WO2024002209A1 - 取向硅钢及其制造方法 - Google Patents

取向硅钢及其制造方法 Download PDF

Info

Publication number
WO2024002209A1
WO2024002209A1 PCT/CN2023/103588 CN2023103588W WO2024002209A1 WO 2024002209 A1 WO2024002209 A1 WO 2024002209A1 CN 2023103588 W CN2023103588 W CN 2023103588W WO 2024002209 A1 WO2024002209 A1 WO 2024002209A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon steel
laser
steel substrate
oriented silicon
insulating coating
Prior art date
Application number
PCT/CN2023/103588
Other languages
English (en)
French (fr)
Inventor
吴美洪
李国保
沈侃毅
杨勇杰
姜全力
吉亚明
胡卓超
赵自鹏
章华兵
凌晨
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Publication of WO2024002209A1 publication Critical patent/WO2024002209A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Definitions

  • the present invention relates to steel materials and manufacturing methods thereof, in particular to low-loss, low magnetostriction oriented silicon steel and manufacturing methods thereof.
  • transformer cores are generally made of oriented silicon steel by lamination or winding.
  • the main indicators of concern during the production and application of transformers are the no-load loss characteristics and the no-load excitation current. These two indicators correspond to the loss and excitation power of oriented silicon steel respectively.
  • the noise of transformers has also become an important evaluation index of transformer performance, which mainly comes from the magnetostriction of oriented silicon steel.
  • the change and rotation of the number of 90° magnetic domains in the easy magnetization direction perpendicular to the parallel rolling direction are the main reasons for magnetostriction.
  • the finished oriented silicon steel should have only 180° magnetic domains.
  • the actual finished oriented silicon steel naturally has 180° magnetic domains in order to reduce its overall static magnetic energy.
  • grain-oriented silicon steel is generally prepared by a method including the following steps: a) smelting and casting; b) heating; c) normalization; d) cold rolling; e) decarburization annealing; f) finished product annealing; g) hot drawing annealing .
  • the surface of the steel plate after the magnesium silicate layer is formed is coated with an insulating coating liquid containing colloidal silica and phosphate as the main components and sintered to form a tension insulating coating (also known as " Secondary coating").
  • the underlying structure of oriented silicon steel is shown in Figure 1, in which the magnesium silicate layer formed on the surface of the silicon steel substrate is divided into two parts: the continuous layer 3 formed by the diffusion and enrichment of SiO2 on the surface of the silicon steel substrate, and the continuous layer 3 formed by the diffusion and enrichment of SiO2 on the surface of the silicon steel substrate. Precipitates and the like hinder oxide particles such as SiO 2 and Al 2 O 3 that have not diffused to the surface to embed into the core of the substrate to form the embedded layer 2 .
  • the main component of continuous layer 3 is magnesium silicate
  • the main component of embedded layer 2 is magnesium silicate (Mg 2 SiO 4 ) and a small amount of magnesium and aluminum oxides. (MgAl 2 O 4 ).
  • the embedded layer 2 Since the embedded layer 2 is produced during high-temperature annealing, and its thermal expansion coefficient is smaller than that of steel, a local stress field is generated around the oxide particles of the embedded layer, which will form a 90° surface closed domain in the silicon steel substrate. Affects the magnetostrictive properties of the subsequently obtained finished oriented silicon steel. In addition, these oxide particles also play a pinning effect on the movement of the 180° domain wall in the silicon steel substrate, hindering the rotation of the magnetic chip in the changing magnetic field, resulting in increased loss of the finished oriented silicon steel.
  • Methods used in the prior art to reduce the loss of oriented silicon steel mainly include: (1) increasing the magnetic flux density and reducing hysteresis loss by increasing the orientation degree of the (110) [001] orientation of the finished product; (2) increasing the amount of silicon steel
  • the Si content in the substrate can be used to increase the resistivity or reduce the thickness of the steel plate to reduce classic eddy current losses; (3) reduce the magnetic domain width and reduce abnormal eddy current losses by laser etching oriented silicon steel.
  • the methods used in the prior art to reduce the magnetostriction of oriented silicon steel mainly include: (1) improving the orientation degree of the finished crystal; (2) reducing the thickness of the finished product; (3) increasing the coating tension. All the above three methods can reduce the magnetostriction of the finished oriented silicon steel, thereby reducing the noise level of the transformer.
  • the prior art discloses some technical solutions to reduce the impact of the embedded layer on the magnetostriction and iron loss properties of the finished oriented silicon steel by eliminating the embedded layer.
  • Chinese patent application CN113272456A discloses a method for manufacturing grain-oriented electromagnetic steel sheets.
  • the atmosphere in the decarburization annealing process is set to an oxidation degree that does not form iron-based oxides, and
  • the silicon steel substrate is coated with an annealing separation agent containing alumina as the main component.
  • This technical solution can effectively eliminate surface oxide inclusions by strictly controlling the decarburization dew point and not forming iron-based oxides (such as Fe 2 SiO 4 , FeO, etc.) during decarburization annealing.
  • alumina does not react with silicon dioxide and does not form a bottom layer on the surface of the substrate, which causes the inhibitor to be unstable and easy to decompose during the high-temperature annealing process, resulting in unstable secondary recrystallization, and the obtained oriented silicon steel
  • the coating performance and stability are poor.
  • Chinese patent application CN113272454A discloses a method of manufacturing oriented electromagnetic steel plates. It uses chemical grinding to remove the remaining annealing separation agent on the surface of the silicon steel substrate, so that the roughness Ra of the annealed plate surface reaches less than 0.1 ⁇ m, and finally obtains oriented silicon steel without magnesium silicate coating.
  • this technical solution uses chemical grinding, it must solve equipment setting issues such as liquid concentration and temperature management. Therefore, from a production perspective, the practicality of this technical solution is poor. In the long-line production process, it is difficult to maintain the consistency of the concentration and temperature of the chemical solution.
  • Cisoka patent application CN113286905A discloses a method of manufacturing oriented electromagnetic steel plates.
  • This patent uses MCl, which is at least one chloride containing alkali metals, alkaline earth metals, or Bi, as the annealing separation agent.
  • MCl chloride containing alkali metals, alkaline earth metals, or Bi
  • MCl chloride containing alkali metals, alkaline earth metals, or Bi
  • the present invention provides a kind of oriented silicon steel.
  • the oriented silicon steel includes a silicon steel substrate and an insulating coating formed on the surface of the silicon steel substrate.
  • the oriented silicon steel does not contain magnesium silicate (Mg). 2 SiO 4 ) and/or magnesium and aluminum oxides (MgAl 2 O 4 ).
  • the oriented silicon steel of the present invention has the advantages of low iron loss, low magnetostriction, high lamination coefficient and high adhesion of surface insulation coating.
  • the "oxides of magnesium and aluminum" in the grain-oriented silicon steel of the present invention refer to magnesium aluminum oxide (MgAl 2 O 4 ).
  • the silicon steel substrate contains the following chemical elements in mass percentage: C: 0.057 ⁇ 0.062%, Si: 3.12 ⁇ 3.25%, Mn: 0.011 ⁇ 0.020%, acid-soluble Al: 0.026 ⁇ 0.029%, N: 0.008 ⁇ 0.009 %, the balance is Fe and inevitable impurities.
  • the insulating coating is formed from an insulating coating liquid, which contains an aqueous solution of chromic anhydride, colloidal SiO 2 and phosphates of Mg and Al; more preferably, the insulating coating liquid contains the following chemical components in mass percentage: 2% to 25% aluminum dihydrogen phosphate and/or magnesium dihydrogen phosphate, 4% to 16% colloidal silica, 0.15% to 4.50% chromic anhydride, and the balance is water and other inevitable impurities.
