が0.08以下であることも好ましく、0.06以下であることも好ましく、0.04以下であることも好ましく、0.02以下であることも好ましく、基板と格子層は同一素材であることも好ましい。したがって、本発明のGMRGの好ましい一実施形態では、基板と格子層と導波層とがこの順に配された積層構成を有し、前記基板の構成材料と前記格子層の構成材料と前記導波層の構成材料がすべて同じである。
 本発明のGMRGの実施形態について、図面を参照して説明する。なお、各図面は、本発明の理解を容易にするための説明図であり、各部材のサイズないし相対的な大小関係等は説明の便宜上大小を変えている場合があり、実際の関係をそのまま示すものではない。また、本発明で規定する事項以外はこれらの図面に示された外形、形状に限定されるものでもない。
 図3は、本発明のGMRGの好ましい一実施形態を模式的に示す斜視図である。図3に示すように、本発明のGMRGは格子層と導波層との積層構造を有している。図3に示す形態では、GMRGは、格子層の導波層とは反対側に、基板を有している。また、基板と格子層と導波層とは同一の材料(ポリメチルメタクリレート(PMMA)、屈折率1.5)で構成されている。したがって、後述するように、基板と格子層、又は、格子層と導波層は、一体的に形成することも可能である。
 図3に示すGMRGにおいて、格子層の格子周期(Λ)、格子層の格子幅(w)、導波層の厚さ(h)、格子層の厚さ(h)をそれぞれ変化させたときの、導波層側からの入射光に対する反射特性を、RCWA(Rigorous Coupled-Wave Analysis)法によりシミュレーションした結果を図4~7に示す。このシミュレーションには数値計算ソフトウェアとしてSynopsys社製のDiffractMODを使用した。シミュレーションにおける設定値は次の通りである。なお、上記格子層の格子形状はいわゆる一次元形状(一次元周期構造)であり、図3における手前から奥行方向に直線状に空洞が形成されている。上記シミュレーションにおいて入射光はTE偏光(入射光の電界が格子の溝と平行)である。また、前記空洞の導波層又は基板側の形状がテーパー状であってもよい。
 ・ハーモニクス:10
 ・計算波長ステップ:2nm
 ・計算格子周期ステップ:4nm
 ・計算格子幅ステップ:4nm
 ・計算導波層厚さステップ:4nm
 ・計算格子層厚さステップ:10nm
 図4は、格子幅(w)=200nm、導波層厚さ(h)=150nm、格子層厚さ(h)=1000nmとして、反射スペクトルの格子周期(Λ)依存性を示したグラフである。格子周期(Λ)の変化に伴い、反射波長のピークが変化していることがわかる。すなわち、格子周期を制御することにより、少なくとも可視光域の所望の波長を反射できることがわかる。なお、図4において、反射効率の最も高い領域(白黒図面では白い領域が反射効率の最大領域を示す)の中で、中心部分の最大効率部分を破線で示している。
 図5は、格子周期(Λ)=400nm、導波層厚さ(h)=150nm、格子層厚さ(h)=1000nmとして、反射スペクトルの格子幅(w)依存性を示したグラフである。波長が0.5μm超付近において、格子幅20~320nm(0.02~0.32μm)程度で高い反射効率を示していることがわかる。また、格子幅100~250nm(0.1~0.25μm)程度で高い反射効率を示していることがわかる。なお、本実施形態(一次元格子形状)では格子幅(w)依存性をみているが、一次元格子形状における格子幅(w)は後述する体積占有率と実質的に等価な要素であり、格子層の有効屈折率(格子層全体の平均屈折率)を決定する主要な要素である。
 図6は、格子周期(Λ)=400nm、格子幅(w)=200nm、格子層厚さ(h)=1000nmとして、反射スペクトルの導波層厚さ(h)依存性を示したグラフである。導波層の厚さが300nm以下(0.3μm以下)になると反射ピークが1つ(シングルモード)となり、それより厚いと反射ピークが2つ(マルチモード)となる。また、導波層の厚さが50nm(0.05μm)より薄くなると、反射ピークが消失する。
