WO2024001858A1 - 一种洗涤设备的自动投放装置及洗涤设备 - Google Patents

一种洗涤设备的自动投放装置及洗涤设备 Download PDF

Info

Publication number
WO2024001858A1
WO2024001858A1 PCT/CN2023/101203 CN2023101203W WO2024001858A1 WO 2024001858 A1 WO2024001858 A1 WO 2024001858A1 CN 2023101203 W CN2023101203 W CN 2023101203W WO 2024001858 A1 WO2024001858 A1 WO 2024001858A1
Authority
WO
WIPO (PCT)
Prior art keywords
mover
diaphragm
sleeve
force
coil
Prior art date
Application number
PCT/CN2023/101203
Other languages
English (en)
French (fr)
Inventor
赵志强
许升
吕佩师
Original Assignee
青岛海尔洗衣机有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210770802.5A external-priority patent/CN117364425A/zh
Priority claimed from CN202210772863.5A external-priority patent/CN117364434A/zh
Priority claimed from CN202210772918.2A external-priority patent/CN117375353A/zh
Priority claimed from CN202210772470.4A external-priority patent/CN117364432A/zh
Priority claimed from CN202210778970.9A external-priority patent/CN117364418A/zh
Application filed by 青岛海尔洗衣机有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔洗衣机有限公司
Publication of WO2024001858A1 publication Critical patent/WO2024001858A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/44Devices for adding cleaning agents; Devices for dispensing cleaning agents, rinsing aids or deodorants
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/02Devices for adding soap or other washing agents

Definitions

  • the invention belongs to the field of washing machines. Specifically, it relates to an automatic dispenser of washing additives for washing equipment, and in particular to a driving device for the automatic dispenser of washing additives for washing equipment. It also relates to a kind of washing equipment.
  • washing machine industry continues to advance, its functions are becoming more and more diverse.
  • many smart washing machines on the market currently have the function of automatically adding detergent, saving users the trouble of manually adding detergent.
  • the existing washing machine is equipped with a vibrating box on the casing, and an additive placing system is placed at the tray seat or the box of the washing machine to put detergent into the washing tub.
  • Washing machines with automatic additive dosing function in the prior art have problems such as inaccurate dosing of detergent, resulting in incomplete rinsing, waste of water, waste of detergent, poor clothes washing effect, and poor user experience.
  • a driving device for an automatic delivery device of washing equipment including: a casing and a liquid suction chamber, and a movable mover and a driver are provided in the casing.
  • the first end of the mover locally acts on the diaphragm and extends out of the opening, causing the diaphragm to deform at least toward the liquid suction chamber.
  • the housing is provided with an opening facing the liquid suction chamber, and the elastic element is provided at the second end extending in the axial direction of the mover, or at the side wall of the liquid suction chamber corresponding to the opening of the housing.
  • the mover is repeatedly oscillated in the housing under the action of the magnetic field force and the rebound force of the elastic element, driving the diaphragm to oscillate at the same frequency, controlling the entry of additives into the inner barrel of the washing machine, making the additive delivery more accurate, and effectively avoiding insufficient or insufficient additive delivery.
  • the problem of excessive delivery improves the user experience.
  • the first end of the mover extends out of the housing opening, and the diaphragm is arranged at a distance from the opening; the minimum driving force of the driving device is greater than the gravity of the mover, and the mover is While the element is acted upon by the driving force, it oscillates at high frequency within the housing through the restoring force provided by the diaphragm.
  • the mover repeatedly oscillates in the housing under the action of the driving force of the driving device and the rebound force of the elastic element, and the diaphragm oscillates at basically the same frequency under the action of the mover; the elastic element
  • the maximum amount of deformation caused by the compression of the mover is equal to the maximum amount of deformation of the elastic element caused by the stretching of the mover.
  • the housing further includes a sleeve, the opening at the first end of the sleeve coincides with the opening of the housing, the second end of the sleeve is a closed barrel bottom, and the mover is at least partially disposed on the sleeve.
  • the driving force of the driving device acts as resistance to prevent the mover from moving.
  • the driving device includes a coil bracket arranged in the axial direction of the sleeve and a coil surrounding the coil bracket.
  • the mover is subjected to the magnetic field force generated by the coil to rapidly compress or stretch the elastic element to produce
  • the rebound force of the elastic element is greater than the magnetic field force generated by the coil;
  • the elastic force of the elastic element and the restoring force of the diaphragm are equal to the magnetic field force generated by the coil, the dynamic force of the elastic element is greater than the magnetic field force generated by the coil.
  • the speed of the mover is not zero, the acceleration is zero, and the direction of movement of the mover remains unchanged; when the elastic element is compressed or stretched to the maximum deformation, the speed of the mover is zero, and the acceleration is not zero. , the movement direction of the mover changes and moves toward the open end of the sleeve.
  • one end of the elastic element is disposed in the axial extension direction of the second end of the mover, and the other end is fixedly disposed on the bottom of the sleeve barrel, and the first end of the mover is connected to the diaphragm.
  • Fixed connection or no contact when the mover is quickly compressed by the magnetic field force generated by the coil to produce the maximum deformation amount of the elastic element, the rebound force of the elastic element and the restoring force of the diaphragm drive the mover to rebound Beyond the initial setting position, the diaphragm is caused to oscillate under repeated oscillation of the mover.
  • one end of the elastic element is arranged on the side wall of the liquid suction chamber corresponding to the opening of the housing, and the other end is fixedly connected to the side of the diaphragm located on the liquid suction chamber; the mover is generated by the coil
  • the tensile force of the elastic element and the restoring force of the diaphragm drive the mover beyond the initial setting position, causing the diaphragm to repeatedly move on the mover. Oscillation under oscillation.
  • the outer circumference of the open end of the sleeve extends in the radial direction to form a flange.
  • the flange includes a first flange and a second flange.
  • the extended terminal ends of the first flange and the second flange are nested.
  • the liquid suction chamber and/or the two corresponding side walls fixing the edge of the diaphragm are respectively provided with first protrusions at a preset distance from the housing; the diaphragm Both ends of the piece are pressed and fixed by the housing and the first protrusion to close the liquid suction chamber.
  • a suction pipe and a liquid discharge pipe are provided on the side wall of the liquid suction chamber corresponding to the opening of the housing.
  • a one-way valve is provided inside the liquid suction pipe and the liquid discharge pipe.
  • the present invention also provides a washing equipment that adopts the driving device of any of the above-mentioned automatic delivery devices.
  • the present invention has the following beneficial effects compared with the prior art.
  • the housing is provided with an opening toward the liquid suction chamber, and the elastic element is provided at the second end extending in the axial direction of the mover, or at the liquid suction port corresponding to the opening of the housing.
  • the mover is repeatedly oscillated in the housing under the action of the magnetic field force and the rebound force of the elastic element, driving the diaphragm to oscillate at the same frequency, controlling the entry of additives into the inner barrel of the washing machine, making the additive delivery more efficient and precise, and solving the problem It solves the problem of insufficient or excessive dosage of additives and improves the user experience.
  • the present invention further arranges the diaphragm at a distance from the open end of the housing, so that the diaphragm can produce the maximum possible oscillation under the action of the magnetic field force and the rebound force of the elastic element, thus accelerating the delivery of the additive. Frequency further improves the accuracy of additive delivery.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide an automatic delivery device for washing equipment with stable structure, good sealing performance and high delivery accuracy.
  • An automatic delivery device for washing equipment including: a driving structure and a liquid suction device.
  • the circumference of the diaphragm is fixed on the driving structure and/or the liquid suction device.
  • the diaphragm is subject to a force exerted by the driving structure.
  • the force with a fixed driving direction and periodically changing driving magnitude in conjunction with the elastic restoring force of the diaphragm, drives the diaphragm to vibrate reciprocally in the axial direction, sucking the washing liquid into/discharging the liquid suction device.
  • the device includes: the driving structure drives the diaphragm to elastically deform in a direction approaching the driving structure, and the diaphragm relies on its own elastic restoring force to reciprocate in a direction approaching the liquid absorbing device. vibration.
  • the device includes: the driving structure drives the diaphragm to elastically deform in a direction close to the liquid suction device, and the diaphragm relies on its own elastic restoring force to reciprocate in a direction close to the driving structure. vibration.
  • the device includes: an end cap is provided on the outer periphery of the liquid suction device, and the circumference of the diaphragm is fixed on the end of the peripheral wall of the end cap; or, the end of the peripheral wall of the end cap is A groove is provided on the diaphragm, and the circumference of the diaphragm is fixed in the groove.
  • the device includes: the diaphragm cooperates with the liquid suction device to form a liquid suction chamber, and the liquid suction chamber provides a first deformation area for the diaphragm.
  • the device includes: a housing is provided outside the driving structure, a flange is provided on the housing, and the driving structure is connected to the circumference of the diaphragm through the flange; or the The flange is provided with an extension portion in a direction close to the liquid suction device, and the driving structure is connected to the circumference of the diaphragm through the extension portion.
  • the device includes: the flange and the extension part of the flange and the diaphragm form a second deformation area.
  • the device includes: the driving structure further includes a mover, and the mover is not connected to the diaphragm.
  • the device includes: the diaphragm is provided with an embedded part, and one end of the mover is connected to the embedded part.
  • the material of the diaphragm is any one of plastic, rubber, silicone, animal skin, alloy plate, and polyurethane, and/or the diaphragm is any one of a diaphragm and an elastic capsule.
  • the driving device further includes a power supply and a coil, and the coil is connected to the power supply by connecting to direct current/alternating current.
  • the liquid suction device includes a liquid suction port and a liquid discharge port, the liquid suction port is connected to the liquid suction pipe; the liquid discharge port is connected to the liquid discharge pipe, and the liquid suction pipe and One-way valves are provided in the drain pipes.
  • the invention also provides a washing device with the above-mentioned automatic delivery device.
  • this intelligent automatic liquid dosing device improves the intelligence of the washing machine, saves users unnecessary time in adding detergent to laundry, accurately determines the amount of dosing, saves unnecessary waste of detergent, and is more in line with the user's actual use. need.
  • the present invention has the following beneficial effects compared with the prior art.
  • the solution of the present invention provides a variety of connection methods between the mover and the diaphragm. Different structures and connection methods make the automatic delivery device more adaptable and greatly expand the scope of use of the automatic delivery device;
  • the diaphragm can be directly fixedly connected to the liquid suction device, or the diaphragm can be fixedly connected to the driving structure.
  • the diaphragm has a certain thickness and has a good sealing effect.
  • the movement of the mover is affected by the driving force of the driving structure and the elastic restoring force of the diaphragm itself, which ensures the realization of periodic reciprocating vibration of the mover and makes the automatic delivery device more functionally reliable;
  • the diaphragm relies on its own elastic restoring force to act on one side of the diaphragm and always gives the diaphragm a restoring force opposite to the direction of movement.
  • This scheme can avoid fatigue damage caused by excessive deformation of the diaphragm to a certain extent. situation, greatly extending the service life of the automatic delivery device.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the existing technology and provide an automatic delivery device and washing equipment for washing equipment, which perform high-frequency reciprocating motion through the mover under the combined action of electromagnetic force and reverse elastic force. , reducing the impact of a single vibration error of the mover on the overall error value of the delivery work, thus solving the problem of low delivery accuracy of the automatic delivery device; at the same time, the cost of the mover and coil is low, thus solving the problem of the automatic delivery device The problem of higher cost.
  • an automatic delivery device for washing equipment including a sleeve, one end of the sleeve is a closed bottom, and the corresponding other end has an opening; the coil is coaxial.
  • the sleeve is set on the outer periphery of the sleeve; the mover is movably set in the sleeve cavity of the sleeve; the sleeve opening is provided with a diaphragm connected to the mover; the center of the mover is set at the center of the coil biased towards the sleeve In the direction of the opening; the mover vibrates at high frequency and low amplitude in the sleeve under the combined action of the electromagnetic force generated by the coil energization and the elastic force of the diaphragm.
  • the mass of the mover is between 1g and 100g; the elastic coefficient of the diaphragm is large, so that the natural frequency of the system composed of the diaphragm and the mover is 30-300Hz; while the mover is affected by the electromagnetic force, it passes through the diaphragm
  • the reverse elastic force provided makes high-frequency reciprocating motion in the sleeve.
  • an end cap is buckled on the opening of the sleeve, and the end cap and the interior of the sleeve are separated into relatively independent liquid suction chambers and sleeve chambers through a diaphragm; there are film supply chambers between the sleeve and the end cap and the diaphragm respectively. A deformed space.
  • the outer periphery of the open end of the sleeve is connected with a flange extending radially outward; the flange is flush with the opening of the sleeve; the end cover is connected to the outer peripheral edge of the flange; and the outer peripheral edge of the diaphragm is sealingly arranged on the end.
  • the diaphragm is attached to one side of the flange; when the diaphragm is stretched by the actuator, it deforms and extends through the sleeve opening toward the interior of the sleeve cavity.
  • the outer periphery of the open end of the sleeve is connected to a flange extending outward in the radial direction of the sleeve, and the outer periphery of the flange is connected to a second flange extending in a direction away from the sleeve; the extension of the end cover and the second flange The ends are connected correspondingly; the outer periphery of the diaphragm is sealingly arranged at the connection between the end cover and the second flange; there is a certain distance between the diaphragm and the flange to form a buffer cavity; when the diaphragm is stretched by the passive actuator, the membrane The piece deforms and extends into the buffer cavity.
  • one side of the diaphragm is connected to the mover, and the opposite side is connected to one end of the support spring; the support spring is connected to the mover.
  • the mover is set coaxially, and the corresponding other end is connected to the end cover; while the mover is affected by the electromagnetic force, it makes high-frequency reciprocating motion in the sleeve through the reverse elastic force provided by the diaphragm and the support spring.
  • one end of the mover is connected to the diaphragm, and the opposite end is connected to or in contact with an elastic element;
  • the elastic element is coaxially arranged with the mover, and the corresponding other end is connected to the bottom of the sleeve; the mover is affected by electromagnetic force
  • the reverse elastic force provided by the diaphragm and the elastic element causes high-frequency reciprocating motion in the sleeve.
  • an embedding block is provided at one end of the mover close to the diaphragm, and a corresponding embedding portion is provided inside the diaphragm; the mover is connected to the diaphragm through the embedding block correspondingly embedded in the embedding portion.
  • the bottom of the sleeve is connected with an elastic element; the end of the mover closer to the diaphragm is in contact with the diaphragm, and the corresponding other end is connected or in contact with the elastic element; while the mover is acted upon by the electromagnetic force, it passes through the diaphragm.
  • the reverse elastic force provided by the support spring causes high-frequency reciprocating motion in the sleeve.
  • the elastic element is connected to the mover; a rebound spring is set around or inside the elastic element; the rebound spring is coaxially arranged with the elastic element, and the length is no longer than the length of the elastic element.
  • One end of the rebound spring is connected to the bottom of the sleeve, corresponding to The other end extends toward the direction of the mover.
  • the current passed through the coil is direct current or alternating current.
  • the coil By controlling the intermittent on-off of the current, the coil generates intermittent electromagnetic force on the mover, thereby causing the mover to perform high-frequency reciprocating motion with adjustable frequency.
  • the coil is electrically connected with a DC contactor or an AC contactor, and the DC contactor or AC contactor is used to control the DC or AC power in the coil to form intermittent on-off with variable frequency, so that the coil generates different frequencies to the mover. Intermittent electromagnetic force controls the mover to perform high-frequency reciprocating motion at different frequencies.
  • the current flowing through the coil is alternating current
  • the coil is electrically connected to a frequency converter.
  • the frequency converter changes the frequency of the alternating current passing through the coil, thereby controlling the mover to perform high-frequency reciprocating motion at different frequencies.
  • washing equipment adopts an automatic putting device of the washing equipment as mentioned above.
  • the present invention has the following beneficial effects compared with the existing technology: through the joint action of elastic force and electromagnetic force, the mover can vibrate with stable amplitude and frequency in the sleeve cavity, thereby ensuring Stable dosing of additives ensures the accuracy of dosing control; by performing more frequency vibrations within the same working time, compared to low-frequency vibrations, the impact of a single vibration error on the overall error value of the dosing work can be effectively reduced.
  • the accuracy of the delivery amount is further improved; at the same time, the low amplitude can effectively reduce the operating noise, making the automatic delivery equipment work quieter; at the same time, the invention has a simple structure, significant effects, and is suitable for promotion and use.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the existing technology and provide an automatic delivery device for electromagnetic washing equipment.
  • the combined force of the magnetic attraction generated by the coil energization and the elastic force generated by the elastic element repeatedly acts on the diaphragm. According to the repeated shape of the diaphragm, Variables enable precise delivery of detergent to avoid waste of resources.
  • An automatic delivery device for washing equipment including a liquid suction chamber and an installation cavity.
  • the automatic delivery device further includes: a diaphragm.
  • the diaphragm is arranged between the liquid suction chamber and the installation cavity.
  • the peripheral side of the diaphragm Connected to the liquid suction chamber; a coil, the coil is arranged in the installation cavity; a mover, the mover is arranged in the same extension direction as the coil, the mover includes a moving part and a conductive part connected in sequence part, the coil generates a magnetic attraction force on the moving part moving towards the liquid suction chamber, drives the diaphragm to deform through the conductive part, and generates a reverse elastic force on the mover, realizing that the diaphragm It vibrates reciprocally under the action of magnetic attraction and the resilience of the diaphragm itself.
  • the vibration amplitude of the diaphragm driven by the conductive part does not exceed the distance between the centroid of the moving part and the centroid of the coil.
  • the magnetic attraction force received by the moving part is always directed towards In the direction of the liquid suction chamber, the equilibrium position of the system composed of the diaphragm and the mover is located on the right side of the initial position of the diaphragm, causing the diaphragm to vibrate periodically.
  • the rebound force generated by the diaphragm in the direction away from the liquid suction chamber can overcome the magnetic attraction force of the moving part toward the liquid suction chamber, so that the amplitude of the diaphragm gradually decreases. Small.
  • the moving part at least partially coincides with the coil
  • the conducting part and the moving part are both arranged coaxially with the coil, and the sum of the lengths of the moving part and the conducting part is greater than or equal to The length of the coil, and the length of the moving part is less than the length of the coil.
  • the conductive part includes a first end, a transmission rod and a second end arranged coaxially.
  • the two ends of the transmission rod are connected to the first end and the second end respectively.
  • the first end The diameter of the end is smaller than the diameter of the second end, the first end is connected to or abuts the moving part, and the second end is connected to or abuts the diaphragm; wherein, the two ends of the transmission rod The diameters are equal, and the diameter of the transmission rod is no larger than the diameter of the first end.
  • the installation cavity is provided with a sleeve, the sleeve is coaxially arranged with the coil, the first end presses the moving part against the end of the sleeve, and the conductive part
  • the second end is flush with the opening of the sleeve or protrudes from the opening of the sleeve; the length of the sleeve is greater than the length of the coil, at least part of the sleeve coincides with the coil, and the movement near the end of the sleeve.
  • the opening of the sleeve is provided with a first flange and a second flange.
  • the first flange is configured such that the opening of the sleeve is bent outward in a radial direction, and the second flange is configured to bend outward in a radial direction.
  • the first flange is bent toward the liquid suction chamber, the peripheral side of the diaphragm is connected to the end of the second flange, and the diaphragm is connected to the first flange and the liquid suction chamber.
  • a buffer chamber is enclosed between the second flanges for buffering the deformation of the diaphragm toward the sleeve.
  • the first end of the conductive part is in contact with the moving part
  • the second end of the conductive part is provided with an embedded block
  • the diaphragm is provided with an embedded part correspondingly
  • the embedded block is connected with the embedded part.
  • the movement part is snap-fitted to connect the moving part with the diaphragm through the conductive part.
  • the automatic dispensing device further includes an elastic element, which is disposed in the liquid suction chamber.
  • One end of the elastic element is connected or abutted with the diaphragm, and the other end of the elastic element is connected with the diaphragm.
  • the inner wall of the liquid suction chamber is abutted or connected, and the reverse elastic force formed by the elastic element and the diaphragm pulls the diaphragm back to its initial value.
  • the automatic delivery device further includes an elastic element, the elastic element is arranged between the conductive part and the moving part, one end of the elastic element is connected to the moving part, and the other end is connected to the conductive part. connection, the reverse elastic force formed by the elastic element and the diaphragm pulls the diaphragm back to its initial value.
  • an alternating magnetic field whose magnitude and direction changes moment by moment is generated.
  • the magnitude of the magnetic field driving force on the moving part changes in real time but the direction is toward the liquid suction chamber.
  • the elasticity When the element and diaphragm are reset, the elastic force gradually attenuates but is greater than the magnetic attraction force in real time.
  • the second object of the present invention is to provide a washing equipment that adopts the automatic delivery device of the washing equipment as described above.
  • the present invention has the following beneficial effects compared with the prior art.
  • the mover of the automatic delivery device of the washing equipment of the present invention includes a moving part and a conductive part connected in sequence.
  • the moving part generates a magnetic attraction toward the diaphragm and conducts it to the diaphragm through the conductive part and the elastic element generates magnetic force in the opposite direction. Restoring force acts on the diaphragm through the combined force of magnetic attraction and elastic force.
  • the diaphragm produces repeated vibration deformation, which increases the maximum stroke of the moving part, thereby increasing the maximum deformation of the diaphragm and enabling precise control of each wash.
  • the dosage of the agent can effectively improve the washing effect of clothes and avoid waste.
  • the diameter of the conductive part close to the moving part of the present invention is larger than the diameter of the end far away from the moving part, ensuring that the magnetic attraction moves toward the diaphragm after energization, reducing the friction of the conductive part, reducing the dead weight of the mover, and reducing the difficulty of installation. .
  • the length of the moving part of the present invention is smaller than the coil, and part of the moving part overlaps with the coil, which increases the maximum displacement of the moving part, increases the amount of single delivery, and ensures the accuracy of delivery.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the existing technology.
  • the first purpose of the present invention is to provide a driving device for an automatic delivery device of washing equipment, which solves the problem of low automation and poor structural reliability.
  • the second object of the present invention is to provide an automatic delivery device for washing equipment having the above-mentioned driving device.
  • the third object of the present invention is to provide a washing equipment with the above-mentioned automatic feeding device.
  • a driving device of an automatic delivery device of a washing equipment includes a sleeve and a mover arranged inside the sleeve; an elastic element moves the mover shaft Positioned in the sleeve; the mover reciprocates along the axis inside the sleeve at a certain frequency under the combined action of the driving force and the spring force of the elastic element; when the elastic potential energy accumulated by the elastic element When reaching the maximum, the elastic element gives the dynamic force
  • the mover provides a spring force and the mover moves in the opposite direction.
  • the elastic element includes a rebound spring and a support spring; the rebound spring is fixedly installed at the closed end inside the sleeve; the support spring is nestedly installed outside or inside the rebound spring; one end of the support spring Fixedly installed at the internal closed end of the sleeve; the elastic element is compressed from the beginning until the accumulated elastic potential energy of the compression reaches the maximum, the mover overcomes the spring force of the elastic element under the action of the driving force. Movement from the initial position to the end of the first stroke.
  • the support spring and the rebound spring are nested.
  • the support spring plays the role of support and buffering.
  • the rebound spring mainly plays the role of providing spring elastic force. The combined rebound force of the support spring and the rebound spring can better allow the mover to return The original position reduces the energy consumption of the driving device of the automatic delivery device of the washing equipment.
  • the other end of the support spring is fixedly connected to one end of the mover; the support spring not only provides spring elastic force for the mover but also provides a supporting function; after the elastic element releases elastic potential energy, the mover The mover moves in the opposite direction against the driving force and returns to the initial position; the mover continues to move in the opposite direction from the initial position against the pulling force of the support spring to the end of the second stroke when it is furthest away from the elastic element.
  • the other end of the support spring is fixedly connected to one end of the mover. When the mover reciprocates at a certain frequency, the support spring provides both support and tension.
  • the distance between the end of the first stroke and the end of the second stroke is the maximum stroke of the mover; the mover reciprocates at a certain frequency during the maximum stroke.
  • the mover reciprocates in the maximum stroke at a certain frequency through the cooperation of the driving device and the elastic element.
  • a coil is installed on the outer circumference of the sleeve; the initial position of the mover is set to a preset distance between the center vertical line of the mover and the center vertical line of the coil; after the coil is energized, The distance between the center perpendicular of the coil and the center perpendicular of the mover continues to decrease from the preset distance until the elastic element releases elastic potential energy, and the center perpendicular of the mover and the center of the coil The spacing between vertical lines goes from minimum to maximum.
  • the initial position of the mover is set to a preset distance between the center perpendicular line of the mover and the center perpendicular line of the coil; because the mover is located inside the coil, there are a large number of magnetic lines passing through the mover; because the coil The internal magnetic field lines are in the same direction as the magnetic field lines in the mover. Therefore, the two ends of the mover are respectively subjected to forces axially away from the central vertical line.
  • the magnetic force on the end of the mover is greater than the magnetic force on the end of the mover far away from the center perpendicular of the coil. Therefore, the mover moves in the direction closer to the center perpendicular of the coil. The distance between them is getting smaller and smaller.
  • the invention also provides an automatic dispensing device for washing equipment including a driving device.
  • the driving device includes a sleeve and a mover arranged inside the sleeve; an elastic element axially positions the mover to the sleeve.
  • a liquid suction chamber is installed at the open end of the sleeve; the liquid suction chamber includes a diaphragm; the periphery of the diaphragm is sealed and fixedly connected to the inner wall of the liquid suction chamber; a liquid suction tube is provided on the liquid suction chamber and a drain pipe; when the mover reciprocates along the axis inside the sleeve at a certain frequency under the combined action of the driving force and the spring force of the elastic element, the mover also acts on the sleeve at a certain frequency.
  • the diaphragm deforms the diaphragm; when the diaphragm is pressed toward the liquid suction chamber, the space in the liquid suction chamber becomes smaller and the pressure increases, and the drain pipe discharges liquid; the membrane When the piece moves away from the liquid suction chamber, the space in the liquid suction chamber becomes larger and the pressure becomes smaller, and the liquid suction pipe sucks liquid.
  • the mover acts on the diaphragm when it reciprocates along the axis inside the sleeve at a certain frequency, causing the diaphragm to deform and reset. It vibrates continuously during the process, and the liquid suction chamber can absorb and discharge liquid at a certain frequency. This further realizes the liquid discharge and liquid suction of the automatic delivery device of the washing equipment.
  • the elastic element also includes a return spring; an end of the liquid suction chamber opposite to the diaphragm is fixedly connected to the return spring; when the diaphragm is deformed, the return spring is continuously squeezed. , when the diaphragm is deformed, the diaphragm quickly resets by relying on the combined force of its own restoring force and the spring elastic force provided by the return spring.
  • the support spring and the return spring mainly play a supporting role, and the rebound spring mainly plays a role in providing rebound force; avoiding the use of a single spring with limited functions; the elastic element is provided with a return spring to provide support force for one end of the diaphragm; under a certain To a certain extent, fatigue damage caused by excessive deformation of the diaphragm is avoided.
  • the length of the support spring is greater than that of the rebound spring; the elastic coefficient of the rebound spring is greater than that of the support spring. Spring; the elastic coefficient of the rebound spring is greater than that of the return spring.
  • the driving device generates driving force through alternating current to move the mover toward the closed end inside the sleeve; the mover first squeezes the support spring; the mover continues to move toward the sleeve.
  • the inner closed end moves in the direction to contact and squeeze the rebound spring; when the elastic potential energy accumulated after the elastic element is compressed reaches the maximum, the elastic potential energy is released and converted into elastic force, and the mover overcomes the driving force and moves in the opposite direction; Under the action of the driving device and the elastic element, the mover reciprocates along the axis inside the sleeve at a certain frequency.
  • the driving device generates driving force through alternating current to move the mover toward the closed end inside the sleeve; the mover first squeezes the support spring; the mover continues to move toward the sleeve.
  • the inner closed end moves in the direction to contact and squeeze the rebound spring; when the accumulated elastic potential energy of the support spring and the rebound spring reaches the maximum after being compressed, the elastic potential energy is released and converted into elastic force, and the mover overcomes the driving force and moves toward the spring.
  • Movement in the opposite direction acts on the diaphragm to deform the diaphragm; after the diaphragm is deformed, the diaphragm quickly resets by relying on the combined force of its own restoring force and the spring elastic force provided by the return spring; in the Under the action of the driving device and the elastic element, the mover reciprocates along the axis inside the sleeve at a certain frequency.
  • the mover is moved in the opposite direction by the resultant force of the support spring and the rebound spring, which acts on the diaphragm to deform the diaphragm; after the diaphragm is deformed, the diaphragm relies on the resultant force of its own return force and the spring elastic force provided by the return spring to quickly reset, thereby realizing the reciprocating motion of the mover along the axis inside the sleeve at a certain frequency and the continuous vibration of the diaphragm at a certain frequency.
  • the invention also provides a washing equipment including an automatic dispensing device, the suction pipe in the liquid suction chamber is connected to the liquid storage chamber of the washing equipment, and the drain pipe in the liquid suction cavity is connected to the washing equipment. Washing chamber or liquid-water mixing chamber.
  • the present invention has the following beneficial effects compared with the prior art.
  • the mover By arranging elastic elements to provide a force for the mover and/or diaphragm that is opposite to the movement of the mover and/or diaphragm, the mover reciprocates along the axis inside the sleeve at a certain frequency and the diaphragm continuously vibrates at a certain frequency. ; At the same time, it avoids fatigue damage caused by excessive deformation of the diaphragm to a certain extent, greatly extends the service life of the automatic delivery device of the washing equipment, and at the same time reduces the energy consumption of the driving device.
  • Figure 1 is a schematic structural diagram of a driving device of an automatic delivery device of washing equipment according to the present invention
  • Figure 2 is a schematic diagram of the connection between a mover and a diaphragm according to the present invention
  • Figure 3 is a schematic diagram of the connection between another mover and the diaphragm of the present invention.
  • Figure 4 is a schematic structural diagram of the driving device of another automatic delivery device of washing equipment according to the present invention.
  • Figure 5 is a schematic diagram of the connection between another mover and the diaphragm of the present invention.
  • Figure 6 is a schematic diagram of the positional relationship of the mover moving in the sleeve in the present invention.
  • Figure 7 is a first structural schematic diagram of an automatic delivery device for washing equipment in an embodiment of the present invention.
  • Figure 8 is a second structural schematic diagram of an automatic delivery device for washing equipment in an embodiment of the present invention.
  • Figure 9 is a third structural schematic diagram of an automatic delivery device for washing equipment in an embodiment of the present invention.
  • Figure 10 is a fourth structural schematic diagram of an automatic delivery device for washing equipment in an embodiment of the present invention.
  • Figure 11 is a fifth structural schematic diagram of an automatic delivery device for washing equipment in the embodiment of the present invention.
  • Figure 12 is a projection view of the diaphragm along the axial direction in the embodiment of the present invention.
  • Figure 13 is a schematic structural diagram of an automatic delivery device according to an embodiment of the present invention.
  • Figure 14 is a schematic structural diagram of an automatic delivery device with a second flange according to an embodiment of the present invention.
  • Figure 15 is a schematic structural diagram of the automatic delivery device when the mover stretches the diaphragm according to the embodiment of the present invention.
  • Figure 16 is a schematic structural diagram of an automatic delivery device provided with a support spring according to an embodiment of the present invention.
  • Figure 17 is a schematic structural diagram of an automatic delivery device with a second flange provided with a support spring according to an embodiment of the present invention
  • Figure 18 is a schematic structural diagram of an automatic delivery device provided with elastic elements according to an embodiment of the present invention.
  • Figure 19 is a schematic structural diagram of an automatic delivery device with a second flange provided with an elastic element according to an embodiment of the present invention.
  • Figure 20 is a schematic structural diagram of an automatic delivery device in which the mover and the diaphragm are in contact according to the embodiment of the present invention
  • Figure 21 is a schematic structural diagram of the automatic delivery device of the present invention.
  • Figure 22 is a second structural schematic diagram of the automatic delivery device of the present invention.
  • Figure 23 is a schematic diagram three of the structure of the automatic delivery device of the present invention.
  • Figure 24 is a schematic structural diagram 4 of the automatic delivery device of the present invention.
  • Figure 25 is a schematic diagram 5 of the structure of the automatic delivery device of the present invention.
  • Figure 26 is a schematic diagram 6 of the structure of the automatic delivery device of the present invention.
  • Figure 27 is a first schematic diagram of the working state of the mover in the initial position of the automatic delivery device of the washing equipment according to the present invention.
  • Figure 28 is a first schematic diagram of the mover in the first stroke end working state of the automatic delivery device of the washing equipment of the present invention
  • Figure 29 is a first schematic diagram of the mover in the second stroke end working state of the automatic delivery device of the washing equipment of the present invention.
  • Figure 30 is a second schematic diagram of the working state of the mover in the initial position of the automatic delivery device of the washing equipment according to the present invention.
  • Figure 31 is a second schematic diagram of the mover in the first stroke end working state of the automatic delivery device of the washing equipment of the present invention.
  • Figure 32 is a second schematic diagram of the mover in the second stroke end working state of the automatic delivery device of the washing equipment of the present invention.
  • Figure 33 is a third schematic diagram of the working state of the mover in the initial position of the automatic delivery device of the washing equipment according to the present invention.
  • Figure 34 is a third schematic diagram of the mover in the first stroke end working state of the automatic delivery device of the washing equipment of the present invention.
  • Figure 35 is a third schematic diagram of the mover in the second stroke end working state of the automatic delivery device of the washing equipment according to the present invention.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection or a detachable connection.
  • Connection, or integral connection can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • connection or integral connection
  • connection can be a mechanical connection or an electrical connection
  • connection can be a direct connection or an indirect connection through an intermediate medium.
  • specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the present invention is a driving device of an automatic dispensing device of a washing equipment.
  • the dispenser in the washing equipment mainly draws out the laundry detergent from the detergent storage box and puts it into In the drum of the washing machine.
  • the driving device includes a housing 2 and a liquid suction chamber 602 .
  • the housing 2 is provided with a movable mover 4 and a driving device that drives the mover 4 to move.
  • the housing 2 has an opening 203 facing the liquid suction chamber 602 .
  • the first end of the mover 4 may be disposed at the opening 203 of the housing 2 , and the first end of the mover 4 may also be disposed outside the opening 203 of the housing 2 .
  • a diaphragm 1 is provided corresponding to the first end of the mover 4 .
  • An elastic element 3 is disposed on the second end extending in the axial direction of the mover 4, or the elastic element 3 is disposed on the side wall of the liquid suction chamber 602 corresponding to the opening 203 of the housing 2.
  • the diaphragm 1 is an elastic diaphragm
  • the elastic element 3 is a spring.
  • the mover 4 moves toward the liquid suction chamber 602.
  • the first end of the mover 4 locally acts on the diaphragm 1 and extends to the outside of the opening 203, causing the diaphragm 1 to deform at least toward the liquid suction chamber 602. .
  • the housing 2 is provided with an opening toward the liquid suction chamber 602, and the elastic element 3 is provided at the second end extending in the axial direction of the mover 4, or at a position corresponding to the opening of the housing 2.