  • an insulating coating liquid which contains an aqueous solution of chromic anhydride, colloidal SiO 2 and phosphates of Mg and Al; more preferably, the insulating coating liquid contains the following chemical components in mass percentage: 2% to 25% aluminum dihydrogen phosphate and/or magnesium dihydrogen phosphate, 4% to 16% colloidal silica, 0.15% to 4.50% chromic anhydride, and the balance is water and other inevitable impurities.
  • the coating amount of the insulating coating on the silicon steel substrate is 4.0-4.5g/m 2 .
  • the magnetostrictive velocity sound pressure level LvA of the oriented silicon steel is ⁇ 50db(A).
  • the iron loss P17/50 of the grain-oriented silicon steel is 0.90W/Kg or less, preferably 0.80W/Kg or less.
  • the lamination coefficient of the oriented silicon steel is ⁇ 97%.
  • the present invention also provides a method for manufacturing the above-mentioned oriented silicon steel, including the following steps in sequence:
  • the silicon steel substrate has a core, a continuous layer and an embedded layer between the core and the continuous layer.
  • the embedded layer contains magnesium silicate (Mg 2 SiO 4 ) and/or magnesium, Aluminum oxide (MgAl 2 O 4 ), the continuous layer containing magnesium silicate;
  • the total thickness H f of the silicon steel substrate after laser treatment satisfies: H 0 -2h 1 -2h 2 -2 ⁇ m ⁇ H f ⁇ H 0 -2h 1 -2h 2 , where H 0 represents the initial total thickness of the silicon steel substrate.
  • h 1 represents the thickness of the continuous layer
  • h 2 represents the thickness of the embedded layer; more preferably, H 0 : 0.19 ⁇ 0.29mm, h 1 ⁇ 4 ⁇ m, h 2 ⁇ 4 ⁇ m.
  • the energy density I of the laser is 300-600mJ/mm 2
  • the energy density I of the laser is calculated using the following formula:
  • P is the laser power in W
  • f is the pulse repetition frequency in kHz
  • d is the spot diameter in ⁇ m.
  • the laser source uses an infrared laser source.
  • the laser uses a nanosecond pulse laser.
  • the scanning speed of the laser is 5 ⁇ 6m/s, preferably 5.5m/s; the laser power P is 50 ⁇ 100W, preferably 50-80W; the pulse repetition frequency f is 65 ⁇ 90kHz; spot diameter is 40 ⁇ 60 ⁇ m.
  • the double-sided laser treatment is carried out in two stages, including removing the continuous layer in the first stage, and the energy density of the laser used in the first stage is I 1 or more, where In the formula, h 1 represents the thickness of the continuous layer, in ⁇ m; and the embedded layer is removed in the second stage.
  • the energy density of the laser used in the second stage is above I 2 , where In the formula, h 2 represents the thickness of the embedded layer, in ⁇ m; the units of I 1 and I 2 are mJ/mm 2 .
  • the energy density of the laser is 1 or more, wherein In the formula, h 2 represents the thickness of the embedded layer.
  • the surface roughness Sa of the laser-treated silicon steel substrate is 6-8 ⁇ m.
  • the above-mentioned manufacturing method of oriented silicon steel satisfies at least one of the following conditions:
  • a two-stage normalization treatment is adopted: first, the slab is heated to 1100 ⁇ 1200°C, then cooled to 900 ⁇ 1000°C at a cooling rate of 1°C/s ⁇ 10°C/s; Cool to room temperature at a cooling rate of 10°C/s ⁇ 70°C/s;
  • cold rolling step 4 primary cold rolling or secondary cold rolling with an intermediate annealing step is used;
  • a recrystallization annealing is performed at 800 to 900°C, and then an annealing isolating agent is coated on the surface of the cold-rolled plate.
  • the annealing isolating agent is magnesium oxide;
  • the annealing temperature is 1100 ⁇ 1200°C, and the holding time is 20 ⁇ 30h;
  • the silicon steel substrate coated with the insulating coating is heated to 800 ⁇ 900°C, kept for 10 ⁇ 30s, and then cooled to room temperature at a cooling rate of 5°C/s ⁇ 50°C/s. Preparation of oriented silicon steel.
  • the insulating coating can be coated on the silicon steel substrate using a method commonly used in the art, such as spraying the insulating coating liquid on the surface of the silicon steel substrate using a spraying method and baking it. and sintering, thereby forming an insulating coating on the surface of the silicon steel substrate.
  • the insulating coating liquid contains the following chemical components in mass percentage: aluminum dihydrogen phosphate and/or magnesium dihydrogen phosphate: 2% to 25%, colloidal silica: 4% to 16%, chromic anhydride: 0.15 % ⁇ 4.50%, the balance is water and other inevitable impurities.
  • the oriented silicon steel of the present invention does not contain magnesium silicate and/or magnesium and aluminum oxides, and has good insulation coating adhesion, high lamination coefficient, low iron loss and magnetostriction.
  • a transformer core with reduced noise can be produced from this oriented silicon steel.
  • the method of the present invention removes the embedded layer and the continuous layer in the silicon steel substrate by performing appropriate laser treatment on the silicon steel substrate under nitrogen protection, and adjusts the surface roughness of the silicon steel substrate, thereby obtaining a silicon steel substrate with low iron loss and low magnetism. Grain-oriented silicon steel with excellent elasticity, high lamination coefficient and excellent adhesion of surface insulating coating.
  • the removal process in this method is precise and controllable, has little pollution, can be automated, and is easy to operate.
  • Figure 1 is a schematic cross-sectional view along the thickness direction of the silicon steel substrate in the prior art after high-temperature annealing
  • Figure 2 shows the laser energy density required to remove the continuous layer and the embedded layer respectively in the present invention.
  • Surface roughness Sa It is the arithmetic mean height of the surface, which refers to the arithmetic mean or geometric mean of the distance between points in the contour surface and the central plane. It is used to characterize the roughness of the two-dimensional topography of the object surface.
  • Iron loss P17/50 Indicates the iron loss in kg sample when the magnetic induction intensity is 1.7T and the frequency is 50Hz. It is based on the national standard GBT 3655-2008 "Using Epstein square circle to measure the magnetic properties of electrical steel sheets (strips) "Energy method” was used to measure the iron loss of grain-oriented silicon steel samples.
  • Lamination coefficient test adopt the national standard GBT 19289-2003 "Density, resistivity and lamination of electrical steel sheets (strips)" "Measurement method of loading coefficient", the lamination coefficient of oriented silicon steel samples was measured.
  • the method of the present invention removes the embedded layer and the continuous layer in the silicon steel substrate by performing appropriate laser treatment on the silicon steel substrate under nitrogen protection, and adjusts the surface roughness of the silicon steel substrate, thereby obtaining a silicon steel substrate with low iron loss and low magnetism. Grain-oriented silicon steel with high lamination coefficient and excellent surface insulation coating adhesion.
  • an annealing isolating agent such as magnesium oxide, etc.
  • an embedded layer and a continuous layer will be formed on the surface of the silicon steel substrate.
  • the oxide particles containing magnesium silicate (Mg 2 SiO 4 ) and magnesium and aluminum oxides (MgAl 2 O 4 ) as main components mixed in the embedded layer are the main factors affecting the magnetostriction and iron loss of oriented silicon steel.
  • the embedded layer 2 is located between the core 1 and the continuous layer 3 of the silicon steel substrate. Therefore, when the embedded layer 2 is removed, the continuous layer 3 needs to be removed as well. Compared with the pickling or mechanical removal methods in the existing technology, laser is very stable and easy to adjust, can be automated, easy to operate, the removal process is precise and controllable, has little pollution, and has good removal effect. By removing embedded layer 2, the 90° surface closed domains and the pinning of the 180° domain wall motion due to the oxide particles in embedded layer 2 can be eliminated.