 図7は、格子周期(Λ)=400nm、格子幅(w)=200nm、導波層厚さ(h)=150nmとして、反射スペクトルの格子層厚さ(h)依存性を示したグラフである。この図から、格子層が厚くなる(アスペクト比が大きくなる)ほど、高い反射効率を示すことがわかる。
 上記シミュレーションを種々の条件で実施し、RGB(赤色・緑色・青色)それぞれの波長領域について高い反射効率を実現するパラメータとして、下表の組み合わせを採用した。このパラメータにおける反射スペクトルを図8に示す。図8に示されるように、青色領域(B)の最大反射効率が99.9%、緑色領域(G)の最大反射効率が99.9%、赤色領域(R)の最大反射効率が98.8%であった。
Figure JPOXMLDOC01-appb-T000001
 上記の通り、単一の材料で、あるいは屈折率差の小さな特性の類似した材料の組合せで、格子層と導波層との積層構造を形成した場合に、導波層側から入射させた光を高効率に反射できることがわかる。その理由として、次のことが考えられる。
 導波層は光を閉じ込める機能を担うため、周辺媒質と比較して屈折率が高いことが必要である。上記実施形態では、格子層は導波層と同一屈折率材質で構成されているが、有効屈折率は格子材質と格子の隙間の材質(例えば、空気)との体積占有率に依存する平均的な値となるので、導波層の屈折率は格子層の有効屈折率よりも高くなり、導波層として機能するための屈折率の大小関係の条件を満たすものと考えられる。また、格子層は、波長選択性および導波層への光入出力結合器としての機能を有し、格子層と導波層の光伝搬モード(光伝搬モードは近接場光として各層の表面からおおよそ1波長程度、浸み出ている)が重なり合う程度近接していれば両者は光学的に結合する。本発明のポイントは、導波層に閉じ込められた光(導波層の光伝搬モードは近接場光としておおよそ1波長程度、導波層からしみ出している)が基板と光学的に結合しない程度に離す必要があり、そのため、格子層の厚さを一定程度厚くすることでこの問題を回避し、基板も含め単一材質でGMRGを実現できたものと考えられる。
 次に、格子層の格子形状がいわゆる二次元形状(二次元周期構造)である正方形格子の場合についても、上記と同様にして、基板と格子層と導波層とをPMMAで構成した形態を想定し、シミュレーションを実施した。正方形格子とは、図3において、導波層を取り除いたと仮定して格子層を入射光が入射する側から平面視観察したとき、凹部の穴(空間)が正方形である格子形状である。格子形状を二次元形状として所望の反射スペクトルを実現できれば、垂直入射時における偏光依存性を解消することが可能となり、実用上の優位性が高まる。なお、本シミュレーションでは、上記ソフトウェアで使用可能なTE偏光を入射光としている。
 格子層の格子周期(Λ)を0.340μm、格子層の厚さ(h)を1.00μm、導波層の厚さ(h)を0.15μmとして、格子幅(w)を変えることにより格子層に占めるPMMA部分の体積占有率(FFPMMA、FFはフィリングファクタ―の略称)を変化させたときの反射スペクトルを図9に示す。なお、本発明において単に「体積占有率」という場合、格子層全体の体積(格子材質部分+空間部分)に占める格子材質部分(例えばPMMA部分)の比率を意味する。
 ここで、体積占有率(FFPMMA)の算出方法について、図19を参照して説明する。図19は、正方形格子の周期構造を、導波層を取り除いたと仮定して格子層を入射光が入射する側から平面視観察した状態を模式的に示す説明図である。格子層(正方形格子周期構造)を構成する空間(空気)部分の、格子層に占める体積占有率(FFAir)は下記式(1)で求められる。
 