  • the mover 4 repeatedly oscillates in the housing 2 under the action of the driving force of the driving device and the rebound force of the elastic element 3, driving the diaphragm 1 to oscillate at the same frequency, causing the liquid suction chamber 602 to
  • the process of repeatedly inhaling additives and then putting them out into the inner barrel of the washing machine controls the entry of additives into the inner barrel of the washing machine, making the additive placement more efficient and precise, solving the problem of insufficient or excessive addition of additives, and improving the user experience.
  • the liquid suction chamber 602 has an opening 203 facing the housing 2 .
  • the opening of the liquid suction chamber 602 is opposite to and connected with the opening 203 of the housing 2 .
  • the elastic element 3 is stretched or compressed, and the diaphragm 1 is driven to elastically deform in the direction of the housing 2 .
  • the volume of the liquid suction chamber 602 becomes larger, the pressure in the liquid suction chamber 602 becomes smaller, and the detergent is sucked into the liquid suction chamber 602 .
  • the mover 4 moves under the action of the rebound force of the elastic element 3 and drives the diaphragm 1 to move toward the liquid suction chamber 602
  • the volume of the liquid suction chamber 602 becomes smaller, the pressure in the liquid suction chamber 602 becomes larger, and the washing The agent is discharged from the liquid suction chamber 602.
  • the middle portion of the diaphragm 1 has a certain thickness.
  • the diaphragm 1 is in a taut state.
  • the diaphragm 1 may also be a disk-shaped structure with certain ductility and toughness, or may be bowl-shaped or bag-shaped, which is not limited by the present invention.
  • the diaphragm 1 can be made of rubber, silicone, polyurethane, plastic and other materials, as long as the diaphragm 1 has elastic deformation and can produce good vibration.
  • a specific implementation method is, as shown in Figure 2, the first end of the mover 4 is fixedly connected to the diaphragm 1, and the mover 4 and the diaphragm 1 are bonded and fixed.
  • a simple connection can greatly reduce manufacturing costs. The difficulty and manufacturing cost are in line with the actual market demand.
  • Another specific implementation mode is that, as shown in FIG. 3 , the end of the diaphragm 1 in the direction is provided with an umbrella-shaped or mushroom-shaped embedded part 101 , and the end of the mover 4 facing the opening 203 of the housing 2 is provided with an end of the diaphragm 1 .
  • the embedded part 101 corresponds to the embedded block 401.
  • the embedded block 401 and the embedded part 101 are assembled and connected with a fixing piece and placed into a mold.
  • the diaphragm 1 connected to the mover 4 is formed around the mounting fixing piece by integrated injection molding.
  • the mover 4 is a metal structural component.
  • the vibration frequency of the oscillation system composed of the mover 4 and the elastic element 3 is achieved by setting the ratio of the elastic coefficient of the elastic element 3 to the mass of the mover 4 .
  • the elastic coefficient of the elastic element 3 is much larger than the mass of the mover 4, which can increase the vibration frequency of the entire oscillation system. Then, the mover 4 is driven by the driving device to achieve high-frequency reciprocating oscillation in the sleeve 202 .
  • the elastic element 3 still has the ability to recover elastic deformation when the deformation amount is maximum.
  • the first end of the mover 4 extends outward from the opening 203 of the housing 2, and the diaphragm 1 is arranged at a distance from the opening 203 of the housing 2.
  • the preset position provides space for the diaphragm 1 to repeatedly oscillate, so that the diaphragm 1 can produce the maximum possible oscillation under the rebound force of the driving force elastic element 3, speeding up the frequency of adding additives, and further improving The problem of precise additive delivery.
  • the minimum driving force of the driving device is greater than the gravity of the mover 4.
  • the mover 4 When the mover 4 is acted upon by the driving force, it immediately generates displacement and drives the diaphragm 1 to move.
  • the restoring force provided by the diaphragm 1 and The driving force of the driving device causes the diaphragm 1 to oscillate at high frequency in the housing 2 .
  • the repeated high-frequency oscillation of the diaphragm 1 can reach between 20Hz and 300Hz.
  • the mover 4 repeatedly oscillates in the housing 2 under the action of the driving force of the driving device and the rebound force of the elastic element 3 .
  • the diaphragm 1 basically oscillates at the same frequency.
  • the mover 4 moves toward the bottom of the housing 2
  • all the kinetic energy generated by the driving device is converted into potential energy.
  • the mover 4 moves toward the liquid suction chamber 602
  • all potential energy is transferred to consume the kinetic energy generated by the driving device.
  • the mover 4 moves toward the bottom of the sleeve 202.
  • the elastic element 3 is compressed, the maximum deformation amount is equal to the movement of the mover 4 toward the opening of the sleeve 202.
  • the elastic element 3 is stretched, produce the maximum amount of deformation.
  • the housing 2 also includes a sleeve 202.
  • the opening at the first end of the sleeve 202 coincides with the opening 203 of the housing 2.
  • the second end of the sleeve 202 is a closed barrel bottom.
  • the mover 4 is at least partially disposed in the sleeve 202 so that the center of gravity of the mover 4 is set in the sleeve 202 to ensure that the mover 4 receives the strongest driving force when energized, thus making the mover 4 Able to move quickly.
  • the driving device includes a coil bracket 502 arranged axially on the sleeve 202 and a coil 501 surrounding the coil bracket 502 .
  • the coil 501 can also be directly wound on the sleeve 202 .
  • the mover 4 is a metal structural member that can move under the action of magnetic field force in a magnetic field, and the mover 4 will not be magnetized when it is in a magnetic field.
  • the mover 4 is rapidly compressed or stretched by the magnetic field force generated by the coil 501 to produce the maximum deformation amount, the rebound force of the elastic element 3 is greater than the magnetic field force generated by the coil 501 .
  • the coil 501 After the coil 501 is energized, it generates a magnetic field force to drive the mover 4 to move toward the bottom of the sleeve 202 . At this time, the mover 4 makes an accelerated linear motion inside the sleeve 202 .
  • the acceleration of the mover 4 is zero and the speed is not zero.
  • the mover 4 continues to move toward the bottom of the barrel of the sleeve 202, the combined force of the elastic force of the elastic element 3 and the restoring force of the diaphragm 1 is greater than the magnetic field force, and the mover 4 makes a deceleration straight line.
  • the speed of the mover 4 is reduced to zero, the elastic element 3 is compressed or stretched to reach the maximum deformation amount. Then the mover 4 moves toward the open end of the sleeve 202 .
  • the driving force provided by the driving device acts as resistance, preventing the mover 4 from moving toward the open end of the sleeve 202 . Until the speed of the mover 4 drops to 0. Then the movement direction changes, and the mover 4 moves toward the bottom of the sleeve 202 .
  • the magnetic field strength is strong where the magnetic field lines are dense, and the magnetic field strength is small where there are few magnetic field lines.
  • the further away from the coil 501 the fewer the magnetic field lines and the smaller the magnetic field intensity.
  • the center of gravity of the mover 4 is set between the center of the coil 501 and the opening of the housing 2 to ensure that after the coil 501 is energized, the magnetic field force generated can immediately push the mover 4 toward the sleeve.
  • the barrel 202 moves toward the bottom of the barrel.
  • one end of the elastic element 3 is provided in the axial extension direction of the second end of the mover 4 , and the other end is fixedly provided on the bottom of the barrel of the sleeve 202 .
  • the first end of the mover 4 is fixedly connected to the diaphragm 1 .
  • the first end of the mover 4 has no contact with the diaphragm 1 .
  • the mover 4 receives the rebound force of the elastic element 3 and the restoring force of the diaphragm 1 and exceeds the initial setting position 7 and collides with the diaphragm 1 .
  • the diaphragm 1 oscillates under repeated impact of the mover 4 .
  • the first end of the mover 4 is fixedly connected to the diaphragm 1 .
  • the elastic element 3 when the elastic element 3 generates the maximum deformation amount, the resultant force of the elastic force of the elastic element 3 and the restoring force of the diaphragm 1 is greater than the magnetic field force, driving the mover 4 to open to the sleeve 202 Make accelerated linear motion in the 203 end direction.
  • the mover 4 moves to the initial setting position 7, the elastic element 3 and the diaphragm 1 return to their initial deformation. Since the mover 4 still has the speed to move toward the opening 203 end of the sleeve 202 , the mover 4 stretches the elastic element 3 and squeezes the diaphragm 1 to deform toward the liquid suction chamber 602 .
  • another embodiment is that one end of the elastic element 3 is provided on the side wall of the liquid suction chamber 602 corresponding to the opening 203 of the housing 2, and the other end is located with the diaphragm 1 on the side wall of the liquid suction chamber 602.
  • One side of the cavity 602 is fixedly connected, and the elastic element 3 is embedded inside the diaphragm 1 .
  • the elastic element 3's rebound force and the restoring force of the diaphragm 1 drive the mover 4 to rebound. Beyond the initial setting position 7 , the diaphragm 1 oscillates with repeated oscillations of the mover 4 .
  • the elastic element 3 and the liquid suction chamber 602 The side walls can be integrally formed or connected by welding.
  • the elastic element 3 when the elastic element 3 generates the maximum deformation amount, the resultant force of the elastic force of the elastic element 3 and the restoring force of the diaphragm 1 is greater than the magnetic field force, driving the mover 4 to open to the sleeve 202 Make accelerated linear motion in the 203 end direction.
  • the mover 4 moves to the initial setting position 7, the elastic element 3 and the diaphragm 1 return to their initial deformation. Since the mover 4 still has the speed to move toward the opening 203 end of the sleeve 202 , the mover 4 compresses the elastic element 3 and squeezes the diaphragm 1 to deform toward the liquid suction chamber 602 .
  • a flange 201 is formed on the outer circumference of the open end of the sleeve 202 extending in the radial direction.
  • the flange 201 includes a first flange 2011 and a second flange 2012 , and the extended terminal ends of the first flange 2011 and the second flange 2012 are nested in the housing 2 .
  • First protrusions 604 are respectively provided on the side walls on both sides of the opening end of the liquid suction chamber 602 . There is a preset distance between the first protrusion 604 and the opening end of the liquid suction chamber 602 .
  • a specific implementation is that, as shown in FIG. 3 , a first flange 2011 and a second flange 2012 are formed on the outer circumference of the open end of the sleeve 202 extending in the radial direction.
  • the distance between the first protrusion 604 and the open end of the liquid suction chamber 602 is less than the thickness of the diaphragm 1 .
  • the diaphragm 1 is pressed and fixed by the housing 2 and the first protrusion 604 .
  • FIG. 2 Another specific implementation is, as shown in Figure 2, when the outer circumference of the open end of the sleeve 202 extends in the radial direction to the side wall of the housing 2, it is 90 degrees from the open end of the sleeve 202. Then extending toward the liquid suction chamber 602, a first flange 2011 and a second flange 2012 are formed. The distance between the first protrusion 604 and the open end of the liquid suction chamber 602 is less than the thickness of the diaphragm 1 . The diaphragm 1 is pressed and fixed by the housing 2 and the first protrusion 604 .
  • FIG. 5 Another specific implementation is that, as shown in Figure 5, when the outer circumference of the open end of the sleeve 202 extends in the radial direction to the side wall of the housing 2, it is 90 degrees to the open end of the sleeve 202. Then extending toward the liquid suction chamber 602, a first flange 2011 and a second flange 2012 are formed. The length of the first flange 2011 and the second flange 2012 extending in the axial direction is greater than the length of the side wall of the liquid suction chamber 602 .
  • the diaphragm 1 is a capsule-like structure. The diaphragm 1 is pressed and fixed by the housing 2 and the first protrusion 604 .
  • the diaphragm 1 closes the opening of the liquid suction chamber 602 .
  • a first protrusion 604 on the two side walls of the liquid suction chamber 602 at a preset distance from the flange 201, the diaphragm 1 is pressed and fixed with the housing 2, so that the diaphragm 1 can be pressed and fixed.
  • the diaphragm 1 will not pop out when being pulled or collided by the mover 4, thus ensuring the stability of the device.
  • the two side walls of the liquid suction chamber 602 are vertically connected to the housing 2 .
  • the side wall of the liquid suction chamber 602 corresponding to the opening 203 of the housing 2 is provided with installation ports for the liquid suction pipe 603 and the liquid discharge pipe 204, wherein the liquid suction pipe 603 and the liquid discharge pipe 204 are sealed and inserted.
  • the suction pipe 603 and the liquid discharge pipe 204 can also be fixed to their respective installation ports by threaded connection.
  • a one-way valve 206 is provided inside the liquid suction pipe 603 and the liquid discharge pipe 204, so that when the diaphragm 1 vibrates, the additive is driven from the liquid suction pipe 603 into the liquid suction chamber 602.
  • the liquid is discharged from the drain pipe 204 and enters the inner barrel of the washing machine.
  • the liquid suction pipe 603 and the liquid discharge pipe 204 may be disposed on the same side of the side wall of the liquid suction chamber 602 , or may be disposed on different side walls of the liquid suction chamber 602 .
  • the suction pipe 603 is connected to a liquid storage box that stores washing liquid or rinsing water in the washing machine box.
  • a liquid storage box that stores washing liquid or rinsing water in the washing machine box.
  • the drain pipe 204 is connected to the inner barrel of the washing machine.
  • the mover 4 pushes the diaphragm 1 to move inside the sleeve 202 toward the opening of the sleeve 202
  • the pressure of the liquid suction chamber 602 increases.
  • the one-way valve 206 inside the drain pipe 204 is opened, and the internal additives are squeezed into the inner barrel of the washing machine.
  • the coil 501 can be supplied with alternating current or direct current.
  • the specific current waveform is a sinusoidal waveform. Due to the periodic changes in the size of the current, the generated magnetic field will produce periodic There are also periodic changes in the magnetic field force in the sleeve 202.
  • the sinusoidal alternating current is passed into the coil 501 .
  • One of the sine waveforms the mover 4 is always subjected to the magnetic field force provided by the coil 501 that changes in magnitude and has the same magnetic force direction. The direction of the magnetic field force experienced by the mover 4 is always directed toward the center of the coil 501 .
  • the magnetic field force drives the mover 4 to move to the left and starts to squeeze the elastic element 3. Then the work done by the magnetic field force on the mover 4 is converted into the elastic potential energy of the elastic element 3, so that The magnetic field force always pushes the mover 4 to move and does positive work on the mover 4 .
  • the elastic element 3 begins to release its own elastic potential energy, which is converted into the kinetic energy of the mover 4, causing it to start moving to the right.
  • the magnetic field force blocks The mover 4 moves and does negative work on the mover 4 until the mover 4 moves to the rightmost position and stops.
  • the mover 4 Under the continuous cycle of sinusoidal alternating current, the mover 4 will reciprocate and oscillate at high frequency in the sleeve 202 , and the diaphragm 1 will basically oscillate at the same frequency under the action of the mover 4 .
  • the detergent enters the liquid suction chamber 602 from the liquid suction pipe 603, is discharged from the liquid discharge pipe 204, and enters the inner barrel of the washing machine.
  • the entire forward waveform of the current is taken as a half cycle.
  • the current of the coil 501 is turned on, and the current gradually increases from 0 to the maximum value, and the magnetic field intensity continues to increase, so that the magnetic field force received by the mover 4 continues to increase and moves toward the bottom of the barrel 202 of the sleeve 202.
  • the The mover 4 is at the initial setting position 7.
  • the mover 4 compresses the elastic element 3 so that its elastic force continues to increase.
  • the magnetic field force is always greater than the restoring force of the elastic element 3 and the diaphragm 1, so the acceleration of the mover 4 in the sleeve 202 continues to decrease. accelerated motion.
  • the mover 4 is at the equilibrium position 8, the acceleration is 0, and the speed of the mover 4 is maximum.
  • the mover 4 continues to move toward the bottom of the sleeve 202, and the restoring force is greater than the magnetic field force, and the mover 4 begins to decelerate until it reaches zero.
  • the deformation amount of the elastic element 3 reaches the maximum, that is, the compression amount is the maximum.
  • the mover 4 is located at the first reversing position 9, and the mover 4 begins to accelerate in the opposite direction, that is, the mover 4 moves toward the open end of the sleeve 202 Movement, the current gradually weakens from the maximum value to 0.
  • the mover 4 is at the equilibrium position 8
  • the acceleration is 0, and the speed of the mover 4 is maximum.
  • the mover 4 continues to move toward the open end of the sleeve 202 .
  • the elastic element 3 and the diaphragm 1 resume deformation.
  • the acceleration is 0 and the speed is not 0.
  • the mover 4 continues to move toward the open end of the sleeve 202, driving the elastic element 3 and the diaphragm 1 to deform. Then the direction of the magnetic field force and the restoring force are consistent, and negative work is done on the mover 4, and the mover 4 starts to decelerate until it reaches zero. At this time, when the mover 4 is located at the second reversing position 10, it starts to move toward the bottom of the sleeve 202. Then the mover 4 completes one reciprocating motion in half a cycle, and the motion state of the mover 4 in its reverse waveform is consistent with the above.
  • the entire forward waveform of the current is a half cycle.
  • the current of the coil 501 is turned on, and the current gradually increases from 0 to the maximum value, and the magnetic field intensity continues to increase, so that the magnetic field force received by the mover 4 at the initial setting position 7 continues to increase and moves toward the bottom of the sleeve 202 , the mover 4 compresses the elastic element 3 so that its elastic force continues to increase.
  • the magnetic field force is always greater than the elastic force, and the mover 4 performs an accelerating motion in the sleeve 202 with continuously decreasing acceleration.
  • the mover 4 When the magnetic field force is equal to the restoring force, the mover 4 is in the equilibrium position 8, the acceleration is 0, and the speed of the mover 4 is maximum. The mover 4 continues to move toward the bottom of the sleeve 202, and the current gradually decreases from the maximum value to 0. If the elastic force of the elastic element 3 is greater than the magnetic field force, the mover 4 begins to decelerate until it reaches zero. When the deformation amount of the elastic element 3 reaches the maximum, that is, the compression amount is the maximum.
  • the mover 4 is located at the first reversing position 9, and the mover 4 begins to perform a reverse acceleration movement, that is, the mover 4 moves toward the open end of the sleeve 202, where the mover 4
  • the time period required for the sub 4 to move toward the bottom of the sleeve 202 is consistent with the movement toward the open end of the sleeve 202 .
  • the oscillation period of the mover 4 and the elastic element 3 is the same as or a multiple of the period of the sinusoidal current (i.e., the change period of the magnetic field force), resonance will occur, so that the mover 4 will react with the magnetic field force.
  • the amplitude of oscillation under drive is the largest, which effectively ensures the effect of liquid suction and discharge. Due to the effect of the continuous alternating current, the mover 4 can oscillate at high frequency in the sleeve 202, thereby allowing the entire liquid suction and discharge action to proceed continuously.
  • the oscillation amplitude of the mover 4 in the sleeve 202 can be controlled, This ensures the effect of liquid suction and discharge.
  • Another implementation is that when direct current is supplied to the coil 501, the current is controlled to be on and off at a certain frequency.
  • the current is controlled to be on and off at a certain frequency.
  • the mover 4 can also achieve oscillating motion in the sleeve 202 .
  • the present invention also provides a washing equipment that adopts the driving device of any of the above-mentioned automatic delivery devices.
  • the suction pipe 603 of the automatic dispensing device is connected to the detergent storage box of the washing equipment, and the drain pipe 204 of the automatic dispensing device is connected to the water inlet of the washing equipment. The incoming water flow mixes with the washing liquid and then enters the washing bucket.
  • the present invention provides an automatic delivery device for washing equipment, including: a driving structure and a liquid suction device 6.
  • the circumference of the diaphragm 1 is fixed on the driving structure and/or the suction device.
  • the diaphragm 1 is subjected to a force exerted by the driving structure with a fixed driving direction and periodically changing driving magnitude, and cooperates with the elastic restoring force of the diaphragm 1 to drive the diaphragm 1 in the axial direction. Vibrating back and forth, the washing liquid is sucked into/out of the liquid suction device 6 .
  • the driving structure includes a coil 501 and a mover 4.
  • the coil 501 is wound around Outside the sleeve 202, the coil 501 is energized to generate a magnetic field.
  • the mover 4 is driven by the magnetic field to vibrate back and forth along the axial direction in the sleeve 202.
  • the liquid suction device 6 is connected to the driving structure, and the circumference of the diaphragm 1 is fixed on the liquid suction device. On the device 6, the diaphragm and the liquid suction device 6 form a liquid suction chamber 602.
  • the diaphragm 1 When the diaphragm 1 is driven by the driving structure, it elastically deforms in the direction close to the driving structure, and the space volume of the liquid suction chamber 602 becomes larger, so that a certain amount of washing liquid can be sucked into the liquid suction chamber 602; as the diaphragm is subjected to The driving force gradually decreases, and since the diaphragm 1 itself is also elastic, when the elastic restoring force of the diaphragm 1 is greater than the driving force, the elastic restoring force of the diaphragm 1 drives the diaphragm 1 to reset in the direction closer to the liquid suction device 6, The space volume of the liquid suction chamber 602 becomes smaller, so that a certain amount of washing liquid is discharged from the liquid suction device 6 and enters the inner barrel of the washing machine.
  • the mover is a metal structural member with a relatively fixed shape and structure. It is non-magnetic and will produce motion displacement under the attraction of a magnetic field, but will not be magnetized as a whole.
  • the present invention also provides a second embodiment, including: an end cap 601 is provided on the periphery of the liquid suction device 6, and the diaphragm 1 is The circumference is fixed on the end of the peripheral wall of the end cap 601; or, a groove is provided on the end of the peripheral wall of the end cap 601, and the circumference of the diaphragm 1 is fixed in the groove.
  • an end cap 601 is provided on the outer periphery of the liquid suction device 6.
  • the end of the peripheral wall of the end cap 601 is a smooth surface.
  • One circumferential side of the diaphragm 1 can be directly disposed on the end of the peripheral wall of the end cap 601, or the end
  • the end of the peripheral wall of the cover 601 is provided with a groove to accommodate the diaphragm 1.
  • One side of the circumference of the diaphragm 1 is fixed in the above-mentioned groove.
  • the middle part of the diaphragm 1 except for the circumferential part is a deformable part, in which the diaphragm 1
  • the shape of can be any shape such as bowl shape, bag shape, etc., which is not limited by the present invention.
  • the diaphragm 1 cooperates with the liquid suction device 6 to form a liquid suction chamber 602, and the liquid suction chamber 602 provides a first deformation area for the diaphragm 1.
  • the diaphragm 1 forms a side wall of the liquid suction chamber 602, and the diaphragm 1 and the liquid suction device 6 jointly form the liquid suction chamber 602.
  • the liquid suction chamber 602 is not only used to store washing liquid/discharge the stored washing liquid to In the inner drum of the washing machine; when the diaphragm 1 is elastically deformed in a direction close to the liquid suction device 6 by the driving force of the mover 4, the liquid suction chamber 602 is also used to provide the first deformation space for the diaphragm 1 to elastically deform.
  • the present invention also provides a connection method between the liquid suction device 6 and the driving structure, that is, the third embodiment, including:
  • a housing 2 is provided outside the driving structure, and a flange 201 is provided on the housing 2.
  • the driving structure passes through the
  • the flange 201 is connected to the circumference of the diaphragm 1; or the flange 201 is provided with an extension portion in a direction close to the liquid suction device 6, and the driving structure passes through the extension portion and the circumference of the diaphragm 1. connect.
  • the flange 201 and the extension part of the flange 201 and the elastic material 1 form a second deformation area.
  • the housing 2 of the driving structure is provided with a flange 201, and the end of the flange 201 is connected to the circumference of the diaphragm 1, so that the driving structure is connected to the liquid suction device 6.
  • the middle part of the diaphragm 1 It is still a deformable part.
  • the end of the flange 201 extends to form an extension part along the horizontal direction of the mover movement and in the direction close to the liquid suction device 6.
  • the peripheral wall of the extension part is connected to the other side of the circumference of the diaphragm 1, and the flange 201 is connected to the diaphragm 1.
  • the sheet 1 is connected to form a second deformation area close to the driving direction, or the flange 201 and the extension of the flange 201 are connected to the diaphragm 1 to form a second deformation area.
  • the diaphragm 1 is pulled to the left by the mover 4, the diaphragm
  • the second deformation area provides the diaphragm 1 with a second deformation space for elastic deformation, thereby increasing the deformation space when the diaphragm 1 deforms toward the driving structure.
  • this second deformation area provides the diaphragm 1 with A larger reset space.
  • the shape of the diaphragm 1 can be bowl-shaped, bag-shaped, suction cup-shaped, etc.
  • the connection between the flexible arc-shaped suction cup and the liquid suction device 6 The mode can be set to adhesive connection.
  • An adhesive area is formed on the inner wall of the lotion device 6, an adhesive area is set on the outer periphery of the flexible arc-shaped suction cup, and the adhesive area on the outer periphery of the flexible arc-shaped suction cup is attached to the adhesive area on the inner wall of the liquid delivery device.
  • the convex surface of the flexible arc-shaped suction cup is in contact with the power structure.
  • the output ends are set correspondingly, and the end of the outer peripheral wall is flush with or protrudes from the convex high point of the flexible arc-shaped suction cup.
  • the flexible arc-shaped suction cup forms a gradually tightening hemispherical curved surface structure from the outer periphery to the end, and two mutually isolated chambers are formed between the flexible arc-shaped suction cup and the liquid suction device 6 .
  • the cavity surrounding the flexible arc-shaped suction cup that includes both the liquid inlet and the liquid outlet is the suction cavity, and the other cavity is the isolation cavity.
  • the flexible arc-shaped suction cup encloses the liquid in the suction cavity, separates the components in the isolation cavity from the liquid, and achieves sealing, thereby protecting the internal components of the automatic liquid delivery device from corrosion and extending its service life.
  • the flexible arc-shaped suction cup can form a semi-enclosed liquid environment with stable pressure in the liquid suction chamber 602. Changing the shape of the flexible arc-shaped suction cup can change the space volume in the suction chamber 602 and realize the liquid suction/discharge process.
  • the present invention provides a fourth embodiment, including: the driving structure drives the diaphragm 1 in a direction close to the driving structure. Elastic deformation occurs, and the diaphragm 1 vibrates reciprocally in a direction close to the liquid absorbing device 6 by relying on its own elastic restoring force.
  • Figure 10 is the initial state of the diaphragm 1
  • Figure 9 is the state of the elastic deformation of the diaphragm 1.
  • the middle part of the diaphragm 1 has a certain thickness, and the driving structure drives the mover. 4 moves to the left.
  • the leftward pulling force of the diaphragm 1 by the mover gradually increases from 0 to the maximum.
  • the diaphragm 1 produces elastic deformation in the direction closer to the driving structure, and the elastic deformation produced
  • the elastic restoring force of the diaphragm 1 becomes larger and larger, driving the diaphragm to reset in a direction closer to the liquid suction device 6 .
  • the leftward pulling force F1 on the diaphragm is equal to the elastic return force F2
  • the diaphragm 1 still has elastic deformation in the direction closer to the driving structure.
  • the maximum value F2 of the elastic restoring force of the diaphragm is greater than the leftward pulling force F1 of the mover on the diaphragm 1.
  • the diaphragm 1 has a tendency to move closer to the liquid suction device 6, and the diaphragm 1 moves toward the suction device 6.
  • the pulling force F1 to the left becomes smaller and smaller, and the elastic deformation becomes smaller and smaller.
  • the elastic restoring force of the diaphragm will gradually decrease until the diaphragm 1 returns to its original position.
  • the diaphragm 1 Since the diaphragm 1 still has the speed to move in the direction closer to the liquid suction device 6, the diaphragm 1 will oscillate near the original position until the speed decreases to 0 and returns to the original position. Through the above two stages, the reciprocating vibration of the diaphragm 1 in the axial direction near the original position is realized.
  • the space volume of the liquid suction chamber 602 increases, the washing liquid enters the liquid suction chamber 602.
  • the liquid suction chamber 602 When the volume of the space decreases, the washing liquid is discharged from the liquid suction device 6 and enters the inner barrel of the washing machine to achieve quantitative dosing of washing liquid.
  • the present invention provides a fifth embodiment, including:
  • the driving structure drives the diaphragm 1 to elastically deform in a direction close to the liquid suction device 6 , and the diaphragm 1 relies on its own elastic restoring force to vibrate reciprocally in a direction close to the driving structure.
  • Figure 9 is the initial state of the diaphragm 1
  • Figure 10 is the state in which the diaphragm 1 undergoes elastic deformation. Based on the shape and degree of bending of the diaphragm 1 and the setting of the flange 201 It will have a resistive effect when the diaphragm 1 is elastically deformed toward the driving device. Therefore, it will be easier for the diaphragm 1 to elastically deform toward the side closer to the liquid suction device 6. Here, it is for the diaphragm 1 to be closer to the liquid suction device 6. The process of elastic deformation and reset in the direction is analyzed.
  • the middle part of diaphragm 1 has a certain thickness, and the driving structure drives the mover 4 to move to the right.
  • the rightward thrust of the diaphragm 1 by the mover gradually increases from 0 to the maximum.
  • the diaphragm 1 generates elastic deformation in the direction closer to the liquid suction device 6, and the elastic deformation generated becomes larger and larger, and the elastic restoring force of the diaphragm 1 becomes larger and larger, driving the diaphragm to reset in the direction closer to the driving structure.
  • the diaphragm 1 still has elastic deformation in the direction approaching the liquid suction device 6 .
  • the maximum value F2 of the elastic restoring force of the diaphragm is greater than the rightward thrust F1 of the mover on diaphragm 1.
  • Diaphragm 1 has a tendency to move closer to the drive structure, and diaphragm 1 moves closer to the drive structure.
  • the leftward thrust F1 is getting smaller and smaller, the elastic deformation is getting smaller and smaller, and the elastic restoring force of the diaphragm will gradually decrease until diaphragm 1 returns to its original position. Since diaphragm 1 There is also a speed that moves closer to the driving structure, so the diaphragm 1 will oscillate near the original position until the speed decreases to 0 and returns to the original position.
  • the driving structure also includes a mover 4.
  • the mover 4 is not connected to the diaphragm. There is intermittent contact between the ejected material 1 and the mover. Specifically, the mover 4 is gradually moved closer to the right by the force of the driving structure. The liquid suction device 6 moves in the direction.
  • the diaphragm 1 elastically deforms in the direction closer to the liquid suction device 6.
  • the specific deformation process and reset process are the same as the above-mentioned sixth embodiment. , will not be described in detail here.
  • the diaphragm 1 is provided with an embedded part 101 , and one end of the mover 4 is connected to the embedded part 101 .
  • the middle part of the diaphragm 1 has a certain thickness, and the middle part of the diaphragm 1 is provided with an embedded part 101.
  • One end of the mover 4 is an embedded block 401, and the embedded block 401 is engaged with the embedded part 101 through the embedded block 401.
  • the mover 4 includes a moving part 402 and a dumbbell or other-shaped conductive part 403.
  • One end of the conductive part 403 is connected to the moving part 402 of the mover 4.
  • the other end of the conductive part 403 is provided with an embedded block 401.
  • the embedded block 401 It engages with the embedded part 101 , or one end of the mover 4 directly serves as an embedded block and engages with the embedded part 101 of the diaphragm 1 , or the center part of the diaphragm 1 has a certain thickness, and the diaphragm 1 has a certain thickness.
  • 1 is provided with an internal thread channel structure, and one end of the mover is provided with a protruding threaded rod. The threaded rod is screwed into the internal thread channel through a spiral to realize the connection between the mover 4 and the diaphragm 1. This can be achieved based on the above methods.
  • the present invention does not limit the specific method used to realize the connection between the mover 4 and the diaphragm 1.
  • the diaphragm 1 may be pulled by the mover 4 to elastically deform in the direction close to the driving structure, or may be pushed by the mover 4 to elastically deform in the direction close to the liquid suction device 6.
  • the direction in which the diaphragm elastically deforms should also take into account the shape of the diaphragm and the direction in which the diaphragm is more likely to deform.
  • the material of the diaphragm 1 is any one of plastic, rubber, silicone, animal skin, alloy plate, and polyurethane.
  • the diaphragm 1 can be a disc-shaped structure with certain ductility and toughness, or it can be bowl-shaped or It is in the shape of a cyst, which is not limited by the present invention.
  • the diaphragm 1 will also fluctuate slightly back and forth due to its own elastic restoring force, completely releasing the accumulated energy. This solution allows energy to be utilized to a greater extent, greatly improving energy utilization efficiency and the efficiency of dispensing washing liquid.
  • the diaphragm 1 includes a first area and a second area.
  • the first area is the outer periphery of the diaphragm 1 and is used to be fixed with the liquid suction device 6.
  • the second area is the force-bearing area of the diaphragm 1.
  • a third area is included between the first area and the second area, and the third area is mainly an area where the diaphragm 1 undergoes elastic deformation.
  • the diaphragm 1 is fixedly connected to the liquid suction device 6 through the first area, and the mover 4 strikes the second area of the diaphragm 1, causing the third area of the diaphragm 1 to elastically deform; or, the mover 4 and the liquid suction device 6 are elastically deformed.
  • the second area of the diaphragm 1 is embedded and connected, the second area of the diaphragm 1 is pulled by the mover 4, and the third area of the diaphragm 1 undergoes elastic deformation.
  • the ring width of the ring where the third area is located is l, where the relationship between l and r satisfies the following conditions:
  • the support end surface on the reset side of the diaphragm 1 prevents the diaphragm 1 from producing large elastic deformation.
  • the ring width of the third area is small, the support end surface on the reset side of the diaphragm 1 will also Smaller, and the greater the pressure on diaphragm 1, the greater the damage to diaphragm 1.
  • the support end surface on the reset side of diaphragm 1 will also become larger.
  • the present invention provides a fifth implementation method including:
  • the driving device also includes a power supply, and the coil 501 is connected to the power supply by connecting to direct current/alternating current.
  • direct current refers to the current whose direction does not change periodically, but the magnitude of the current changes periodically
  • alternating current refers to the current whose magnitude and direction change periodically.
  • the coil is not energized, the mover does not move, and the diaphragm does not deform
  • the voltage image (or current image) of the first half cycle stage and the second half cycle stage of the alternating current is 0 with respect to the voltage value (or current value) is symmetrical about the center of the point; the voltage peak (or current peak) point of the upper half cycle and/or the second half cycle is the midpoint, and the half cycle is divided into the voltage intensity increasing (or current increasing) stage and the voltage intensity decreasing (or current lowering) stage.
  • the mover When the coil is supplied with alternating current, the mover will not be magnetized as a whole, but will be attracted to the left by the magnetic lines of force exposed in the opening on the left side wall of the sleeve. Taking the mover as the force-bearing body, the mover moves due to the magnetic field force F1 and the diaphragm's elastic reset force F2.
  • the alternating current is in the voltage intensity increasing stage of the first half cycle
  • the mover in the initial position is subject to the magnetic field force F1 to the left, causing the mover to move to the left.
  • the elastic reset force F2 of the diaphragm stops the mover. Move to the left.
  • the elastic restoring force F2 of the diaphragm is a pulling force on the mover to the right.
  • the magnetic field force F1 to the left on the mover continues to increase, forcing the diaphragm to continue to stretch to the left, and the elastic reset force F2 continues to increase.