  • the process of removing the embedded layer in the present invention needs to be carried out in a nitrogen atmosphere, which can avoid the formation of an oxide layer on the surface of the silicon steel substrate and affect the adhesion of the subsequent insulating coating on the surface of the silicon steel substrate, while ensuring that the inhibitor (such as AlN, etc.) are not affected by the atmosphere and avoid imperfect secondary recrystallization.
  • precipitates such as fine AIN act as inhibitors to inhibit the grain boundary migration of primary recrystallized grains during decarburization annealing through nail rolling or segregation, and promote the primary grains in the (110)[001] orientation during high-temperature annealing.
  • the grains engulf the surrounding grains with other orientations to achieve abnormal growth of secondary recrystallization, so that the finished oriented silicon steel obtains a stable and uniform (110)[001] texture and good magnetic properties.
  • Magnetic domain refinement is not performed in the technical solution of the present invention, because during the laser processing of the present invention, there is no insulating coating on the surface of the silicon steel substrate, and the laser acts directly on the silicon steel substrate. In this case, the absorption of the laser The rate is low and the improvement of the magnetic properties of silicon steel is limited. Therefore, the purpose of reducing iron loss cannot be achieved through common magnetic domain refinement.
  • the total thickness H f of the laser-treated silicon steel substrate of the present invention satisfies: H 0 -2h 1 -2h 2 -2 ⁇ m ⁇ H f ⁇ H 0 -2h 1 -2h 2 .
  • H 0 is detected using a micrometer and is the thickness of the silicon steel substrate after high-temperature annealing; h 1 and h 2 are measured using an optical microscope on the metallographic photos of the cross-section of the silicon steel substrate along the thickness direction, h 1 is The average thickness of the continuous layer, which is the average thickness of the continuous layer in 10 different fields of view; h2 is the average thickness of the embedded layer, which is the average thickness of the embedded layer in 10 different fields of view.
  • the present invention it is necessary to finely control the degree of laser etching on the surface of the high-temperature annealed silicon steel substrate, not only to completely remove the embedded layer 2 and the continuous layer 3, but also to avoid losing too much core structure. Specifically, in the present invention, it is desired to completely remove the embedded layer while ensuring that the etching depth of the core 1 is within 2 microns.
  • the thickness H 0 of the silicon steel substrate after high-temperature annealing is: 0.19 ⁇ 0.29mm
  • the thickness h 1 of the continuous layer is ⁇ 4 ⁇ m
  • the thickness h 2 of the embedded layer is ⁇ 4 ⁇ m.
  • the energy density I of the laser is 300-600mJ/mm 2
  • the energy density I of the laser is calculated using the following formula:
  • P is the laser power in W
  • f is the pulse repetition frequency in kHz
  • d is the spot diameter in ⁇ m.
  • the laser energy density I is first debugged in the first area of the silicon steel substrate.
  • the laser power can be continuously changed.
  • P, pulse repetition frequency f, spot diameter d, etc. are carried out multiple laser etching operations until a laser energy density I can be determined that can completely remove the embedded layer and the etching depth of the core of the silicon steel substrate is within 2 Within microns.
  • the second area of the silicon steel substrate is etched with the determined energy density I.
  • the second area is the area of the silicon steel substrate other than the first area.
  • the embedded layer and continuous layer on the surface of the silicon steel substrate can be effectively removed without losing too much core structure of the substrate. Since the thickness of the embedded layer is usually less than 4 microns, the energy density of the laser usually does not exceed 600mJ/mm 2 . When the energy density of the laser exceeds 600mJ/mm 2 , it is not only detrimental to energy saving, but also removes too much substrate; in addition, On the one hand, even if the thickness of the embedded layer is very thin, it is necessary to select a laser energy density above 300mJ/ mm2 to ensure that the embedded layer is completely removed.
  • the laser source is preferably an infrared laser source with high absorptivity and low reflectivity for magnesium silicate, such as a wavelength of 1064 nm. Infrared laser source.
  • a nanosecond pulse laser is used to remove the embedded layer and the continuous layer.
  • the inventor found that the laser energy density required to remove the continuous layer and the embedded layer can be determined by the thickness h 1 of the continuous layer and the thickness h 2 of the embedded layer in the silicon steel substrate.
  • Figure 2 shows the relationship between the thickness of the continuous layer and the embedded layer and the required pulse laser energy density when the laser treatment is performed in two stages under nitrogen protection.
  • the energy density of the laser is above I 1 , where In the formula, h 1 represents the thickness of the continuous layer; when the embedded layer is removed in the second stage, the energy density of the laser is above I 2 , where In the formula, h 2 represents the thickness of the embedded layer.
  • the removal is an ablation removal mechanism: a laser with an energy density of I 1 is used to continuously pulse the silicon steel substrate, and the pulse heat accumulated The surface temperature of the continuous layer increases, thereby changing the shape and properties of the continuous layer, causing the continuous layer to separate from the silicon steel substrate.
  • the pulse laser In the second stage of removing the embedded layer, when the laser energy density exceeds the complete removal threshold of the continuous layer, the pulse laser will irradiate the embedded layer.
  • the temperature of the oxide particles in the embedded layer will rise sharply after absorbing the laser energy, causing a phenomenon such as swelling. , vaporization, thermal shock, thermal vibration, sonic shock and a series of physical effects, which ultimately cause the embedded layer (mainly the oxide particles) to separate from the core, thereby achieving the removal of the embedded layer.
  • the laser energy density required to remove the embedded layer is higher than the laser energy density required to remove the continuous layer, it is not necessary to perform a two-step process to remove the continuous layer and the embedded layer respectively. In actual operation, it can be based on the characteristics of the embedded layer. The thickness is calculated to obtain the I 2 value, and then a laser energy density with a value above I 2 is selected to remove the continuous layer and the embedded layer at the same time.
  • I 2 also needs to be between 300 and 600 mJ/mm 2 to achieve complete removal of the embedded layer.
  • the value of I 2 can achieve the purpose of low noise during operation of the transformer core made of oriented silicon steel.
  • the surface roughness Sa of the silicon steel substrate determines the adhesion of the insulating coating on the silicon steel substrate and the lamination coefficient of the finished oriented silicon steel.
  • the stacking coefficient is reduced. Therefore, the surface roughness of the silicon steel substrate needs to be controlled within an appropriate range.
  • the surface roughness Sa of the silicon steel substrate is preferably 6 to 8 ⁇ m. Under this condition, the insulating coating can closely adhere to the surface of the silicon steel substrate, and the lamination coefficient of the oriented silicon steel reaches more than 97%.
  • the surface roughness Sa of the silicon steel substrate is mainly affected by laser power, scanning speed, and repetition frequency.
  • the surface of the substrate will leave a groove-like "wave-like" topography with equal intervals.
  • the width and depth of the grooves determine the "wave troughs" in the micro-areas of the laser-treated surface, and the molten dendrites at the overlap of the light spots.
  • the structure determines the "wave crests" in the surface micro-areas, and the unevenness between the "wave troughs” and “wave crests" directly affects the size of the surface roughness Sa of the micro-areas.
  • Laser power P has the most significant impact on surface roughness. As the laser power increases, the groove width and depth increase, and the surface roughness Sa value increases. In the present invention, the laser power P is preferably 50 to 100W, and more preferably 50 to 80W.