  FFAir={(Λ-w)/Λ}    (1)
 
 したがって、FFPMMAは下記式(2)で求められる。
 
  FFPMMA=1-FFAir    (2)
 
 なお、図3に示す一次元格子形状においては、FFAirは下記式(3)で求められ、FFPMMAは上記式(2)で求められる。
 
  FFAir=(Λ-w)/Λ    (3)
 
 図9に示す通り、FFPMMAが小さくなるほど反射ピーク波長が短波長側にシフトすることがわかる。なお、格子層の格子形状を正方形格子から、同じく二次元周期構造である円形格子に代えた場合についても同様のシミュレーションをした結果、反射ピーク波長が5nmほど長波長側にシフトした以外は図8と同様の結果が得られたため、以降のシミュレーションは正方形格子について実施した。
 続いて、格子層の格子周期(Λ)を0.340μm、導波層の厚さ(h)を0.15μm、格子層の格子幅(w)を0.108μmとして、格子層の厚さ(h)を変化させたときの反射スペクトルを図10に示す。図10に示す通り、格子層の厚さ(h)が薄くなると、反射ピークの位置はそのままで、反射ピーク高さが低くなることがわかる。この結果から、例えば95%を超えるような高い反射率を実現するには、格子層の厚さ(h)をある程度厚く設定し、導波層への基板の影響を小さくする必要があることがわかる。
 続いて、格子層の格子周期(Λ)を0.340μm、格子層の厚さ(h)を1.00μm、格子層の格子幅(w)を0.108μmとして、導波層の厚さ(h)を変化させたときの反射スペクトルを図11に示す。図11に示す通り、導波層の厚さ(h)が厚くなると、反射ピーク波長が長波長側にシフトすることがわかる。
 続いて、導波層の厚さ(h)を0.3μm、格子層の格子幅(w)を0.08μm、格子層の厚さ(h)を0.5μmとして、格子層の格子周期(Λ)を変化させたときの反射スペクトルを図12に示す。図12に示す通り、格子層の厚さ(h)を0.5μmまで薄くしても、導波層の厚さ(h)を0.3μmまで厚くした場合には、98%を超えるような優れた反射率を実現できることがわかった。また、格子層の格子周期(Λ)が小さいほど反射ピーク波長が低波長側にシフトし、かつピークが高く鋭くなる傾向があることもわかった。
 上記の検討結果から、格子層の厚さ(h)を一定以上に確保した上で、格子層の格子周期(Λ)、導波層の厚さ(h)、及び格子層の格子幅(w)ないしFFの関係を制御することにより、所望の波長の光を極めて高効率に反射するGMRGを提供できることがわかる。
 なお、上記の検討は主に青色波長領域における反射ピーク波長の調整について示したが、格子周期(Λ)や格子幅(w)ないしFFを制御すれば緑色波長領域や赤色波長領域に反射ピーク波長を有するGMRGを提供することができ、これらの波長領域の所望の波長の光を高効率に反射できる設計とできることは、表1や図8に示す結果も併せて考慮すれば当然に理解できる。
 上記の検討結果から、本発明のGMRGにおいて、格子層の格子周期は、GMRGとして機能する範囲において、目的の反射ピーク波長に応じて適宜に設計することができる。可視光領域に反射ピーク波長を有するようにするには、格子層の格子周期は図4と図12の結果から、0.26~0.60μmであることが好ましく、0.27~0.56μmであることがより好ましい。
 また、格子層の体積占有率は、図9の結果から0.15~0.65が好ましく、0.20~0.60がより好ましい。
 また、格子層の厚さは、図7の結果から0.20μm以上が好ましく、通常は0.40~2.00μmであり、0.60~2.00μmがより好ましく、0.80~1.20μmがさらに好ましい。
 また、導波層の厚さは、図6の結果から0.05~1.00μmが好ましく、0.05~0.90μmがより好ましく、0.05~0.40μmがさらに好ましく、0.10~0.30μmがさらに好ましく、特に0.20~0.30μmがシングルピークが出る範囲としてさらに好ましい。
 本発明のGMRGにおいて、格子層の格子形状(上記と同様に平面視観察したとき、凹部の穴(空間)の形状)は特に制限されない。格子層の格子形状は矩形(本発明において「矩形」とは正方形と長方形の両方を包含する意味である)であることも好ましく、この場合、より好ましくは正方形である。なお、本発明において「矩形」という場合、略矩形であることを意味する。例えば、四隅がすべて直角である形状の他、これと等価な特性を発現すれば、四隅が90度近傍の角度であったり、丸みを帯びたりしていてもよい。また、本発明のGMRGにおいて、格子層の格子形状は円形でもよく、楕円形でもよい。