  • the mover receives a magnetic field force F1 to the left, which is numerically equal to the elastic reset force F2 of the diaphragm to the right, but the mover still has momentum to the left, and the mover continues to move to the left.
  • the diaphragm is further stretched, so that the elastic restoring force F2 of the diaphragm to the right is greater than the value of the magnetic field force F1 received by the magnetic conductor to the left.
  • the resultant force on the mover is to the right, and the mover has a right movement trends;
  • the mover at the farthest extreme position on the left receives the elastic reset force F2 from the diaphragm to the right which is greater than the magnetic field force F1 to the left that the mover receives. Therefore, the mover Move right.
  • the elastic restoring force F2 of the diaphragm decreases, causing the mover to move to the right.
  • the elastic restoring force F2 of the diaphragm is a pulling force on the mover to the right.
  • the magnetic field force F1 to the left on the mover continues to decrease, and the elastic restoring force F2 of the elastic material continues to decrease, causing the mover to move to the right.
  • the mover is no longer affected by the magnetic field force (that is, the magnetic field force F1 is 0), and the stored diaphragm
  • the elastic restoring force F2 is completely released.
  • the mover is not subject to external force, but the mover still has momentum to the right, and the mover continues to move a certain distance to the right.
  • the mover continues to move a certain distance to the right. During this process, the diaphragm is pushed to the right. At this time, the elastic restoring force F2 of the diaphragm is pushing the mover to the left. Until the speed of the mover decreases to zero, the resultant force on the mover is to the left, and the mover has a tendency to move to the left;
  • the completion mover will repeat left and right at the initial position until the energy is exhausted; if the alternating current is kept on at this time, the alternating current will enter the voltage intensity increasing stage in the second half of the cycle, and then enter the second half of the cycle.
  • the voltage intensity decreases stage, and the next step is to enter the voltage intensity increase stage of the first half cycle. In this cycle, that is, when the alternating current frequency is 50HZ, the mover moves back and forth 100 times.
  • the force analysis when the alternating current enters the voltage intensity increasing stage in the second half cycle is the same as the voltage intensity increasing stage when the alternating current enters the first half cycle; the force analysis when the alternating current enters the voltage intensity decreasing stage in the second half cycle is the same as The voltage intensity reduction stage of the alternating current entering the first half cycle is the same and will not be described again here.
  • the coil is not energized initially, the mover does not move, and the diaphragm does not deform; taking sinusoidal alternating current as an example, in the first half cycle stage, the coil generates magnetic poles of upper N and lower S (of course, depending on the direction of the current, the It may be S up (S down) N), the mover part and the open part partially overlap in the height direction, and the leakage magnetic field lines at the open part of the coil magnetize the mover to form the magnetic poles up S and down N.
  • the magnetic pole strength formed by the coil first increases and then weakens until it disappears. Therefore, the magnetism of the mover also appears to increase first and then decrease.
  • the upper end of the mover receives an attraction force from the N pole of the coil and a repulsive force from the S pole both point upward.
  • the lower end of the mover receives an upward attraction force from the S pole that is much greater than the downward repulsion force from the N pole, so the mover moves upward. , and finally the velocity decreases to zero at a relatively stable position.
  • the upward acceleration increases from zero to a certain value and then decreases to zero.
  • the mover When the alternating current is at the midpoint of the cycle, the mover is now in a relatively stable state with no magnetic pole distribution.
  • the coil When the alternating current is in the second half-cycle stage, the coil generates magnetic poles with upper S and lower N.
  • the leakage magnetic field lines at the exposed part of the coil magnetize the mover to form magnetic poles with upper N and lower S.
  • the process first increases and then decreases with the magnitude of the voltage.
  • the magnetic pole strength formed by the coil first strengthens and then weakens until it disappears. Therefore, the magnetic pole of the mover also appears to be first high and then low.
  • the downward repulsive force of the coil S pole on the lower end of the mover is greater than the attraction force of the coil S pole on the upper end of the mover, the upward repulsive force of the coil N pole on the upper end of the mover, and the upward repulsive force of the coil N pole on the mover.
  • the lower end has an upward attraction force, so the mover moves downward, and finally stays in a relatively stable position and resets.
  • This solution can play a role in magnetic field cancellation.
  • the power-on time is determined to achieve precise delivery of detergent.
  • the driving device adopts a magnetic drive method, which can reduce the volume and quality of the automatic liquid dosing device.
  • the cost of the magnetic drive coil is lower than other methods, which can reduce the cost of production and be more in line with the actual needs of users.
  • the present invention also includes: the liquid suction device 6 includes a liquid suction port and a liquid discharge port, and the liquid suction device 6 includes a liquid suction port and a liquid discharge port.
  • the liquid suction port is connected to the liquid suction pipe 603; the liquid discharge port is connected to the liquid discharge pipe 204.
  • Both the liquid suction pipe 603 and the liquid discharge pipe 204 are provided with one-way valves 206.
  • a one-way valve 206 is provided in the suction pipe 203.
  • the one-way valve 206 only allows the washing liquid in the suction pipe 203 to enter the suction chamber 602.
  • a one-way valve 206 is also provided in the discharge pipe 204.
  • the one-way valve 206 here The valve 206 only allows the washing liquid in the drain pipe 204 to be discharged into the inner barrel of the washing machine, but cannot flow to the liquid suction chamber 602 or back into the liquid suction pipe 203 .
  • the embodiment of the present invention introduces an automatic putting device of washing equipment and washing equipment.
  • the washing equipment at least includes a detergent storage box, an automatic putting device and a water box;
  • the detergent storage box can be
  • the cartridge-type detergent storage box can also be an open manually added detergent storage box;
  • the automatic delivery device is provided with a suction pipe 603 and a drain pipe 204.
  • the suction pipe 603 is connected to the detergent storage box, and the drain pipe 204 is connected to the detergent storage box.
  • the liquid pipe 204 is connected with at least one water path of the water box; the additives in the detergent storage box are sucked in and discharged into the water path of the water box through the automatic dispensing device, and the additives in the water path are flushed by the incoming water flowing into the corresponding water path of the water box. into the clothes holding tube of the washing equipment to realize automatic dosing of detergent.
  • the detergent storage box can hold at least one additive, and the outlet of the corresponding additive is controlled by a solenoid valve or other valve to be connected to the suction pipe 603 of the automatic delivery device, so that the automatic delivery device can pass a corresponding pair of suction pipes 603
  • One or more additives are used to absorb liquids.
  • the outer body of the automatic delivery device is a shell 2; a sleeve 202 is provided inside the shell 2.
  • One end of the sleeve 202 is a closed bottom, and the corresponding other end is An opening is opened;
  • the coil 501 is coaxially sleeved on the outer periphery of the sleeve 202;
  • the mover 4 is movably arranged in the sleeve cavity 203 of the sleeve 202;
  • the opening of the sleeve 202 is provided with a Diaphragm 1;
  • the center of the mover 4 is set in the direction of the opening of the sleeve 202 from the center of the coil 501;
  • the mover 4 moves inside the sleeve 202 under the combined action of the electromagnetic force generated by the coil 501 and the elastic force of the diaphragm 1.
  • the mover 4 can vibrate with a stable amplitude and frequency in the sleeve cavity 203, thereby ensuring stable delivery of additives and ensuring the accuracy of controlling the dose. ;
  • the impact of a single vibration error on the overall error value of the delivery work can be effectively reduced, further improving the accuracy of the delivery amount; at the same time, low amplitude can Effectively reduce working noise, making automatic delivery equipment work quieter.
  • the high frequency proposed in the embodiments of the present invention refers to a mover higher than that of the automatic delivery device in this field.
  • the frequency of vibration; the range of high frequency is 30-300Hz.
  • the outer circumference of the open end of the sleeve 202 is connected with a flange 201 extending radially toward the housing 2 to support the sleeve 202 in the housing 2; the flange 201 is flush with the opening of the sleeve 202; the sleeve
  • the outer periphery of 202, the flange 201 and the housing 2 form an installation cavity 205, which is used for the installation of electronic components of the automatic pump and the arrangement of wires;
  • the sleeve 202 is provided with a mover 4, and the center of the mover 4 is located at The center of the coil 501 is biased toward the opening of the sleeve 202; the electromagnetic force generated by the coil 501 being energized causes the mover 4 to move away from the opening of the sleeve 202; an end cap 601 is buckled on the opening of the sleeve 202, and the end cap 601 includes a flange 201 are sheet-shaped cover bottoms
  • the outer periphery of the cover bottom is provided with a buckling portion extending toward the outer edge of the flange 201.
  • the end cap 601 is connected to the outer periphery of the flange 201 through the sealing correspondence of the buckling portion; the end cap
  • the bottom of the cover and the snap portion of 601 constitute the liquid suction chamber 602 of the automatic dispensing device.
  • the casing 2 of the automatic dispensing device can be integrated with the internal structure of the washing equipment; or, an independent casing 2 can be provided as the external structure of the automatic dispensing device, and then the automatic dispensing device can be installed through the casing 2 The matched fixed installation is in the washing equipment.
  • the sleeve cavity 203 and the liquid suction cavity 602 are separated by an elastic diaphragm 1; one side of the diaphragm 1 is connected to the mover 4, so that the mover 4 can Pull the diaphragm 1 to move away from the opening of the sleeve 202; there is a space for the deformation of the diaphragm 1 between one side of the diaphragm 1 and the sleeve 202; and there is a certain space between the opposite side and the bottom of the end cover 601. The distance forms the liquid suction chamber 602 of the automatic delivery device.
  • the liquid suction chamber not only has the function of containing the washing liquid, but also ensures that the diaphragm 1 will not come into contact with the bottom of the end cover 601 when vibrating. This prevents the bottom of the cover from hindering the vibration of the diaphragm 1 and improves the vibration effect of the diaphragm 1;
  • the end cover 601 is provided with a washing liquid tube connected with the liquid suction chamber 602 on the side wall away from the sleeve 202.
  • the liquid discharge pipe 204, the liquid suction pipe 603 and the liquid discharge pipe 204 are respectively provided with one-way valves for one-way communication toward the liquid suction chamber 602 and away from the liquid suction chamber 602.
  • the mover 4 is driven by the electromagnetic force to move away from the sleeve 202.
  • the diaphragm 1 is pulled to cause the diaphragm 1 to deform, thereby changing the liquid absorption on one side of the diaphragm 1.
  • the chamber volume of the chamber 602 increases the volume, and the negative pressure generated by the increased volume causes the one-way valve of the pipette 603 to conduct one-way, allowing the automatic delivery device to perform a liquid suction action; then, the mover 4 moves After reaching the farthest distance, the elastic force of diaphragm 1 pulls the mover 4 to reset when it overcomes the electromagnetic force or the coil 501 is powered off so that the mover 4 is not affected by the electromagnetic force.
  • the deformation of the diaphragm 1 also returns to In the initial state, the chamber volume of the liquid suction chamber 602 is changed again, so that the chamber volume is reduced and returned to the initial volume, and the high pressure generated by the reduced volume makes the one-way valve of the discharge pipe 204 conduct one-way, causing the automatic The delivery device performs liquid discharge action.
  • the end of the mover 4 closer to the diaphragm 1 is provided with an embedded block 401, and the side of the diaphragm 1 close to the embedded block 401 is provided with an embedded part 101 that opens toward the mover 4; the embedded block 401 passes through The opening of the embedding part 101 is correspondingly embedded in the embedding part 101 .
  • the connection between the mover 4 and the diaphragm 1 is more stable.
  • the mass of the mover 4 is between 1g and 100g; the elastic coefficient of the diaphragm 1 is relatively large, so that the natural frequency of the system composed of the diaphragm 1 and the mover 4 is 30-300Hz; according to the free vibration formula , when the elastic coefficient of the elastic body connected to the mover 4 is larger, the natural frequency of the system composed of the mover 4 and the connected elastic body is larger; in the embodiment of the present invention, when the mass of the mover 4 is determined , by selecting the diaphragm 1 with a larger elastic coefficient, the system composed of the diaphragm 1 and the mover 4 has a high natural frequency, so that when the mover 4 is acted upon by the electromagnetic force, the reverse direction provided by the diaphragm 1 The elastic force makes high-frequency reciprocating motion in the sleeve 202.
  • the mover 4 is connected and supported with the diaphragm 1, so that the mover 4 is disposed in the sleeve cavity 203 without contacting the inner wall of the sleeve 202, so that the mover 4 will not be affected by the sleeve during the reciprocating motion.
  • the automatic dispensing device of the present invention is actually smaller in volume.
  • the volume in the liquid suction chamber 602 is 2-30 mL, and the stroke of the solid mover 4 in the sleeve chamber 203 is actually very short. , mainly through high-frequency reciprocating motion to complete the delivery in a short time.
  • the flange 201 of the sleeve 202 is flush with the opening of the sleeve 202; the outer periphery of the diaphragm 1 is sealingly arranged between the end cover 601 and the opening of the sleeve 202.
  • the diaphragm 1 is in contact with one side of the flange 201; when the diaphragm 1 is stretched by the passive actuator 4, it deforms and extends through the opening of the sleeve 202 toward the interior of the sleeve cavity 203.
  • the inner side of the connection between the end cover 601 and the flange 201 is provided with a first protrusion 604 formed by a depression.
  • a first protrusion 604 formed by a depression.
  • the mover 4 itself does not have magnetic poles and is made of a material that will be attracted by the magnetic field but will not be magnetized by the magnetic field.
  • the first protrusion 604 is provided at the connection point between the housing 2 and the flange 201, so that the diaphragm 1 and the flange 201 are arranged in close contact; through the above arrangement, the diaphragm 1 can be stretched and/or impacted during the process. , the flange 201 can support and protect the deformation of the diaphragm 1 in the direction of the mover 4, preventing the diaphragm 1 from breaking due to excessive vibration area.
  • the outer periphery of the open end of the sleeve 202 is connected with a flange 201 extending radially outward along the sleeve 202, and the outer periphery of the flange 201 is A second flange 2012 extending away from the sleeve 202 is connected; the end cover 601 is connected to the extended end of the second flange 2012; the outer periphery of the diaphragm 1 is sealingly arranged between the end cover 601 and the second flange 2012 at the connection point; there is a certain distance between the diaphragm 1 and the flange 201 to form a buffer cavity 605; when the diaphragm 1 is stretched by the passive actuator 4, the diaphragm 1 deforms and extends into the buffer cavity 605.
  • the diaphragm 1 when the mover 4 pulls the diaphragm 1, the diaphragm 1 can be stretched and deformed better; at the same time, the diaphragm 1 avoids hitting the flange 201 during the vibration process, which will cause the vibration amplitude and time Shorten and improve the efficiency of the automatic delivery device.
  • one side of the diaphragm 1 is connected to the mover 4, and the opposite side is connected to one end of the support spring 301; the support spring 301 is coaxially arranged with the mover 4, And the corresponding other end is connected to the end cover 601; the mass of the mover 4 is between 1g and 100g; the elastic coefficients of the diaphragm 1 and/or the support spring 301 are relatively large, so that the diaphragm 1 and the support spring 301 are in contact with the mover.
  • the natural frequency of the system composed of 4 is 30-300Hz; while the mover 4 is acted upon by the electromagnetic force, it makes high-frequency reciprocating motion in the sleeve 202 through the reverse elastic force provided by the diaphragm 1 and the support spring 301.
  • the support spring 301 connected to the diaphragm 1 is used to enhance the process of the mover 4 stretching the diaphragm 1. It receives the common elastic force of the diaphragm 1 and the support spring 301, so that when the mover 4 is reset, the diaphragm is lifted.
  • the vibration effect produced by the diaphragm 1; at the same time, the setting of the support spring 301 makes the deformation amount of the diaphragm 1 smaller when it is subjected to the same pulling force of the mover 4 and accumulates the same elastic potential energy. This prevents the diaphragm 1 from being stretched by a large deformation amount frequently, resulting in the surface deformation and relaxation of the diaphragm 1 and the reduction of elasticity, thereby increasing the service life of the diaphragm 1.
  • one end of the mover 4 is connected to the diaphragm 1, and the opposite end is connected to or in contact with an elastic element 3; the elastic element 3 is coaxial with the mover 4 set, and the corresponding other end is connected to the bottom of the sleeve 202; the mass of the mover 4 is between 1g and 100g; the elastic coefficients of the diaphragm 1 and/or the elastic element 3 are relatively large, so that the diaphragm 1 and the elastic element 3
  • the natural frequency of the system composed of 3 and mover 4 is 30-300Hz; while the mover 4 is acted upon by the electromagnetic force, it reciprocates at high frequency in the sleeve 202 through the reverse elastic force provided by the diaphragm 1 and the elastic element 3 sports.
  • the deformation amount of diaphragm 1 reduces the pressure at the connection between mover 4 and diaphragm 1, which not only improves the vibration effect of diaphragm 1, but also increases the service life of the connection between diaphragm 1 and mover 4; at the same time,
  • the support spring 301 is directly connected to the mover 4, which can support the mover 4, reduce the pressure of the mover 4 on the connection between the diaphragm 1 and the mover 4, and avoid the deformation of the connection due to long-term pressure, so that The mover 4 cannot remain coaxial with the coil 501, which reduces the working efficiency of the reciprocating motion of the mover 4.
  • the mover 4 is not connected to the diaphragm 1; the bottom of the sleeve 202 is connected to the elastic element 3; the end of the mover 4 closer to the diaphragm 1 is connected to the diaphragm 1.
  • the mover 4 is in contact with each other, and the corresponding other end is connected to the elastic element 3 Or contact; the mass of the mover 4 is between 1g and 100g; the elastic coefficient of the elastic element 3 is relatively large, so that the natural frequency of the system composed of the elastic element 3 and the mover 4 is 30-300Hz; the mover 4 is subject to electromagnetic force At the same time, the reverse elastic force provided by the diaphragm 1 and the support spring 301 performs high-frequency reciprocating motion in the sleeve 202; preferably, when the mover 4 is not attracted by the magnetic force, the elastic element 3 is in slight compression. In this state, the mover 4 is in contact with the diaphragm 1 through elastic force.
  • the mover 4 when the mover 4 is moved by magnetic attraction, it only compresses the elastic element 3 and does not stretch the diaphragm 1; when the mover 4 is reset, the mover 4 continues to move toward the diaphragm 1 through inertia, and The collision with the surface of the diaphragm 1 causes the diaphragm 1 to vibrate, thereby causing the liquid suction chamber 602 to enter and exit the liquid.
  • this process is similar to striking a drum head, causing the drum head to vibrate; however,
  • the vibration of the solid diaphragm 1 will only cause the liquid suction and discharge of the additives, and will not cause air fluctuations like the vibration of the drum surface, causing Loud sound;
  • the mover 4 is in contact with the diaphragm 1 through the elastic element 3, so that the mover 4 is clamped between the elastic element 3 and the diaphragm 1, so that the diaphragm 1 can also provide a certain force to the mover 4
  • the support function reduces the pressure at the connection between the elastic element 3 and the mover 4, and prevents the deformation of the connection from causing the mover 4 to deviate, causing the mover 4 to be unable to perform normal reciprocating motion.
  • the elastic element 3 is connected to the mover 4; a rebound spring 302 is set around or inside the elastic element 3; the rebound spring 302 is coaxially arranged with the elastic element 3 and has a length of No longer than the length of the elastic element 301, one end of the rebound spring 302 is connected to the bottom of the sleeve 202, and the corresponding other end extends in the direction of the mover 4.
  • the two springs are combined to form a resonant spring.
  • the elastic element 3 can accumulate greater elasticity when compressed to the same length.
  • the potential energy generates greater elastic force, thereby further reducing the tensile length of the diaphragm 1; and, after the mover 4 hits the diaphragm 1, the elastic element 3 uses its own elasticity to allow the mover 4 to repeatedly return to the initial position. Vibration causes repeated impacts on the diaphragm 1, thereby improving the vibration effect and duration of the diaphragm 1.
  • the power supply is direct current
  • the vibration principle of the mover 4 in the invention is analyzed using direct current as an example
  • the power supply connected to the coil 501 is direct current.
  • the mover 4 will automatically stop after a period of time, thus The automatic dispensing device will stop dispensing after a period of time; in order to enable the mover 4 to continue dispensing washing liquid to the washing equipment in the automatic dispensing device, the coil 501 can be intermittently powered on and off, so that the mover 4 is affected by Under the action of magnetic driving force and elastic force, free vibration changes to forced vibration, so that the mover 4 can make continuous high-frequency vibration driven by direct current.
  • the coil 501 is electrically connected to a DC contactor, and the DC contactor controls the DC in the coil 501 to form an intermittent on-off frequency, so that the coil 501 generates intermittent electromagnetic waves of different frequencies to the mover 4 force, thereby controlling the mover 4 to perform high-frequency reciprocating motion at different frequencies.
  • Contactors can be divided into DC contactors or AC contactors; a contactor can quickly cut off the AC and DC main circuits and can frequently turn on and off large current control circuits.
  • the contactor can not only connect and cut off the circuit, but also has a low-voltage release protection function; the contactor has a large control capacity and is suitable for frequent operations and long-distance control. It is one of the important components in the automatic control system. Therefore, through the application of the contactor, the circuit can be quickly switched on and off under the condition of direct current or alternating current, and the continuous forced vibration of the mover 4 can be realized; and the switching frequency of the contactor can also be changed to control the movement of the mover 4. Vibration frequency under forced vibration.
  • the power supply can be turned off at any time between the node where the magnetic attraction force on the mover 4 is equal to the elastic force and the node where the speed of the mover 4 decreases to 0 m/s, or the voltage changes. is 0; when the mover 4 is pushed back to the initial position, the power is turned on, or the voltage reaches the positive/negative extreme value to further enhance the acceleration effect of the elastic force on the mover 4, so that the mover 4 has The greater inertia makes the amplitude of diaphragm 1 more intense, improving the efficiency of additive delivery.
  • the power supply connected to the coil 501 is alternating current, and the frequency range of the alternating current is 30-100hz. Since the mover 4 will only move toward the magnetic field according to the size of the magnetic field it receives, that is, whether the alternating current is a positive voltage or a negative voltage, it will attract the mover 4; when the alternating current voltage reaches the voltage extreme value, the mover 4 receives the maximum The attractive force moves in the direction away from the diaphragm 1; when the AC voltage is 0V, the counter mover 4 is not pushed by the electromagnetic force, but is only affected by the elastic force of the elastic element 3 and/or the diaphragm 1 to move in the opposite direction; Therefore, through the continuous change of the magnetic force, the mover 4 realizes reciprocating motion under the action of alternating current, and the vibration frequency of the mover 4 is twice the frequency of the alternating current; it can be seen that under continuous alternating current, the mover 4 4.
  • the coil 501 is electrically connected to an AC contactor, and the AC contactor controls the alternating current in the coil 501 to form intermittent on-off with variable frequency, so that the coil 501 generates intermittent electromagnetic forces of different frequencies on the mover 4.
  • the mover 4 is controlled to perform high-frequency reciprocating motion at different frequencies.
  • the coil 501 is electrically connected to a frequency converter, and the frequency converter is used to change the frequency of the alternating current, thereby controlling the mover 4 to perform high-frequency reciprocating motion at different frequencies.
  • the energized coil 501 can generate electromagnetic forces of different frequencies on the mover 4, thereby controlling the magnetic conduction to perform frequency-controllable high-frequency forced vibration under the condition of alternating current, so that the washing equipment can be used under different conditions.
  • the vibration frequency of the mover 4 when adding a dose of additives, the delivery work can be completed at the same time or a similar time.
  • an automatic delivery device for washing equipment includes a liquid suction chamber 602 and an installation chamber 205.
  • the automatic delivery device also includes: a diaphragm 1, a coil 501 and a mover 4, wherein the The diaphragm 1 is disposed between the liquid suction chamber 602 and the installation cavity 205, and the peripheral side of the diaphragm 1 is connected to the liquid suction chamber 602; the coil 501 is disposed in the installation cavity 205;
  • the mover 4 extends in the same direction as the coil 501.
  • the mover 4 includes a moving part 402 and a conductive part 403 connected in sequence.
  • the coil 501 generates a magnetic force for the moving part 402 to move toward the liquid suction chamber 602.
  • the suction force drives the diaphragm 1 to deform through the conductive part 403, thereby generating a reverse elastic force on the mover 4, thereby causing the magnetic attraction of the diaphragm 1 in the moving part 402 and the diaphragm 4 itself to rebound. It vibrates reciprocally under the action of elastic force.
  • the peripheral side of the diaphragm 1 is fixedly connected to the right port of the housing 2, and the end cover 601 is buckled on the right side of the housing 2, that is, on the left side of the diaphragm 1
  • the installation cavity 205 can be enclosed with the housing 2, and the right side thereof and the end cover 601 can enclose the liquid suction chamber 602.
  • the liquid suction cavity 602 and the installation cavity 205 are both sealed chambers.
  • a liquid suction pipe 603 is provided on one side.
  • the liquid suction pipe 603 and the liquid discharge pipe 204 can be provided on the same side of the liquid suction chamber 602, and the liquid suction pipe 603 and the liquid discharge pipe 204 are connected to each other, or the liquid suction pipe 603 and the liquid discharge pipe 204 can be arranged on the same side of the liquid suction chamber 602.
  • the liquid pipe 204 can also be arranged on different sides of the liquid suction chamber 602, and the liquid suction pipe 603 and the liquid discharge pipe 204 are connected with each other.
  • the tube 603 and the discharge tube 204 are arranged on the same side. At this time, the liquid suction chamber 602 and the liquid discharge chamber share the same chamber, that is, the liquid suction chamber 602 is a liquid discharge chamber.
  • the installation position 604 can be an annular installation groove, or the installation position 604 can also be set as a limiting protrusion, and the thickness of the installation groove or the limiting protrusion is different from that of the diaphragm. 1 is suitable for the thickness of the diaphragm 1, and accordingly, the diaphragm 1 is snap-fitted in the installation groove, that is, the right end of the diaphragm 1 and the housing 2 are snap-fitted and fixed; or, a limited gap is provided in the circumferential direction of the diaphragm 1 , etc.
  • the diaphragm 1 can be made of rubber, silicone, polyurethane, plastic and other materials, that is, a material with plastic deformation, so that the magnetic attraction of the mover 4 and the reverse elastic force of the diaphragm 1 can be adjusted.
  • the diaphragm 1 is repeatedly vibrated and deformed along the axial direction under the combined force of If the diaphragm 1 is subject to sexual changes, adjustments and changes to the specific structure and materials of the diaphragm 1 should fall within the protection scope of the present invention.
  • a coil bracket 502 is provided in the installation cavity 205.
  • the coil bracket 502 is fixedly connected to the housing 2, and the coil 501 is fixedly connected to the coil bracket 502.
  • the coil 501 and the coil bracket 502 are combined into the driving device 5, that is, The driving device 5 can generate magnetic attraction to the mover 4; at the same time, one coil 501 can be provided, or multiple coils 501 can be provided, and the coil 501 is composed of a current-carrying wire coiled in a ring shape.
  • the ring-shaped coil 501 The axis is the same as the extension direction of the mover 4, ensuring that the mover 4 can move back and forth along the axis direction.
  • the amount of deformation caused by the mover 4 driving the diaphragm 1 is related to the magnetic attraction generated by the mover, and is negatively related to the mass of the mover 4.
  • the smaller the mass of the mover 4, or the number of turns of the coil The more, the greater the magnetic force generated, and at this time, the greater the displacement of the mover.
  • the greater the mass of the mover, or the fewer turns of the coil the smaller the magnetic force generated. because Therefore, in order to increase the displacement generated by the mover, the weight of the mover itself can be reduced.
  • the mover 4 itself does not have magnetic poles, and the coil 501 is magnetically attracted in the magnetic field after being energized. Furthermore, at least part of the mover 4 is made of metal magnetic conductive material that is stable in shape and not prone to deformation.
  • the mover 4 includes a moving part 402 and a conductive part 403.
  • the moving part 402 is arranged on the axis of the coil 501.
  • the left end of the moving part 402 is arranged close to the end of the housing 2.
  • the moving part 402 is arranged in a columnar structure.
  • the left end of the moving part 402 extends to the left end of the coil 501, and the other end is set inside the coil 501; or, both the left and right ends of the moving part 402 extend out of the left end of the coil 501, as long as the centroid of the moving part 402 is consistent with the center of the coil 501
  • the centroid is relatively far away from the diaphragm 1, and when the moving part 402 moves, the centroid always moves in the direction of the axis.
  • the magnetic field generated by the coil 501 being energized can generate a rightward magnetic attraction to the moving part 402, thereby driving the diaphragm.
  • the middle area of 1 deforms to the right. At the same time, due to its own elasticity, the deformed diaphragm 1 can generate elastic force to the left.
  • the left end of the conductive part 403 can be connected to the right end of the moving part 402, or the left end of the conductive part 403 can also directly contact the right end of the moving part 402, and the right end of the conductive part 403 is disposed close to the diaphragm 1, that is, conductive
  • the right end of the conductive part 403 can be fixedly connected to the diaphragm 1, or the right end of the conductive part 403 can also be in contact with the diaphragm 1, or there is a gap between the right end of the conductive part 403 and the diaphragm 1.
  • the centroid of the conductive part 403 and the centroid of the moving part 402 are both arranged on the axis of the coil 501, which can ensure that the force acting on the moving part 402 and the conductive part 403 is always along the axial direction, and can accurately The movement distance of the moving part 402 is calculated.
  • the moving part 402 may be made of iron or steel, and the conductive part 403 may be made of the same material as the moving part 402, or the conductive part 403 may be made of a different material from the moving part 402.
  • the conductive part 403 may be made of the same material as the moving part 402. 403 and the moving part 402 are made of different materials.
  • the conductive part 403 can be made of plastic or other materials.
  • the conductive part 403 can be set in a columnar shape, a truncated cone shape, or a dumbbell shape.
  • the conductive part 403 and the moving part 403 is made of different materials.
  • the conductive part 403 is connected to the moving part 402 to form a dumbbell shape.
  • the weight of the mover 4 is greatly reduced.
  • the centroid of the moving part 402 is closer to the left side. end, thereby increasing the maximum displacement of the moving part 402 to the right, that is, increasing the vibration amplitude of the rightward deformation of the diaphragm 1, increasing the amount of single injection, reducing production costs, and ensuring that the conductive part 403 It can drive the diaphragm 1 to vibrate left and right, thereby ensuring the delivery accuracy of the automatic delivery device, which is better for users.
  • the coil 501 After the coil 501 is energized, the coil 501 generates a magnetic field to form a magnetic attraction force on the moving part 402, and the magnetic attraction force is always toward the liquid suction chamber 602.
  • the conductive part 403 and the moving part 402 are detachably connected, for example, the conductive part 403 and the moving part 402 It can be snap-connected by matching the limiting ribs and limiting grooves, or it can be integrated through injection molding, or it can also be connected through a screw connection structure, etc., as long as it can ensure that the conductive part 403 and the moving part 402 can A stable connection is enough, which reduces maintenance costs and can be replaced in time when the conductive part is damaged.
  • the installation cavity 205 is provided with a sleeve 202, the sleeve 202 is coaxially arranged with the coil 501, and the first end 4031 resists the moving part 402.
  • the length is greater than the length of the coil 501 , at least part of the sleeve 202 coincides with the coil 501 , and the moving part 402 is close to the end of the sleeve 202 .
  • the sleeve 202 is arranged in a long columnar shape and is fixed at the middle position of the housing 2.
  • the sleeve 202 and the housing 2 are integrally formed, and the sleeve 202 is coaxially arranged with the coil 501 and penetrates the coil. 501, the left end of the sleeve 202 is closed, the right end opening is in contact with the diaphragm 1, and the right end of the conductive part 403 is flush with the opening of the sleeve 202.
  • a sleeve cavity is formed in the sleeve 202, so that the moving part 402 and the conductive part 403 can move back and forth in the sleeve cavity.
  • the sleeve 202 forms a protective effect on the moving part 402 and the conductive part 403, preventing the movement of the moving part 402 and the conductive part 403 from other components in the housing 2. Collision, or the right end of the conductive part 403 can also protrude from the opening of the sleeve 202, thereby increasing the moving distance of the conductive part 403, that is, the diaphragm 1 can continue to deform to the left after returning to the initial position, or That is to say, the deformation amount of the diaphragm 1 is increased, and the automatic dispensing amount of the automatic dispensing device is improved; in addition, a fixing ring can be protruded inward on the side wall of the sleeve 202, and the fixing ring is concentric with the sleeve 202 When setting and assembling, the mover 4 is inserted into the fixed ring to ensure that the mover 4 always moves in the direction of the axis.
  • the fixed ring is aligned with the mover. 4 forms a supporting role to avoid frequent contact and collision of the mover 4 with the sleeve, further ensuring the service life of the mover 4 and ensuring the stability of the mover 4.
  • both ends of the sleeve 202 can extend to the outside of the coil 501, that is, the length of the sleeve 202 is greater than the length of the coil 501, or the length of the sleeve 202 can be equal to the length of the coil 501, and the coil 501
  • the two ends are respectively flush with the two ends of the sleeve 202, which can ensure that the moving part 402 in the sleeve cavity always receives the magnetic attraction to the right when moving, that is, the moving part is driven to move to the right to drive the diaphragm to deform.
  • a flange 201 is provided at the connection between the opening of the sleeve 202 and the diaphragm 1.
  • the flange 201 can be formed by extending from the inside to the outside of the opening of the sleeve 202 in the radial direction.
  • the sleeve 202 can be connected with the flange 201.
  • Integrated molding, or the flange 201 can also be formed by protruding and extending inwardly from the inner wall of the housing 2.
  • the flange 201 is integrally formed with the housing 2.
  • the sleeve 202 and the flange 201 are integrally formed to improve Stability of sleeve 202.
  • the flange 201 is sealingly connected to the diaphragm 1.
  • the shape of the flange 201 is adapted to the shape of the diaphragm 1.
  • the flange 201 can only include the first flange. 2011, at this time, the first flange 2011 is configured to be bent and extended outwardly by the arms of the sleeve 202 in the radial direction, that is, the first flange 2011 is perpendicular to the inner wall of the housing 2.
  • the diaphragm 1 The contact area with the first flange 2011 is the largest, that is, the first flange 2011 forms an effective support for the diaphragm 1 and improves the stability of the diaphragm 1; or, as shown in Figures 25 to 26, the flange 201 also It may include a first flange 2011 and a second flange 2012.
  • the first flange 2011 is configured to be bent and extended outward from the opening of the sleeve 202.
  • the second flange 2012 is formed from the outer end of the first flange 2011.
  • the second flange 2012 is bent and extended toward the liquid suction chamber 602 , that is, the second flange 2012 is perpendicular to the first flange 2011 , and the first flange 2011 is perpendicular to the extension direction of the sleeve 202 .
  • the diaphragm 1 and the first flange 2012 are vertically arranged.
  • the ends of the two flanges 2012 are connected, that is, a buffer chamber can be enclosed between the diaphragm 1 and the second flanges 2011 and 2012, that is, the second end 4032 extends out of the opening of the sleeve 202 and the membrane.
  • the film 1 is connected; or, the diaphragm 1 can also be set in a hemispherical shape.
  • the flange 201 can also include a second flange 2012, where the second flange 2012 is directed from the outer end of the first flange 2011.