  • the surface roughness Sa of the silicon steel substrate is also affected by the scanning speed of the laser.
  • the scanning speed of the laser is preferably 5 to 6 m/s, and more preferably 5.5 m/s.
  • the scanning speed of the laser is greater than 6m/s, the "peak" value at the overlap of the light spots becomes higher, causing the surface roughness Sa to be too high;
  • the scanning speed of the laser is less than 5m/s, the superimposed thermal effect of the light spots increases, and the groove The groove depth further increases, that is, the "trough" value deepens, causing the surface roughness Sa to be too high.
  • the repetition frequency f of the laser will also affect the surface roughness Sa of the silicon steel substrate.
  • the repetition frequency f of the laser light is preferably 65 to 90 kHz.
  • the repetition frequency f is less than 65kHz, the energy density of a single pulse increases, and the groove width and depth further increase, resulting in an excessive surface roughness Sa value;
  • the repetition frequency f is greater than 90kHz, the energy density of a single pulse decreases , the scanning speed needs to be reduced, the thermal effect of spot superposition increases, and the groove depth Increase, that is, the "trough" value deepens, causing the surface roughness Sa value to be too large.
  • the insulating coating is used to improve the insulation on the surface of the silicon steel substrate.
  • the insulating coating liquid widely used in the existing technology is an aqueous solution based on chromic anhydride, colloidal SiO 2 and phosphates of Mg and Al. After the insulating coating liquid is sintered, a transparent insulating coating will be formed on the surface of the silicon steel substrate.
  • the coating amount of the edge coating on the silicon steel substrate is preferably 4.0 to 4.5 g/m 2 .
  • connection should be understood in a broad sense. For example, it can be directly connected, or it can be indirectly connected through an intermediary, or it can be two internal connections between components.
  • connection should be understood in specific situations.
  • the oriented silicon steel of Examples 1-6 is prepared by sequentially carrying out the following steps:
  • Heating the slab Heating to 1200 ⁇ 1280°C, holding for 1 ⁇ 4h, and hot rolling;
  • Normalization adopt two-stage normalization treatment, first heating to 1100 ⁇ 1200°C, then cooling to 900 ⁇ 1000°C at a cooling rate of 1°C/s ⁇ 10°C/s; then cooling at a cooling rate of 10°C/s ⁇ 70 The cooling rate is °C/s to cool to room temperature;
  • Cold rolling Use one cold rolling or two cold rolling with intermediate annealing step to produce cold rolled plates;
  • Decarburization annealing Perform recrystallization annealing at a temperature of 800 to 900°C, and then apply annealing isolating agent on the surface of the cold-rolled plate.
  • High temperature annealing annealing temperature 1100 ⁇ 1200°C, holding time 20-30hr;
  • Coating with insulating coating and hot stretch annealing Apply insulating coating liquid on the surface of the silicon steel substrate, and bake and sinter to form an insulating coating on the surface of the silicon steel substrate; then apply the insulating coating on the silicon steel substrate Heating to 800 ⁇ 900°C, holding for 10-30s, and then cooling to room temperature at a cooling rate of 5°C/s ⁇ 50°C/s to obtain oriented silicon steel.
  • the oriented silicon steel of Comparative Examples 1-15 was produced in basically the same manner as above, except that Comparative Examples 1, 6 and 11 did not use the laser treatment of the present invention, and other Comparative Examples were not adjusted according to the thickness of the continuous layer and embedded layer.
  • the energy density of the laser treatment, and/or the surface roughness Sa of the silicon steel substrate after laser treatment is not controlled.
  • Table 1 shows the chemical composition of the silicon steel substrates of Examples 1-6 and Comparative Examples 1-15 of the present invention, excluding Fe and unavoidable impurities, and the thickness H of the finished oriented silicon steel (including the silicon steel substrate and the insulating coating on its surface total thickness).
  • the insulating coating liquid coated on the surface of the silicon steel substrate in Examples 1-6 and Comparative Examples 1-15 of the present invention contains the following chemical components in mass percentage: aluminum dihydrogen phosphate and/or magnesium dihydrogen phosphate: 2% ⁇ 25%; colloidal silica: 4% to 16%; chromic anhydride: 0.15% to 4.50%; the rest is water and other inevitable impurities.
  • Table 2 lists the chemical compositions of the insulating coating liquids coated on the surfaces of the silicon steel substrates of Examples 1-6 and Comparative Examples 1-15.
  • Table 2 (The unit of the values in the table is wt.%, the balance is water and other inevitable impurities)
  • Table 3 lists the specific parameters of the manufacturing process of the oriented silicon steel of Examples 1-6 and Comparative Examples 1-15.
  • Table 4 lists the continuous layer thickness and embedded layer thickness in the high-temperature annealed silicon steel substrates of Examples 1-6 and Comparative Examples 1-15, the laser power, repetition frequency, scanning speed and spot diameter used in the laser processing process, Theoretically remove the embedded The laser energy density I required for layer penetration, the laser energy density I used in actual operations, and the surface roughness Sa after laser treatment.
  • the oriented silicon steel samples of the prepared Examples 1-6 and Comparative Examples 1-15 were respectively sampled, and the non-contact laser Doppler Vibrometer TD9600 (Laser Doppler Vibrometers) was used to measure the oriented silicon steel samples of each Example and Comparative Example.
  • the specific measurement method can be See IEC (International Electrotechnical Commission) technical report-IEC/TP 62581.
  • a 300 mm ⁇ 30 mm test piece was cut from the oriented silicon steel sample with an insulating coating in Examples 1-6 and Comparative Example 1-15, and the sample was tightly wound into a brass cylinder with a diameter of 20 mm, and gradually Bend 180° and extend flat. Then, the area of the inner surface coating of the sample that is not cracked or peeled off is measured, and the remaining area ratio (%) of the insulating coating is calculated.
  • the adhesion of the insulating coating is evaluated on three levels: “ ⁇ ” means that the remaining area rate of the insulating coating is 100%. “ ⁇ ” means that the remaining area ratio of the insulating coating is more than 90%. “ ⁇ ” means that the remaining area ratio of the insulating coating is less than 90%.
  • Iron loss P17/50 (indicates the iron loss of the sample in kg when the magnetic induction intensity is 1.7T and the frequency is 50Hz): Adopt the national standard GBT 3655-2008 "Use Epstein square circle to measure the magnetic properties of electrical steel sheets (strips) "possible methods” to implement The iron loss of the grain-oriented silicon steel of Examples 1-6 and Comparative Examples 1-15 was measured.
  • Table 5 lists the performance test results of the oriented silicon steels of Examples 1-6 and Comparative Examples 1-15.
  • the oriented silicon steel of Comparative Examples 1, 6 and 11 has not been laser treated. Although it has good adhesion, the lamination coefficient is lower than 97%, and the iron loss and magnetostriction are poor.
  • the oriented silicon steel in Comparative Examples 2, 7 and 12 has been laser treated, the energy density of the laser used is low, so only the continuous layer is removed, but the embedded layer is not removed, which does not solve the problems caused by the existence of the embedded layer in the oriented silicon steel. As a result of the above problems, the obtained oriented silicon steel has poor iron loss, magnetostriction and insulation coating adhesion.
  • the present invention removes the continuous layer and embedded layer in the silicon steel substrate by controlling the parameters of laser processing, and optimizes the laser processing parameters by detecting the roughness of the surface of the silicon steel substrate after laser processing to improve the adhesion of the insulating coating. and lamination coefficient, and obtained oriented silicon steel with low loss, low magnetostriction, high lamination coefficient and high insulating coating adhesion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