 また、格子層の格子形状として、上記の構造と凹凸を反転させた構造、すなわち、上記と同様に平面視観察したとき、凸部(格子材質部分)の形状を、上記のように矩形、円形、楕円形等にすることも好ましい。この場合、上記計算式におけるFFAirがFFPMMAとなる。
 本発明のGMRGは、少なくとも格子層と導波層が樹脂(好ましくは熱可塑性樹脂)で構成されていることが好ましい。このような樹脂としては透明樹脂が挙げられ、例えば、アクリル樹脂、ポリスチレン樹脂、ABS樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリカーボネート樹脂、フッ素樹脂、塩化ビニル樹脂、ナイロン樹脂などが挙げられる。また、本発明のGMRGが、格子層の導波層とは反対側に基板を有する場合、基板の構成材料は特に制限されない、基板を透明材料で形成する場合、一例として、シリカ、石英、樹脂等で構成することができる。基板の構成材料が樹脂の場合、例えば、アクリル樹脂、ポリスチレン樹脂、ABS樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリカーボネート樹脂、フッ素樹脂、塩化ビニル樹脂、ナイロン樹脂などが挙げられる。
[導波モード共鳴格子の製造方法]
 本発明のGMRGの製造方法の一例を、図13及び14を参照して説明する。以降の図面は、本発明のGMRGの製造方法を説明するための模式的な説明図である。
 図13に示す製造方法は、基板2上に形成したレジスト膜3をパターニングして格子周期構造を形成し(図13の(a)、(b))、この格子周期構造の格子表面を熱溶融して当該表面及びその近傍を変形させて隣り合う格子を接合することにより導波層を形成する方法である(図13の(c))。図13の(b)から(c)までをより詳細に示したのが図14である。格子周期構造の格子の上部に熱をかけて格子表面(図14における格子の上面)ないしその近傍のみを溶かして変形させて、隣り合う格子同士を接合することにより導波層を形成することができる。
 上記の加熱は、例えば、基板2を冷却しながら格子表面にホットプレートを押し付けるなどして行うことができる。
 また、格子表面(格子先端部)は表面/体積の比が最も大きいので、実効的な融点あるいはガラス転移温度が低くなる。したがって、格子全体を加熱した場合、格子先端部が最初に変形し始める。したがって、格子材料のガラス転移温度~融点の間の適切な温度で格子全体を加熱することによっても、導波層の形成が可能である。
 上記方法により、格子層と導波層が同一素材(例えばアクリル樹脂)で形成されたGMRGを得ることができる。さらに、基板も同一素材とすることが可能である。
 本発明のGMRGの製造方法の別の例として、基板上のレジスト膜を格子状にパターニングして格子周期構造を形成し、この格子周期構造の格子表面にさらに樹脂膜を設け、該樹脂膜を導波層とする方法が挙げられる。その一例を、図15を参照して説明する。
 図15に示す方法では、まず、基板2上にレジスト膜3を塗布して電子線(EB)描画によりレジスト膜を所望の格子状にパターニングして格子周期構造を形成する(図15の(a)、(b))。また、これとは別に、シリコーン樹脂等の基材5上に導波層形成用のレジスト(3、樹脂)を塗布する(図15の(c))。格子周期構造の格子表面と導波層形成用のレジストとを熱圧着等により圧着した後(図15の(d))、基材5を剥離する(図15の(e))。こうして、基板上に格子層と導波層の積層構造を形成することができる。
 基板2上のレジスト膜(3、樹脂)と導波層形成用のレジスト膜(3、樹脂)とを同じ素材とすれば、格子層と導波層が同一素材(例えばアクリル樹脂)で形成されたGMRGを得ることができる。また、基板2も同一素材とすることが可能である。
 本発明のGMRGの製造方法のさらに別の例を、図16を参照して説明する。
 図16に示す方法は、ナノインプリント技術を利用するものである。まず、樹脂基材6にモールド7をプレスし(図16の(a)、(b))、次いでモールド7を取り除くことにより樹脂基材6に格子周期構造を形成する(図16の(c))。この格子周期構造の格子表面に導波層(8、樹脂膜)を形成することにより、基板と格子層と導波層との積層構造(図16の(d))を形成することができる。