  • the liquid suction chamber 602 is bent and extended in the direction of the liquid suction chamber 602, that is, the second flange 2012 is vertically disposed with the first flange 2011.
  • the diaphragm 1 can form sufficient deformation space in the axial direction toward the sleeve 202.
  • the vibration amplitude of the diaphragm 1 driven by the conductive part 403 does not exceed the distance between the centroid of the moving part 402 and the centroid of the coil 501.
  • the moving part 402 is subjected to The magnetic attraction force is always toward the direction of the liquid suction chamber.
  • the equilibrium position of the system composed of the diaphragm 1 and the mover 4 is located on the right side of the initial position of the diaphragm 1, causing the diaphragm 1 to vibrate periodically.
  • the line connecting the centroid of the conductive part 403 and the centroid of the moving part 402 coincides with the axis line of the coil 1. It can be understood that the maximum displacement amount of the coil 1 that can drive the moving part 402 to the right is equal to The distance between the centroid of the moving part 402 and the centroid of the coil 1. Generally speaking, when the system composed of the diaphragm 1 and the mover 4 is in the equilibrium position, the magnetic permeability force generated by the mover 4 and the return force of the diaphragm 1 are The elastic forces are equal in magnitude but opposite in direction.
  • the moving part 403 has the maximum speed and uses inertia to continue moving to the right, ensuring that the magnetic attraction formed by the moving part 402 is always to the right, thereby ensuring the stable operation of the automatic delivery device.
  • the rebound force generated by the diaphragm 1 in the direction away from the liquid suction chamber 602 can overcome the magnetic attraction force of the moving part 402 toward the liquid suction chamber 602, so that the diaphragm 1 can The amplitude of 1 gradually decreases.
  • the elastic force of the diaphragm reaches the maximum. After a period of time, due to the energy consumption of the diaphragm itself, the elastic force becomes smaller and smaller, and when alternating current is passed, the moving part 402 can still generate The magnetic attraction force to the right, that is, the magnetic attraction force will also offset part of the rebound force. Therefore, the amplitude of the diaphragm gradually decreases until the diaphragm 1 stops. Therefore, through the interaction of the magnetic attraction force and the rebound force, the diaphragm It can vibrate back and forth periodically, so that the automatic delivery device can automatically absorb or deliver washing liquid, and can also ensure the accuracy of delivery.
  • the moving part 402 at least partially overlaps the coil 501 , the conducting part 403 and the moving part 402 are both coaxially arranged with the coil 501 , and the moving part 402 and the conducting part 403
  • the sum of the lengths is greater than or equal to the length of the coil 501 , and the length of the moving part 402 is less than the length of the coil 501 .
  • the length of the moving part 403 is not likely to be too small.
  • the length of the conducting part 403 is approximately twice the length of the moving part 402.
  • the conducting part 403 can also be three times the length of the moving part 402, as long as it can be ensured.
  • 402 production for the sports department The generated magnetic attraction can move to the right through the conductive part 403, driving the diaphragm 1 to deform to the right; generally speaking, the mass of the conductive part 403 is smaller than the mass of the moving part 402, which is convenient for reducing the energy consumption of the conductive part 403.
  • the conductive part 403 includes a coaxially arranged first end 4031, a transmission rod 4033 and a second end 4032. The two ends of the transmission rod 4033 are connected to the first end 4031 and the second end 4032 respectively.
  • the diameter of the first end 4031 is smaller than the diameter of the second end 4032, the first end 4031 is connected to or abuts the moving part 402, and the second end 4032 is connected to the diaphragm 1, wherein, The diameters of both ends of the transmission rod 4033 are equal, and the diameter of the transmission rod 4033 is not greater than the diameter of the first end 4031 .
  • first end 4031 and the second end 4032 of the conductive part 403 are arranged in parallel, and the first end 4031 and the second end 4032 are arranged coaxially, and a conductive rod passes between the first end 4031 and the second end 4032.
  • the conductive rod 4033 is connected to each other.
  • the conductive rod 4033 is preferably arranged in a long strip shape.
  • the shape of the first end 4031 and the second end 4032 can be disc-shaped or block-shaped. That is, the outer diameter of the conductive rod 4033 is less than or equal to the smallest diameter of the two ends.
  • the first end 4031 and the second end 4032 can ensure the stability of the conductive part, and can also effectively reduce the weight of the conductive part 403, making it easier for the moving part 402 to push the conductive part 403 to move repeatedly.
  • the conductive rod 4033 can be provided It is a hollow structure, or the conductive rod 4033 can also be provided as a solid columnar structure, and the first end 4031 of the conductive part 403 is connected to the right end of the moving part 402, that is, the first end 4031 can be welded and fixed to the moving part 402, or, The first end 4031 can also be bonded and fixed with the moving part 402, or can be fixed by snap-fitting.
  • the second end 4032 of the conductive part 403 and the diaphragm 1 can also be fixed by bonding or snap-fitting.
  • the diameter of the first end 4031 of the conductive part 403 is smaller than the diameter of the second end 4032, and the diameter of the second end 4031 is smaller than the inner diameter of the sleeve 202, or the diameter of the first end 4031 can also be smaller than the diameter of the moving part 402, or That is to say, there is a gap between the peripheral side of the second end 4032 of the conductive part 403 and the inner wall of the sleeve 202, which facilitates installation.
  • the elastic element 3 is disposed in the liquid suction chamber 602, one end of the elastic element 3 is connected to the diaphragm 1, and the other end of the elastic element 3 is connected to the inner wall of the liquid suction chamber 602, It is used to form a restoring thrust force for the diaphragm 1 to move in the direction of the mover 4 .
  • the elastic element 3 can be configured as a spring, or the elastic element 3 can also be configured as an elastic rope.
  • the elastic element 3 is configured as a spring, and the spring is detachably connected to the liquid suction chamber 602 or the diaphragm 1 , for example, it can be fixed by welding, or it can also be fixed by snapping.
  • a fixed seat or a fixed ring can be provided at the connection point of the spring, or a fixed seat can also be provided on the inner wall of the liquid suction chamber 602 Ring, preferably, the fixed ring is provided on the inner wall of the liquid suction chamber 602 and is connected to the right end of the spring.
  • the other end of the spring is along the thickness direction of the liquid suction chamber 602 Extends to the other end of the suction chamber 602, that is, the other end of the spring is in contact with the right end surface of the diaphragm 1.
  • the diaphragm 1 will compress the spring and cause the spring to
  • the elastic deformation that occurs causes the diaphragm 1 to push to the left, thereby ensuring that the diaphragm 1 can vibrate left and right, facilitating operation, ensuring the delivery accuracy of the automatic delivery device, and providing a better user experience.
  • a gap may be provided between the right end surface of the conductive part 403 and the diaphragm 1 , that is, when energized, the moving part 402 impacts the diaphragm 1 through the conductive part 403 to deform it, or the right end surface of the conductive part 403
  • It can also be connected to the diaphragm 1, that is to say, the right end surface of the conductive part 403 can be in contact with the diaphragm 1, or the conductive part 403 and the diaphragm 1 can be fixedly connected; further, the conductive part 403 and the diaphragm 1 can be The conductive part 403 and the diaphragm 1 are fixed by bonding, or the conductive part 403 and the diaphragm 1 are fixed through a snap-in structure.
  • the conductive part 403 and the diaphragm 1 are fixed through a screw-in structure, thereby improving the stability of the diaphragm 1 .
  • the first end 4031 of the conductive part 403 is in contact with the moving part 402
  • the second end 4032 of the conductive part 403 is provided with an embedded block 401
  • the corresponding embedded part 101 of the diaphragm 1 is provided , the embedded block 401 snap-fits with the embedded part 101, and is used to connect the moving part 403 with the diaphragm through the conductive part 403.
  • the embedded block 401 may be disposed at the second end 4032 of the conductive part 403, that is, the embedded block 401 may be disposed on the right side of the conductive part 403, or the embedded block 401 may also be disposed in the circumferential direction of the conductive part 403.
  • the embedded block 401 and the conductive part 403 are integrally formed.
  • the first end of the conductive part is connected to or in contact with the moving part 402 , so that the moving part 402 is in contact with the housing 2 . This ensures that the magnetic attraction force on the moving part 402 is transmitted to the diaphragm 1 .
  • the cross-section of the embedded block 401 can be set to be circular, or the cross-section of the embedded block 401 can also be set to be a regular polygon, etc.
  • the embedded block 401 can be set to one, and is arranged on the axis line of the conductive part 403 , or, the embedded blocks 401 can also be provided in plural, and the plurality of embedded blocks 401 are formed into regular polygons around the axis of the conductive part 403.
  • there is one embedded block 401 and it is provided at the end of the conductive part 403, An annular gap is also provided at the connection between the embedded block 401 and the conductive part 403.
  • an embedded part 101 is provided at the middle position of the diaphragm 1, and an annular protrusion is provided at the opening of the embedded part 101, and protrudes in the radial direction. That is to say, the diameter of the opening of the embedded part 101 is smaller than the diameter of the embedded part 101. The diameter of the bottom of the embedded part 101.
  • the opening and the bottom of the embedded part 101 can be arranged concentrically or eccentrically. As long as the embedded block 401 can be embedded in the embedded part 101, the shape or number of the embedded block 401 No specific restrictions are made.
  • the stability of the contact between the conductive part 403 and the diaphragm 1 is improved, ensuring that the diaphragm 1 is always connected to the conductive part 403 during the reciprocating vibration of the diaphragm 1, ensuring liquid absorption.
  • the pressure in the cavity 602 can change periodically to ensure that the diaphragm 1 can operate normally.
  • the elastic element 3 is provided between the conductive part 403 and the moving part 402. One end of the elastic element 3 is connected to the moving part 402, and the other end of the elastic element 3 is connected to the conductive part. 403, the restoring force formed by the elastic element 3 pulls the diaphragm 1 back to its initial value.
  • the elastic element 3 can be arranged on the left side of the diaphragm 1 , that is, the elastic element 3 and the mover 4 are arranged on the same side, and the elastic element 3 can be arranged between the conductive parts 403 , or the elastic element 3 It can also be provided between the conductive part 403 and the diaphragm 1. That is to say, the moving part 402 can generate a rightward magnetic attraction.
  • the elastic element 3 generates a leftward pulling force on the diaphragm 1.
  • the elastic element 3 3 is arranged around the outer periphery of the conductive part 403.
  • One end of the elastic element 3 is fixed on the diaphragm 1, and the other end of the elastic element 3 is fixedly connected to the conductive part 403.
  • the elastic element 3 pushes the diaphragm 1 to the right, the elastic element 3 also Elastic deformation will occur, that is, the elastic element 3 exerts a pulling force on the diaphragm 1 to the left.
  • the common resilience of the elastic element 3 and the diaphragm 1 interacts with the magnetic attraction generated by the mover 4 to cause the diaphragm 1 to move in the axial direction. High-frequency vibrations left and right ensure the accuracy of the automatic delivery device.
  • the elastic element 3 can be an ordinary spring, and can be arranged on the right side of the diaphragm 1, and the right end of the spring is fixed to the liquid suction chamber 602, and the other end is in contact with the diaphragm 1, or the spring The left end is fixed to the diaphragm 1, and the other end can be in contact with the inner wall of the liquid suction chamber 602.
  • the elastic element 3 is an ordinary spring, which is simple to operate and reduces the production cost.
  • the diaphragm 1 can move left and right along the axis direction. Vibrate to ensure the normal operation of the electromagnetic automatic delivery device.
  • the elastic element 3 includes one or more types of resonant springs or ordinary springs.
  • the elastic element 3 can be configured as a spring, or the elastic element 3 can also be configured as a resonant spring, or the elastic element 3 can also be configured as a combination of an ordinary spring and a resonant spring.
  • the elastic element 3 It can be set to one, and the elastic element 3 can be set in the lotion chamber on the right side of the diaphragm 1, or the elastic element 3 can also be set in the sleeve 202 on the left side of the diaphragm 1, as long as the elastic element 3 can be opposite to the diaphragm 1.
  • the deformation of the sheet 1 generates a restoring force in the direction of the sleeve 202, so the structural type of the elastic element 3 is not specifically limited.
  • the coil 501 when the coil 501 is supplied with direct current and the automatic delivery device is turned on, the coil 501 can generate a magnetic attraction along the axis direction, and the magnetic attraction remains unchanged.
  • the moving center located at the centroid of the coil 501
  • the mover 4 is attracted by the magnetic force to move to the right. That is, the mover 4 is in an unbalanced position after being energized, thereby driving the mover 4 to move to the right toward the diaphragm 1 in the coil 501.
  • the mover pushes the diaphragm 1.
  • the centroid position moves to the right, and the diaphragm 1 deforms, causing the space in the suction chamber 602 to decrease.
  • the pressure of the suction chamber 602 increases; at the same time, the amount of rightward deformation of the diaphragm 1 mainly increases. Compress the elastic element 3 so that the elastic force generated by the elastic element 3 gradually increases until it is balanced with the magnetic force.
  • the magnetic attraction of the mover 4 disappears, and the restoring force of the elastic element 3 and the rebound force of the diaphragm 1 gradually increase until the above combined force reaches the maximum, the amplitude of the diaphragm reaches the maximum, and the squeezed elastic element 3
  • the restoring force of the diaphragm 1 and the elastic force of the diaphragm 1 push the diaphragm 1 to move in the reverse direction, releasing the elastic potential energy of the elastic element 3 onto the diaphragm 1.
  • the diaphragm 1 vibrates left and right repeatedly under the action of magnetic attraction and elastic force, and , as the energy consumption of diaphragm 1 and elastic element 3 increases, the resilience of diaphragm 1 itself gradually decreases, and the amplitude becomes smaller and smaller until the diaphragm stops. Therefore, the diaphragm is realized by continuously turning on and off power.
  • the left and right sides of the piece vibrate repeatedly, thereby periodically changing the pressure of the liquid suction chamber.
  • the electromagnetic attraction force is less than the reaction force of the elastic element 3
  • the compressed elastic element 3 pushes the mover 4, releasing the elastic potential energy of the elastic element 3 onto the diaphragm 1 and converting it into kinetic energy of the diaphragm 1, causing the diaphragm 1 to generate a restoring force to the left.
  • the pressure in the liquid suction chamber 602 will also be restored accordingly, and the diaphragm 1 will return to the initial position under the action of the reaction force. Since the moving distance of the mover 4 is fixed each time, the liquid sucked or discharged by the suction chamber 602 each time is also a fixed value. Therefore, just by calculating the number of vibrations of the mover 4, the amount of detergent can be accurately calculated. quantity.
  • the coil 501 can also be supplied with alternating current. Specifically, when the coil 501 is supplied with alternating current, the frequency of the alternating current needs to be adjusted. Since the number of winding turns remains unchanged after the coil 501 is fixed, when alternating current is passed into the coil 501, the positive and negative poles of the alternating current continue to alternate and the current intensity changes constantly, so that the size and direction of the magnetic field generated by the coil 501 changes all the time, and the current The coil 501 converts it into a magnetic attraction force that drives the mover 4. The magnetic attraction force is the driving force that excites the vibration of the mover 4.
  • the magnitude of the driving force to the moving part 402 changes in real time but the direction is toward the liquid suction chamber 602, the elastic element 3 and the diaphragm 1.
  • the elastic force gradually attenuates but is greater than the magnetic force in real time.
  • the mover 4 continuously reciprocates under the action of the driving force, driving the diaphragm 1 to deform. Resonance occurs when the frequency of the driving force is consistent with or is a multiple of the natural frequency of the excited system.
  • the elastic element 3 and the mover 4 can be regarded as a whole, with a fixed vibration frequency.
  • the overall vibration frequency is related to the elastic coefficient of the elastic element 3 and the mass of the mover 4 .
  • the magnetic suction force can also change the frequency by adjusting the current, thereby driving the diaphragm 1 to vibrate left and right at high frequencies to achieve the suction and discharge of different detergents and achieve the purpose of automatic and precise liquid placement.
  • the diaphragm 1 in the automatic dispensing device can repeatedly vibrate along the direction of the coil axis, that is, the pressure in the liquid suction chamber 602 repeatedly increases or decreases, thereby realizing automatic dispensing of detergent.
  • the mover 4 vibrates once and can suck in 0.1 ml of detergent.
  • 1 ml needs to be dispensed, it only needs to vibrate 10 times, and because it is based on pressure changes, no detergent will remain in the suction chamber 602 after each dispense. Avoid contamination between different detergents and improve the cleaning rate.
  • the diaphragm 1 is reciprocally deformed by the combined force of its own reverse elastic force and the magnetic attraction force of the moving part, thereby realizing repeated vibration of the diaphragm 1.
  • the diaphragm 1 is made of a material with good elasticity, such as rubber or silicone.
  • the diaphragm 1 can generate a rebound force in the opposite direction, and during the recovery process of the elastic diaphragm, the rebound force of the diaphragm itself gradually decreases, that is, the amplitude becomes smaller and smaller.
  • the interaction between the elastic force and the magnetic attraction generated by the mover causes the diaphragm 1 to vibrate periodically in the left and right directions, which facilitates the periodic change of the pressure in the liquid suction chamber, thereby ensuring the delivery accuracy of the automatic delivery device and improving the user experience.
  • the present invention provides a kind of washing equipment, which is equipped with the above-mentioned automatic putting device.
  • the automatic putting device is close to the top of the washing equipment and is arranged in the box, and the automatic putting device is in contact with the washing equipment.
  • the main controller is electrically connected and can control the automatic delivery device to put different detergents through the control panel of the washing equipment, and the suction pipe 603 of the automatic delivery device is connected with the washing equipment delivery chamber for putting different detergents.
  • the drain pipe 204 is connected to the inner barrel of the washing equipment, and all the different washing liquids in the drain chamber are put into the inner barrel, which improves the utilization of the installation space, ensures the accuracy of the washing equipment's automatic placement of detergent, and improves the user experience. good.
  • the present invention provides a driving device 5 in an automatic delivery device.
  • a coil 501 is provided inside the driving device 5; the specific principle of the driving device 5 driving the mover 4 is as follows:
  • the center perpendicular line of the mover 4 is: when the coil 501 is energized, the magnetic induction lines generated by the coil 501 are divided into symmetrical figures along the axis of the coil 501. line.
  • the center perpendicular line of the mover 4 is a line that divides the magnetic field lines generated by mutual induction among the magnetic field lines formed by the mover 4 when the coil 501 is energized into symmetrical patterns along the axis direction of the mover 4 .
  • the distance between the center perpendicular line of the mover 4 and the center perpendicular line of the coil 501 is the movable distance of the mover 4; the maximum stroke distance of the mover 4 is less than or equal to the movable distance.
  • sinusoidal alternating current is used as an example, and the initial position of the mover 4 is set to: there is a distance between the center vertical line of the mover 4 and the center vertical line of the coil 501.
  • the coil 501 is supplied with alternating current, At the moment of The generated magnetic field strength gradually becomes larger before reaching the maximum, so the driving force received by the mover 4 also gradually becomes larger; at this time, the pressure on the elastic element 3 also becomes larger and larger.
  • the elastic element 3 constitutes a resonant spring system
  • the resonant spring system in the embodiment of the present invention can also be any existing structure that can provide elastic force. Among them, the resultant force of rebound after the spring in the elastic element 3 is compressed to the bottom is greater than the magnetic force.
  • the initial position of the mover 4 is set to: the center perpendicular line of the mover 4 and the center perpendicular line of the coil 501 are set. There is a gap.
  • the mover 4 is in the initial state. However, because the magnetic field generated by the coil 501 is the smallest at this time, the driving force of the mover 4 is the smallest at this time.
  • the magnetic field intensity generated by the coil 501 that is supplied with alternating current gradually becomes larger before reaching the maximum; then, the driving force received by the mover 4 also gradually becomes larger, and the mover 4 makes the mover move under the action of the driving force.
  • the diaphragm 1 connected to the rotor 4 moves rapidly; at this time, the pressure on the elastic element 3 is also increasing.
  • the resultant spring rebound force of the elastic element 3 is greater than the magnetic force, the elastic potential energy is released, and the mover 4 and/or the diaphragm 1 move in the opposite direction.
  • the present invention provides a driving device for an automatic delivery device of washing equipment;
  • the driving device 5 includes a sleeve 202 and a moving device disposed inside the sleeve 202.
  • the elastic element 3 axially positions the mover 4 in the sleeve 202; the mover 4 reciprocates along the axis of the sleeve 202 at a certain frequency under the combined action of the driving force and the spring force of the elastic element 3; when When the accumulated elastic potential energy of the elastic element 3 reaches the maximum, the elastic element 3 provides a spring elastic force to the mover 4, and the mover 4 moves in the opposite direction; the elastic element 3 includes a rebound spring 302 and a support spring 301; the rebound spring 302 is fixedly installed on the sleeve The inner closed end of the barrel 202; the support spring 301 is nested and installed outside or inside the rebound spring 302; one end of the support spring 301 is fixedly installed on the inner closed end of the sleeve 202; a flange 201 is provided around the port of the sleeve 202;
  • the mover 4 overcomes the spring force of the elastic element 3 under the action of the driving force and moves from the initial position to the end of the first stroke; the support spring 301 The other end is fixedly connected to one end of the mover 4; the support spring 301 not only provides the spring elastic force for the mover 4 but also provides support; after the elastic element 3 releases the elastic potential energy, the mover 4 overcomes the driving force and moves in the opposite direction back to the initial position.
  • the mover 4 overcomes the pulling force of the support spring 301 from the initial position and continues to move in the opposite direction until it is farthest away from the elastic element 3 and moves to the end of the second stroke; between the end of the first stroke and the end of the second stroke The distance is the maximum stroke of the mover 4; the mover 4 reciprocates with a certain frequency during the maximum stroke;
  • a coil 501 is installed on the outer periphery of the sleeve 202; the initial position of the mover 4 is set to a preset distance between the center perpendicular of the mover 4 and the center perpendicular of the coil 501; after the coil 501 is energized, the center perpendicular of the coil 501 and The distance between the center perpendiculars of the mover 4 continues to decrease from the preset distance until the elastic element 3 releases elastic potential energy, and the distance between the center perpendiculars of the mover 4 and the center perpendicular of the coil 501 goes from minimum to maximum; online As the distance between the center perpendicular of the circle 501 and the center perpendicular of the mover 4 continues to shrink from the preset distance, the mover 4 overcomes the elastic force of the spring of the elastic element 3 under the action of the driving force; the driving force and the elastic element The elastic force of spring 3 changes in real time, but the driving force is greater than the elastic force of elastic element 3 spring.
  • the mover 4 does not reach the center perpendicular line of the coil 501 and the mover 4 under the action of the driving force and the elastic element 3,
  • the center vertical line is at the position of the center vertical line of the mover 4 and the center vertical line of the coil 501, the distance from the minimum to the maximum is equal to the distance between the end of the first stroke and the end of the second stroke. distance between;
  • the mover 4 Since the spring coefficient in the elastic element 3 is different from the setting parameters of the driving force generated by the coil 501 being energized, the mover 4 will rely on the inertia of the center perpendicular line of the mover 4 and the center perpendicular line of the coil 501 under the action of the driving force and the elastic element 3 After overlapping, they are staggered in the opposite direction.
  • the distance between the center perpendicular of the mover 4 and the center perpendicular of the coil 501 is the same as the distance between the center perpendicular of the mover 4 and the center perpendicular of the coil 501 from the minimum to the maximum.
  • the sum of the distances is equal to the distance between the end of the first stroke and the end of the second stroke; where the driving force is the magnetic field force; the term "motor" means that it is not magnetized in a magnetic field and can be acted upon by magnetic field forces metal body.
  • an automatic delivery device for washing equipment is provided;
  • the driving device 5 in the automatic delivery device includes a sleeve 202 and a Mover 4; an elastic element 3 axially positions the mover 4 in the sleeve 202;
  • a liquid suction chamber 602 is installed at the open end of the sleeve 202;
  • the liquid suction chamber 602 includes a diaphragm 1; the periphery of the diaphragm 1 and the liquid suction chamber
  • the inner wall of 602 is sealed and fixedly connected; a suction pipe 603 and a discharge pipe 204 are provided on the liquid suction chamber 602; when the mover 4 reciprocates at a certain frequency along the axis of the sleeve 202 under the combined action of the driving force and the spring force of the elastic element 3 During movement, the mover 4 also acts on the diaphragm 1 at a certain frequency to deform the diaphragm 1; when the di
  • the elastic element 3 is also provided with a return spring 303; the end of the liquid suction chamber 602 opposite to the diaphragm 1 is fixedly connected to the return spring 303; when the diaphragm 1 is deformed, the return spring 303 is continuously squeezed. After the diaphragm 1 is deformed, the diaphragm 1 quickly resets by relying on the combined force of its own reset force and the spring elastic force provided by the reset spring 303;
  • the length of the support spring 301 is greater than the rebound spring 302; the elastic coefficient of the rebound spring 302 is greater than the support spring 301; the elastic coefficient of the rebound spring 302 is greater than the return spring 303; if the mover 4 does not reach the coil 501 under the action of the driving force and the elastic element 3
  • the position of the center perpendicular of the mover 4 and the center perpendicular of the mover 4 the distance between the center perpendicular of the mover 4 and the center perpendicular of the coil 501 from the minimum to the maximum is equal to the end of the first stroke distance from the end of the second stroke; due to the different setting parameters of the spring coefficient in the elastic element 3 and the driving force generated by the coil 501 being energized, the mover 4 will rely on the inertial mover under the action of the driving force and the elastic element 3
  • the center perpendicular line of 4 coincides with the center perpendicular line of coil 501 and then staggers in the opposite direction.
  • the center perpendicular line of mover 4 and the center perpendicular line of coil 501 are staggered by the same distance as the center perpendicular line of mover 4 and the center perpendicular line of coil 501.
  • the sum of the distances between the lines from minimum to maximum is equal to the distance between the end of the first stroke and the end of the second stroke; where the driving force is the magnetic field force; the term "motor” refers to A metal body that is not magnetized in a magnetic field and can be acted upon by magnetic field forces.
  • the elastic element 3 is set; the support spring 301 and the rebound spring 302 are nested to provide a force for the mover 4 that is opposite to the movement of the mover 4; the support spring 301 and the rebound spring 302 are nested, and the support spring 301
  • the rebound spring 302 mainly plays the role of supporting and buffering.
  • the rebound spring 302 mainly plays the role of providing spring elastic force.
  • the combined rebound force of the support spring 301 and the rebound spring 302 can better return the mover 4 to its original position; greatly improving the automatic delivery of the washing equipment.
  • the service life of the driving device 5 of the device is also reduced, and the energy consumption of the driving device 5 is reduced; the other end of the support spring 301 is fixedly connected to one end of the mover 4.
  • the support spring 301 provides support The force also provides a pulling force; the initial position of the mover 4 is set to a preset distance between the center perpendicular of the mover 4 and the center perpendicular of the coil 501; since the mover 4 is located inside the coil 501, there is a large amount of magnetism inside the mover 4.
  • the induction lines pass through; since the magnetic induction lines inside the coil 501 are in the same direction as the magnetic induction lines in the mover 4, the two ends of the mover 4 are respectively subjected to forces away from the center vertical line in the axial direction, but because the mover The magnetic force on the end of 4 that is closer to the center perpendicular of coil 501 is greater than the magnetic force on the end of mover 4 that is far from the center perpendicular of coil 501; therefore, the mover 4 moves closer to the center perpendicular of coil 501, The distance between the center perpendicular line of the mover 4 and the center perpendicular line of the coil 501 is getting smaller and smaller;
  • the mover 4 acts on the diaphragm 1 when it reciprocates along the axis inside the sleeve 202 at a certain frequency, causing the diaphragm 1 to deform and reset. It vibrates continuously during the reciprocating process, and the liquid suction chamber 602 can absorb and discharge liquid at a certain frequency.
  • the support spring 301 and the return spring 303 mainly play a supporting role, and the rebound spring 302 mainly plays a role in providing rebound force; avoiding the use of a single spring with limited functions;
  • the elastic element 3 sets the return spring 303 as the diaphragm 1 One end provides support force; to a certain extent, fatigue damage caused by excessive deformation of the diaphragm 1 is avoided;
  • the support spring 301 and the return spring 303 mainly play a supporting role, and the rebound spring 302 mainly plays a role in providing rebound force.
  • the driving device 5 includes a sleeve 202 and a moving device disposed inside the sleeve 202 .
  • an elastic element 3 axially positions the mover 4 in the sleeve 202; the mover 4 reciprocates along the axis of the sleeve 202 at a certain frequency under the combined action of the driving force and the spring force of the elastic element 3; when When the accumulated elastic potential energy of the elastic element 3 reaches the maximum, the elastic element 3 provides a spring elastic force to the mover 4, and the mover 4 moves in the opposite direction; a flange 201 is provided around the port of the sleeve 202;
  • the elastic element 3 includes a rebound spring 302 and a support spring 301; the rebound spring 302 is fixedly installed at the internal closed end of the sleeve 202; the support spring 301 is nested and installed outside or inside the rebound spring 302; one end of the support spring 301 is fixedly installed inside the sleeve 202 Closed end; when the elastic element 3 is compressed from the beginning until the elastic potential energy accumulated by the compression reaches the maximum, the mover 4 overcomes the spring force of the elastic element 3 under the action of the driving force and moves from the initial position to the end of the first stroke; The other end of the support spring 301 is fixedly connected to one end of the mover 4; the support spring 301 not only provides spring elastic force for the mover 4, but also provides a supporting function; after the elastic element 3 releases the elastic potential energy, the mover 4 overcomes the driving force and moves back in the opposite direction.
  • the mover 4 overcomes the pulling force of the support spring 301 from the initial position and continues to move in the opposite direction until it is farthest from the elastic element 3 and moves to the end of the second stroke; the end of the first stroke is the same as the end of the second stroke.
  • the distance between the terminals is the maximum stroke of the mover 4; the mover 4 reciprocates at a certain frequency during the maximum stroke;
  • a coil 501 is installed on the outer periphery of the sleeve 202; the initial position of the mover 4 is set to a preset distance between the center perpendicular of the mover 4 and the center perpendicular of the coil 501; after the coil 501 is energized, the center perpendicular of the coil 501 and The distance between the center perpendiculars of the mover 4 continues to decrease from the preset distance until the elastic element 3 releases elastic potential energy, and the distance between the center perpendiculars of the mover 4 and the center perpendicular of the coil 501 goes from minimum to maximum; online As the distance between the center perpendicular of the circle 501 and the center perpendicular of the mover 4 continues to shrink from the preset distance, the mover 4 overcomes the elastic force of the spring of the elastic element 3 under the action of the driving force; the driving force and the elastic element The elastic force of spring 3 changes in real time, but the driving force is greater than the elastic force of elastic element 3 spring.
  • the center perpendicular line of the mover 4 and the center perpendicular line of the coil 501 will The distance between the lines from minimum to maximum is equal to the distance between the end of the first stroke and the end of the second stroke;
  • the mover 4 Since the spring coefficient in the elastic element 3 is different from the setting parameters of the driving force generated by the coil 501 being energized, the mover 4 will rely on the inertia of the center perpendicular line of the mover 4 and the center perpendicular line of the coil 501 under the action of the driving force and the elastic element 3 After overlapping, they are staggered in the opposite direction.
  • the distance between the center perpendicular of the mover 4 and the center perpendicular of the coil 501 is the same as the distance between the center perpendicular of the mover 4 and the center perpendicular of the coil 501 from the minimum to the maximum.
  • the sum of the distances is equal to the distance between the end of the first stroke and the end of the second stroke; where the driving force is the magnetic field force; the term "motor" means that it is not magnetized in a magnetic field and can be acted upon by magnetic field forces metal body.
  • an automatic delivery device for washing equipment is provided;
  • the driving device 5 in the automatic delivery device includes a sleeve 202 and is arranged inside the sleeve 202.
  • the mover 4; an elastic element 3 axially positions the mover 4 in the sleeve 202;
  • a liquid suction chamber 602 is installed at the open end of the sleeve 202;
  • the liquid suction chamber 602 includes a diaphragm 1; the periphery of the diaphragm 1 is connected with the liquid suction
  • the inner wall of the cavity 602 is sealed and fixedly connected; a suction pipe 603 and a discharge pipe 204 are provided on the liquid suction cavity 602; when the mover 4 moves along the axis of the sleeve 202 at a certain frequency under the combined action of the driving force and the spring force of the elastic element 3 During the reciprocating motion, the mover 4 also acts on the diaphragm 1 at
  • the driving device 5 passes alternating current to generate driving force to move the mover 4 toward the inner closed end of the sleeve 202; the mover 4 first squeezes the support spring 301; the mover 4 continues to move toward the inner closed end of the sleeve 202, contacts and squeezes and rebounds Spring 302; elasticity When the elastic potential energy accumulated after the element 3 is compressed reaches the maximum, the elastic potential energy is released and converted into elastic force, and the mover 4 overcomes the driving force and moves in the opposite direction; under the action of the driving device 5 and the elastic element 3, the mover 4 moves in the sleeve 202 The interior reciprocates along the axis at a certain frequency; among them, the driving force is the magnetic field force;
  • an elastic element 3 is provided; the support spring 301 and the rebound spring 302 are nested to provide a force for the mover 4 that is opposite to the movement of the mover 4; the support spring 301 plays a supporting and buffering role, and the rebound spring 302 mainly Playing the role of providing spring elasticity, the combined rebound force of the support spring 301 and the rebound spring 302 can better return the mover 4 to its original position, greatly extending the service life of the driving device 5 of the automatic delivery device of the washing equipment, and at the same time reducing the The energy consumption of the driving device 5 of the automatic delivery device of the washing equipment is reduced; the other end of the support spring 301 is fixedly connected to one end of the mover 4. When the mover 4 reciprocates at a certain frequency, the support spring 301 provides both support and pulling force;
  • the initial position of the mover 4 is set to a preset distance between the center perpendicular line of the mover 4 and the center perpendicular line of the coil 501; since the mover 4 is located inside the coil 501, a large number of magnetic flux lines pass through the interior of the mover 4; Since the magnetic field lines inside the coil 501 are in the same direction as the magnetic field lines in the mover 4, both ends of the mover 4 are respectively subjected to forces away from the center vertical line in the axial direction. However, due to the distance between the mover 4 and the coil The magnetic force on the end near the vertical line of coil 501 is greater than the magnetic force on the end of mover 4 far away from the vertical line on coil 501.
  • mover 4 moves in the direction closer to the vertical line on coil 501.
  • the distance between the center perpendicular line and the center perpendicular line of the coil 501 is getting smaller and smaller; under the combined action of the driving force of the driving device 5 and the spring force of the elastic element 3, the mover 4 extends along the axis inside the sleeve 202 at a certain angle.
  • the frequency acts on the diaphragm 1 during the reciprocating motion, causing the diaphragm 1 to continuously vibrate during the reciprocating process of deformation and reset.
  • the liquid suction chamber 602 can absorb and discharge liquid at a certain frequency. This further realizes the liquid discharge and liquid suction of the automatic delivery device of the washing equipment.
  • a driving device for an automatic delivery device of washing equipment includes a sleeve 202 and a mover 4 arranged inside the sleeve 202 ;
  • An elastic element 3 axially positions the mover 4 in the sleeve 202; the mover 4 reciprocates at a certain frequency along the axis inside the sleeve 202 under the combined action of the driving force and the spring force of the elastic element 3; when the elastic element 3.