本发明提供一种取向硅钢,包括硅钢基板及在其表面上形成的绝缘涂层,其不含硅酸镁和/或镁、铝的氧化物。该取向硅钢具有低铁损、低磁致伸缩、高叠片系数且表面涂层附着性高。本发明还提供一种用于制造上述取向硅钢的方法,与现有技术相比,该方法通过以合适的参数对硅钢基板进行激光处理,去除硅钢基板中的嵌入层和连续层并调节硅钢基板的表面粗糙度,由此获得综合性能优异的取向硅钢;该方法中的去除过程精确可控、污染小,且可自动化处理,操作方便。

Description

取向硅钢及其制造方法 技术领域
本发明涉及钢材及其制造方法,尤其涉及低损耗、低磁致伸缩的取向硅钢及其制造方法。
背景技术
现有的变压器铁芯一般采用取向硅钢进行叠片或卷绕制成。变压器的生产和应用过程中主要关注的指标为空载损耗特性和空载激磁电流这两个特性,这两个指标分别对应取向硅钢的损耗和激磁功率。近年来,随着社会对环境噪音要求的持续提升,变压器的噪音也成为变压器性能的重要评价指标,其主要来源于取向硅钢的磁致伸缩。取向硅钢在磁化过程中垂直于平行轧制方向的易磁化方向的90°磁畴数量变化和转动是磁致伸缩产生的主要原因。
在理想状态下,取向硅钢成品应当是只有180°磁畴,而实际的取向硅钢成品由于取向度偏差、夹杂物、晶界等缺陷,为降低其整体的静磁能而自然地在180°磁畴间出现了小附加畴-柳叶畴,即90°畴,因而导致取向硅钢成品磁致伸缩的提高。因此,减少90°畴,就能够有效地降低磁致伸缩。
目前,取向硅钢一般通过包括如下步骤的方法制备:a)冶炼和铸造;b)加热;c)常化;d)冷轧;e)脱碳退火;f)成品退火;g)热拉伸退火。
在上述e)脱碳退火步骤中,通常需要在脱碳退火钢板的表面涂覆以氧化镁为主成分的退火分离剂;在f)成品退火步骤中,作为退火分离剂的MgO与在脱碳退火时形成于钢板表面的SiO2发生反应,在硅钢基板表面形成以硅酸镁(Mg2SiO4)作为主要成分的底层(也称“一次被膜”)。在g)热拉伸退火步骤中,在形成硅酸镁层后的钢板表面涂覆以胶体二氧化硅及磷酸盐作为主要成分的绝缘涂液并烧结,形成张力绝缘涂层(也称为“二次被膜”)。
取向硅钢的底层结构如图1所示,其中在硅钢基板表面形成的硅酸镁层分为两个部分:通过SiO2在硅钢基板表面扩散富集形成的连续层3,以及受到硅钢基板中的析出物等阻碍没有扩散到表面的SiO2和Al2O3等氧化物颗粒嵌入基板的芯部形成嵌入层2。连续层3的主要成分是硅酸镁,嵌入层2的主要成分是硅酸镁(Mg2SiO4)和少量镁、铝的氧化物 (MgAl2O4)。由于嵌入层2是在高温退火过程中产生的,并且其热膨胀系数小于钢的热膨胀系数,因此在嵌入层的氧化物颗粒周围产生局部的应力场,会在硅钢基板中形成90°表面闭合畴,影响后续获得的成品取向硅钢的磁致伸缩性能。此外,这些氧化物颗粒也对硅钢基板中的180°畴壁的运动起到钉扎效果,阻碍硅钢基板在变化的磁场中的磁筹转动,导致成品取向硅钢的损耗增加。
现有技术中采用的降低取向硅钢损耗的方法主要包括:(1)通过提高成品(110)[001]位向的取向度而使磁通密度提高,降低磁滞损耗;(2)通过增加硅钢基板中Si的含量来提高电阻率或者减薄钢板的厚度,降低经典涡流损耗;(3)通过对取向硅钢进行激光刻蚀来降低磁畴宽度,降低反常涡流损耗。
现有技术中采用的降低取向硅钢磁致伸缩的方法主要包括:(1)提升成品晶体的取向度;(2)降低成品厚度;(3)增加涂层张力。上述三种方法均可以使取向硅钢成品磁致伸缩下降,从而实现变压器噪音水平的降低。
现有技术公开了一些通过消除嵌入层降低其对取向硅钢成品的磁致伸缩和铁损性能影响的技术方案。
例如,中国专利申请CN113272456A(公开日为2021年8月17日)公开了一种方向性电磁钢板的制造方法,其将脱碳退火工序的气氛设置为不形成铁系氧化物的氧化度,且在后面的工序中,在硅钢基板上涂覆以氧化铝为主成分的退火分离剂。该技术方案通过严格控制脱碳露点,在脱碳退火时不形成铁系氧化物(例如Fe2SiO4,FeO等),可以达到有效消除表面氧化物夹杂物的目的。然而,该方法中,氧化铝不和二氧化硅发生反应,在基板表面不形成底层,从而导致抑制剂在高温退火过程中不稳定,容易分解,导致二次再结晶不稳定,获得的取向硅钢的涂敷性能和稳定性均较差。
中国专利申请CN113272454A(公开日为2021年8月17日)公开了一种方向性电磁钢板的制造方法。其通过化学研磨去除硅钢基板表面的剩余退火分离剂,使退火板表面的粗糙度Ra达到0.1μm以下,最终获得没有硅酸镁覆膜的取向硅钢。然而该技术方案由于采用化学研磨,故必须要解决药液浓度、温度管理等设备设置问题。因此,从生产的角度出发,该技术方案的实用性较差,在长线程生产过程中,药液浓度和温度的一致性很难保持。
中国专利申请CN113286905A(公开日为2021年8月20日)公开了一种方向性电磁钢板的制造方法。该专利采用含有碱金属或碱土类金属或Bi的氯化物中的至少1种即MCl作为退火分离剂。通过采用含有MCl的退火分离剂,在最终退火时,因退火分离剂中的 MCl的腐蚀作用得到未形成硅酸镁覆盖的钢板。然而该技术方案由于对成品退火工序中气氛控制的要求高,容易导致AlN及(Al,Si)N等抑制剂的分解,二次再结晶不稳定。因此也不是一种理想的生产方法。
发明内容
为了解决现有技术中存在的上述技术问题,一方面,本发明提供一种取向硅钢,该取向硅钢包括硅钢基板及在硅钢基板表面上形成的绝缘涂层,取向硅钢不含硅酸镁(Mg2SiO4)和/或镁、铝的氧化物(MgAl2O4)。本发明的取向硅钢具有低铁损、低磁致伸缩、高叠片系数且表面绝缘涂层附着性高的优点。
如无特殊说明,在本发明的取向硅钢中的“镁、铝的氧化物”指氧化镁铝(MgAl2O4)。
优选地,硅钢基板包含以质量百分比计的如下化学元素:C:0.057~0.062%,Si:3.12~3.25%,Mn:0.011~0.020%,酸溶性Al:0.026~0.029%,N:0.008~0.009%,余量为Fe及不可避免的杂质。
优选地,绝缘涂层由绝缘涂液形成,绝缘涂液包含铬酸酐、胶体SiO2和Mg、Al的磷酸盐的水溶液;更优选地,绝缘涂液包含以质量百分比计的如下化学组分:2%~25%的磷酸二氢铝和/或磷酸二氢镁、4%~16%的胶体二氧化硅、0.15%~4.50%的铬酸酐,余量为水及其他不可避免的杂质。
优选地,绝缘涂层在硅钢基板上的涂覆量为4.0~4.5g/m2
优选地,取向硅钢的磁致伸缩速度声压水平LvA≤50db(A)。
优选地,取向硅钢的铁损P17/50为0.90W/Kg以下,优选为0.80W/Kg以下。
优选地,取向硅钢的叠片系数≥97%。
另一方面,本发明还提供用于制造上述取向硅钢的方法,包括依次进行的以下步骤:
1)对钢水进行冶炼和铸造,制得板坯;
2)对板坯进行加热;
3)常化;
4)冷轧,制得冷轧板;
5)脱碳退火;
6)高温退火,制得硅钢基板,该硅钢基板具有芯部、连续层和在芯部与连续层之间的嵌入层,该嵌入层包含硅酸镁(Mg2SiO4)和/或镁、铝的氧化物(MgAl2O4),连续层包含硅酸镁;
7)激光处理:在氮气保护下,对硅钢基板进行两面激光处理,去除硅钢基板中的嵌入层和连续层;以及
8)涂覆绝缘涂层和热拉伸退火,制得取向硅钢。
优选地,激光处理后的硅钢基板的总厚度Hf满足:H0-2h1-2h2-2μm≤Hf≤H0-2h1-2h2,式中H0代表硅钢基板的初始总厚度,h1代表连续层的厚度,以及h2代表嵌入层的厚度;更优选地,H0:0.19~0.29mm,h1≤4μm,h2≤4μm。
优选地,在7)激光处理步骤中,激光的能量密度I为300~600mJ/mm2,该激光的能量密度I采用以下公式计算:式中,P为激光功率,单位W;f为脉冲重复频率,单位kHz;d为光斑直径,单位μm。
优选地,在7)激光处理步骤中,激光源使用红外激光源。
优选地,在7)激光处理步骤中,激光器使用纳秒脉冲激光器。
优选地,在7)激光处理步骤中,激光的扫描速度为5~6m/s,优选为5.5m/s;激光功率P为50~100W,优选为50-80W;脉冲重复频率f为65~90kHz;光斑直径为40~60μm。
优选地,在7)激光处理步骤中,两面激光处理分两个阶段进行,包括在第一阶段去除连续层,第一阶段中采用的激光的能量密度为I1以上,其中式中h1代表连续层的厚度,单位为μm;以及在第二阶段去除嵌入层,第二阶段中采用的激光的能量密度为I2以上,其中式中h2代表嵌入层的厚度,单位为μm;I1和I2的单位为mJ/mm2
优选地,在7)激光处理步骤中,激光的能量密度为I2以上,其中 式中h2代表嵌入层的厚度。
优选地,激光处理后的硅钢基板的表面粗糙度Sa=6~8μm。