 導波層8となる樹脂膜の形成方法としては、上述のように、格子表面ないしその近傍のみを溶かして変形させて、隣り合う格子を接合する方法や、導波層形成用のレジスト膜(樹脂膜)を圧着(例えば熱圧着)する方法(圧着法)などが挙げられる。
 また、スピンコート法を用いて導波層8となる樹脂膜を形成することもできる。すなわち、スピンコートの遠心力を利用して、滴下した樹脂を、格子周期構造の溝(穴)を完全には埋めずに表面を覆うようにコーティングして導波層8を形成することができる。
 また、蒸着法又はスパッタ法を利用して導波層8となる樹脂膜を形成することもできる。すなわち、蒸着法又はスパッタ法によって樹脂を粒子化して、格子周期構造を形成した樹脂基材を傾けるなどして樹脂粒子を斜め方向から格子周期構造に付着させることにより、樹脂粒子が格子周期構造の溝(穴)の底部まで侵入せずに、格子周期構造の開口部を塞ぐように成膜することができ、得られた膜を導波層8として機能させることができる。
 また、図17に示すように、格子周期構造の開口部の幅よりも大きい樹脂粒子を格子周期構造の上に堆積させることによって導波層8となる樹脂膜を形成することもできる。この場合、格子周期構造の上に堆積した樹脂粒子を、熱処理や加圧処理などに付せば、樹脂粒子同士の密着性、並びに樹脂粒子と格子層との密着性をより高めることができる。
 本発明のGMRGの製造方法のさらに別の実施形態を、図18を参照して説明する。図18に示すように、まず、シリカや石英等の基材4上に樹脂を塗布して樹脂層6aを形成し、この樹脂層6aに、上記のようにナノインプリント技術で格子周期構造を形成することにより、基材4上に導波層と格子層との積層構造を形成する(図18の(a)、(b))。次いで、基材4を取り除くことにより、格子層と導波層との積層構造からなるGMRGを得ることができる。また、基材4を取り除く前に、必要により、この格子周期構造の側を別途用意した基板6bに熱圧着などにより接合し(図18の(c))、その後、基材4を取り除くことにより、基板と格子層と導波層との積層構造からなるGMRGを得ることができる(図18の(d))。
[導波モード共鳴格子の用途]
 本発明のGMRGは、前述の結果から、入射した光を所望の波長に選択的に高効率に反射する「反射型フィルタ」として機能する。また、本発明のGMRGは、格子層が入射光側表面に露出せずに導波層の内側に位置するため、例えばクリーニングの際に、格子層の凹凸が引っ掻きやふき取りに直接さらされることがなく、耐久性にも優れる。また、本発明のGMRGは、光学部材に組み込むことができる。このような光学部材として、例えば、構造色発現部材、波長選択フィルタ、色素レス塗料、偏光フィルタ、色ガラス、減光フィルタ、調光フィルタ、繊維素材(色付き)、金属素材(金属色を発色する素材)、色相制御部材、分光制御部材などが挙げられる。
 また、このような光学部材を有する製品ないし半製品として、例えば、光センサ(ロボット、自動車、IoT、ウェアラブルデバイスなど)、加飾品、自動車等の車体塗装、自動車構成部品、ディスプレイ、分光器、通信用フィルタ、遮光・遮熱材、サングラス、サンバイザー、保護具、食器、歪みセンサ、フォースセンサ、化粧品、偽造防止材、識別タグ、衣料品、装飾品(時計、アクセサリー、車)、建材、プラスチック容器・シート・シールドへの印刷・ロゴ、色付け製品などが挙げられる。
 このように、本発明の光学部材ないし製品ないし半製品は、上記の本発明のGMRGを有し、GMRGの積層構造の安定性(層間密着性、耐久性)をより高めることができ、その結果、光学特性の信頼性がより高められる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2022年6月29日に日本国で特許出願された特願2022-104745に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
1 導波モード共鳴格子
 11 低屈折率材料
 12 高屈折率材料
2 基板
3 レジスト膜
4 基材(シリカ、石英)
5 基材(シリコーン樹脂)
6 樹脂基材
6a 樹脂層(熱可塑性樹脂層)
6b 基板(樹脂基板)
7 モールド(格子周期構造を形成するための型)
8 導波層(樹脂膜)