  • the elastic element 3 When the accumulated elastic potential energy reaches the maximum, the elastic element 3 provides a spring elastic force to the mover 4, and the mover 4 moves in the opposite direction; the elastic element 3 includes a rebound spring 302 and a support spring 301; the rebound spring 302 is fixedly installed on the sleeve 202 Internal closed end; the support spring 301 is nested and installed outside or inside the rebound spring 302; one end of the support spring 301 is fixedly installed on the internal closed end of the sleeve 202; a flange 201 is provided around the port of the sleeve 202;
  • the mover 4 overcomes the spring force of the elastic element 3 under the action of the driving force and moves from the initial position to the end of the first stroke; the support spring 301 The other end is fixedly connected to one end of the mover 4; the support spring 301 not only provides the spring elastic force for the mover 4 but also provides support; after the elastic element 3 releases the elastic potential energy, the mover 4 overcomes the driving force and moves in the opposite direction back to the initial position.
  • the mover 4 overcomes the pulling force of the support spring 301 from the initial position and continues to move in the opposite direction until it is farthest away from the elastic element 3 and moves to the end of the second stroke; between the end of the first stroke and the end of the second stroke The distance is the maximum stroke of the mover 4; the mover 4 reciprocates with a certain frequency during the maximum stroke;
  • a coil 501 is installed on the outer periphery of the sleeve 202; the initial position of the mover 4 is set to a preset distance between the center perpendicular of the mover 4 and the center perpendicular of the coil 501; after the coil 501 is energized, the center perpendicular of the coil 501 and The distance between the center perpendiculars of the mover 4 continues to decrease from the preset distance until the elastic element 3 releases elastic potential energy, and the distance between the center perpendiculars of the mover 4 and the center perpendicular of the coil 501 goes from minimum to maximum; online As the distance between the center perpendicular of the circle 501 and the center perpendicular of the mover 4 continues to shrink from the preset distance, the mover 4 overcomes the elastic force of the spring of the elastic element 3 under the action of the driving force; the driving force and the elastic element The elastic force of spring 3 changes in real time, but the driving force is greater than the elastic force of elastic element 3 spring.
  • the center perpendicular line of the mover 4 and the center perpendicular line of the coil 501 will The distance between the lines from minimum to maximum is equal to the distance between the end of the first stroke and the end of the second stroke;
  • the mover 4 Since the spring coefficient in the elastic element 3 is different from the setting parameters of the driving force generated by the coil 501 being energized, the mover 4 will rely on the inertia of the center perpendicular line of the mover 4 and the center perpendicular line of the coil 501 under the action of the driving force and the elastic element 3 After overlapping, they are staggered in the opposite direction.
  • the distance between the center perpendicular line of the mover 4 and the center perpendicular line of the coil 501 is the same as the distance between the center perpendicular line of the mover 4 and the center perpendicular line of the coil 501.
  • the sum of the distances between the vertical lines from minimum to maximum is equal to the distance between the end of the first stroke and the end of the second stroke;
  • the term "motor” refers to A metal body that is not magnetized in a magnetic field and can be acted upon by magnetic field forces.
  • an automatic delivery device for washing equipment is provided;
  • the driving device 5 in the automatic delivery device includes a sleeve 202 and is arranged inside the sleeve 202.
  • the mover 4; an elastic element 3 axially positions the mover 4 in the sleeve 202;
  • a liquid suction chamber 602 is installed at the open end of the sleeve 202;
  • the liquid suction chamber 602 includes a diaphragm 1; the periphery of the diaphragm 1 is connected with the liquid suction
  • the inner wall of the cavity 602 is sealed and fixedly connected;
  • the liquid suction chamber 602 is provided with a liquid suction pipe 603 and a liquid discharge pipe 204;
  • the mover 4 When the mover 4 reciprocates along the axis of the sleeve 202 at a certain frequency under the combined action of the driving force and the spring force of the elastic element 3, the mover 4 also acts on the diaphragm 1 at a certain frequency to cause the diaphragm 1 to deform. ;
  • the diaphragm 1 When the diaphragm 1 is pressed toward the liquid suction chamber 602, the space in the liquid suction chamber 602 becomes smaller and the pressure increases, and the discharge pipe 204 discharges liquid; when the diaphragm 1 moves away from the liquid suction chamber 602, the space inside the liquid suction chamber 602 becomes larger.
  • the pressure becomes smaller the liquid suction pipe 603 sucks liquid; a one-way valve 206 is provided in both the liquid discharge pipe 204 and the liquid suction pipe 603;
  • the elastic element 3 also includes a return spring 303; the end of the suction chamber 602 opposite to the diaphragm 1 is fixedly connected to the return spring 303; when the diaphragm 1 is deformed, the return spring 303 is continuously squeezed. After the diaphragm 1 is deformed, the diaphragm 1 quickly resets by relying on the combined force of its own restoring force and the spring elastic force provided by the return spring 303;
  • the driving device 5 passes alternating current to generate driving force to move the mover 4 toward the inner closed end of the sleeve 202; the mover 4 first squeezes the support spring 301; the mover 4 continues to move toward the inner closed end of the sleeve 202, contacts and squeezes and rebounds Spring 302; when the elastic potential energy accumulated after the support spring 301 and the rebound spring 302 are compressed reaches the maximum, the elastic potential energy is released and converted into elastic force.
  • the mover 4 overcomes the driving force and moves in the opposite direction to act on the diaphragm 1 to deform the diaphragm 1.
  • the diaphragm 1 After the diaphragm 1 is deformed, the diaphragm 1 relies on its own restoring force and the combined force of the spring elastic force provided by the return spring 303 to quickly reset; under the action of the driving device 5 and the elastic element 3, the mover 4 extends along the axis inside the sleeve 202 Reciprocating motion at a certain frequency; where the driving force is magnetic field force; the term "motor” refers to a metal body that is not magnetized in a magnetic field and can be acted upon by magnetic field force.
  • an elastic element 3 is provided; the support spring 301 and the rebound spring 302 are nested to provide a force for the mover 4 that is opposite to the movement of the mover 4; the support spring 301 plays a supporting and buffering role, and the rebound spring 302 mainly Playing the role of providing spring elasticity, the combined rebound force of the support spring 301 and the rebound spring 302 can better return the mover 4 to its original position, greatly extending the service life of the driving device 5 of the automatic delivery device of the washing equipment, and at the same time reducing the The energy consumption of the driving device 5 of the automatic delivery device of the washing equipment is reduced.
  • the other end of the support spring 301 is fixedly connected to one end of the mover 4.
  • the support spring 301 provides both support and tension; the initial position of the mover 4 is set to the center vertical line of the mover 4 There is a preset distance from the center perpendicular line of the coil 501; since the mover 4 is located inside the coil 501, a large number of magnetic field lines pass through the mover 4; The directions of the magnetic flux lines are the same, so the two ends of the mover 4 receive forces away from the center vertical line in the axial direction. However, the end of the mover 4 that is close to the center vertical line of the coil 501 receives a larger magnetic force than the mover 4 .
  • the end of the mover 4 far away from the center perpendicular of the coil 501 receives the magnetic force; therefore, the mover 4 moves in the direction close to the center perpendicular of the coil 501, and the distance between the center perpendicular of the mover 4 and the center perpendicular of the coil 501 The distance is getting smaller and smaller; under the combined action of the driving force of the driving device 5 and the spring force of the elastic element 3, the mover 4 acts on the diaphragm 1 when it reciprocates along the axis inside the sleeve 202 at a certain frequency, causing the diaphragm to 1 is constantly vibrating during the reciprocating process of deformation and reset, and the liquid suction chamber 602 can absorb and discharge liquid at a certain frequency.
  • the return spring 303 is provided to provide support force for one end of the diaphragm 1; to a certain extent, fatigue damage caused by excessive deformation of the diaphragm 1 is avoided; the mover 4 is moved in the opposite direction by the combined force of the support spring 301 and the rebound spring 302 Acting on the diaphragm 1 causes the diaphragm 1 to deform; after the diaphragm 1 is deformed, the diaphragm 1 relies on its own reset force and the combined force of the spring elastic force provided by the reset spring 303 to quickly reset, thereby realizing the mover 4 inside the sleeve 202
  • the longitudinal axis reciprocates at a certain frequency and the diaphragm 1 vibrates continuously
  • a washing equipment is provided; the washing equipment is equipped with any of the above The automatic dispensing device and/or driving device in the embodiment; wherein, the automatic dispensing device includes a liquid suction chamber 602; the liquid suction tube 603 in the liquid suction chamber 602 is connected to the liquid storage chamber of the washing equipment, and the liquid suction chamber 602
  • the drain pipe 204 is connected to the washing chamber or the liquid-water mixing chamber of the washing equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

本发明公开了一种洗涤设备的自动投放装置的驱动装置及洗涤设备,包括:壳体和吸液腔,所述壳体内设置有可移动的动子和驱动所述动子运动的驱动装置;所述壳体具有一个朝向吸液腔的开口,所述动子的第一端部至少设置在所述壳体开口处,所述动子的第一端部对应设置有膜片;一个弹性元件设置在所述动子轴向方向延伸的第二端部,或设置在所述壳体开口对应的吸液腔侧壁上;所述动子向吸液腔运动,动子第一端局部作用于所述膜片并伸出所述开口,使所述膜片至少向吸液腔形变。本发明使添加剂投放更加高效、精确,解决了添加剂投放不足或投放过量的问题,提升了用户体验感。

Description

一种洗涤设备的自动投放装置及洗涤设备 技术领域
本发明属于洗衣机领域,具体地说,涉及一种洗涤设备的洗涤添加剂自动投放器,尤其涉及洗涤设备的洗涤添加剂自动投放器的驱动装置,还涉及一种洗涤设备。
背景技术
随着洗衣机行业的不断进步,其功能也越来越多样化。为了让用户更加省力、方便,目前,市场上许多智能洗衣机都具有自动添加洗涤剂的功能,免去了用户手动添加洗涤剂的麻烦。为了实现向洗衣机的洗涤筒中投放洗涤剂,现有的洗衣机在外壳上设置振动盒,洗衣机的盘座部位或者箱体部位处放置添加剂投放系统来对洗涤筒进行洗涤剂的投放。现有技术中具有添加剂自动投放功能的洗衣机存在投放洗涤剂不够精准,造成漂洗不净,出现费水,浪费洗涤剂,衣物洗涤效果差,用户体验不好的问题。
有鉴于此特提出本发明。
发明内容
本发明要解决的技术问题在于克服现有技术的不足,目的在于提供一种洗涤设备的自动投放装置的驱动装置,解决添加剂投放不够精准的技术问题。本发明的另一目的在于,提供一种洗涤设备。
为解决上述技术问题,本发明采用技术方案的基本构思是:一种洗涤设备的自动投放装置的驱动装置,包括:壳体和吸液腔,所述壳体内设置有可移动的动子和驱动所述动子运动的驱动装置;所述壳体具有一个朝向吸液腔的开口,所述动子的第一端部至少设置在所述壳体开口处,所述动子的第一端部对应设置有膜片;动子一个弹性元件设置在所述动子轴向方向延伸的第二端部,或设置在所述壳体开口对应的吸液腔侧壁上;所述动子向吸液腔运动,动子第一端局部作用于所述膜片并伸出所述开口,使所述膜片至少向吸液腔形变。
本发明通过将壳体设置具有一个朝向吸液腔的开口,将弹性元件设置在所述动子轴向方向延伸的第二端部,或设置在所述壳体开口对应的吸液腔侧壁上,使动子在磁场力和弹性元件的反弹力作用下在壳体内反复振荡,带动膜片产生相同频率的振荡,控制添加剂进入洗衣机内筒中,使添加剂投放更加精确,有效避免添加剂投放不足或投放过量的问题,提升了用户体验感。
优选的,所述动子的第一端部伸出所述壳体开口,所述膜片与所述的开口有一距离设置;所述驱动装置的最小驱动力大于所述动子的重力,动子受到驱动力作用的同时,通过膜片提供的恢复力在所述壳体内做高频振荡。
进一步地,所述动子在驱动装置的驱动力和弹性元件的反弹力作用下在壳体内反复振荡,所述膜片在所述动子作用下基本上以相同的频率振荡;所述弹性元件被所述动子压缩产生最大形变量等于所述弹性元件被所述动子拉伸产生最大形变量。
进一步地,所述壳体还包括套筒,所述套筒第一端的开口与壳体开口重合,套筒第二端为封闭的桶底,所述动子至少部分设置在所述套筒内;所述动子向所述套筒的开口端方向运动时,所述驱动装置的驱动力充当阻力阻止所述动子运动。
进一步地,所述驱动装置包括在所述套筒轴向设置的线圈支架和环绕在所述线圈支架上的线圈,所述动子受到所述线圈产生的磁场力快速压缩或拉伸弹性元件产生最大形变量时,所述弹性元件的反弹力大于所述线圈产生的磁场力;当所述弹性元件的弹力和所述膜片的恢复力与等于所述线圈产生的磁场力时,所述动子速度不为零,加速度为零,所述动子运动方向保持不变;当所述弹性元件被压缩或被拉伸到最大形变量时,所述动子的速度为零,加速度不为零,所述动子运动方向改变,向所述套筒开口端移动。
进一步地,所述弹性元件的一端设置在所述动子第二端部轴向的延伸方向,另一端固定设置在所述套筒桶底,所述动子的第一端与所述膜片固定连接或无接触;所述动子受到所述线圈产生的磁场力快速压缩所述弹性元件产生最大形变量时,所述弹性元件的反弹力和膜片的恢复力驱动所述的动子反弹超过初始设置位置,使所述膜片在所述动子反复振荡下振荡。进一步地,所述弹性元件的一端设置在所述壳体开口对应的吸液腔侧壁上,另一端与所述膜片位于吸液腔一侧固定连接;所述动子受到所述线圈产生的磁场力快速拉伸所述弹性元件产生最大形变量时,所述弹性元件的拉力和膜片的恢复力驱动所述的动子超过初始设置位置,使所述膜片在所述动子反复振荡下振荡。进一步地,所述套筒开口端的外周向径向方向延伸形成翻边,所述翻边包括第一翻边和第二翻边,所述第一翻边和第二翻边的延伸终端嵌套在所述壳体内;所述吸液腔和/或固定所述膜片边缘的两个对应的侧壁上,与所述壳体有一预设距离处分别设置有第一凸起,所述膜片的两端由所述壳体与所述第一凸起挤压固定并封闭所述吸液腔。
进一步地,所述壳体开口对应的吸液腔侧壁上设置有吸液管和排液管,所述吸液管和所述排液管内部设置有单向阀,膜片振荡时带动洗涤剂从所述吸液管进入吸液腔,从所述排液管排出,进入洗衣机内筒。
本发明还提供一种洗涤设备,采用上述任一所述的自动投放装置的驱动装置。
采用上述技术方案后,本发明与现有技术相比具有以下有益效果。
(1)本发明通过将壳体设置具有一个朝向吸液腔的开口,将弹性元件设置在所述动子轴向方向延伸的第二端部,或设置在所述壳体开口对应的吸液腔侧壁上,使动子在磁场力和弹性元件的反弹力作用下在壳体内反复振荡,带动膜片产生相同频率的振荡,控制添加剂进入洗衣机内筒中,使添加剂投放更加高效、精确,解决了添加剂投放不足或投放过量的问题,提升了用户体验感。
(2)本发明进一步将膜片设置在与壳体的开口端有一距离处,使膜片在受到磁场力和弹性元件的反弹力作用下,能够产生最大可能的振荡,加速了添加剂的投放的频率,进一步改善了添加剂投放精准的问题。
本发明要解决的技术问题在于克服现有技术的不足,提供一种结构稳定,密封性好投放精度较高的洗涤设备的自动投放装置。
为解决上述技术问题,本发明采用技术方案的基本构思是:
一种洗涤设备的自动投放装置,包括:驱动结构、吸液装置,膜片的圆周固定在所述驱动结构和/或所述吸液装置上,所述膜片受到所述驱动结构施加的一个驱动方向固定、驱动大小周期性变化的力,配合所述膜片的弹性复位力驱动所述膜片在轴向方向上往复振动,将洗涤液吸入/排出所述吸液装置。
可选的,所述装置包括:所述驱动结构驱动所述膜片向靠近所述驱动结构的方向产生弹性形变,所述膜片依靠自身弹性复位力向靠近所述吸液装置的方向做往复振动。
可选的,所述装置包括:所述驱动结构驱动所述膜片向靠近所述吸液装置的方向产生弹性形变,所述膜片依靠自身弹性复位力向靠近所述驱动结构的方向做往复振动。
可选的,所述装置包括:所述吸液装置外周设有端盖,所述膜片的圆周固定在所述端盖的周壁的端部上;或者,所述端盖的周壁的端部上设有凹槽,所述膜片的圆周固定在所述凹槽内。
可选的,所述装置包括:所述膜片与所述吸液装置配合形成吸液腔,所述吸液腔为所述膜片提供第一形变区域。
可选的,所述装置包括:所述驱动结构外部设置有壳体,所述壳体上设置有翻边,所述驱动结构通过所述翻边与所述膜片的圆周连接;或者所述翻边向靠近所述吸液装置方向设有延伸部,所述驱动结构通过所述延伸部与所述膜片的圆周连接。
可选的,所述装置包括:所述翻边以及所述翻边的延伸部与所述膜片形成第二形变区域。可选的,所述装置包括:所述驱动结构还包括动子,所述动子与所述膜片不连接。可选的,所述装置包括:所述膜片设有嵌入部,所述动子的一端与所述嵌入部连接。
可选的,所述膜片的材质为塑料、橡胶、硅胶、动物皮、合金板、聚氨酯中的任意一种和/或所述膜片为膜片、弹性囊片中的任意一种。
可选的,所述驱动装置还包括电源和线圈,所述线圈通过接入直流电/交流电与所述电源连通。
可选的,所述吸液装置包括吸液口和排液口,所述吸液口与所述吸液管连接;所述排液口与所述排液管连接,所述吸液管和所述排液管内均设有单向阀。
本发明还提供了一种洗涤装置,具有上述的自动投放装置。采用上述方案,此智能自动投液装置提升了洗衣机的智能程度,节省了用户的洗衣投放洗涤液的不必要时间和精准的确定投放用量节省了洗涤剂不必要的浪费,更加契合用户的实际使用需求。
采用上述技术方案后,本发明与现有技术相比具有以下有益效果。
1、本发明方案,提供了动子与膜片的多种连接方式。不同的结构及连接方式使得自动投放装置的适应能力更强,极大地提升了自动投放装置的使用范围;
2、本发明方案,膜片可以直接与吸液装置固定连接,或者膜片与驱动结构固定连接,膜片具有一定的厚度,起到了良好的密封效果。
3、本发明方案,动子的运动受到驱动结构的驱动力和膜片自身弹性复位力,保证了动子周期性往复振动的实现,使自动投放装置更具有功能的可靠性;
4、本发明方案,膜片依靠自身弹性复位力作用于膜片的一侧始终给予膜片一个与运动方向相反的复位力,这种方案能一定程度上避免出现膜片过度形变引起的疲劳破坏的情况,极大地提升了自动投放装置的使用寿命。
本发明要解决的技术问题在于克服现有技术的不足,提供了一种洗涤设备的自动投放装置及洗涤设备,通过动子在电磁力和反向的弹性力共同作用下,进行高频往复运动,降低了动子单次振动误差对投放工作的整体误差值的影响,从而解决了自动投放装置投放精度较低的问题;同时,动子和线圈的成本较低,从而解决了自动投放装置的造价较高的问题。
为解决上述技术问题,本发明采用技术方案的基本构思是:一种洗涤设备的自动投放装置,包括,套筒,套筒一端为封闭的筒底,对应的另一端开设开口;线圈,同轴的套设于套筒的外周;动子,可活动的设置于套筒的套筒腔内;套筒开口上设置有与动子相连的膜片;动子的中心设置于线圈中心偏向套筒的开口方向上;动子在线圈通电产生的电磁力和膜片的弹性力共同作用下,于套筒内做高频低振幅的振动。
进一步的,动子的质量为1g到100g之间;膜片弹性系数较大,令膜片和动子组成的系统的固有频率在30-300Hz;动子受电磁力作用的同时,通过膜片提供的反向的弹性力在套筒内做高频往复运动。
进一步的,套筒的开口上扣设有端盖,端盖和套筒内部通过膜片分隔为相对独立的吸液腔和套筒腔;套筒和端盖分别与膜片之间具有供膜片形变的空间。
进一步的,套筒开口端的外周连接有径向向外延伸的翻边;翻边与套筒的开口相平齐;端盖与翻边的外周边沿相连;膜片的外周边沿密封的设置于端盖与翻边的连接处上,令膜片与翻边一侧相贴合;膜片在被动子拉伸时,通过套筒开口向套筒腔内部形变延伸。
进一步的,套筒开口端的外周连接有沿套筒径向向外延伸的翻边,翻边的外周边沿连接有向远离套筒方向延伸的第二翻边;端盖与第二翻边的延伸端对应连接;膜片的外周边沿密封的设置于端盖与第二翻边的连接处上;膜片与翻边之间间隔一定距离,形成缓冲腔;膜片在被动子拉伸时,膜片向缓冲腔内形变延伸。
进一步的,膜片一侧与动子相连,相对的另一侧与支撑弹簧的一端相连;支撑弹簧与动 子同轴设置,且对应的另一端与端盖相连;动子受电磁力作用的同时,通过膜片和支撑弹簧提供的反向的弹性力,在套筒内做高频往复运动。
进一步的,动子一端与膜片相连,相对的另一端连接或抵接有弹性元件;弹性元件与动子同轴设置,且对应的另一端与套筒筒底相连;动子受电磁力作用的同时,通过膜片和弹性元件提供的反向的弹性力在套筒内做高频往复运动。