优选地,上述取向硅钢的制造方法满足下述条件中的一个以上:
在3)常化步骤中,采用两段式常化处理:首先将板坯加热到1100~1200℃,然后以1℃/s~10℃/s的冷却速度降温到900~1000℃;再以10℃/s~70℃/s的冷却速度冷却到室温;
在4)冷轧步骤中,采用一次冷轧或带中间退火步骤的二次冷轧;
在5)脱碳退火步骤中,在800~900℃进行一次再结晶退火,然后在冷轧板的表面涂覆退火隔离剂,退火隔离剂为氧化镁;
在6)高温退火步骤中,退火温度为1100~1200℃,保温时间20~30h;以及
在步骤8)的热拉伸退火中,将涂有绝缘涂层的硅钢基板加热到800~900℃,保温10~30s,然后以5℃/s~50℃/s的冷却速度冷却至室温,制得取向硅钢。
此外,本发明的步骤8)的涂覆绝缘涂层可采用本领域常用的方式将绝缘涂层涂覆在硅钢基板上,比如采用喷涂法将绝缘涂液喷涂在硅钢基板表面,并进行烘烤和烧结,由此在硅钢基板表面上形成绝缘涂层。优选地,绝缘涂液包含以质量百分比计的如下化学组分:磷酸二氢铝和/或磷酸二氢镁:2%~25%,胶体二氧化硅:4%~16%,铬酸酐:0.15%~4.50%,余量为水及其他不可避免的杂质。
综上,本发明的取向硅钢不含硅酸镁和/或镁、铝的氧化物,其具有良好的绝缘涂层附着性、较高的叠片系数、较低的铁损和磁致伸缩,由该取向硅钢可制得噪音降低的变压器铁芯。
本发明的方法通过在氮气保护下对硅钢基板进行合适的激光处理,来去除硅钢基板中的嵌入层和连续层,并调节硅钢基板的表面粗糙度,由此获得了具有低铁损、低磁致伸缩、高叠片系数和表面绝缘涂层附着性优异的取向硅钢。该方法中的去除过程精确可控、污染小,且可自动化处理,操作方便。
附图说明
图1是现有技术中的硅钢基板进行高温退火后,沿硅钢基板的厚度方向的截面示意图;
图2示出本发明中去除连续层和嵌入层分别需要的激光能量密度。
附图标记:1-芯部;2-嵌入层;3-连续层。
具体实施方式
定义
表面粗糙度Sa:其为表面算术平均高度,指轮廓表面内的点与中心面距离的算术平均或几何平均值,用于表征物体表面二维形貌的粗糙程度。
铁损P17/50:表示在磁感应强度为1.7T、频率为50Hz时,单位kg试样的铁损,其根据国家标准GBT 3655-2008“用爱泼斯坦方圈测量电工钢片(带)磁性能的方法”,对取向硅钢样品的铁损进行测定。
磁致伸缩测试:根据IEC技术报告IEC/TP 62581,采用非接触式的激光多普勒振动仪,在B=1.7T下,对取向硅钢样品的磁致伸缩振动速度声压水平进行测定。
叠片系数测试:采用国家标准GBT 19289-2003“电工钢片(带)的密度、电阻率和叠 装系数的测量方法”,对取向硅钢样品的叠片系数进行测定。
本发明的方法通过在氮气保护下对硅钢基板进行合适的激光处理,来去除硅钢基板中的嵌入层和连续层,并调节硅钢基板的表面粗糙度,由此获得了具有低铁损、低磁致伸缩、高叠片系数且表面绝缘涂层附着性优异的取向硅钢。
在现有技术的取向硅钢的制备工艺中,高温退火前需要在硅钢基板表面涂敷退火隔离剂,例如氧化镁等,以防止高温下钢板之间彼此粘结。因此在高温退火后,会在硅钢基板表面形成嵌入层和连续层。嵌入层中夹杂的以硅酸镁(Mg2SiO4)和镁、铝的氧化物(MgAl2O4)为主要成分的氧化物颗粒是影响取向硅钢磁致伸缩和铁损的主要因素。
如图1所示,嵌入层2位于硅钢基板的芯部1和连续层3之间。因此在将嵌入层2去除时,需要将连续层3也一并去除。与现有技术中利用酸洗或机械法去除方法相比,激光非常稳定且容易调节,可自动化处理,操作方便,去除过程精确可控、污染小,且去除效果好。通过去除嵌入层2,可以消除由于嵌入层2中的氧化物颗粒引起的90°表面闭合畴以及对180°畴壁运动的钉扎。
此外,本发明中去除嵌入层的过程需要在氮气氛围中进行,这可避免在硅钢基板表面生成氧化层,影响后续绝缘涂层在硅钢基板表面的附着性,同时保证高温退火步骤中抑制剂(如AlN等)不受气氛影响,避免二次再结晶不完善。具体地,细小AIN等析出物作为抑制剂,通过钉轧或偏聚作用抑制脱碳退火初次再结晶晶粒的晶界迁移,并在高温退火中促使(110)[001]位向的初次晶粒吞并周围其他位向的晶粒实现二次再结晶的异常长大,从而使成品取向硅钢获得稳定均匀的(110)[001]织构和良好的磁性能。
在本发明的技术方案中不进行磁畴细化,因为本发明在激光处理时,硅钢基板的表面并无绝缘涂层,激光是直接作用在硅钢基板上的,这种情况下对激光的吸收率偏低,对硅钢的磁性能改善有限,因此无法通过常见的磁畴细化来达到减小铁损的目的。
本发明的激光处理后的硅钢基板的总厚度Hf满足:H0-2h1-2h2-2μm≤Hf≤H0-2h1-2h2。在本发明中,H0采用千分尺进行检测,为高温退火后的硅钢基板的厚度;h1、h2是在硅钢基板沿厚度方向截面的金相照片上采用光学显微镜测得的,h1为连续层的平均厚度,其为10个不同视场中连续层厚度的平均值;h2为嵌入层的平均厚度,其为10个不同视场中嵌入层厚度的平均值。
在本发明中,需要精细控制激光对高温退火后的硅钢基板表面的刻蚀程度,既要将嵌入层2和连续层3完全去除,又要避免损失过多芯部组织。具体地,在本发明中,期望完全除去嵌入层的同时,确保对芯部1的刻蚀深度在2微米以内。
通常地,高温退火后的硅钢基板厚度H0:0.19~0.29mm,连续层的厚度h1≤4μm,以及嵌入层的厚度h2≤4μm。
在本发明的激光处理步骤中,激光的能量密度I为300~600mJ/mm2,该激光的能量密度I采用以下公式计算:式中,P为激光功率,单位W;f为脉冲重复频率,单位kHz;d为光斑直径,单位μm。
具体地,在采用双面激光对某一高温退火后的硅钢基板进行激光刻蚀的过程中,先在硅钢基板的第一区域进行激光能量密度I的调试,在此过程中可以不断改变激光功率P、脉冲重复频率f以及光斑直径d等进行多次激光刻蚀操作,直到能够确定一个激光能量密度I,该激光能量密度可完全去除嵌入层,且对硅钢基板芯部的刻蚀深度在2微米以内。然后,再以确定的该能量密度I对硅钢基板的第二区域进行刻蚀,该第二区域为硅钢基板中除了第一区域以外的区域。
如图2所示,当激光的能量密度在300~600mJ/mm2时,能够对硅钢基板表面的嵌入层和连续层进行有效去除,且不会损失过多的基板芯部组织。由于嵌入层的厚度通常在4微米以下,因此激光的能量密度通常不超过600mJ/mm2,当激光的能量密度超过600mJ/mm2时,不仅不利于节能,且会去除过多的基板;另一方面,即使嵌入层的厚度非常薄,也需要选择一个在300mJ/mm2以上的激光能量密度,以确保嵌入层被完全去除。
由于嵌入层和连续层的主要成分均为硅酸镁,因此在本发明的激光处理过程中,激光源优选对硅酸镁具有高吸收率和低反射率的红外激光源,例如波长为1064nm的红外激光源。
优选地,为了实现高的单脉冲瞬时峰值功率密度,采用纳秒脉冲激光器进行嵌入层和连续层的去除。
发明人经过大量实验和分析发现,通过硅钢基板中的连续层的厚度h1和嵌入层的厚度h2可确定去除连续层和嵌入层所需的激光能量密度。
具体地,图2显示了激光处理在氮气保护下分两阶段进行时,连续层和嵌入层的厚度与所需脉冲激光能量密度之间的关系。其中,在第一阶段去除连续层时,激光的能量密度为I1以上,其中式中h1代表连续层的厚度;在第二阶段去除嵌入层时,激光的能量密度为I2以上,其中式中h2代表嵌入层的厚度。
在去除连续层的第一阶段中,由于连续层(硅酸镁层)为不透明氧化层,所以该去除为消融去除机制:采用能量密度为I1的激光对硅钢基板进行持续的脉冲,脉冲热累积造成 连续层表面温度升高,由此改变连续层的形态和性质,使连续层脱离硅钢基板。
在去除嵌入层的第二阶段中,当激光能量密度超过连续层的完全去除阈值时,脉冲激光将照射嵌入层,嵌入层中的氧化物颗粒吸收激光能量后温度急剧升高,产生如膨松、气化、热冲击以及热振动、声波震碎等一系列物理效应,最终使得嵌入层(主要是其中的氧化物颗粒)与芯部脱离,由此实现嵌入层的去除。
由于去除嵌入层所需的激光能量密度高于去除连续层所需的激光能量密度,因此分两步处理以分别去除连续层和嵌入层并不是必须的,在实际操作中可先根据嵌入层的厚度计算得到I2值,然后选择一个数值在I2以上的激光能量密度进行连续层和嵌入层的一并去除。
需要注意的是,I2也需要在300~600mJ/mm2,以实现对嵌入层的完全去除。优选地,将I2取值为可以实现由取向硅钢制得的变压器铁芯在工作时噪音低的目的。