Claims (16)

  1.  格子層と導波層との積層構造を有し、前記格子層と前記導波層との屈折率差が0.1以下であり、前記導波層側から光を入射させる、導波モード共鳴格子。
  2.  基板と前記格子層と前記導波層とをこの順に有する、請求項1に記載の導波モード共鳴格子。
  3.  前記格子層の構成材料と前記導波層の構成材料が同じである、請求項1に記載の導波モード共鳴格子。
  4.  前記基板の構成材料と前記格子層の構成材料と前記導波層の構成材料が同じである、請求項2に記載の導波モード共鳴格子。
  5.  前記格子層の格子周期が0.26~0.60μmである、請求項1~4のいずれか1項に記載の導波モード共鳴格子。
  6.  前記格子層の厚さが0.20μm以上である、請求項1~4のいずれか1項に記載の導波モード共鳴格子。
  7.  前記格子層の体積占有率が0.15~0.65である、請求項1~4のいずれか1項に記載の導波モード共鳴格子。
  8.  前記導波層の厚さが0.05~1.00μmである、請求項1~4のいずれか1項に記載の導波モード共鳴格子。
  9.  前記格子層の格子形状が二次元周期構造である、請求項8に記載の導波モード共鳴格子。
  10.  請求項1~4のいずれか1項に記載の導波モード共鳴格子を有する光学部材。
  11.  前記光学部材が構造色発現部材又は波長選択フィルタである、請求項10に記載の光学部材。
  12.  請求項10に記載の光学部材を有する光学製品。
  13.  基板上のレジスト膜をパターニングして格子周期構造を形成し、又は、樹脂基材にモールドをプレスして格子周期構造を形成し、
     前記格子周期構造の格子表面を熱溶融して該表面及びその近傍を変形させて隣り合う格子同士を接合することにより導波層を形成することを含む、請求項2又は4に記載の導波モード共鳴格子の製造方法。
  14.  基板上のレジスト膜をパターニングして格子周期構造を形成し、又は、樹脂基材にモールドをプレスして格子周期構造を形成し、
     前記格子周期構造の格子表面に、圧着法、スピンコート法、蒸着法、スパッタ法、又は格子周期構造の開口部の幅よりも大きい樹脂粒子を格子周期構造の上に堆積させる方法により導波層を形成することを含む、請求項2又は4に記載の導波モード共鳴格子の製造方法。
  15.  基材上の樹脂層にモールドをプレスして格子周期構造を形成し、次いで前記基材層を取り除くことを含む、請求項1又は3に記載の導波モード共鳴格子の製造方法。
  16.  基材上の樹脂層にモールドをプレスして格子周期構造を形成し、該格子周期構造の側を基板上に接合し、次いで前記基材を取り除くことを含む、請求項2又は4に記載の導波モード共鳴格子の製造方法。