进一步的,动子靠近膜片的一端设置有嵌入块,膜片内部对应的开设有嵌入部;动子通过嵌入块对应嵌入嵌入部内与膜片相连。
进一步的,套筒的底部连接有弹性元件;动子距膜片较近一端与膜片相抵接,对应的另一端与弹性元件相连或抵接;动子受电磁力作用的同时,通过膜片和支撑弹簧提供的反向的弹性力在套筒内做高频往复运动。进一步的,弹性元件与动子相连;弹性元件外周或内部套设有反弹弹簧;反弹弹簧与弹性元件同轴设置,长度不大于弹性元件的长度,反弹弹簧一端与套筒的筒底相连,对应的另一端向动子所在方向延伸。
进一步的,线圈通入的电流为直流电或者交流电,通过控制电流间歇性的通断,令线圈对动子产生间歇性的电磁力,从而令动子做频率可调的高频往复运动。
进一步的,线圈电连接有直流接触器或交流接触器,通过直流接触器或交流接触器控制线圈内的直流电或交流电形成频率可变的间歇性的通断,令线圈对动子产生不同频率的间歇性的电磁力,从而控制动子以不同的频率做高频往复运动。
进一步的,线圈通入的电流为交流电,线圈电连接有一变频器,通过变频器改变线圈内通过交流电的频率,从而控制动子以不同的频率做高频往复运动。
一种洗涤设备,洗涤设备采用如上所述的一种洗涤设备的自动投放装置。
采用上述技术方案后,本发明与现有技术相比具有以下有益效果:通过弹性力和电磁力的共同作用,令动子能够在套筒腔内以稳定的振幅和振频振动,从而保证了对添加剂的稳定投放,保证了控制投放剂量的精度;通过在相同工作时间内做更多的频次的振动,相对于低频振动,可有效缩小单次振动误差对投放工作的整体误差值的影响,进一步提升了投放量的精度;同时,低振幅可有效降低工作噪音,令自动投放设备工作更安静;同时,本发明结构简单,效果显著,适宜推广使用。
本发明要解决的技术问题在于克服现有技术的不足,提供电磁洗涤设备的自动投放装置,线圈通电产生的磁吸力与弹性元件产生的弹性力的合力反复作用膜片,根据膜片的反复形变量实现洗涤剂的精确投放,避免资源浪费。
为解决上述技术问题,本发明采用技术方案的基本构思是:
一种洗涤设备的自动投放装置,包括吸液腔和安装腔,所述自动投放装置还包括:膜片,所述膜片设置在吸液腔和安装腔之间,所述膜片的周侧与所述吸液腔相连接;线圈,所述线圈设置在所述安装腔内;动子,所述动子与所述线圈同一延伸方向设置,所述动子包括依次连接的运动部和传导部,所述线圈对所述运动部产生朝向所述吸液腔运动的磁吸力,通过所述传导部带动所述膜片形变,并对动子产生反向的弹性力,实现所述膜片在磁吸力的作用和膜片自身的回弹力的作用下做往复振动。
进一步地,所述传导部带动所述膜片振动幅度不超过所述运动部的形心与所述线圈的形心连线的距离,运动过程中,所述运动部受到的磁吸力总是朝向吸液腔方向,所述膜片、所述动子组成的系统的平衡位置位于所述膜片初始位置的右侧,使所述膜片做周期性振动。进一步地,在周期性振动的回复过程,所述膜片产生的远离吸液腔方向的回弹力能够克服所述运动部受到朝向吸液腔方向的磁吸力,使所述膜片的振幅逐渐减小。
进一步地,所述运动部至少部分与所述线圈重合,所述传导部和所述运动部均与所述线圈同轴设置,且所述运动部与所述传导部的长度之和大于或等于所述线圈的长度,且所述运动部的长度小于所述线圈的长度。
进一步地,所述传导部包括同轴设置的第一端、传动杆和第二端,所述传动杆的两端分别与所述第一端和所述第二端相连接,所述第一端的直径小于所述第二端的直径,所述第一端与所述运动部连接或抵接,所述第二端与所述膜片连接或抵接;其中,所述传动杆的两端的直径相等,且所述传动杆的直径不大于所述第一端的直径。
进一步地,所述安装腔设置有套筒,所述套筒与所述线圈同轴设置,所述第一端将所述运动部抵靠在所述套筒的端部,所述传导部的第二端与所述套筒的开口齐平或突出所述套筒的开口设置;所述套筒的长度大于所述线圈的长度,至少部分所述套筒与所述线圈重合,所述运动部靠近所述套筒的端部。
进一步地,所述套筒的开口设置有第一翻边和第二翻边,所述第一翻边设置为所述套筒的开口沿径向方向向外弯折,所述第二翻边由所述第一翻边朝向所述吸液腔方向弯折,所述膜片的周侧与所述第二翻边的端部相连接,所述膜片与所述第一翻边和所述第二翻边之间围成一个缓冲腔室,用于缓冲所述膜片朝向所述套筒方向变形量。
进一步地,所述传导部的第一端抵接在所述运动部,所述传导部的第二端设置有嵌入块,所述膜片对应设置有嵌入部,所述嵌入块与所述嵌入部卡接配合,用于使所述运动部通过所述传导部与所述膜片相连接。
进一步地,所述自动投放装置还包括弹性元件,所述弹性元件设置在所述吸液腔内,所述弹性元件的一端与所述膜片连接或抵接,所述弹性元件的另一端与吸液腔的内壁抵接或连接,所述弹性元件和所述膜片形成的反向弹性力拉动所述膜片恢复至初始值。
进一步地,所述自动投放装置还包括弹性元件,所述弹性元件设置在所述传导部和所述运动部之间,所述弹性元件的一端与所述运动部连接,另一端与传导部相连接,所述弹性元件和所述膜片形成的反向弹性力拉动所述膜片恢复至初始值。
进一步地,所述线圈内通入交流电后产生大小和方向时刻变化的交变磁场,所述交变磁场存在时,对运动部的磁场驱动力大小实时变化但方向朝向吸液腔,所述弹性元件和膜片复位时,所述弹性力逐渐衰减但实时大于所述磁吸力。
本发明的第二目的是提供一种洗涤设备,洗涤设备采用如上所述的洗涤设备的自动投放装置。
采用上述技术方案后,本发明与现有技术相比具有以下有益效果。
1、本发明的洗涤设备的自动投放装置的动子包括依次相连的运动部和传导部,运动部产生朝向膜片的磁吸力并通过传导部传导至膜片的及弹性元件的产生方向相反的恢复力,通过磁吸力与弹性力的合力作用于膜片,膜片产生反复的振动变形,增大了运动部的最大行程量,从而提高了膜片的最大变形量,能够精确控制每次洗涤剂的投放量,有效提高衣物的洗涤效果,避免浪费。
2、本发明的靠近运动部的传导部的直径大于远离运动部一端的直径,确保通电后磁吸力朝向膜片运动,降低了传导部的摩擦力,并且降低了动子的自重,降低安装难度。
3、本发明的运动部的长度小于线圈,且部分运动部与线圈重合,增加了运动部的最大位移量,提高了单次投放的量,确保投放的精度。
本发明要解决的技术问题在于克服现有技术的不足,本发明的第一目的在于提供一种洗涤设备自动投放装置的驱动装置,解决了自动化程度较低和结构可靠性较差技术。本发明的第二目的在于提供一种具有上述驱动装置的洗涤设备的自动投放装置。本发明的第三目的在于提供一种具有上述自动投放装置的洗涤设备。
为解决上述技术问题,本发明采用技术方案的基本构思是:一种洗涤设备自动投放装置的驱动装置包括套筒和设置在所述套筒内部的动子;一个弹性元件将所述动子轴向定位于所述套筒中;所述动子在驱动力和所述弹性元件弹簧弹力的共同作用下在所述套筒内部延轴线以一定频率往复运动;当所述弹性元件累积的弹性势能达到最大时,所述弹性元件给所述动 子提供一个弹簧弹力,所述动子向相反方向运动。采用上述方案,设置弹性元件为动子提供一个与动子运动相反的力;极大地提升了洗涤设备自动投放装置的驱动装置的使用寿命,同时降低了驱动装置的耗能。
进一步的,所述弹性元件包括反弹弹簧和支撑弹簧;所述反弹弹簧固定安装在所述套筒内部封闭端;所述支撑弹簧嵌套安装在所述反弹弹簧外部或内部;所述支撑弹簧一端固定安装在所述套筒内部封闭端;所述弹性元件从刚开始被压缩一直到被压缩累积的弹性势能达到最大时,所述动子在驱动力作用下克服所述弹性元件的弹簧弹力从初始位置运动到第一个行程的终端。采用上述方案,支撑弹簧与反弹弹簧嵌套设置,支撑弹簧起到支撑和缓冲的作用,反弹弹簧主要起提供弹簧弹力的作用,支撑弹簧与反弹弹簧的反弹合力可以更好的让动子回到原来的位置,降低了洗涤设备自动投放装置的驱动装置的耗能。
进一步的,所述支撑弹簧另一端与所述动子的一端固定连接;所述支撑弹簧为所述动子提供弹簧弹力的同时还提供支撑的作用;所述弹性元件释放弹性势能后所述动子克服驱动力向相反方向运动回到初始位置;所述动子从初始位置克服所述支撑弹簧的拉力继续向相反方向运动到离所述弹性元件最远时运动到第二个行程的终端。采用上述方案,支撑弹簧另一端与动子的一端固定连接,在动子以一定频率往复运动时,支撑弹簧既提供支撑力也提供拉力。
进一步的,所述第一个行程的终端与所述第二个行程的终端之间的距离为所述动子的最大行程;所述动子在所述最大行程中以一定频率往复运动。采用上述方案,通过驱动装置与弹性元件的相互配合使动子以一定频率在最大行程中往复运动。
进一步的,所述套筒外周安装有线圈;所述动子的初始位置设置为所述动子的中垂线与所述线圈的中垂线设置有预设间距;在所述线圈通电后,所述线圈的中垂线与所述动子的中垂线之间的间距从预设间距不断缩小,直到所述弹性元件释放弹性势能,所述动子的中垂线与所述线圈的中垂线之间的间距由最小达到最大。采用上述方案,设置动子的初始位置为动子的中垂线与线圈的中垂线设置有预设间距;由于动子位于线圈的内部,动子内部具有大量的磁感线通过;由于线圈的内部的磁感线与动子中的磁感线的方向相同,因此,动子的两端分别受到沿轴向远离所述中垂线的力,但由于动子的离线圈中垂线近的端部受到的磁力大于动子离线圈的中垂线远的端部受到的磁力,所以,动子向靠近线圈的中垂线方向运动,动子的中垂线与线圈的中垂线之间的间距越来越小。
本发明还提供一种洗涤设备的自动投放装置包括驱动装置,所述驱动装置包括套筒和设置在所述套筒内部的动子;一个弹性元件将所述动子轴向定位于所述套筒中;所述套筒开口端安装有吸液腔;所述吸液腔包括膜片;所述膜片周边与所述吸液腔内壁密封固定连接;所述吸液腔上设置吸液管和排液管;当所述动子在驱动力和所述弹性元件弹簧弹力的共同作用下在所述套筒内部延轴线以一定频率往复运动时,所述动子也以一定的频率作用于所述膜片使所述膜片发生形变;所述膜片压向所述吸液腔时,所述吸液腔内空间变小压力变大,所述排液管进行排液;所述膜片远离所述吸液腔时,所述吸液腔内空间变大压力变小,所述吸液管进行吸液。采用上述方案,在驱动装置的驱动力和弹性元件弹簧弹力的共同作用下实现了动子在套筒内部延轴线以一定频率往复运动时作用于膜片,使膜片在发生形变和复位的往复过程中不断振动,吸液腔能够以一定频率进行吸液和排液。进而实现了洗涤设备自动投放装置的排液和吸液。
进一步的,所述弹性元件还包括复位弹簧;所述吸液腔中与所述膜片对立的一端与所述复位弹簧固定连接;当所述膜片发生形变过程中不断挤压所述复位弹簧,当所述膜片发生形变后所述膜片依靠自身的复位力和所述复位弹簧提供的弹簧弹力的合力快速复位。采用上述方案,支撑弹簧和复位弹簧主要起支撑作用,反弹弹簧主要起提供反弹力的作用;避免了使用单个弹簧功能受限;弹性元件设置复位弹簧为膜片的一端提供了支撑力;在一定程度上避免出现膜片过度形变引起的疲劳破坏的情况。
进一步的,所述支撑弹簧长度大于所述反弹弹簧;所述反弹弹簧弹性系数大于所述支撑 弹簧;所述反弹弹簧弹性系数大于所述复位弹簧。采用上述方案,支撑弹簧和复位弹簧主要起支撑作用,反弹弹簧主要起提供反弹力的作用。
进一步的,所述驱动装置通交流电产生驱动力使所述动子向所述套筒内部封闭端方向运动;所述动子先挤压所述支撑弹簧;所述动子继续向所述套筒内部封闭端方向运动接触并挤压所述反弹弹簧;所述弹性元件被压缩后累积的弹性势能达到最大时,弹性势能释放转化为弹力,所述动子克服驱动力向相反方向运动;在所述驱动装置和所述弹性元件的作用下,所述动子在所述套筒内部延轴线以一定频率往复运动。
进一步的,所述驱动装置通交流电产生驱动力使所述动子向所述套筒内部封闭端方向运动;所述动子先挤压所述支撑弹簧;所述动子继续向所述套筒内部封闭端方向运动接触并挤压所述反弹弹簧;当所述支撑弹簧和所述反弹弹簧被压缩后累积的弹性势能达到最大时,弹性势能释放转化为弹力,所述动子克服驱动力向相反方向运动作用于所述膜片使所述膜片发生形变;所述膜片发生形变后所述膜片依靠自身的复位力和所述复位弹簧提供的弹簧弹力的合力快速复位;在所述驱动装置和所述弹性元件的作用下,所述动子在所述套筒内部延轴线以一定频率往复运动。采用上述方案,动子受支撑弹簧和反弹弹簧的合力向相反方向运动作用于膜片使膜片发生形变;膜片发生形变后膜片依靠自身的复位力和复位弹簧提供的弹簧弹力的合力快速复位,进而实现了动子在套筒内部延轴线以一定频率往复运动和膜片以一定频率不断的振动。
本发明还提供一种洗涤设备包括自动投放装置,所述吸液腔中的所述吸液管连接洗涤设备的储液腔室,所述吸液腔中的所述排液管连接洗涤设备的洗涤容腔或者液水混合腔。
采用上述技术方案后,本发明与现有技术相比具有以下有益效果。
通过设置弹性元件为动子和/或膜片提供一个与动子和/或膜片运动相反的力实现了动子在套筒内部延轴线以一定频率往复运动和膜片以一定频率不断的振动;同时,在一定程度上避免出现膜片过度形变引起的疲劳破坏的情况,极大地提升了洗涤设备自动投放装置的使用寿命,同时降低了驱动装置的耗能。
下面结合附图对本发明的具体实施方式作进一步详细的描述。
附图说明
附图作为本发明的一部分,用来提供对本发明的进一步的理解,本发明的示意性实施例及其说明用于解释本发明,但不构成对本发明的不当限定。显然,下面描述中的附图仅仅是一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。在附图中:
图1是本发明一种洗涤设备的自动投放装置的驱动装置结构示意图;
图2是本发明一种动子与膜片连接示意图;
图3是本发明另一种动子与膜片连接示意图;
图4是本发明另一种洗涤设备的自动投放装置的驱动装置结构示意图;
图5是本发明另一种动子与膜片连接示意图;
图6是本发明中动子在套筒内移动的位置关系示意图;
图7是本发明实施方式中一种洗涤设备的自动投放装置的第一种结构示意图;
图8是本发明实施方式中一种洗涤设备的自动投放装置的第二种结构示意图;
图9是本发明实施方式中一种洗涤设备的自动投放装置的第三种结构示意图;
图10是本发明实施方式中一种洗涤设备的自动投放装置的第四种结构示意图;
图11是本发明实施方式中一种洗涤设备的自动投放装置的第五种结构示意图;
图12是本发明实施方式中膜片沿轴向方向上的投影图;
图13是本发明实施例的自动投放装置的结构示意图;
图14是本发明实施例的具有第二翻边的自动投放装置的结构示意图;
图15是本发明实施例的动子拉伸膜片时自动投放装置的结构示意图;
图16是本发明实施例的设置支撑弹簧的自动投放装置的结构示意图;
图17是本发明实施例的设置支撑弹簧的具有第二翻边的自动投放装置的结构示意图;
图18是本发明实施例的设置弹性元件的自动投放装置的结构示意图;
图19是本发明实施例的设置弹性元件的具有第二翻边的自动投放装置的结构示意图;
图20是本发明实施例的动子与膜片相抵接的自动投放装置的结构示意图;
图21是本发明的自动投放装置结构示意图一;
图22是本发明的自动投放装置结构示意图二;
图23是本发明的自动投放装置结构示意图三;
图24是本发明的自动投放装置结构示意图四;
图25是本发明的自动投放装置结构示意图五;
图26是本发明的自动投放装置结构示意图六;
图27是本发明洗涤设备自动投放装置中动子处于初始位置工作状态第一示意图;
图28是本发明洗涤设备自动投放装置中动子处于第一行程终端工作状态第一示意图;
图29是本发明洗涤设备自动投放装置中动子处于第二行程终端工作状态第一示意图;
图30是本发明洗涤设备自动投放装置中动子处于初始位置工作状态第二示意图;
图31是本发明洗涤设备自动投放装置中动子处于第一行程终端工作状态第二示意图;
图32是本发明洗涤设备自动投放装置中动子处于第二行程终端工作状态第二示意图;
图33是本发明洗涤设备自动投放装置中动子处于初始位置工作状态第三示意图;
图34是本发明洗涤设备自动投放装置中动子处于第一行程终端工作状态第三示意图;
图35是本发明洗涤设备自动投放装置中动子处于第二行程终端工作状态第三示意图。
图中,1、膜片;101、嵌入部;2、壳体;202、套筒;201、翻边;2011、第一翻边;2012、第二翻边;204、排液管;206、单向阀;203、开口;3、弹性元件;4、动子;401、嵌入块;4031、第一端;4032、第二端;4033、传导杆;501、线圈;502、线圈支架;602、吸液腔;603、吸液管;604、第一凸起;605、缓冲腔;7、初始设置位置;701、第一区域;702、第二区域;8、平衡位置;9、第一换向位置;10、第二换向位置。
需要说明的是,这些附图和文字描述并不旨在以任何方式限制本发明的构思范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对实施例中的技术方案进行清楚、完整地描述,以下实施例用于说明本发明,但不用来限制本发明的范围。
在本发明的描述中,需要说明的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例一
如图1和图5所示,本发明所述的一种洗涤设备的自动投放装置的驱动装置,洗涤设备中的投放器主要是将衣物洗涤剂从洗涤剂储液盒中抽出,并投放到洗衣机内筒中。所述驱动装置包括壳体2和吸液腔602。所述壳体2内设置有可移动的动子4和驱动所述动子4运动的驱动装置。所述壳体2具有一个朝向吸液腔602的开口203。所述动子4的第一端部可以设置在所述壳体2开口203处,所述动子4的第一端部也可以设置在所述壳体2开口203外部。所述动子4的第一端对应设置一个膜片1。所述动子4轴向方向延伸的第二端部上设置一个弹性元件3,或者所述弹性元件3设置在所述壳体2开口203对应的吸液腔602侧壁上。具体的,所述膜片1为弹性膜片,所述弹性元件3为弹簧。所述动子4向吸液腔602运动,动子4第一端局部作用于所述膜片1并伸出到所述开口203的外部,使所述膜片1至少向吸液腔602形变。
本发明通过将壳体2设置具有一个朝向吸液腔602的开口,将弹性元件3设置在所述动子4轴向方向延伸的第二端部,或设置在所述壳体2开口对应的吸液腔602侧壁上,使动子4在驱动装置的驱动力和弹性元件3的反弹力作用下在壳体2内反复振荡,带动膜片1产生相同频率的振荡,使吸液腔602内不断重复吸入添加剂再向外投放至洗衣机内筒中的过程,控制添加剂进入洗衣机内筒中,使添加剂投放更加高效、精确,解决了添加剂投放不足或投放过量的问题,提升了用户体验感。
另外,所述吸液腔602有一个朝向所述壳体2的开口203。所述吸液腔602的开口与所述壳体2的开口203相对并连通设置。
具体的,当动子4在驱动装置的驱动下,向壳体2底部移动时,使弹性元件3拉伸或压缩,并带动膜片1向壳体2方向产生弹性形变。吸液腔602的体积变大,吸液腔602内的压力变小,将洗涤剂吸入吸液腔602内。当动子4在弹性元件3的反弹力的作用下移动并带动膜片1向吸液腔602方向移动时,吸液腔602的体积变小,吸液腔602内的压力变大,将洗涤剂排除吸液腔602外。
另外,所述膜片1的中间部位具有一定的厚度。优选的,所述膜片1为绷紧状态。所述膜片1还可以为具有一定延展性和韧性的盘状结构,也可以为碗状或者为囊状,本发明不予以限制。所述膜片1可以为橡胶,硅胶,聚氨酯,塑料等材料制作,只要保持膜片1具备弹性形变且能产生较好的振动即可。
一种实施具体方式是,如图2所示,所述动子4的第一端与所述膜片1固定连接,动子4与膜片1粘接固定,简单的连接能极大地降低制造的难度和生产制造的成本,契合实际的市场需求。
另一种实施具体方式是,如图3所示,膜片1方向的端部设置有伞状或蘑菇形状的嵌入部101,动子4朝向壳体2开口203的一端设置有与膜片1的嵌入部101相对应的嵌入块401。将嵌入块401与嵌入部101安装固定件配合连接形成的整体放置到模具中,在安装固定件的四周通过一体化注塑成型形成与动子4连接的膜片1。
再者,所述动子4为金属材质结构件。通过设置所述弹性元件3的弹性系数与所述动子4的质量的比值来实现所述动子4与所述弹性元件3组成的振荡系统的振动频率。具体的,所述弹性元件3的弹性系数远大于所述动子4的质量,从而可以提高整个振荡系统的振动频率。则所述动子4在所述驱动装置的驱动下,在所述套筒202中实现高频的往复振荡动作。
需要指出的是,所述弹性元件3在形变量最大时仍具有恢复弹性形变的能力。优选的,所述动子4的第一端部向外伸出所述壳体2开口203,所述膜片1与所述壳体2开口203有一距离设置。
所述预设位置使膜片1反复振荡提供了空间,使膜片1在受到驱动力弹性元件3的反弹力作用下,能够产生最大可能的振荡,加速了添加剂的投放的频率,进一步改善了添加剂投放精准的问题。另外,所述驱动装置的最小驱动力大于所述动子4的重力,动子4受到驱动力作用的同时,立即产生位移,并带动所述膜片1运动。并且,所述膜片1提供的恢复力和 所述驱动装置的驱动力使所述膜片1在所述壳体2内做高频振荡。所述膜片1反复的高频振荡能达到20Hz-300Hz之间。进一步地,所述动子4在驱动装置的驱动力和弹性元件3的反弹力作用下在壳体2内反复振荡。在所述动子4作用下,所述膜片1基本上以相同的频率产生振荡。在理想状态下,所述动子4向所述壳体2底部运动时,所述驱动装置产生的动能全部转化为势能。所述动子4向所述吸液腔602运动时,势能全部转消耗所述驱动装置产生的动能。所述动子4向所述套筒202底部方向运动,压缩所述弹性元件3时产生最大形变量等于所述动子4向所述套筒202开口方向运动,拉伸所述弹性元件3时产生最大形变量。
另外,所述壳体2还包括套筒202,所述套筒202第一端的开口与壳体2开口203重合,套筒202第二端为封闭的桶底。所述动子4至少部分设置在所述套筒202内,使所述动子4的重心设置所述套筒202中,保证动子4在通电时受到最强驱动力,进而使动子4能够快速的运动。所述驱动装置包括在所述套筒202轴向设置的线圈支架502和环绕在所述线圈支架502上的线圈501。所述线圈501也可以直接缠绕在所述套筒202上。所述动子4为在磁场中受到磁场力作用下能够产生移动的金属材质结构件,且所述动子4处于磁场中不会被磁化。所述动子4受到所述线圈501产生的磁场力快速压缩或拉伸弹性元件3产生最大形变量时,所述弹性元件3的反弹力大于所述线圈501产生的磁场力。所述线圈501在通电后,产生磁场力驱动所述动子4向所述套筒202桶底方向运动。此时,所述动子4在所述套筒202内部做加速直线运动。当某一时刻,弹性元件3的弹力与膜片1的恢复力的合力等于磁场力时,此时,所述动子4的加速度为零,速度不为零。所述动子4继续向所述套筒202桶底方向运动时,弹性元件3的弹力与膜片1的恢复力的合力大于磁场力,所述动子4做减速直线。当所述动子4的速度减为零时,所述弹性元件3被压缩或被拉伸达到最大形变量。则所述动子4向所述套筒202的开口端方向运动,此时所述驱动装置提供的驱动力充当阻力,阻止所述动子4向所述套筒202的开口端方向运动。直至所述动子4的速度降为0。则运动方向改变,所述动子4向所述套筒202底部方向运动。
需要解释的是,由于磁场中每个位置的所受到的磁场力是不相同的,磁场线密的地方磁场强度大,磁场线少的地方磁场强度小。离线圈501越远,磁场线越少,磁场强度越小。将所述动子4的重心设置在所述线圈501的中心与所述壳体2的开口之间,保证线圈501在通电后,产生的磁场力能够立使所述动子4向所述套筒202桶底方向运动。
如图1所示,一种实施方式是,所述弹性元件3的一端设置在所述动子4第二端部轴向的延伸方向,另一端固定设置在所述套筒202桶底。所述动子4的第一端与所述膜片1固定连接。所述动子4受到所述线圈501产生的磁场力快速压缩所述弹性元件3产生最大形变量时,所述弹性元件3的反弹力驱动和膜片1的恢复力所述的动子4反弹超过初始设置位置7,所述膜片1在所述动子4反复振荡下振荡。或者,所述动子4的第一端与所述膜片1无接触。所述动子4受到弹性元件3的反弹力和膜片1的恢复力超过初始设置位置7并撞向所述膜片1。所述膜片1在所述动子4反复撞击下产生振荡。优选的,所述动子4的第一端与所述膜片1固定连接。
具体的,当所述弹性元件3产生最大形变量时,此时所述弹性元件3的弹力与膜片1的恢复力的合力大于磁场力,驱动所述动子4向所述套筒202开口203端方向做加速直线运动。当所述动子4运动到初始设置位置7时,所述弹性元件3和膜片1恢复初始形变量。由于所述动子4仍具有向所述套筒202开口203端方向运动的速度,则所述动子4拉伸所述弹性元件3挤压所述膜片1向吸液腔602形变。
如图4所示,另一种实施方式是,所述弹性元件3的一端设置在所述壳体2开口203对应的吸液腔602侧壁上,另一端与所述膜片1位于吸液腔602一侧固定连接,所述弹性元件3嵌入膜片1的内部。所述动子4受到所述线圈501产生的磁场力快速拉伸所述弹性元件3产生最大形变量时,所述弹性元件3的反弹力膜片1的恢复力驱动所述的动子4反弹超过初始设置位置7,所述膜片1在所述动子4反复振荡下振荡。所述弹性元件3与所述吸液腔602 的侧壁可以是一体成型,也可以通过焊接连接。
具体的,当所述弹性元件3产生最大形变量时,此时所述弹性元件3的弹力与膜片1的恢复力的合力大于磁场力,驱动所述动子4向所述套筒202开口203端方向做加速直线运动。当所述动子4运动到初始设置位置7时,所述弹性元件3和膜片1恢复初始形变量。由于所述动子4仍具有向所述套筒202开口203端方向运动的速度,则所述动子4压缩所述弹性元件3挤压所述膜片1向向吸液腔602形变。
进一步地,在所述套筒202开口端的外周向径向方向延伸形成翻边201。所述翻边201包括第一翻边2011和第二翻边2012,所述第一翻边2011和第二翻边2012的延伸终端嵌套在所述壳体2内。所述吸液腔602开口端两侧的侧壁上分别设置有第一凸起604。所述第一凸起604与所述吸液腔602开口端部有一预设距离。
一种具体的实施方式是,如图3所示,在所述套筒202开口端的外周向径向方向延伸形成第一翻边2011和第二翻边2012。所述第一凸起604与所述吸液腔602开口端部的距离小于所述膜片1的厚度。所述膜片1由所述壳体2与所述第一凸起604挤压固定。
另一种具体的实施方式是,如图2所示,在所述套筒202开口端的外周向径向方向延伸到达所示壳体2侧壁时,与所述套筒202开口端呈90度再向所述吸液腔602方向延伸,形成第一翻边2011和第二翻边2012。所述第一凸起604与所述吸液腔602开口端部的距离小于所述膜片1的厚度。所述膜片1由所述壳体2与所述第一凸起604挤压固定。
还一种具体的实施方式是,如图5所示,在所述套筒202开口端的外周向径向方向延伸到达所示壳体2侧壁时,与所述套筒202开口端呈90度再向所述吸液腔602方向延伸,形成第一翻边2011和第二翻边2012。所述第一翻边2011和第二翻边2012在轴向延伸的长度大于所述吸液腔602侧壁长度。所述膜片1为囊状结构。所述膜片1由所述壳体2与所述第一凸起604挤压固定。
另外,所述膜片1封闭所述吸液腔602的开口。通过在所述吸液腔602的两个侧壁距所述翻边201有一预设距离处设置有第一凸起604,与所述壳体2将所述膜片1挤压固定,使所述膜片1在被所述动子4拉动或冲撞时,不会弹出,保证了装置的稳定性。
另外,所述吸液腔602的两个侧壁与所述壳体2为垂直连接。优选的,所述壳体2开口203对应的吸液腔602侧壁上设置有吸液管603和排液管204安装口,其中所述吸液管603和所述排液管204密封插设在对应的吸液管603安装口和排液管204安装口上。具体的,所述吸液管603和所述排液管204与各自安装口的固定方式也可以采用螺纹连接的方式。
进一步地,在所述吸液管603和所述排液管204内部设置有单向阀206,使膜片1产生振荡时带动添加剂从所述吸液管603进入吸液腔602,在从所述排液管204排出,进入洗衣机内筒。所述吸液管603和所述排液管204可以设置在所述吸液腔602的侧壁的同一侧,可以设置在所述吸液腔602不同侧壁上。
另外,所述吸液管603与洗衣机箱体中储存洗涤液或者漂洗水的储液盒连接,当所述动子4拉动所述膜片1在套筒202内部向套筒202底部运动,使所述吸液腔602的压力减低或者为负压,吸液管603的内部的单向阀206被打开,抽吸储液盒的添加剂进入所述吸液腔602中。
再者,所述排液管204与洗衣机内筒连接,当所述动子4推动所述膜片1在套筒202内部向套筒202开口处运动时,使吸液腔602的压力增大,排液管204内部的单向阀206被打开,挤压内部添加剂进入洗衣机内筒。
进一步地,所述线圈501可以通交流电或直流电。当所述线圈501通入交流电时,由于交流电的特性,其电流的大小、方向呈周期性变化,具体的电流的波形呈正弦波形,由于电流大小的周期性变化,使得产生的磁场会产生周期性的变化,进而对处于所述套筒202中的磁场力同样存在周期性的变化。在向所述线圈501中通入该正弦交流电。在正弦波形的一个 周期过程中,所述动子4始终受到所述线圈501提供的大小变化、磁力方向一致的磁场力。其中所述动子4所受的磁场力的方向始终指向所述线圈501的中心。在开始状态下,磁场力驱动所述动子4向左侧运动,并开始挤压所述弹性元件3,则磁场力对所述动子4做功转化为所述弹性元件3的弹性势能,使得磁场力始终推动所述动子4运动,对所述动子4做正功。直到所述动子4运动到最左侧停下后,所述弹性元件3开始释放自身的弹性势能,转化为所述动子4的动能,使其开始向右侧运动,此时磁场力阻碍所述动子4运动,对所述动子4做负功,直到所述动子4运动到最右侧停下。在正弦交流电的连续周期下,所述动子4会在所述套筒202中高频往复进行振荡运动,所述膜片1在所述动子4作用下基本上以相同的频率振荡。从而使洗涤剂从所述吸液管603进入吸液腔602,从所述排液管204排出,进入洗衣机内筒。
如图6所示,在一些实施例中,当所述线圈501通入正弦交流电时,以电流的整个正向波形为半个周期为例。所述线圈501电流导通,电流从0逐渐增强至最大值,磁场强度不断增强,使得所述动子4受到的磁场力不断增加并向所述套筒202的桶底方向移动,此时所述动子4处于初始设置位置7处。所述动子4压缩弹性元件3使得其弹力不断增加,此阶段磁场力始终大于弹性元件3和膜片1的恢复力,则所述动子4在所述套筒202中做加速度不断减小的加速运动。当磁场力等于恢复力时,此时所述动子4位于平衡位置8处,加速度为0,所述动子4的速度最大。所述动子4继续向套筒202底部方向运动,恢复力大于磁场力,则所述动子4开始做减速运动直至为0。当所述弹性元件3的形变量达到最大,即压缩量最大。此时恢复力大于磁场力,所述动子4位于第一换向位置9处,所述动子4开始做反向加速运动,即所述动子4向所述套筒202的开口端方向运动,电流由最大值开始向0逐渐减弱。当磁场力等于恢复力时,此时所述动子4位于平衡位置8处,加速度为0,所述动子4的速度最大。所述动子4继续向套筒202的开口端方向运动。当所述动子4位于初始设置位置7时,所述弹性元件3与所述膜片1恢复形变,此时加速度为0,速度不为0。动子4继续向套筒202的开口端方向运动,带动弹性元件3和膜片1产生形变。则磁场力和恢复力方向一致,对所述动子4做负功,所述动子4开始做减速运动直至为0。此时所述动子4位于第二换向位置10时,开始向套筒202的底部方向运动。则所述动子4在半个周期中完成一次往复运动,其反向波形中所述动子4的运动状态与上述一致。
再另一些实施例中,当所述线圈501通入正弦交流电时,以电流的整个正向波形为半个周期为例。所述线圈501电流导通,电流从0逐渐增强至最大值,磁场强度不断增强,使得所述动子4在初始设置位置7受到的磁场力不断增加并向所述套筒202的底部方向移动,所述动子4压缩弹性元件3使得其弹力不断增加,此阶段磁场力始终大于弹力,则所述动子4在所述套筒202中做加速度不断减小的加速运动。当磁场力等于恢复力时,此时所述动子4处于平衡位置8,加速度为0,所述动子4的速度最大。所述动子4继续向套筒202底部方向运动,电流从最大值开始逐渐降为0。所述弹性元件3的弹力大于磁场力,则所述动子4开始做减速运动直至为0。当所述弹性元件3的形变量达到最大,即压缩量最大。此时所述动子4位于第一换向位置9处,所述动子4开始做反向加速运动,即所述动子4向所述套筒202的开口端方向移动,其中所述动子4向套筒202底部移动与向套筒202开口端移动所需的时间周期一致。在所述动子4向套筒202开口端移动的过程中,磁场力先逐渐减小后在逐渐增大,但整体磁场力对所述动子4做负功最少。则所述动子4与所述弹性元件3的振荡周期与上述正弦电流的周期(即磁场力的变化周期)相同或者呈倍数关系时,会产生共振,使得所述动子4在磁场力的驱动下振荡的幅度最大,则有效保证吸排液的效果。由于持续的交变电流的作用,使得所述动子4可以在所述套筒202中高频振荡,进而使得整个吸排液的动作连续进行。整体来说,通过控制交流电频率与所述动子4和所述弹性元件3形成的振荡系统的振动频率之间的关系,可以控制所述动子4在所述套筒202中的振荡幅度,进而保证吸排液的效果。
还一种实施方式是,当所述线圈501中通直流电时,并以一定频率控制电流的通断。当 所述线圈501的绕制匝数和通入的电流强度固定不变时,向所述线圈501中通入直流电,就会瞬时产生强度和方向都不变的磁场。此时,所述动子4在该磁场中受到的力一直保持不变,所述动子4逐渐压缩所述弹性元件3的过程中,受到的弹力不断变大直至与磁场力平衡,所述动子4最终会静止在平衡位置8。使所述动子4往复振荡运动,需要使该磁场力以一定的频率出现和消失,导通所述线圈501的电流时,所述动子4的运动方向与磁场力方向一致;断开所述线圈501的电流时,所述动子4在所述弹性元件3弹力的作用下回弹。进而通过控制所述线圈501通断的频率,同样可以实现所述动子4在所述套筒202中振荡运动。
本发明还提供一种洗涤设备,采用上述任一所述的自动投放装置的驱动装置。自动投放装置的吸液管603连接洗涤设备的洗涤剂储存盒,自动投放装置的排液管204连接洗涤设备的进水口,通入的水流与洗涤液混合后进入洗涤桶中。
实施例二
如图7至图12所示,为本发明提供的一种洗涤设备的自动投放装置,包括:驱动结构、吸液装置6,膜片1的圆周固定在所述驱动结构和/或所述吸液装置6上,所述膜片1受到所述驱动结构施加的一个驱动方向固定、驱动大小周期性变化的力,配合所述膜片1的弹性复位力驱动所述膜片1在轴向方向上往复振动,将洗涤液吸入/排出所述吸液装置6。
具体的,膜片1受到驱动结构驱动方向固定方向、驱动大小发生周期性变化的力,膜片1的弹性复位力始终与膜片1受到驱动结构的力的方向相反,这两个力配合使得弹性材料1在轴向方向上往复振动。以膜片1受到靠近驱动结构的力的方向是朝向驱动结构,膜片1的弹性复位力的方向是朝向吸液装置6为例,驱动结构包括线圈501和动子4,线圈501绕设于套筒202的外侧,线圈501通电产生磁场,动子4受到磁场的驱动在套筒202中沿着轴向方向往复振动,吸液装置6与驱动结构连接,膜片1的圆周固定在吸液装置6上,膜片与所述吸液装置6形成吸液腔602。当膜片1受到驱动结构的驱动力后向靠近驱动结构的方向产生弹性形变,吸液腔602的空间体积变大,使得定量的洗涤液能够吸入吸液腔602内;随着膜片受到的驱动力逐渐减小,并且由于膜片1本身也具有弹性,当膜片1的弹性复位力大于驱动力时,膜片1的弹性复位力驱动膜片1向靠近吸液装置6的方向复位,吸液腔602的空间体积变小,使得定量的洗涤液从吸液装置6排出,进入洗衣机内筒中。
基于膜片1在原始位置附近会沿着轴向方向往复振动,实现了定量投放洗涤液,提高了洗涤液投放的精准度。并且在本发明中,动子为形状、提了相对固定不变化的金属结构件,不具有磁性且会在磁场的吸引下产生运动位移,但不会整体被磁化。
为了更详细的了解膜片1的圆周如何固定吸液装置6上,本发明还提供了第二种实施方式,包括:所述吸液装置6外周设有端盖601,所述膜片1的圆周固定在所述端盖601的周壁的端部上;或者,所述端盖601的周壁的端部上设有凹槽,所述膜片1的圆周固定在所述凹槽内。
具体的,在吸液装置6的外周设置有端盖601,端盖601的周壁的端部为平滑面,膜片1的圆周的一面可直接设置在端盖601的周壁的端部,或者端盖601的周壁的端部设置有容纳膜片1的凹槽,膜片1的圆周的一面固定在上述凹槽中,膜片1除圆周部分的中间部分为可发生形变部位,其中膜片1的形状可以为碗状、囊状等任意形状,本发明不予以限制。所述膜片1与所述吸液装置6配合形成吸液腔602,所述吸液腔602为所述膜片1提供第一形变区域。