硅钢基板的表面粗糙度Sa决定了硅钢基板上绝缘涂层的附着性和成品取向硅钢的叠片系数。表面粗糙度越小,绝缘涂层在其上的附着性越差;表面粗糙度越大,绝缘涂层的附着性越好,但绝缘涂层的厚度也会随之增大,造成成品取向硅钢叠片系数降低。因此,需要把硅钢基板的表面粗糙度控制在合适的范围内。在本发明中,硅钢基板的表面粗糙度Sa优选为6~8μm,在该条件下,绝缘涂层可紧密地附着在硅钢基板表面,同时取向硅钢的叠片系数达到97%以上。
硅钢基板的表面粗糙度Sa主要受激光功率、扫描速度、重复频率的影响。
激光处理后,基板表面会留下间隔相等的沟槽状“波浪式”形貌,沟槽宽度和深度决定了经激光处理表面微区内的“波谷”,光斑搭接处熔融的枝晶状结构决定了表面微区内的“波峰”,“波谷”与“波峰”间的不平度直接影响微区表面粗糙度Sa的大小。
激光功率P对表面粗糙度影响最显著,激光功率增大,沟槽宽度和深度随之增加,表面粗糙度Sa值增大。在本发明中,激光功率P优选为50~100W,更优选为50-80W。
硅钢基板的表面粗糙度Sa也受激光的扫描速度的影响。在本发明中,激光的扫描速度优选为5~6m/s,更优选为5.5m/s。当激光的扫描速度大于6m/s时,光斑搭接处的“波峰”值进一步变高,导致表面粗糙度Sa过高;而当激光的扫描速度小于5m/s时,光斑叠加热效应增加,沟槽深度进一步增加,即“波谷”值加深,导致表面粗糙度Sa过高。
此外,激光的重复频率f也将影响硅钢基板的表面粗糙度Sa。在本发明中,激光的重复频率f优选为65~90kHz。当激光功率一定时,重复频率f小于65kHz时,单脉冲的能量密度提高,沟槽宽度和深度进一步增加,导致表面粗糙度Sa值过大;重复频率f大于90kHz时,单脉冲的能量密度降低,需要降低扫描速度,光斑叠加热效应增加,沟槽深度 增加,即“波谷”值加深,导致表面粗糙度Sa值过大。
绝缘涂层用于提高硅钢基板表面的绝缘性,现有技术中广泛采用的绝缘涂液是以铬酸酐、胶体SiO2和Mg、Al的磷酸盐为主的水溶液。绝缘涂液被烧结之后会在硅钢基板表面形成一层透明的绝缘涂层。
绝缘涂层厚度过薄,绝缘涂层赋予基板的张力小,磁性优化不足。绝缘涂层厚度过厚,影响成品的叠片系数,同时容易在剪切加工过程出现掉粉、白边等缺陷。在本发明中,优选缘涂层在硅钢基板上的涂覆量为4.0~4.5g/m2
在本实施例的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
还需要说明的是,除非另有明确的规定和限定,术语“设置”、“相连”、“连接”应做广义理解,例如,可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本实施例中的具体含义。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的实施方式作优选地详细描述。
实施例1-6和对比例1-15
实施例1-6的取向硅钢通过依次进行以下步骤制得:
1)冶炼和铸造:根据表1所示的配方,对钢水进行冶炼和铸造,制得板坯;
2)对板坯进行加热:加热到1200~1280℃,保温1~4h,进行热轧;
3)常化:采用两段式常化处理,首先加热到1100~1200℃,然后以1℃/s~10℃/s的冷却速度降温到900~1000℃;随后以10℃/s~70℃/s的冷却速度冷却到室温;
4)冷轧:采用一次冷轧或带中间退火步骤的二次冷轧,制得冷轧板;
5)脱碳退火:在800~900℃温度下进行一次再结晶退火,然后在冷轧板的表面涂覆退火隔离剂。
6)高温退火:退火温度1100~1200℃,保温时间20-30hr;
7)激光处理:在氮气保护下,采用纳秒脉冲激光器对硅钢基板进行两面激光处理,去除硅钢基板中的连续层和嵌入层,其中激光处理的条件如下表4所示;
8)涂覆绝缘涂层和热拉伸退火:在硅钢基板表面涂覆绝缘涂液,并进行烘烤和烧结,以在硅钢基板表面形成绝缘涂层;然后将涂有绝缘涂层的硅钢基板加热到800~900℃,保温10-30s,再以5℃/s~50℃/s的冷速降温到室温,获得取向硅钢。
对比例1-15的取向硅钢采用与上述基本相同的方式制得,所不同的只是对比例1、6和11未采用本发明的激光处理,其他对比例没有根据连续层和嵌入层的厚度调整激光处理的能量密度,和/或没有对激光处理后的硅钢基板的表面粗糙度Sa进行控制。
表1显示了本发明的实施例1-6和对比例1-15的硅钢基板除Fe和不可避免杂质之外的化学组成以及成品取向硅钢的厚度H(包括硅钢基板以及其表面的绝缘涂层的总厚度)。
表1
本发明实施例1-6和对比例1-15的硅钢基板表面所涂覆的绝缘涂液包含以质量百分比计的如下化学组分:磷酸二氢铝和/或磷酸二氢镁:2%~25%;胶体二氧化硅:4%~16%;铬酸酐:0.15%~4.50%;其余为水及其他不可避免的杂质。
表2列出了实施例1-6和对比例1-15的硅钢基板表面所涂覆的绝缘涂液的化学组成。
表2(表中数值的单位为wt.%,余量为水及其他不可避免的杂质)
表3列出了实施例1-6和对比例1-15的取向硅钢的制造工艺的具体参数。
表3
表4列出了实施例1-6和对比例1-15的高温退火后硅钢基板中的连续层厚度和嵌入层厚度,激光处理过程中采用的激光功率、重复频率、扫描速度和光斑直径,理论上去除嵌 入层所需的激光能量密度I2和实际操作中采用的激光能量密度I,以及激光处理后的表面粗糙度Sa。
表4
将制得的实施例1-6和对比例1-15的取向硅钢分别取样,并采用非接触式的激光多普勒振动仪TD9600(Laser Doppler Vibrometers)测量各实施例和对比例的取向硅钢样品在B=1.7T、f=-2MPa(变压器的实际工况中,取向硅钢受2-3MPa的压应力)条件下的磁致伸缩性能(磁致伸缩速度声压水平LvA),具体测量方法可以参见IEC(International Electrotechnical Commission)技术报告-IEC/TP 62581。
从实施例1-6和对比例1-15的形成有绝缘涂层的取向硅钢样品上切出300mm×30mm的试验片,将试样紧紧卷绕到直径为20mm的黄铜圆柱形,逐渐弯曲180°,并平坦地伸展。然后测定试样内表面涂层未开裂和剥落的面积,算出绝缘涂层残存面积率(%)。
绝缘涂层的密合性以3个等级进行评价:“◎”是指绝缘涂层残存面积率为100%。“○”是指绝缘涂层残存面积率为90%以上。“×”是指绝缘涂层残存面积率低于90%。
铁损P17/50(表示在磁感应强度为1.7T、频率为50Hz时,单位kg试样的铁损):采用国家标准GBT 3655-2008“用爱泼斯坦方圈测量电工钢片(带)磁性能的方法”,对实施 例1-6和对比例1-15的取向硅钢的铁损进行测定。
叠片系数:采用国家标准GBT 19289-2003“电工钢片(带)的密度、电阻率和叠装系数的测量方法”进行测定。
表5列出了实施例1-6和对比例1-15的取向硅钢的性能测试结果。
表5
如表5所示,相较于对比例1-15,本发明各实施例的包括铁损、磁致伸缩、叠片系数和附着性的综合性能优于对比例1-15。
如表5所示,对比例1、6和11的取向硅钢没有经过激光处理,虽然其具有较好的附着性,但叠片系数低于97%,并且铁损和磁致伸缩均较差。
对比例2、7和12的取向硅钢虽然经过了激光处理,但所用激光的能量密度较低,故只去除了连续层,而未去除嵌入层,并未解决取向硅钢中因嵌入层的存在所导致的上述问题,所获得的取向硅钢具有较差的铁损、磁致伸缩和绝缘涂层附着性。
对比例3、8和13的取向硅钢虽然经过了激光处理,但激光处理的功率和能量密度太高,不仅去除了嵌入层,且较多地去除了基板的芯部,故所获得的取向硅钢虽然具有较低 的铁损和磁致伸缩,但叠片系数和涂层附着性较差。
对比例4、9和14的取向硅钢虽然经过了激光处理并且所用激光的能量密度适当,但所用激光的功率太低,故虽然完全去除了嵌入层,但基板的表面粗糙度Sa过低,这导致绝缘涂层的附着性明显劣化。
对比例5、10和15的取向硅钢虽然经过了激光处理并且所用激光的能量密度适当,但所用激光的功率太高,故虽然完全去除了嵌入层,但基板的表面粗糙度Sa太高,这导致叠片系数明显降低。
综上所述,本发明通过控制激光处理的参数来清除掉硅钢基板中的连续层和嵌入层,并通过检测激光处理后硅钢基板表面的粗糙度优化激光处理参数来提升绝缘涂层的附着性和叠片系数,获得了低损耗、低磁致伸缩、高叠片系数且绝缘涂层附着性高的取向硅钢。
需要说明的是,本申请中记载的所有技术特征可以以任何方式进行自由组合或结合,除非彼此之间产生矛盾。在不脱离本发明的范围的情况下可对本发明进行各种修改和变化,这对本领域技术人员而言将是显而易见的。例如,作为一个实施方式的一部分显示或描述的特征可以与另一个实施方式一起使用以产生又一个实施方式。因此,本发明旨在涵盖落入所附权利要求及其等价物范围内的这些修改和变化。