     
PCT/JP2023/022040 2022-06-29 2023-06-14 導波モード共鳴格子、光学部材、光学製品、及び導波モード共鳴格子の製造方法 WO2024004650A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-104745 2022-06-29
JP2022104745A JP2024004872A (ja) 2022-06-29 2022-06-29 導波モード共鳴格子、光学部材、光学製品、及び導波モード共鳴格子の製造方法

Publications (1)

Publication Number Publication Date
WO2024004650A1 true WO2024004650A1 (ja) 2024-01-04

Family

ID=89382023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022040 WO2024004650A1 (ja) 2022-06-29 2023-06-14 導波モード共鳴格子、光学部材、光学製品、及び導波モード共鳴格子の製造方法

Country Status (2)

Country Link
JP (1) JP2024004872A (ja)
WO (1) WO2024004650A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007034231A (ja) * 2005-07-29 2007-02-08 Sharp Corp 光変調素子及び複合型光変調素子
JP2007043103A (ja) * 2005-06-27 2007-02-15 Tohoku Univ レーザ共振器装置及びその製造方法
JP2009025558A (ja) * 2007-07-19 2009-02-05 Tohoku Univ 波長選択素子及びその製造方法
JP2009092569A (ja) * 2007-10-10 2009-04-30 Shimadzu Corp 屈折率計
JP2010502996A (ja) * 2006-09-08 2010-01-28 マグヌッソン、ロバート 角度ダイバーシチ、スペクトルダイバーシチ、モードダイバーシチ、及び偏光ダイバーシチを用いて高精度検出を小型構成で行なう導波モード共振センサ
US20180202928A1 (en) * 2015-08-26 2018-07-19 Photonicsys Ltd. Resonant periodic structures and methods of using them as filters and sensors
CN113363799A (zh) * 2021-05-27 2021-09-07 扬州大学 一种基于导模共振效应的染料激光器结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043103A (ja) * 2005-06-27 2007-02-15 Tohoku Univ レーザ共振器装置及びその製造方法
JP2007034231A (ja) * 2005-07-29 2007-02-08 Sharp Corp 光変調素子及び複合型光変調素子
JP2010502996A (ja) * 2006-09-08 2010-01-28 マグヌッソン、ロバート 角度ダイバーシチ、スペクトルダイバーシチ、モードダイバーシチ、及び偏光ダイバーシチを用いて高精度検出を小型構成で行なう導波モード共振センサ
JP2009025558A (ja) * 2007-07-19 2009-02-05 Tohoku Univ 波長選択素子及びその製造方法
JP2009092569A (ja) * 2007-10-10 2009-04-30 Shimadzu Corp 屈折率計
US20180202928A1 (en) * 2015-08-26 2018-07-19 Photonicsys Ltd. Resonant periodic structures and methods of using them as filters and sensors
CN113363799A (zh) * 2021-05-27 2021-09-07 扬州大学 一种基于导模共振效应的染料激光器结构

Also Published As

Publication number Publication date
JP2024004872A (ja) 2024-01-17

Similar Documents

Publication Publication Date Title
US9261753B2 (en) Spectrum filtering for visual displays and imaging having minimal angle dependence
JP2017522595A (ja) サブ波長格子を有するセキュリティ素子
US20140268332A1 (en) Dye and pigment-free structural colors and angle-insensitive spectrum filters
CN113791470B (zh) 共振光栅波导结构及近眼显示装置
WO2018070431A1 (ja) 光学デバイス、表示体、カラーフィルタ、および、光学デバイスの製造方法
KR102594844B1 (ko) 장식 부재
US8263194B2 (en) Color filter and method of fabricating the same
JP7264176B2 (ja) 装飾部材および装飾部材の製造方法
CN102401922B (zh) 一种亚波长金属-介质光栅反射偏振光变膜及制作方法
CN110382253B (zh) 装饰构件及装饰构件的制造方法
CN109891278B (zh) 滤光结构、滤光层以及显示面板
KR102014399B1 (ko) 멀티캐비티 공명을 이용한 구조 색 필터
CN111479683A (zh) 装饰构件
CA2993901A1 (en) Security element having a subwavelength grating
WO2015151479A1 (ja) 表示体、および表示体の製造方法
CN105549137A (zh) 一种亚波长光栅结构呈色元件及含有该元件的呈色产品
JP2014519047A (ja) 太陽光管理のためのir反射器
KR101930858B1 (ko) 장식 부재 및 장식 부재의 제조 방법
JP2018063305A (ja) 表示体、および、表示体の製造方法
WO2024004650A1 (ja) 導波モード共鳴格子、光学部材、光学製品、及び導波モード共鳴格子の製造方法
WO2020175464A1 (ja) 波長選択フィルタ、波長選択フィルタの製造方法、および、表示装置
JP7190249B2 (ja) 光学デバイス
WO2020262679A1 (ja) 波長選択フィルタ、表示体、光学デバイス、および、波長選択フィルタの製造方法
JP6766579B2 (ja) 光学デバイスの製造方法、および、光学デバイス
JP7293716B2 (ja) 波長選択フィルタ、および、波長選択フィルタの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831098

Country of ref document: EP

Kind code of ref document: A1