具体的,膜片1构成吸液腔602的一个侧壁,膜片1与吸液装置6共同形成吸液腔602,其中吸液腔602不仅用于存储洗涤液/将存储的洗涤液排出至洗衣机内筒中;当膜片1受到动子4的驱动力向靠近吸液装置6的方向产生弹性形变时,吸液腔602还用于为膜片1提供产生弹性形变的第一形变空间。在膜片1设置在吸液装置6的基础上,本发明还提供了吸液装置6与驱动结构的连接方式,即第三种实施方式,包括:
所述驱动结构外部设置有壳体2,所述壳体2上设置有翻边201,所述驱动结构通过所述 翻边201与所述膜片1的圆周连接;或者所述翻边201向靠近所述吸液装置6方向设有延伸部,所述驱动结构通过所述延伸部与所述膜片1的圆周连接。所述翻边201以及所述翻边201的延伸部与所述弹性材料1形成第二形变区域。
具体的,驱动结构的外壳2上设置有翻边201,翻边201的端部与膜片1的圆周连接,使得驱动结构与吸液装置6连接,此种情况下,膜片1的中间部位仍然是可发生形变部位。或者是翻边201的端部在沿着动子运动的水平且是靠近吸液装置6的方向延伸形成延伸部,延伸部的周壁与膜片1的圆周的另一面连接,翻边201与膜片1连接形成靠近驱动方向的第二形变区域,或者翻边201以及翻边201的延伸部与膜片1连接形成第二形变区域,当膜片1受到动子4向左的拉力时,膜片1向靠近驱动结构的方向产生弹性形变时,第二形变区域为膜片1提供产生弹性形变的第二形变空间,增加了膜片1向靠近驱动结构的方向形变时的形变空间。又或者当膜片1受到动子4向右的推力,产生靠近吸液装置6的弹性形变,膜片1依靠自身弹性复位力向靠近驱动结构复位时,此第二形变区域为膜片1提供了更大的复位空间。
如图7-图11所示,膜片1的形状可以为碗状、囊状、吸盘状等,当膜片1为图11中的柔性弧状吸盘时,柔性弧状吸盘与吸液装置6的连接方式可以设置为粘合性连接。在洗液装置6内壁形成一个胶粘区,在柔性弧状吸盘外周设置粘合处,将柔性弧状吸盘外周粘合处与液体投放装置内壁的胶粘区贴合,柔性弧状吸盘的凸面与动力结构的输出端对应设置,外周壁的端部与柔性弧状吸盘的凸面高点平齐或突出。柔性弧状吸盘自外周至端部形成逐渐收紧的半球状曲面结构,柔性弧状吸盘与吸液装置6之间形成两个互相隔离的腔室。柔性弧状吸盘外周围合的范围同时包括进液口与出液口的腔室为吸纳腔,另外一个腔室为隔离腔。
柔性弧状吸盘将液体围合在吸纳腔,使隔离腔内的元件与液体分隔,实现密封,进而保护了液体自动投放装置内部件免受腐蚀,增长其使用寿命。柔性弧状吸盘可在吸液腔602形成一个具有稳定压强的半封闭液体环境,改变柔性弧状吸盘的形状,其可改变吸纳腔602腔室内的空间体积,实现吸液/排液的过程。
进一步的,为了更详细的了解膜片1发生弹性形变以及复位的具体过程,本发明提供了第四种实施方式,包括:所述驱动结构驱动所述膜片1向靠近所述驱动结构的方向产生弹性形变,所述膜片1依靠自身弹性复位力向靠近所述吸液装置6的方向做往复振动。
具体的,如图9至图10所示,图10为膜片1的初始状态,图9为膜片1产生弹性形变的状态,膜片1的中间部位具有一定的厚度,驱动结构驱动动子4向左运动,在第一个阶段,膜片1受到动子的向左的拉力由0逐渐增加到最大,这个过程当中膜片1产生向靠近驱动结构方向的弹性形变,并且产生的弹性形变越来越大,膜片1的弹性复位力越来越大,驱动膜片向靠近吸液装置6的方向复位。直到膜片受到的向左的拉力F1等于弹性复位力F2,膜片1仍然有向靠近驱动结构的方向产生弹性形变。
在第二个阶段,膜片的弹性复位力的最大值F2大于膜片1受到动子的向左的拉力F1,膜片1有向靠近吸液装置6的方向运动的趋势,膜片1向靠近吸液装置6复位的过程中,受到的向左的拉力F1越来越小,弹性形变越来越小,进而膜片的弹性复位力会逐渐减小,直至膜片1回到原始位置,由于膜片1还有向靠近吸液装置6方向运动的速度,因此膜片1会在原始位置附近振荡直至速度减为0,恢复到原始位置。通过上述两个阶段实现了膜片1在原始位置附近沿轴向方向上的往复振动,当吸液腔602的空间体积增大时,使得洗涤液进入吸液腔602内,当吸液腔602的空间体积减小时,洗涤液从吸液装置6中排出,进入洗衣机内筒中实现了定量投放洗涤液。
进一步的,为了更详细的了解膜片1发生弹性形变以及复位的具体过程,本发明提供了第五种实施方式,包括:
所述驱动结构驱动所述膜片1向靠近所述吸液装置6的方向产生弹性形变,所述膜片1依靠自身弹性复位力向靠近所述驱动结构的方向做往复振动。
具体的,如图9、图10所示,图9为膜片1的初始状态,图10为膜片1产生弹性形变的状态,基于膜片1的形状以及弯折程度以及翻边201的设置会对膜片1在向靠近驱动装置产生弹性形变时具有抵挡作用,因此膜片1向靠近吸液装置6一侧产生弹性形变会更容易,这里是对膜片1向靠近吸液装置6的方向产生弹性形变以及复位的过程进行分析。
膜片1的中间部位具有一定的厚度,驱动结构驱动动子4向右运动,在第一个阶段,膜片1受到动子的向右的推力由0逐渐增加到最大,这个过程当中膜片1产生向靠近吸液装置6的方向的弹性形变,并且产生的弹性形变越来越大,膜片1的弹性复位力越来越大,驱动膜片向靠近驱动结构的方向复位。直到膜片受到的向右的推力F1等于弹性复位力F2,膜片1仍然有向靠近吸液装置6的方向产生弹性形变。
在第二个阶段,膜片的弹性复位力的最大值F2大于膜片1受到动子的向右的推力F1,膜片1有向靠近驱动结构的方向运动的趋势,膜片1向靠近驱动结构复位的过程中,受到的向左的推力F1越来越小,弹性形变越来越小,进而膜片的弹性复位力会逐渐减小,直至膜片1回到原始位置,由于膜片1还有向靠近驱动结构方向运动的速度,因此膜片1会在原始位置附近振荡直至速度减为0,恢复到原始位置。通过上述两个阶段实现了膜片在原始位置附近沿着轴向方向上的往复振动,当吸液腔602的空间体积增大时,使得洗涤液进入吸液腔602内,当吸液腔602的空间体积减小时,洗涤液从吸液装置6中排出,进入洗衣机内筒中,实现了定量投放洗涤液。进一步的,驱动结构还包括动子4,动子4与膜片不连接,弹出材料1与到动子之间为间断式接触,具体的,动子4受到驱动结构向右的力逐渐向靠近吸液装置6的方向运动,当动子4撞击到膜片1时,膜片1产生向靠近吸液装置6的方向的弹性形变,具体的形变过程和复位过程和上述第6种实施方式相同,在此不做赘述。
进一步,所述膜片1设有嵌入部101,所述动子4的一端与所述嵌入部101连接。
具体的,膜片1的中间部位具有一定的厚度,膜片1中间部位设置有嵌入部101,动子4的一端为嵌入块401,通过所述嵌入块401与所述嵌入部101配合卡接,又或者,动子4包括运动部402和哑铃或者其他形状的传导部403,传导部403的一端与动子4运动部402连接,传导部403的另一端设置有嵌入块401,嵌入块401与所述嵌入部101配合卡接,又或者,动子4的一端直接作为嵌入块与膜片1的嵌入部101配合卡接,又或者,膜片1的中心部位具有一定的厚度,膜片1内设置有内螺纹通道结构,动子的一端设置有突出的螺纹杆,通过螺旋将螺纹杆旋进内螺纹通道,实现动子4与膜片1的连接,基于上述几种方式均可实现动子4与膜片1的连接,本发明不予以限制具体使用哪种方式来实现动子4与膜片1的连接。
进一步的,膜片1既有可能受到动子4的拉力产生靠近驱动结构方向的弹性形变,又可能受到动子4的推力产生靠近吸液装置6方向弹性形变,上述两种情况可以参照第四种实施方式和第五种实施方式,在此不再详细赘述,同时膜片向哪个方向产生弹性形变也要考虑到膜片的形状,以及膜片更容易发生形变的方向。
采用上述方案,无论膜片1是受到动子的拉力或者推力,膜片1本身始终会给予膜片1一个与运动方向相反的弹性复位力,这种方案能一定程度上避免出现膜片1过度形变引起的疲劳破坏的情况,极大地提升了自动投液装置的使用寿命。
进一步的,膜片1的材质为塑料、橡胶、硅胶、动物皮、合金板、聚氨酯中的任意一种,膜片1可以为具有一定延展性和韧性的盘状结构,也可以为碗状或者为囊状,本发明不予以限制。当动子拉动或推动膜片1时,膜片1因自身的弹性复位力还会小幅度的前后波动,将集聚的能量释放彻底。这种方案可以使能量得到更大程度的利用,大大提升了能量利用效率和投放洗涤液的效率。
如图12所示,膜片1包括第一区域和第二区域,其中第一区域为膜片1的外周,用于与吸液装置6固定,第二区域为膜片1受力区域,在第一区域和第二区域之间包括第三区域,第三区域主要是膜片1产生弹性形变的区域。
具体的,膜片1通过第一区域与吸液装置6固定连接,动子4通过撞击膜片1的第二区域,使得膜片1的第三区域产生弹性形变;又或者,动子4与膜片1的第二区域嵌入式连接,膜片1的第二区域受到动子4的拉拽,膜片1的第三区域产生弹性形变。
其中假如膜片1的半径为r,第三区域所在的圆环的环宽为l,其中l与r的关系满足如下条件:当膜片1复位时,膜片1的复位侧的支撑端面阻挡膜片1产生较大的弹性形变,但是当第三区域所在的环宽较小时,膜片1的复位侧的支撑端面也会较小,进而膜片1受到的压强越大,对膜片1的伤害会较大,但是当第三区域所在的环宽较大时,膜片1的复位侧的支撑端面也会变大,进而膜片1受到的压强越小,对膜片1的伤害越小,起到了延长膜片1的寿命。为了更详细的了解驱动结构驱动动子的具体原理,本发明提供了第五种实施方式包括:
所述驱动装置还包括电源,所述线圈501通过接入直流电/交流电与所述电源连通。其中直流电是指电流的方向不作周期性变化,电流的大小发生周期性变化的电流;交流电是指电流的大小和方向发生周期性变化的电流。
初始时线圈未通电,动子不运动,膜片无形变;
采用正弦交流电为例,当交流电的一个周期分为上半周期和下半周期阶段,交流电的上半周期阶段和下半周期阶段电压图像(或电流图像)关于电压数值(或电流数值)为0的点中心对称;以上半周期和/或下半周期的电压峰值(或电流峰值)点为中点,将半周期分为电压强度升高(或电流升高)阶段和电压强度降低(或电流降低)阶段。
线圈通入交流电,动子不会被整体磁化,会被套筒左侧部分侧壁的敞口中外露的磁力线吸引向左移动。以动子为受力体分析,动子受磁场力F1和膜片的弹性复位力F2作用而运动。当交流电处于上半周期的电压强度升高阶段,处于初始位置的动子,受到向左的磁场力F1致使动子向左移动,向左移动的同时膜片的弹性复位力F2来阻止动子左移,此时膜片的弹性复位力F2是对动子向右的拉力。随着电压的继续增大,动子受到向左的磁场力F1不断地增大,迫使膜片继续向左拉伸,弹性复位力F2继续增大。当到达电压峰值点,此时,动子受到向左的磁场力F1在数值上等于向右的膜片的弹性复位力F2,但是动子仍具有向左的动量,动子继续向左侧位移一定的距离,进一步地拉伸了膜片,使向右的膜片的弹性复位力F2大于导磁受到向左的磁场力F1的数值时,动子受到的合力向右,动子有向右运动的趋势;
当交流电处于上半周期的电压强度降低阶段,处于左侧最远极限位置的动子,受到向右的膜片的弹性复位力F2大于动子受到向左的磁场力F1的数值,因此动子右移。动子向右移动的同时膜片的弹性复位力F2减小来致使动子右移,此时膜片的弹性复位力F2是对动子向右的拉力。随着电压的继续降低,动子受到向左的磁场力F1不断地减小,弹材料的弹性复位力F2继续减小致使动子右移。当到达上半周期与下半周期的转换点(即交流电电压数值为0、电压即将换向的转折点),此时,动子不在受磁场力(即磁场力F1为0),存储的膜片的弹性复位力F2释放完全,此时动子不受外力,但是动子仍具有向右的动量,动子继续向右侧位移一定的距离。动子继续向右移动一定距离,这个过程中膜片被推动向右,此时膜片的弹性复位力F2是对动子向左的推力。直至动子的速度减为零,此时动子受到的合力向左,动子有向左运动的趋势;
此时如果将交流电停止,完成动子会在初始位置左右反复,直至将能量消耗殆尽;此时如果保持交流电的接通,交流电进入下半周期的电压强度升高阶段,再进入下半周期的电压强度降低阶段,下一步进入上半周期的电压强度升高阶段,以此循环,即当交变电流频率50HZ,动子运动100个来回。
需要指出的是,交流电进入下半周期的电压强度升高阶段受到的力分析与交流电进入上半周期的电压强度升高阶段相同;交流电进入下半周期的电压强度降低阶段受到的力分析与 交流电进入上半周期的电压强度降低阶段相同,这里不再做赘述。
另一种情况为初始时线圈未通电,动子不运动,膜片无形变;采用正弦交流电为例,处于上半周期阶段,线圈生成上N下S的磁极(当然根据电流方向的不同,也可能是上S下N),动子部分与敞口部位在高度方向上部分重合,线圈敞口部位的外漏磁力线将动子磁化形成上S下N的磁极。过程随着电压先高后低,线圈形成的磁极强度先强后弱直至消失,因此动子的磁性也表现为先高后低。动子上端受到的线圈N极的吸引力和S极的排斥力均指向上,动子下端受到的S极向上的吸引力远远大于收到N极向下的排斥力,因此动子向上运动,最终在一个相对稳定的位置速度减为零。动子向上运动的过程受到方向向上的加速度从零增至某值,后减为零。
当交流电处于周期中点时,动子现处于相对稳定状态,无磁极分布的磁场。当交流电处于下半周期阶段,线圈生成上S下N的磁极,线圈敞口部位的外漏磁力线将动子磁化形成上N下S的磁极。过程随着电压的大小先高后低,线圈形成的磁极强度先强后弱直至消失,因此动子的磁极也表现为先高后低。在磁极吸引力的作用下,线圈S极对动子下端向下的排斥力大于线圈S极对动子上端的吸引力和线圈N极对动子上端向上的排斥力和线圈N极对动子下端向上的吸引力,因此动子向下运动,最终停留在一个相对稳定的位置复位。这种方案,能起到磁场抵消的作用。根据所需的洗涤添加剂用量,确定通电时间,实现洗涤剂的精准投放。采用上述方案,驱动装置采用磁驱的方式,能减小自动投液装置的体积和质量,磁驱线圈的成本较其他方式低,以此可以降低生产的成本,更加切合用户的实际使用需求。
进一步的,为了避免洗液装置6在吸入洗涤液和排除洗涤液的过程中发生液体回流的现象,本发明还包括:所述吸液装置6包括吸液口和排液口,所述吸液口与所述吸液管603连接;所述排液口与所述排液管204连接,所述吸液管603和所述排液管204内均设有单向阀206。吸液管203内设置有单向阀206,单向阀206只允许吸液管203内的洗涤液进入吸液腔602内,排液管204内也设置有单向阀206,这里的单向阀206只允许排液管204的洗涤液排出至洗衣机内筒内,而不能流向吸液腔602或者倒流进入吸液管203内。
实施例三
如图13-20所示,本发明的实施例介绍了一种洗涤设备的自动投放装置及洗涤设备,洗涤设备至少包括,洗涤剂储盒、自动投放装置和水盒;洗涤剂储盒可以是墨盒式洗涤剂储盒、也可以是敞口的手动添加式的洗涤剂储盒;自动投放装置设置有吸液管603和排液管204,吸液管603与洗涤剂储盒相连通,排液管204与水盒的至少一条水路相连通;通过自动投放装置将洗涤剂储盒中的添加剂吸入并排入水盒的水路中,在通过流入水盒对应水路中的进水将水路中的添加剂冲入洗涤设备的衣物盛放筒中,以实现对洗涤剂的自动投放。
其中,洗涤剂储盒可盛放至少一种添加剂,通过电磁阀或其他阀门控制对应添加剂的出口与自动投放装置的吸液管603相连通,实现自动投放装置通过吸液管603对对应的一种或多种添加剂进行吸液。
如图13-19所示,本发明的实施例中,自动投放装置外部主体为壳体2;壳体2内设置有,套筒202,套筒202一端为封闭的筒底,对应的另一端开设开口;线圈501,同轴的套设于套筒202的外周;动子4,可活动的设置于套筒202的套筒腔203内;套筒202开口上设置有与动子4相连的膜片1;动子4的中心设置于线圈501中心偏向套筒202的开口方向上;动子4在线圈501通电产生的电磁力和膜片1的弹性力共同作用下,于套筒202内做高频往复运动。通过上述设置,通过弹性力和电磁力的共同作用,令动子4能够在套筒腔203内以稳定的振幅和振频振动,从而保证了对添加剂的稳定投放,保证了控制投放剂量的精度;通过在相同工作时间内做更多的频次的振动,相对于低频振动,可有效缩小单次振动误差对投放工作的整体误差值的影响,进一步提升了投放量的精度;同时,低振幅可有效降低工作噪音,令自动投放设备工作更安静。
需要说明的是,本发明的实施例中提出的高频指的是高于本领域的自动投放装置的动子 振频的频率;高频的范围为30-300Hz。
具体的,套筒202开口端的外周连接有径向向壳体2延伸的翻边201,已将套筒202支撑于壳体2内;翻边201与套筒202的开口相平齐;套筒202的外周、翻边201和壳体2构成安装腔205,用于自动投放泵的电子元件的安装、和电线的排布;套筒202内设置有动子4,动子4的中心设置于线圈501中心偏向套筒202口方向上;线圈501通电产生的电磁力,令动子4向远离套筒202口方向移动;套筒202开口上扣设一端盖601,端盖601包括与翻边201间隔一定距离相对设置的片状盖底,盖底的外周设置有向翻边201的外沿延伸的扣合部,端盖601通过扣合部密封的对应与翻边201外周相连;端盖601的盖底和扣合部构成自动投放装置的吸液腔602。
本发明的实施例中,自动投放装置的壳体2可以由洗涤设备的内部结构集成;或者,可以设置独立的壳体2,作为自动投放装置的外部结构,再将自动投放装置通过壳体2配合的固定安装在洗涤设备内。
如图13-19所示,本发明的实施例中,套筒腔203与吸液腔602通过一具有弹性的膜片1分隔;膜片1一侧与动子4相连,令动子4可拉动膜片1向远离套筒202口方向移动;膜片1一侧与套筒202之间具有供膜片1形变的空间;且相对的另一侧与端盖601的盖底之间具有一定间距,该间距形成了自动投放装置的吸液腔602,吸液腔不仅具有用于容纳洗涤液的功能,同时还保证了膜片1在振动时不会与端盖601的盖底相接触,避免了盖底对膜片1的振动形成阻碍,提升了膜片1的振动效果;端盖601于远离套筒202一侧的侧壁上设置有与吸液腔602相连通的洗液管和排液管204;吸液管603和排液管204内分别设置有向靠近吸液腔602和远离吸液腔602单向导通的单向阀。通过上述设置,动子4受电磁力驱动下向远离套筒202口移动,同时通过与膜片1的连接,拉动膜片1使膜片1发生形变,从而改变了膜片1一侧吸液腔602的腔室容积,令容积变大,并通过容积变大产生的负压令吸液管603的单向阀单向导通,使自动投放装置进行吸液动作;然后,在动子4移动到最远距离后,膜片1的弹性力在克服电磁力或者线圈501断电令动子4不受电磁力的影响的情况下,拉动动子4复位,同时膜片1的形变也回复至初始状态,再一次改变了吸液腔602的腔室容积,令腔室容积缩小并回复至初始容积,并通过容积变小产生的高压令排液管204的单向阀单向导通,使自动投放装置进行排液动作。
本发明的实施例中,动子4距膜片1较近的一端设置有嵌入块401,膜片1靠近嵌入块401的一侧设置有朝向动子4开口的嵌入部101;嵌入块401通过嵌入部101的开口对应嵌入嵌入部101内。通过嵌入式连接,令动子4与膜片1之间的连接更加稳定。
本发明的实施例中,动子4的质量为1g到100g之间;膜片1弹性系数较大,令膜片1和动子4组成的系统的固有频率在30-300Hz;根据自由振动公式,当动子4所连接弹性体的弹性系数越大,动子4与所连的弹性体组成系统具有的固有频率越大;本发明中的实施例中,在动子4质量确定的情况下,通过选用弹性系数较大的膜片1,令膜片1与动子4构成的系统具有高频的固有频率,从而在动子4受电磁力作用的同时,通过膜片1提供的反向的弹性力在套筒202内做高频往复运动。通过上述设置,动子4通过与膜片1连接支撑,以令动子4与套筒202内壁不接触的设置于套筒腔203内,令动子4在往复运动过程中不会受到套筒202内壁摩擦力的影响,降低因摩擦力产生的功耗,提升工作效率;同时,膜片1为具有弹性的膜结构,当动子4受磁力向远离膜片1方向运动时,动子4对膜片1进行拉伸,相对的,膜片1对动子4产生与运动方向相反的弹性力;当动子4受到的弹性力大于磁吸力时,动子4开始做减速运动直至速度为零;当动子4速度降为0时,动子4开始向靠近膜片1方向运动,直至运动至初始位置;回到初始位置时,动子4因惯性推动膜片1向远离套筒202开口方向移动,膜片1也随之向远离套筒202开口方向位移;上述过程中膜片1再向某一方向形变的同时,会令膜片1一侧的吸液腔602的容积发生变化,从而令吸液腔602内产生负压或高压的情况,以令吸液腔602进行吸液或排液动作。上述对自动投放装置内发生的运动分析 只是为了方便对本发明的理解,实际上本发明的自动投放装置体积较小,其中,吸液腔602内的容积为2-30mL,固动子4实质上在套筒腔203内的行程很短,主要通过高频的往复运动实现在短时间内完成投放。
如图13、16和18所示,本发明的一种实施例中,套筒202的翻边201与套筒202的开口相平齐;膜片1的外周边沿密封的设置于端盖601与翻边201的连接处上,令膜片1与翻边201一侧相贴合;膜片1在被动子4拉伸时,通过套筒202开口向套筒腔203内部形变延伸。具体的,端盖601与翻边201的连接处的内侧,设置有凹陷形成的第一凸起604,通过将膜片1的外周边沿对应密封的安装与连接槽内,以实现将分设于膜片1两侧的吸液腔602和套筒腔203分割为互相独立的腔室;膜片1与翻边201贴合设置,在被动子4拉伸时,膜片1通过套筒202口向套筒腔203内部形变延伸,以令吸液腔602容积增大,从而令自动投放装置进行吸液动作。本发明的实施例中,动子4自身不具备磁极,由在磁场内会被磁场吸引,但不会被磁场磁化的材料构成。通过上述设置,第一凸起604于壳体2与翻边201相连处设置,令膜片1与翻边201贴合设置;通过上述令膜片1在被拉伸、和/或撞击过程中,翻边201可对膜片1向动子4方向的形变形成支撑保护作用,避免膜片1因振动面积过大导致破裂。
如图14、15、17和19所示,本发明的另一种实施例中,套筒202开口端的外周连接有沿套筒202径向向外延伸的翻边201,翻边201的外周边沿连接有向远离套筒202方向延伸的第二翻边2012;端盖601与第二翻边2012的延伸端对应连接;膜片1的外周边沿密封的设置于端盖601与第二翻边2012的连接处上;膜片1与翻边201之间间隔一定距离,形成缓冲腔605;膜片1在被动子4拉伸时,膜片1向缓冲腔605内形变延伸。通过上述设置,令动子4在拉动膜片1时,能使膜片1更好的被拉伸形变;同时,膜片1在振动过程中,避免撞击翻边201,导致振动的幅度和时间缩短,提升自动投放装置的工作效率。
如图16和17所示,本发明的实施例中,膜片1一侧与动子4相连,相对的另一侧与支撑弹簧301的一端相连;支撑弹簧301与动子4同轴设置,且对应的另一端与端盖601相连;动子4的质量为1g到100g之间;膜片1和/或支撑弹簧301分别的弹性系数较大,令膜片1和支撑弹簧301与动子4组成的系统的固有频率为30-300Hz;动子4受电磁力作用的同时,通过膜片1和支撑弹簧301提供的反向的弹性力,在套筒202内做高频往复运动。
通过上述设置,通过与膜片1相连的支撑弹簧301,以增强动子4拉伸膜片1过程中,受到膜片1和支撑弹簧301共同的弹性力,令动子4复位时,提升膜片1产生的振动效果;同时,支撑弹簧301的设置令膜片1在受到动子4相同大小的拉力作用下,在积蓄相同的弹性势能的情况下,膜片1产生的形变量更小,避免膜片1因经常进行较大形变量的拉伸,导致膜片1表面变形松弛、弹性力降低情况的发生,提升了膜片1的使用寿命。
如图18和19所示,本发明的另一种实施例中,动子4一端与膜片1相连,相对的另一端连接或抵接有弹性元件3;弹性元件3与动子4同轴设置,且对应的另一端与套筒202筒底相连;动子4的质量为1g到100g之间;膜片1和/或弹性元件3分别的弹性系数较大,令膜片1和弹性元件3与动子4组成的系统的固有频率为30-300Hz;动子4受电磁力作用的同时,通过膜片1和弹性元件3提供的反向的弹性力在套筒202内做高频往复运动。
通过上述设置,通过设置弹性元件3直接作用于动子4,相对于没有弹性元件3连接的方案,在受到相同电磁力的情况下,可通过更短的行程产生相同的弹性力,从而减少了膜片1的形变量,降低了动子4与膜片1连接处的压力,在提升膜片1的振动效果的同时,还能提升膜片1与动子4连接处的使用寿命;同时,支撑弹簧301直接与动子4相连,可对动子4产生支撑作用,减少动子4对膜片1与动子4连接处的压力,避免该连接处由于长时间受压力影响导致变形,令动子4无法与线圈501保持同轴,降低动子4往复运动的工作效率。
如图20所示,本发明的另一种实施例中,动子4与膜片1不相连;套筒202的底部连接有弹性元件3;动子4距膜片1较近一端与膜片1相抵接,对应的另一端与弹性元件3相连 或抵接;动子4的质量为1g到100g之间;弹性元件3的弹性系数较大,令弹性元件3与动子4组成的系统的固有频率为30-300Hz;动子4受电磁力作用的同时,通过膜片1和支撑弹簧301提供的反向的弹性力在套筒202内做高频往复运动;优选的,在动子4不受磁吸力吸引时,弹性元件3处于微压缩状态,通过弹性力,以令动子4与膜片1相抵接。
通过上述设置,当动子4受到磁吸力运动时,仅压缩弹性元件3,并不会对膜片1产生拉伸;动子4复位时,动子4通过惯性向膜片1继续运动,并与膜片1的表面发生撞击,令膜片1产生振动,从而令吸液腔602进行进、出液动作;为了方便理解,此过程类似于敲击鼓面,令鼓面产产生振动;但本发明中,由于膜片1一侧的吸液腔602内填充有添加剂,固膜片1的振动仅会形成添加剂的吸液、排液,并不会像鼓面振动令空气产生波动,造成巨大声响;同时,通过弹性元件3将动子4与膜片1相抵接,令动子4被夹持于弹性元件3与膜片1之间,令膜片1也可对动子4提供一定的支撑作用,降低弹性元件3与动子4连接处的压力,避免该连接处变形导致动子4偏位,导致动子4无法正常进行往复运动。
如图18-20所示,本发明的上述实施例中,弹性元件3与动子4相连;弹性元件3外周或内部套设有反弹弹簧302;反弹弹簧302与弹性元件3同轴设置,长度不大于弹性元件301的长度,反弹弹簧302一端与套筒202的筒底相连,对应的另一端向动子4所在方向延伸。
通过上述设置,通过弹性元件3和反弹弹簧302的设置,令两弹簧组合形成谐振弹簧,当动子4运动压缩弹性元件3时,弹性元件3在压缩相同长度情况下,可蓄积更大的弹性势能,产生更大的弹性力,从而进一步减小膜片1的拉伸长度;并且,弹性元件3在动子4撞击膜片1后,通过自身的弹性,令动子4可在初始位置反复抖动,以形成对膜片1的反复撞击,从而提升膜片1的振动效果和时长。
本发明的实施例中,电源为直流电,并以直流电为例对被发明中动子4的振动原理进行分析;线圈501所连电源为直流电,当线圈501持续通电时,在动子4运动到收到的电磁力等于弹性力的位置为动子4的受力平衡点,电磁力对动子4做的功部分转化为用于令弹簧形变的弹性势能、动子4的动能和动子4带动膜片1运动时膜片1对吸液腔602做的功;在膜片1不断高频振动下,在受力平衡点的动子4,膜片1对外做功也随之不断增加,弹性势能不变,从而令动子4动能不断减小,最后动子4会在受力平衡点停止不动,由此可知,如果持续通直流电,会导致动子4运动一段时间后自动停止,从而令自动投放装置投放一段时间后就会停止投放;为了令动子4能够在自动投放装置持续对洗涤设备投放洗涤液,可通过对线圈501进行间歇性的通断电,以使动子4受磁驱力和弹性力的作用下由自由振动变为强迫振动,以使动子4能够在直流电的驱动下做持续的高频振动。
本发明的实施例中,线圈501电连接有直流接触器,通过直流接触器控制线圈501内的直流电形成间歇性的通断的频率,令线圈501对动子4产生不同频率的间歇性的电磁力,从而控制动子4以不同的频率做高频往复运动。
下面对上述的接触器作出解释,接触器可分为直流接触器或交流接触器;接触器是一种可快速切断交流与直流主回路且可频繁地接通与关断大电流控制电路的装置,接触器不仅能接通和切断电路,而且还具有低电压释放保护作用;接触器控制容量大,适用于频繁操作和远距离控制,是自动控制系统中的重要元件之一。由此,通过接触器的应用实现了在直流电或交流电情况下,进行电路的快速通断,实现动子4的持续强迫振动;并且还可以通过改变接触器的通断频率来控制动子4在强迫振动下的振动频率。
优选的,为了提升膜片1的振动效果,可在动子4受到的磁吸力等于弹性力的节点至动子4的速度降低至0m/s的节点之间的任意时刻关闭电源、或电压变为0;当动子4被回推至初始位置时打开电源、或电压达到正/负极极值,以进一步提升弹性力对动子4的加速效果,令动子4在回到初始位置时具有更大的惯性,令膜片1的振幅更剧烈,提升添加剂投放的效率。
本发明的另一种实施例中,线圈501所连电源为交流电,交流电的频率范围在30-100hz, 由于动子4只会根据受到的磁场大小产生向磁场移动,即交流电无论为正电压或负电压,均对动子4产生吸引作用;交流电电压在到达电压极值时,动子4收到最大的吸引力,向远离膜片1方向运动;交流电电压为0V时,对动子4不受电磁力推动,仅受弹性元件3、和/或膜片1的弹性力,以进行反方向运动;由此,通过到磁力的不断变化以使动子4在交流电的作用下实现往复运动,且动子4的振动频率为交流电频率的两倍;由此可知,在受持续的交流电下,动子4能够保持振频不变的高频振动。优选的,线圈501电连接有交流接触器,通过交流接触器控制线圈501内的交流电形成频率可变的间歇性的通断,令线圈501对动子4产生不同频率的间歇性的电磁力,从而控制动子4以不同的频率做高频往复运动。
另一优选的,线圈501电连接有一变频器,通过变频器改变交流电的频率,从而控制动子4以不同的频率做高频往复运动。
通过上述两种优选的设置,实现通电线圈501对动子4产生不同频率的电磁力,从而实现在交流电情况下,控制导磁做频率可控的高频强迫振动,从而在洗涤设备在需要不同剂量的添加剂时通过改变动子4的振动频率,实现在相同时间或相近的时间内完成投放工作。
实施例四
如图21至图24所示,一种洗涤设备的自动投放装置,包括吸液腔602和安装腔205,所述自动投放装置还包括:膜片1、线圈501及动子4,其中,所述膜片1设置在吸液腔602和安装腔205之间,所述膜片1的周侧与所述吸液腔602相连接;所述线圈501设置在所述安装腔205内;所述动子4与所述线圈501同一延伸方向,所述动子4包括依次连接的运动部402和传导部403,所述线圈501对所述运动部402产生朝向所述吸液腔602运动的磁吸力,通过所述传导部403带动所述膜片1形变,从而对动子4产生反向的弹性力,进而使所述膜片1在运动部402的磁吸力的作用和膜片4自身回弹力的作用下做往复振动。
具体地,如图21至图24所示,膜片1的周侧与壳体2的右端口固定连接,并且端盖601扣合在壳体2的右侧,即在膜片1的左侧与壳体2可以围成安装腔205,其右侧与端盖601可以围成吸液腔602,一般来说,吸液腔602和安装腔205均为密封的腔室,吸液腔602的一侧设置有吸液管603,吸液管603和排液管204可以设置在吸液腔602的相同侧,并且吸液管603和排液管204相互连通,或者,吸液管603和排液管204也可以设置在吸液腔602的不同侧,且,吸液管603和排液管204相互连通,例如,吸液管603和排液管204与吸液腔602相连通,吸液管603和排液管204设置在相同侧,此时,吸液腔602和排液腔共用相同的腔室,即,吸液腔602为排液腔。
此外,壳体2的端口设置有安装位604,安装位604可以为环形的安装槽,或者,安装位604也可以设置为限位凸起,并且安装槽或限位凸起的厚度与膜片1的厚度相适应,对应的,膜片1卡接在安装槽内,即,膜片1与壳体2的右端为卡接配合固定;或者,在膜片1的周侧方向设置有限位缺口,等等,另外,膜片1可以设置为橡胶、硅胶、聚氨酯,塑料等材料,即,具有塑性变形的材质,由此能够在动子4的磁吸力和膜片1自身的反向弹性力的共同作用力下使膜片1沿轴向方向反复振动变形,与此同时,膜片1可以设置为片状、半球状,等,只要膜片1的变形能够使吸液腔602内压强周期性变化,则对膜片1的具体结构、材料的调整和改变均应落入本发明的保护范围之内。
另外,在安装腔205内设置有线圈支架502,线圈支架502与壳体2固定连接,线圈501与线圈支架502固定连接,一般来说,线圈501和线圈支架502组合成为驱动装置5,即,驱动装置5能够对动子4产生磁吸力;与此同时,线圈501可以设置一个,或者,线圈501也可以设置多个,并且,线圈501由盘绕呈环状的通电导线构成,环状线圈501的轴线与动子4的延伸方向相同,确保动子4能够沿轴心线方向来回运动。
可以理解的是,动子4带动膜片1产生的变形量与动子产生的磁吸力有关,且与动子4的质量负相关,例如,动子4的质量越小,或者线圈的匝数越多,产生的磁力就越大,此时,动子的位移量越大,反之,动子的质量越大,或者线圈的匝数越少,产生的磁力就越小。因 此,为了增大动子产生的位移量,可以减少动子的自身的重量。
在本实施例中,动子4本身不具有磁极,线圈501通电后在磁场内被磁吸力,并且,至少部分动子4为形状稳定不易发生变形的金属导磁材料。
一般来说,动子4包括运动部402和传导部403,运动部402设置在线圈501的轴心线上,运动部402的左端靠近壳体2的端部设置,运动部402设置为柱状结构,并且,运动部402的左端伸出至线圈501左端,另一端设置在线圈501内部;或者,运动部402的左右端均伸出线圈501的左端,只要运动部402的形心与线圈501的形心相比远离膜片1方向,并且运动部402运动时形心始终沿轴心线方向运动,线圈501通电产生的磁场可以对运动部402产生的向右的磁吸力,从而能够带动膜片1的中部区域向右变形,与此同时,膜片1由于自身具有弹性,变形后的膜片1能够产生向左的弹性力。
另外,传导部403的左端可以与运动部402的右端相连接,或者,传导部403的左端也可以直接抵接在运动部402的右端,传导部403的右端靠近膜片1设置,即,传导部403的右端可以与膜片1固定连接,或者,传导部403的右端也可以抵接在膜片1上,再或者,传导部403的右端与膜片1之间设置有间隙,装配完成后,传导部403的形心和运动部402的形心均设置在所述线圈501的轴心线上,可以确保作用于运动部402与和传导部403的作用力始终沿轴向方向,能够准确计算运动部402的移动距离。
一般来说,运动部402可以设置为铁、钢的一种,传导部403可以与运动部402形成的材料相同,或者,传导部403也可以与运动部402的材料不同,优选地,传导部403与运动部402设置为不同材料,例如,传导部403可以设置为塑料、或者其他材料,此外,传导部403可以设置为柱状、圆台状,或者哑铃状,优选地,传导部403与运动部403的材质不同,传导部403与运动部402连接形成为哑铃状,这样一来,通过设置传导部403,大大降低了动子4的重量,此时,运动部402的形心更加靠近左侧端部,由此可以增加运动部402向右移动的最大位移量,即,增大了膜片1向右的变形的振动幅度,提高了单次投放量,同时降低生产成本,确保传导部403能够带动膜片1左右振动,进而保证自动投放装置的投放精度,用户使用更佳。
此外,线圈501通电后,线圈501产生磁场对运动部402形成磁吸力,并且磁吸力始终朝向吸液腔602方向,传导部403与运动部402可拆卸连接,例如,传导部403与运动部402可以通过相互配合限位筋和限位槽卡接连接,或者,也可以通过注塑一体成型,再或者,还可以通过螺接结构相连接,等等,只要能够保证传导部403与运动部402能够稳定的连接即可,这样一来,降低了维修成本,传导部损坏时可以及时更换。优选地,如图21至图26所示,所述安装腔205设置有套筒202,所述套筒202与所述线圈501同轴设置,所述第一端4031将所述运动部402抵靠在所述套筒202的端部,且所述传导部403的第二端4032与所述套筒202的开口齐平设置或突出所述套筒202的开口设置;所述套筒202的长度大于所述线圈501的长度,至少部分所述套筒202与所述线圈501重合,所述运动部402靠近所述套筒202的端部。
需要说明的是,套筒202设置为长柱状,套筒202固定在壳体2的中部位置,套筒202与壳体2一体成型,并且套筒202与线圈501同轴设置,穿设于线圈501的内部,套筒202的左端封闭,右端开口与膜片1相抵接,且传导部403的右端与套筒202的开口齐平,此时,套筒202内形成套筒腔,使得运动部402和传导部403能够在套筒腔来回移动,可见,套筒202对运动部402和传导部403形成保护作用,避免运动部402和传导部403与壳体2内的其他部件在运动时发生碰撞,或者,传导部403的右端也可以伸出套筒202的开口,由此,增加了传导部403的移动距离,即,膜片1在恢复至初始位置后还可以继续向左变形,也就是说,增加了膜片1的变形量,提高了自动投放装置的自动投放量;此外,还可以在套筒202的侧壁向内凸出设置有固定环,并且固定环与套筒202同心设置,装配时,动子4穿设在固定环内,确保动子4始终沿轴心线方向运动,同时,在自动投放装置启动前,固定环对动子 4形成支撑作用,避免动子4频繁与套筒接触碰撞,进一步保证动子4的使用寿命,确保动子4的稳定性。