Claims (16)

  1. 一种取向硅钢,包括硅钢基板及在硅钢基板表面上形成的绝缘涂层,所述取向硅钢不含硅酸镁和/或镁、铝的氧化物。
  2. 根据权利要求1所述的取向硅钢,其特征在于,所述硅钢基板包含以质量百分比计的如下化学元素:C:0.057~0.062%,Si:3.12~3.25%,Mn:0.011~0.020%,酸溶性Al:0.026~0.029%,N:0.008~0.009%,余量为Fe及不可避免的杂质。
  3. 根据权利要求1所述的取向硅钢,其特征在于,所述绝缘涂层由绝缘涂液形成,所述绝缘涂液为包含铬酸酐、胶体SiO2和Mg、Al的磷酸盐的水溶液;优选地,所述绝缘涂液包含以质量百分比计的如下化学组分:磷酸二氢铝和/或磷酸二氢镁:2%~25%、胶体二氧化硅:4%~16%、铬酸酐:0.15%~4.50%,余量为水及其他不可避免的杂质;优选地,所述绝缘涂层在所述硅钢基板上的涂覆量为4.0~4.5g/m2
  4. 根据权利要求1-3中任一项所述的取向硅钢,其特征在于,所述取向硅钢的磁致伸缩速度声压水平LvA≤50db(A)。
  5. 根据权利要求1-3中任一项所述的取向硅钢,其特征在于,所述取向硅钢的铁损P17/50为0.90W/Kg以下,优选为0.80W/Kg以下。
  6. 根据权利要求1-3中任一项所述的取向硅钢,其特征在于,所述取向硅钢的叠片系数≥97%。
  7. 一种用于制造权利要求1-6中任一项所述的取向硅钢的方法,包括依次进行的以下步骤:
    1)对钢水进行冶炼和铸造,制得板坯;
    2)对板坯进行加热;
    3)常化;
    4)冷轧,制得冷轧板;
    5)脱碳退火;
    6)高温退火,制得硅钢基板,所述硅钢基板具有芯部、连续层和在芯部与连续层之间的嵌入层,其中,所述嵌入层包含硅酸镁和/或镁、铝的氧化物,所述连续层包含硅酸镁;
    7)激光处理:在氮气保护下,对硅钢基板进行两面激光处理,去除硅钢基板中的嵌入层和连续层;以及
    8)涂覆绝缘涂层和热拉伸退火,制得取向硅钢。
  8. 根据权利要求7所述的制造方法,其特征在于,激光处理后的所述硅钢基板的总厚度Hf满足:H0-2h1-2h2-2μm≤Hf≤H0-2h1-2h2,式中H0代表所述硅钢基板的初始总厚度,h1代表所述连续层的厚度,以及h2代表所述嵌入层的厚度。
  9. 根据权利要求8所述的方法,其特征在于,H0:0.19~0.29mm,h1≤4μm,h2≤4μm。
  10. 根据权利要求8所述的方法,其特征在于,在7)激光处理步骤中,激光的能量密度I为300~600mJ/mm2,其中激光的能量密度I采用以下公式计算:式中,P为激光功率,单位W;f为脉冲重复频率,单位kHz;d为光斑直径,单位μm。
  11. 根据权利要求10所述的方法,其特征在于,在7)激光处理步骤中,激光的扫描速度为5~6m/s,优选为5.5m/s;所述激光功率P为50~100W,优选为50~80W;所述脉冲重复频率f为65~90kHz;所述光斑直径为40~60μm。
  12. 根据权利要求10所述的方法,其特征在于,在7)激光处理步骤中,所述两面激光处理分两个阶段进行,包括在第一阶段去除所述连续层,第一阶段中采用的激光的能量密度为I1以上,其中式中h1代表所述连续层的厚度;以及在第二阶段去除所述嵌入层,第二阶段中采用的激光的能量密度为I2以上,其中式中h2代表所述嵌入层的厚度。
  13. 根据权利要求10所述的制造方法,其特征在于,在7)激光处理步骤中,激光的能量密度I为I2以上,其中式中h2代表所述嵌入层的厚度。
  14. 根据权利要求7-13中任一项所述的方法,其特征在于,激光处理后的所述硅钢基板的表面粗糙度Sa=6~8μm。
  15. 根据权利要求7-13中任一项所述的方法,其特征在于,所述方法满足下述条件中的一个以上:
    在3)常化步骤中,采用两段式常化处理:首先将板坯加热到1100~1200℃,然后以1℃/s~10℃/s的冷却速度降温到900~1000℃;再以10℃/s~70℃/s的冷却速度冷却到室温;
    在4)冷轧步骤中,采用一次冷轧或带中间退火步骤的二次冷轧;
    在5)脱碳退火步骤中,在800~900℃进行一次再结晶退火,然后在冷轧板的表面涂覆退火隔离剂,所述退火隔离剂为氧化镁;
    在6)高温退火步骤中,退火温度为1100~1200℃,保温时间20~30h;以及
    在步骤8)的热拉伸退火中,将涂有绝缘涂层的硅钢基板加热到800~900℃,保温10~30s,然后以5℃/s~50℃/s的冷却速度冷却至室温,制得取向硅钢。
  16. 根据权利要求7-13中任一项所述的制造方法,其特征在于,所述绝缘涂层由绝缘涂液形成,所述绝缘涂液包含以质量百分比计的如下化学组分:磷酸二氢铝和/或磷酸二氢镁:2%~25%,胶体二氧化硅:4%~16%,铬酸酐:0.15%~4.50%,余量为水及其他不可避免的杂质。
PCT/CN2023/103588 2022-06-29 2023-06-29 取向硅钢及其制造方法 WO2024002209A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210749411.5 2022-06-29
CN202210749411.5A CN117344210A (zh) 2022-06-29 2022-06-29 取向硅钢及其制造方法

Publications (1)

Publication Number Publication Date
WO2024002209A1 true WO2024002209A1 (zh) 2024-01-04

Family

ID=89369767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103588 WO2024002209A1 (zh) 2022-06-29 2023-06-29 取向硅钢及其制造方法

Country Status (2)

Country Link
CN (1) CN117344210A (zh)
WO (1) WO2024002209A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177319A (ja) * 1985-01-31 1986-08-09 Nippon Steel Corp 鉄損の優れた一方向性電磁鋼板の製造方法
JPS63250419A (ja) * 1987-04-07 1988-10-18 Kawasaki Steel Corp 鉄損の極めて低い方向性電磁鋼板の製造方法
US4906530A (en) * 1987-08-01 1990-03-06 Kawasaki Steel Corp. Grain oriented electromagnetic steel sheets having a very low iron loss
JPH05195062A (ja) * 1992-01-13 1993-08-03 Nippon Steel Corp 超低鉄損一方向性珪素鋼板の製造方法
JPH06256848A (ja) * 1993-03-04 1994-09-13 Nippon Steel Corp 鉄損の極めて低い鏡面方向性電磁鋼板の製造方法
CN113215374A (zh) * 2021-05-07 2021-08-06 包头市威丰稀土电磁材料股份有限公司 一种无底层取向硅钢及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177319A (ja) * 1985-01-31 1986-08-09 Nippon Steel Corp 鉄損の優れた一方向性電磁鋼板の製造方法
JPS63250419A (ja) * 1987-04-07 1988-10-18 Kawasaki Steel Corp 鉄損の極めて低い方向性電磁鋼板の製造方法
US4906530A (en) * 1987-08-01 1990-03-06 Kawasaki Steel Corp. Grain oriented electromagnetic steel sheets having a very low iron loss
JPH05195062A (ja) * 1992-01-13 1993-08-03 Nippon Steel Corp 超低鉄損一方向性珪素鋼板の製造方法
JPH06256848A (ja) * 1993-03-04 1994-09-13 Nippon Steel Corp 鉄損の極めて低い鏡面方向性電磁鋼板の製造方法
CN113215374A (zh) * 2021-05-07 2021-08-06 包头市威丰稀土电磁材料股份有限公司 一种无底层取向硅钢及其制备方法

Also Published As

Publication number Publication date
CN117344210A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
WO2018177007A1 (zh) 一种耐消除应力退火的激光刻痕取向硅钢及其制造方法。
KR20010062073A (ko) 소형 철심에 적합한 전자강판 및 그 제조방법
JP6084351B2 (ja) 方向性電磁鋼板およびその製造方法
RU2771318C1 (ru) Способ производства листа электротехнической стали с ориентированной зеренной структурой
KR102572634B1 (ko) 방향성 전자 강판, 방향성 전자 강판의 절연 피막 형성 방법 및 방향성 전자 강판의 제조 방법
KR20190062487A (ko) 저소음 변압기용 저철손을 갖는 방향성 규소강 및 그 제조방법
JPH0717960B2 (ja) 磁気特性の優れた一方向性電磁鋼板の製造方法
JP2671076B2 (ja) 超低鉄損一方向性電磁鋼板の製造方法
Littman Grain-oriented silicon steel sheets
JP3551517B2 (ja) 磁気特性の良好な方向性けい素鋼板及びその製造方法
JP4277432B2 (ja) 低磁歪二方向性電磁鋼板
WO2024002209A1 (zh) 取向硅钢及其制造方法
JPS6059045A (ja) 鉄損値の少ない一方向性珪素鋼板の製造方法
WO2022148468A1 (zh) 一种低磁致伸缩取向硅钢及其制造方法
JP5482117B2 (ja) 薄手方向性電磁鋼板及び張力絶縁膜被覆薄手方向性電磁鋼板
RU2768094C1 (ru) Способ производства листа электротехнической стали с ориентированной зеренной структурой
WO2023241574A1 (zh) 一种低磁致伸缩取向硅钢板的制造方法及取向硅钢板
JP7339549B2 (ja) フォルステライト皮膜を有しない絶縁皮膜密着性に優れる方向性電磁鋼板
JP2592740B2 (ja) 超低鉄損一方向性電磁鋼板およびその製造方法
JPS6332849B2 (zh)
JP3782273B2 (ja) 電磁鋼板
JP5636627B2 (ja) 極薄珪素鋼板およびその製造方法
WO2024111647A1 (ja) 方向性電磁鋼板
WO2024111642A1 (ja) 方向性電磁鋼板及びその製造方法
WO2024111641A1 (ja) 方向性電磁鋼板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830378

Country of ref document: EP

Kind code of ref document: A1