装配完成后,套筒202的两端可以均伸出到线圈501的外部,即,套筒202的长度大于线圈501的长度,或者,套筒202的长度可以与线圈501的长度相等,线圈501的两端分别与套筒202的两端平齐,可以确保套筒腔内的运动部402移动时始终受到向右的磁吸力,即驱动运动部向右运动驱动膜片变形。
进一步地,在套筒202的开口与膜片1的连接处设置有翻边201,翻边201可以为套筒202的开口沿径向方向由内向外延伸形成,套筒202可以与翻边201一体成型,或者,翻边201也可以为由壳体2的内壁向内凸出延伸形成,此时翻边201与壳体2一体成型,优选地,套筒202与翻边201一体成型,提高套筒202的稳定性。
此外,翻边201与膜片1密封连接,一般来说,翻边201的形状与膜片1的形状相适应,例如,膜片1形成片状时,翻边201仅可以包括第一翻边2011,此时,第一翻边2011设置为由套筒202的筒臂分别沿径向方向向外弯折延伸设置,即第一翻边2011与壳体2内壁垂直,此时,膜片1与第一翻边2011的接触面积最大,即,第一翻边2011对膜片1形成有效的支撑,提高膜片1的稳定性;或者,如图25至图26所示,翻边201也可以包括第一翻边2011和第二翻边2012,第一翻边2011设置为由套筒202的开口分别向外弯折延伸设置,第二翻边2012是由第一翻边2011的外端朝向吸液腔602方向弯折延伸设置,即,第二翻边2012与第一翻边2011垂直设置,且第一翻边2011与套筒202的延伸方向垂直,此时,膜片1与第二翻边2012的端部相连接,即,膜片1与第二翻边2011和第二翻边2012之间可以围成缓冲腔室,即第二端4032伸出套筒202的开口与膜片1相连接;再或者,膜片1也可以设置为半球状,对应地,翻边201也可以包括第二翻边2012,其中第二翻边2012是由第一翻边2011的外端朝向吸液腔602方向弯折延伸设置,即,第二翻边2012与第一翻边2011垂直设置,通过这样的设置,使得膜片1在轴线方向的朝向套筒202方向能够形成足够的变形空间,可以增加膜片的反复振动的形变量,同时还可以避免由于膜片反复振动与翻边201相接处,避免膜片的损坏,对膜片形成缓冲作用。优选地,所述传导部403带动所述膜片1振动幅度不超过所述运动部402的形心与所述线圈501的形心连线的距离,运动过程中,所述运动部402受到的磁吸力总是朝向吸液腔方向,所述膜片1、所述动子4组成的系统的平衡位置位于所述膜片1初始位置的右侧,使所述膜片1做周期性振动。
本实施例中,传导部403的形心与运动部402的形心的连线与线圈1的轴心线重合,可以理解的是,线圈1能够驱动运动部402向右运动的最大位移量等于运动部402的形心与线圈1的形心之间的距离,一般来说,膜片1与动子4组成的系统的处于平衡位置时,动子4产生的导磁力与膜片1的回弹力大小相等,方向相反,此时运动部403具有最大的速度利用惯性继续向右运动,确保运动部402形成的磁吸力始终向右,从而确保自动投放装置的稳定运行。优选地,在周期性振动的回复过程,所述膜片1产生的远离吸液腔602方向的回弹力能够克服所述运动部402受到朝向吸液腔602方向的磁吸力,使所述膜片1的振幅逐渐减小。
也就是说,膜片在恢复时,膜片的回弹力达到最大,在一段时间后,由于膜片自身的耗能,弹性力越来越小,并且在通交流电时,运动部402依然能够产生向右的磁吸力,即,磁吸力也会将一部分回弹力抵消,因此,膜片的振幅逐渐减小,直到膜片1停止,由此,通过磁吸力与回弹力的相互作用,使得膜片能够周期性往复振动,从而使得自动投放装置能够实现自动吸取或投放洗涤液,并且还能够保证投放的精度。优选地,所述运动部402至少部分与所述线圈501重合,所述传导部403和所述运动部402均与所述线圈501同轴设置,且所述运动部402与所述传导部403的长度之和大于或等于所述线圈501的长度,所述运动部402的长度小于所述线圈501的长度。
本实施例中,运动部403的长度不易太小,例如,传导部403的长度约为运动部402的长度的二倍,或者,传导部403也可以为运动部402的三倍,只要能够保证对运动部402产 生的磁吸力能够通过传导部403向右运动,带动膜片1向右变形可;一般来说,传导部的403的质量小于运动部402的质量,便于降低传导部403的能耗,装配时,动子4的长度和动子4的直径是固定的,即,在能够保证动子运动需要的磁吸力时,缩短运动部402的长度相当于增加了传导部403的运动位移量,从而增加了膜片1的振动幅度,提高了自动投放装置的投放效率。优选地,所述传导部403包括同轴设置第一端4031、传动杆4033和第二端4032,所述传动杆4033的两端分别与第一端4031和第二端4032相连接,所述第一端4031的直径小于所述第二端4032的直径,所述第一端4031与所述运动部402连接或抵接,所述第二端4032与所述膜片1相连接,其中,所述传动杆4033的两端的直径相等,且所述传动杆4033的直径不大于第一端4031的直径。
需要说明的是,传导部403的第一端4031与第二端4032平行设置,且第一端4031与第二端4032同轴设置,第一端4031和第二端4032之间通过为传导杆4033相连接,传导杆4033优选设置有长条状,第一端4031和第二端4032的形状可以为盘状或块状,也即,传导杆4033的外径小于或等于两端的最小的直径,此时,第一端4031和第二端4032可以确保传导部的稳定性,并且还可以有效降低传导部403的重量,便于运动部402推动传导部403反复移动,此外,传导杆4033可以设置为空心结构,或者,传导杆4033也可以设置为实心柱状结构,传导部403的第一端4031与运动部402的右端相连接,即,第一端4031可以与运动部402焊接固定,或者,第一端4031也可以与运动部402粘接固定,再或者,还可以通过卡接固定,对应地,传导部403的第二端4032与膜片1也可以粘接固定或卡接固定,此外,传导部403的第一端4031的直径小于第二端4032的直径,且第二端4031的直径小于套筒202的内径,或者第一端4031的直径也可以小于运动部402的直径,也就是说,传导部403的第二端4032的周侧与套筒202的内侧壁设置有间隙,便于安装,同时也降低了第二端4032与套筒202的摩擦阻力,降低能耗,进一步提高了投放精度。优选地,所述弹性元件3设置在所述吸液腔602内,所述弹性元件3的一端与所述膜片1连接,所述弹性元件3的另一端吸液腔602的内壁相连接,用于使所述膜片1形成朝向动子4方向运动的恢复推力。
需要说明的是,弹性元件3可以设置为弹簧,或者,弹性元件3也可以设置为弹性绳,优选地,弹性元件3设置为弹簧,并且,弹簧与吸液腔602或膜片1可拆卸连接,例如,可以通过焊接固定,或者也可以通过卡接的方式固定,一般来说,在弹簧的连接处可以设置有固定座、固定环,或者,也可以在吸液腔602的内壁设置有固定环,优选地,固定环设置在吸液腔602的内壁上,并与弹簧的右端相连接,一般来说,弹簧与吸液腔602固定后,弹簧的另一端沿吸液腔602的厚度方向延伸至吸液腔602的另一端,也即,弹簧的另一端与膜片1的右侧端面相抵接,这样一来,膜片1产生向右的形变后,膜片1会压缩弹簧使弹簧发生的弹性形变,从而对膜片1的产生向左推力,由此,确保膜片1能够左右往复振动,便于操作,确保自动投放装置的投放精度,用户体验更佳。
示例性地,传导部403的右端面与膜片1之间可以设置有间隙,即,在通电时,运动部402通过传导部403撞击膜片1使其变形,或者,传导部403的右端面也可以与膜片1相连接,也就是说,传导部403的右端面可以与膜片1相抵接,或者,传导部403与膜片1固定连接;进一步地,传导部403与膜片1可以通过粘结固定,或者,传导部403与膜片1通过卡接结构相固定,优选地,传导部403与膜片1通过螺接结构相固定,提高了膜片1的稳定性。优选地,所述传导部403的第一端4031抵接在所述运动部402,所述传导部403的第二端4032设置有嵌入块401,所述膜片1的对应设置有嵌入部101,所述嵌入块401与所述嵌入部101卡接配合,用于使所述运动部403通过传导部403与膜片相连接。
需要说明的是,嵌入块401可以设置在传导部403的第二端4032,即,嵌入块401设置在传导部403的右侧,或者,嵌入块401也可以设置在传导部403的周侧方向,此外,嵌入块401与传导部403一体成型。传导部的第一端连接或抵接在运动部402,并使得运动部402与壳体2相抵接,这样一来,确保对运动部402的磁吸力传导至膜片1。
一般来说,嵌入块401的截面可以设置为圆形,或者,嵌入块401的截面也可以设置为正多边形,等等,嵌入块401可以设置为一个,且设置在传导部403的轴心线,或者,嵌入块401也可以设置为多个,且多个嵌入块401围绕传导部403的轴心线形成为正多边形,优选地,嵌入块401为一个,且设置在传导部403的端部,嵌入块401与传导部403的连接处还开设有环形缺口。
并且,在膜片1的中部位置对应设置有嵌入部101,并且嵌入部101的开口处设置有环形凸起,且朝径向方向凸起,也就是说,嵌入部101的开口的直径小于嵌入部101的底部的直径,此外,嵌入部101的开口和底部可以同心设置,或者,也可以偏心设置,只要嵌入块401能够嵌入到嵌入部101内即可,则对嵌入块401的形状或数量不做具体的限定。由此,通过嵌入块401与嵌入部101相互配合,提高了传导部403与膜片1接触的稳定性,确保膜片1往复振动过程中膜片1始终与传导部403相连接,确保吸液腔602内的压强能够发生周期性变化,确保膜片1能够正常运行。优选地,所述弹性元件3设置在所述传导部403和所述运动部402之间,所述弹性元件3的一端与所述运动部402连接,所述弹性元件3的另一端与传导部403相连接,所述弹性元件3形成的恢复力拉动所述膜片1恢复至初始值。
可以理解的是,弹性元件3可以设置在膜片1的左侧,也即,弹性元件3与动子4设置在同侧,弹性元件3可以设置在传导部403之间,或者,弹性元件3也可以设置在传导部403与膜片1之间,也就是说,运动部402能够产生向右的磁吸力,对应地,弹性元件3对膜片1产生向左的拉力,此时,弹性元件3环绕设置在传导部403的外周,弹性元件3的一端固定在膜片1上,弹性元件3的另一端与传导部403固定连接,弹性元件3向右推动膜片1时,弹性元件3同样会产生弹性形变,即,弹性元件3对膜片1产生向左的拉力,通过弹性元件3与膜片1共同的回弹力与动子4产生的磁吸力相互作用使得膜片1在轴向方向左右高频振动,确保自动投放装置的投放的精确度。
本发明另一实施例中,弹性元件3可以普通弹簧,可以设置在膜片1的右侧,并且,弹簧的右端与吸液腔602固定,另一端与膜片1相抵接,或者,弹簧的左端与膜片1固定,另一端能够与吸液腔602的内壁相抵接,优选地,弹性元件3为普通弹簧,操作简单,降低了生产成本,同时还能满足膜片1沿轴线方向左右来回振动,确保电磁自动投放装置正常运行。
优选地,弹性元件3包括谐振弹簧或普通弹簧的一种或几种。
本发明一实施例中,弹性元件3可以设置为弹簧,或者,弹性元件3也可以设置谐振弹簧,再或者,弹性元件3也可以设置为普通弹簧与谐振弹簧的组合,对应地,弹性元件3可以设置为一个,且弹性元件3可以设置在膜片1右侧的洗液腔内,或者,弹性元件3也可以设置在膜片1左侧的套筒202内,只要弹性元件3能够对膜片1的变形产生朝向套筒202方向的恢复力,则对弹性元件3的结构类型不做具体限定。
本发明中一实施中,当线圈501通直流电时,开启自动投放装置,线圈501能够产生沿轴心线方向的磁吸力,并且磁吸力的一直保持不变,此时位于线圈501形心的动子4被磁吸力吸引向右移动,即,动子4在通电后处于不平衡的位置,从而驱动动子4在线圈501内朝向膜片1向右移动,对应地,动子推动膜片1的形心位置向右运动,膜片1发生形变,使得吸液腔602内的空间减小,此时吸液腔602的压力增大;与此同时,膜片1的向右变形量主会压缩弹性元件3,使得弹性元件3产生的弹性力逐渐增加,直到与磁力平衡。
断电后,动子4的磁吸力消失,弹性元件3的恢复力和膜片1自身的反弹力逐渐增加,直到上述合力达到最大时,膜片的振幅达到最大,被挤压的弹性元件3的恢复力和膜片1自身的回弹力推动膜片1反向运动,将弹性元件3的弹性势能释放到膜片1上,膜片1在磁吸力和弹性力的作用下反复左右振动,并且,随着膜片1和弹性元件3的能耗越来越大,膜片1自身的回弹力逐渐减小,振幅越来越小,直到膜片停止,因此通过不断地通、断电实现膜片的左右反复振动,进而周期性改变吸液腔的压强。
当线圈501中的电流小于某一定值或中断供电时,电磁吸力小于弹性元件3的反作用力, 被压缩的弹性元件3推动动子4,将弹性元件3的弹性势能释放到膜片1上,转化为膜片1的动能,使得膜片1产生向左的恢复力。此时,吸液腔602内的压力也会得到相应的恢复,膜片1将在反作用力的作用下返回到初始位置。由于动子4每次的移动距离是固定的,使得每次吸液腔602吸入或排除的液体也是定值,因此,只需计算动子4的振动次数,就能精确得出洗涤剂的投放量。
本发明另一实施例中,线圈501也可以通交流电,详细地,当线圈501通交流电时,需要调节交流电的频率大小。由于线圈501固定后,绕制匝数保持不变,向线圈501中通入交流电时,由于交流电的正负极不断交替并且电流强度不断变化,使线圈501产生的磁场大小和方向时刻变化,电流通过线圈501转化为驱动动子4的磁吸力,磁吸力是激发动子4振动的驱动力,对运动部402的驱动力大小实时变化但方向朝向吸液腔602,弹性元件3和膜片1复位时,弹性力逐渐衰减但实时大于磁吸力。由此,动子4在驱动力的作用下不断地往复运动,带动膜片1变形。当驱动力的频率与被激振系统的固有频率一致或者呈倍数关系时,会发生共振现象。
此时,弹性元件3和动子4可以看成一个整体,具有固定的振动频率。该整体的振动频率与弹性元件3的弹性系数和动子4的质量相关。通过调整动子4的质量和/或弹性元件3的弹性系数,改变该整体的固有振动频率。而磁吸力也是可以通过调节电流改变频率的,从而带动膜片1左右高频往复振动,以实现不同洗涤剂吸入和排出,达到自动投放液体精准投放的目的。这样一来,自动投放装置中的膜片1就能够沿线圈轴心线方向反复振动,即吸液腔602内的压强反复的增大或缩小,从而实现洗涤剂的自动投放。
示例性地,动子4振动一次,能够吸入洗涤剂0.1ml,需要投放1ml时,需要振动10次即可,并且由于是根据压力变化,每次投放后吸液腔602不会残留洗涤剂,避免不同洗涤剂之间的污染,提高了洁净率。
本发明的另一实施例中,如图24所示,通过膜片1自身的反向弹性力和运动部的磁吸力的合力使膜片往复变形,实现膜片1的反复振动,此时,膜片1选用弹性较好材料,例如,可以选择橡胶、或者有机硅,在自动投放装置启动时,动子4对膜片1形成向右的推动力,在推动力达到最大后,膜片的变形量达到最大,此时,膜片1能够产生方向相反的回弹力,并且,在弹性膜片恢复过程中,膜片自身的反弹力逐渐降低,即振幅越来越小,由膜片的回弹力与动子的产生的磁吸力相互作用,使得膜片1沿左右方向周期性振动,便于吸液腔内的压强周期性变化,从而确保自动投放装置的投放精度,提高用户的体验。
另一方面,本发明提供一种洗涤设备,该洗涤设备装配了上述的自动投放装置,一般来说,该自动投放装置靠近洗涤设备的顶部且设置在箱体内,且自动投放装置与洗涤设备的主控器电连接,可以通过洗涤设备的控制面板控制自动投放装置投放不同的洗涤剂,并且,自动投放装置的吸液管603与洗涤设备投放腔室相连通,用于投放不同的洗涤剂,排液管204与洗涤设备的内筒相连,将排液腔内的不同的洗涤液全部投放至内筒中,提高了安装空间的利用率,确保洗涤设备自动投放洗涤剂的精确度,用户体验更佳。
实施例五
如图27至图29所示,作为一种实施方式,本发明提供一种自动投放装置中的驱动装置5,驱动装置5内部设置有线圈501;驱动装置5驱动动子4的具体原理如下:
动子4的中垂线与线圈501中垂线具有一间距,其中,线圈501的中垂线为:当线圈501通电时,将线圈501产生的磁感线沿线圈501轴线方向分割为对称图形的线。动子4的中垂线为:将动子4在线圈501通电时形成的磁感线中通过互感产生的磁感线沿动子4的轴线方向分割为对称图形的线。并且,根据动子4与线圈501的互感原理可知,由于动子4位于线圈501的内部,动子4内部具有大量的磁感线通过,因此,动子4具有磁性,同时,由于线圈501的内部的磁感线与动子4中的磁感线的方向相同,因此,动子4的两端分别受到沿轴向远离所述中垂线的力,但由于动子4的离线圈501中垂线近的端部受到的磁力大于动子4 离线圈501的中垂线远的端部受到的磁力,因此,在线圈501通电后,直到当线圈501的中垂线与动子4的中垂线重合时,动子4处于磁力的平衡的状态,不再运动;在线圈501通入交流电时,线圈501产生交变的磁场时,动子4也处于磁力的平衡状态,没有运动的趋势;
其中,动子4的中垂线与线圈501中垂线具有一间距为动子4的可运动距离;动子4的最大行程距离小于等于可运动距离。
基于上述原理,在本发明实施方案中,采用正弦交流电为例,将动子4的初始位置设置成:动子4的中垂线与线圈501中垂线具有一间距,当线圈501通入交流电的瞬间,动子4处于初始状态,但由于此时线圈501产生的磁场是最小的,此时,动子4受到的驱动力是最小的;根据交流电的特点可知,通入交流电的线圈501所产生的磁场强度在变为最大之前是逐渐变大的,那么,动子4受到的驱动力也是逐渐变大的;此时弹性元件3受到的压力也越来越大,当弹性元件3弹簧反弹的合力大于磁力时释放弹性势能,动子4向相反方向运动;进而实现了动子4在磁力和弹性元件3弹簧反弹的合力的作用下做往复运动;所述的弹性元件3构成谐振弹簧系统,本发明实施例中谐振弹簧系统还可以为现有的任意可提供弹性力的结构。其中,弹性元件3中弹簧被压缩到底部后的反弹的合力大于磁力。
如图27至图29所示,进一步的作为本发明的一个实施方式,采用正弦交流电为例,将动子4的初始位置设置成:动子4的中垂线与线圈501的中垂线设置有一间距,当线圈501通入交流电的瞬间,动子4处于初始状态,但由于此时线圈501产生的磁场是最小的,此时,动子4的驱动力是最小的,根据交流电的特点可知,通入交流电的线圈501所产生的磁场强度在变为最大之前是逐渐变大的;那么,动子4受到的驱动力也是逐渐变大的,动子4在驱动力的作用下使与动子4连接的膜片1快速运动;此时弹性元件3受到的压力也越来越大,当弹性元件3弹簧反弹的合力大于磁力时释放弹性势能,动子4和/或膜片1向相反方向运动;在磁力和弹性元件3弹簧反弹的合力的作用下进而实现了动子4在套筒202内部延轴线以一定频率往复运动和膜片1以一定频率不断的振动。
如图30至图32所示,作为本发明的另一种实施方式,本发明提供一种洗涤设备自动投放装置的驱动装置;驱动装置5中包括套筒202和设置在套筒202内部的动子4;一个弹性元件3将动子4轴向定位于套筒202中;动子4在驱动力和弹性元件3弹簧弹力的共同作用下在套筒202内部延轴线以一定频率往复运动;当弹性元件3累积的弹性势能达到最大时,弹性元件3给动子4提供一个弹簧弹力,动子4向相反方向运动;弹性元件3包括反弹弹簧302和支撑弹簧301;反弹弹簧302固定安装在套筒202内部封闭端;支撑弹簧301嵌套安装在反弹弹簧302外部或内部;支撑弹簧301一端固定安装在套筒202内部封闭端;套筒202端口周边设置有翻边201;
弹性元件3从刚开始被压缩一直到被压缩累积的弹性势能达到最大时,动子4在驱动力作用下克服弹性元件3的弹簧弹力从初始位置运动到第一个行程的终端;支撑弹簧301另一端与动子4的一端固定连接;支撑弹簧301为动子4提供弹簧弹力的同时还提供支撑的作用;弹性元件3释放弹性势能后动子4克服驱动力向相反方向运动回到初始位置;动子4从初始位置克服支撑弹簧301的拉力继续向相反方向运动到离弹性元件3最远时运动到第二个行程的终端;第一个行程的终端与第二个行程的终端之间的距离为动子4的最大行程;动子4在最大行程中以一定频率往复运动;
套筒202外周安装有线圈501;动子4的初始位置设置为动子4的中垂线与线圈501的中垂线设置有预设间距;在线圈501通电后,线圈501的中垂线与动子4的中垂线之间的间距从预设间距不断缩小,直到弹性元件3释放弹性势能,动子4的中垂线与线圈501的中垂线之间的间距由最小达到最大;在线圈501的中垂线与动子4的中垂线之间的间距从预设间距不断缩小的过程中,动子4在驱动力的作用下克服弹性元件3弹簧的弹力;驱动力与弹性元件3弹簧的弹力都在实时变化,但是驱动力大于弹性元件3弹簧的弹力。
其中,若动子4在驱动力和弹性元件3的作用下,没有达到线圈501的中垂线与动子4 的中垂线的位置时,动子4的中垂线与线圈501的中垂线之间的间距由最小达到最大之间的距离等同于第一个行程的终端与第二个行程的终端之间的距离;
由于弹性元件3中的弹簧系数与线圈501通电产生的驱动力设置参数不同,动子4在驱动力和弹性元件3的作用下会依靠惯性动子4的中垂线与线圈501的中垂线重合后向相反方向错开,动子4的中垂线与线圈501的中垂线错开的距离与动子4的中垂线与线圈501的中垂线之间的间距由最小达到最大之间的距离加和等同于第一个行程的终端与第二个行程的终端之间的距离;其中,驱动力为磁场力;术语“动子”是指在磁场中不会磁化,可受磁场力作用的金属体。
如图30至图32所示,进一步的,作为本发明的一种实施方式提供一种洗涤设备的自动投放装置;自动投放装置中的驱动装置5包括套筒202和设置在套筒202内部的动子4;一个弹性元件3将动子4轴向定位于套筒202中;套筒202开口端安装有吸液腔602;吸液腔602包括膜片1;膜片1周边与吸液腔602内壁密封固定连接;吸液腔602上设置吸液管603和排液管204;当动子4在驱动力和弹性元件3弹簧弹力的共同作用下在套筒202内部延轴线以一定频率往复运动时,动子4也以一定的频率作用于膜片1使膜片1发生形变;膜片1压向吸液腔602时,吸液腔602内空间变小压力变大,排液管204进行排液;膜片1远离所述吸液腔602时,吸液腔602内空间变大压力变小,吸液管603进行吸液;排液管204和吸液管603内都设置有单向阀206;
在本实施例中弹性元件3还设置有复位弹簧303;吸液腔602中与膜片1对立的一端与复位弹簧303固定连接;当膜片1发生形变过程中不断挤压复位弹簧303,当膜片1发生形变后膜片1依靠自身的复位力和复位弹簧303提供的弹簧弹力的合力快速复位;
其中,支撑弹簧301长度大于反弹弹簧302;反弹弹簧302弹性系数大于支撑弹簧301;反弹弹簧302弹性系数大于复位弹簧303;若动子4在驱动力和弹性元件3的作用下,没有达到线圈501的中垂线与动子4的中垂线的位置时,动子4的中垂线与线圈501的中垂线之间的间距由最小达到最大之间的距离等同于第一个行程的终端与第二个行程的终端之间的距离;由于弹性元件3中的弹簧系数与线圈501通电产生的驱动力设置参数不同,动子4在驱动力和弹性元件3的作用下会依靠惯性动子4的中垂线与线圈501的中垂线重合后向相反方向错开,动子4的中垂线与线圈501的中垂线错开的距离与动子4的中垂线与线圈501的中垂线之间的间距由最小达到最大之间的距离加和等同于第一个行程的终端与第二个行程的终端之间的距离;其中,驱动力为磁场力;术语“动子”是指在磁场中不会磁化,可受磁场力作用的金属体。
采用上述方案,设置弹性元件3;支撑弹簧301与反弹弹簧302嵌套设置,为动子4提供一个与动子4运动相反的力;支撑弹簧301与反弹弹簧302嵌套设置,支撑弹簧301起到支撑和缓冲的作用,反弹弹簧302主要起提供弹簧弹力的作用,支撑弹簧301与反弹弹簧302的反弹合力可以更好的让动子4回到原来的位置;极大地提升了洗涤设备自动投放装置的驱动装置5的使用寿命,同时降低了驱动装置5的耗能;支撑弹簧301另一端与动子4的一端固定连接,在动子4以一定频率往复运动时,支撑弹簧301既提供支撑力也提供拉力;设置动子4的初始位置为动子4的中垂线与线圈501的中垂线设置有预设间距;由于动子4位于线圈501的内部,动子4内部具有大量的磁感线通过;由于线圈501的内部的磁感线与动子4中的磁感线的方向相同,因此,动子4的两端分别受到沿轴向远离中垂线的力,但由于动子4的离线圈501中垂线近的端部受到的磁力大于动子4离线圈501的中垂线远的端部受到的磁力;所以,动子4向靠近线圈501的中垂线方向运动,动子4的中垂线与线圈501的中垂线之间的间距越来越小;
在驱动装置5的驱动力和弹性元件3弹簧弹力的共同作用下实现了动子4在套筒202内部延轴线以一定频率往复运动时作用于膜片1,使膜片1在发生形变和复位的往复过程中不断振动,吸液腔602能够以一定频率进行吸液和排液。进而实现了洗涤设备自动投放装置的 排液和吸液;支撑弹簧301和复位弹簧303主要起支撑作用,反弹弹簧302主要起提供反弹力的作用;避免了使用单个弹簧功能受限;弹性元件3设置复位弹簧303为膜片1的一端提供了支撑力;在一定程度上避免出现膜片1过度形变引起的疲劳破坏的情况;支撑弹簧301和复位弹簧303主要起支撑作用,反弹弹簧302主要起提供反弹力的作用。
请结合参阅图30至图32所示,作为本发明的另一种实施方式,提供一种洗涤设备自动投放装置的驱动装置;驱动装置5中包括套筒202和设置在套筒202内部的动子4;一个弹性元件3将动子4轴向定位于套筒202中;动子4在驱动力和弹性元件3弹簧弹力的共同作用下在套筒202内部延轴线以一定频率往复运动;当弹性元件3累积的弹性势能达到最大时,弹性元件3给动子4提供一个弹簧弹力,动子4向相反方向运动;套筒202端口周边设置有翻边201;
弹性元件3包括反弹弹簧302和支撑弹簧301;反弹弹簧302固定安装在套筒202内部封闭端;支撑弹簧301嵌套安装在反弹弹簧302外部或内部;支撑弹簧301一端固定安装在套筒202内部封闭端;弹性元件3从刚开始被压缩一直到被压缩累积的弹性势能达到最大时,动子4在驱动力作用下克服弹性元件3的弹簧弹力从初始位置运动到第一个行程的终端;支撑弹簧301另一端与动子4的一端固定连接;支撑弹簧301为动子4提供弹簧弹力的同时还提供支撑的作用;弹性元件3释放弹性势能后动子4克服驱动力向相反方向运动回到初始位置;动子4从初始位置克服支撑弹簧301的拉力继续向相反方向运动到离弹性元件3最远时运动到第二个行程的终端;第一个行程的终端与第二个行程的终端之间的距离为动子4的最大行程;动子4在最大行程中以一定频率往复运动;
套筒202外周安装有线圈501;动子4的初始位置设置为动子4的中垂线与线圈501的中垂线设置有预设间距;在线圈501通电后,线圈501的中垂线与动子4的中垂线之间的间距从预设间距不断缩小,直到弹性元件3释放弹性势能,动子4的中垂线与线圈501的中垂线之间的间距由最小达到最大;在线圈501的中垂线与动子4的中垂线之间的间距从预设间距不断缩小的过程中,动子4在驱动力的作用下克服弹性元件3弹簧的弹力;驱动力与弹性元件3弹簧的弹力都在实时变化,但是驱动力大于弹性元件3弹簧的弹力。
其中,若动子4在驱动力和弹性元件3的作用下,没有达到线圈501的中垂线与动子4的中垂线的位置时,动子4的中垂线与线圈501的中垂线之间的间距由最小达到最大之间的距离等同于第一个行程的终端与第二个行程的终端之间的距离;
由于弹性元件3中的弹簧系数与线圈501通电产生的驱动力设置参数不同,动子4在驱动力和弹性元件3的作用下会依靠惯性动子4的中垂线与线圈501的中垂线重合后向相反方向错开,动子4的中垂线与线圈501的中垂线错开的距离与动子4的中垂线与线圈501的中垂线之间的间距由最小达到最大之间的距离加和等同于第一个行程的终端与第二个行程的终端之间的距离;其中,驱动力为磁场力;术语“动子”是指在磁场中不会磁化,可受磁场力作用的金属体。
如图30至图32所示,进一步的,作为本发明的一种实施方式,提供一种洗涤设备的自动投放装置;自动投放装置中的驱动装置5包括套筒202和设置在套筒202内部的动子4;一个弹性元件3将动子4轴向定位于套筒202中;套筒202开口端安装有吸液腔602;吸液腔602包括膜片1;膜片1周边与吸液腔602内壁密封固定连接;吸液腔602上设置吸液管603和排液管204;当动子4在驱动力和弹性元件3弹簧弹力的共同作用下在套筒202内部延轴线以一定频率往复运动时,动子4也以一定的频率作用于膜片1使膜片1发生形变;膜片1压向吸液腔602时,吸液腔602内空间变小压力变大,排液管204进行排液;膜片1远离吸液腔602时,吸液腔602内空间变大压力变小,吸液管603进行吸液;排液管204和吸液管603内都设置有单向阀206;
驱动装置5通交流电产生驱动力使动子4向套筒202内部封闭端方向运动;动子4先挤压支撑弹簧301;动子4继续向套筒202内部封闭端方向运动接触并挤压反弹弹簧302;弹性 元件3被压缩后累积的弹性势能达到最大时,弹性势能释放转化为弹力,动子4克服驱动力向相反方向运动;在驱动装置5和弹性元件3的作用下,动子4在套筒202内部延轴线以一定频率往复运动;其中,驱动力为磁场力;
采用上述方案,设置弹性元件3;支撑弹簧301与反弹弹簧302嵌套设置,为动子4提供一个与动子4运动相反的力;支撑弹簧301起到支撑和缓冲的作用,反弹弹簧302主要起提供弹簧弹力的作用,支撑弹簧301与反弹弹簧302的反弹合力可以更好的让动子4回到原来的位置,极大地提升了洗涤设备自动投放装置的驱动装置5的使用寿命,同时降低了洗涤设备自动投放装置的驱动装置5的耗能;支撑弹簧301另一端与动子4的一端固定连接,在动子4以一定频率往复运动时,支撑弹簧301既提供支撑力也提供拉力;
设置动子4的初始位置为动子4的中垂线与线圈501的中垂线设置有预设间距;由于动子4位于线圈501的内部,动子4内部具有大量的磁感线通过;由于线圈501的内部的磁感线与动子4中的磁感线的方向相同,因此,动子4的两端分别受到沿轴向远离中垂线的力,但由于动子4的离线圈501中垂线近的端部受到的磁力大于动子4离线圈501的中垂线远的端部受到的磁力,所以,动子4向靠近线圈501的中垂线方向运动,动子4的中垂线与线圈501的中垂线之间的间距越来越小;在驱动装置5的驱动力和弹性元件3弹簧弹力的共同作用下实现了动子4在套筒202内部延轴线以一定频率往复运动时作用于膜片1,使膜片1在发生形变和复位的往复过程中不断振动,吸液腔602能够以一定频率进行吸液和排液。进而实现了洗涤设备自动投放装置的排液和吸液。
如图33至图35所示,作为本发明的另一种实施方式,提供一种洗涤设备自动投放装置的驱动装置;驱动装置5中包括套筒202和设置在套筒202内部的动子4;一个弹性元件3将动子4轴向定位于套筒202中;动子4在驱动力和弹性元件3弹簧弹力的共同作用下在套筒202内部延轴线以一定频率往复运动;当弹性元件3累积的弹性势能达到最大时,弹性元件3给动子4提供一个弹簧弹力,动子4向相反方向运动;弹性元件3包括反弹弹簧302和支撑弹簧301;反弹弹簧302固定安装在套筒202内部封闭端;支撑弹簧301嵌套安装在反弹弹簧302外部或内部;支撑弹簧301一端固定安装在套筒202内部封闭端;套筒202端口周边设置有翻边201;
弹性元件3从刚开始被压缩一直到被压缩累积的弹性势能达到最大时,动子4在驱动力作用下克服弹性元件3的弹簧弹力从初始位置运动到第一个行程的终端;支撑弹簧301另一端与动子4的一端固定连接;支撑弹簧301为动子4提供弹簧弹力的同时还提供支撑的作用;弹性元件3释放弹性势能后动子4克服驱动力向相反方向运动回到初始位置;动子4从初始位置克服支撑弹簧301的拉力继续向相反方向运动到离弹性元件3最远时运动到第二个行程的终端;第一个行程的终端与第二个行程的终端之间的距离为动子4的最大行程;动子4在最大行程中以一定频率往复运动;
套筒202外周安装有线圈501;动子4的初始位置设置为动子4的中垂线与线圈501的中垂线设置有预设间距;在线圈501通电后,线圈501的中垂线与动子4的中垂线之间的间距从预设间距不断缩小,直到弹性元件3释放弹性势能,动子4的中垂线与线圈501的中垂线之间的间距由最小达到最大;在线圈501的中垂线与动子4的中垂线之间的间距从预设间距不断缩小的过程中,动子4在驱动力的作用下克服弹性元件3弹簧的弹力;驱动力与弹性元件3弹簧的弹力都在实时变化,但是驱动力大于弹性元件3弹簧的弹力。
其中,若动子4在驱动力和弹性元件3的作用下,没有达到线圈501的中垂线与动子4的中垂线的位置时,动子4的中垂线与线圈501的中垂线之间的间距由最小达到最大之间的距离等同于第一个行程的终端与第二个行程的终端之间的距离;
由于弹性元件3中的弹簧系数与线圈501通电产生的驱动力设置参数不同,动子4在驱动力和弹性元件3的作用下会依靠惯性动子4的中垂线与线圈501的中垂线重合后向相反方向错开,动子4的中垂线与线圈501的中垂线错开的距离与动子4的中垂线与线圈501的中 垂线之间的间距由最小达到最大之间的距离加和等同于第一个行程的终端与第二个行程的终端之间的距离;其中,驱动力磁场力;术语“动子”是指在磁场中不会磁化,可受磁场力作用的金属体。
如图33至图35所示,进一步的,作为本发明的一种实施方式,提供一种洗涤设备的自动投放装置;自动投放装置中的驱动装置5包括套筒202和设置在套筒202内部的动子4;一个弹性元件3将动子4轴向定位于套筒202中;套筒202开口端安装有吸液腔602;吸液腔602包括膜片1;膜片1周边与吸液腔602内壁密封固定连接;吸液腔602上设置吸液管603和排液管204;
当动子4在驱动力和弹性元件3弹簧弹力的共同作用下在套筒202内部延轴线以一定频率往复运动时,动子4也以一定的频率作用于膜片1使膜片1发生形变;膜片1压向吸液腔602时,吸液腔602内空间变小压力变大,排液管204进行排液;膜片1远离吸液腔602时,吸液腔602内空间变大压力变小,吸液管603进行吸液;排液管204和吸液管603内都设置有单向阀206;
在本实施例中弹性元件3还包括复位弹簧303;吸液腔602中与膜片1对立的一端与复位弹簧303固定连接;当膜片1发生形变过程中不断挤压复位弹簧303,当膜片1发生形变后膜片1依靠自身的复位力和复位弹簧303提供的弹簧弹力的合力快速复位;
驱动装置5通交流电产生驱动力使动子4向套筒202内部封闭端方向运动;动子4先挤压支撑弹簧301;动子4继续向套筒202内部封闭端方向运动接触并挤压反弹弹簧302;当支撑弹簧301和反弹弹簧302被压缩后累积的弹性势能达到最大时,弹性势能释放转化为弹力,动子4克服驱动力向相反方向运动作用于膜片1使膜片1发生形变;膜片1发生形变后膜片1依靠自身的复位力和复位弹簧303提供的弹簧弹力的合力快速复位;在驱动装置5和弹性元件3的作用下,动子4在套筒202内部延轴线以一定频率往复运动;其中,驱动力为磁场力;术语“动子”是指在磁场中不会磁化,可受磁场力作用的金属体。
采用上述方案,设置弹性元件3;支撑弹簧301与反弹弹簧302嵌套设置,为动子4提供一个与动子4运动相反的力;支撑弹簧301起到支撑和缓冲的作用,反弹弹簧302主要起提供弹簧弹力的作用,支撑弹簧301与反弹弹簧302的反弹合力可以更好的让动子4回到原来的位置,极大地提升了洗涤设备自动投放装置的驱动装置5的使用寿命,同时降低了洗涤设备自动投放装置的驱动装置5的耗能。支撑弹簧301另一端与动子4的一端固定连接,在动子4以一定频率往复运动时,支撑弹簧301既提供支撑力也提供拉力;设置动子4的初始位置为动子4的中垂线与线圈501的中垂线设置有预设间距;由于动子4位于线圈501的内部,动子4内部具有大量的磁感线通过;由于线圈501的内部的磁感线与动子4中的磁感线的方向相同,因此,动子4的两端分别受到沿轴向远离所述中垂线的力,但由于动子4的离线圈501中垂线近的端部受到的磁力大于动子4离线圈501的中垂线远的端部受到的磁力;所以,动子4向靠近线圈501的中垂线方向运动,动子4的中垂线与线圈501的中垂线之间的间距越来越小;在驱动装置5的驱动力和弹性元件3弹簧弹力的共同作用下实现了动子4在套筒202内部延轴线以一定频率往复运动时作用于膜片1,使膜片1在发生形变和复位的往复过程中不断振动,吸液腔602能够以一定频率进行吸液和排液。进而实现了洗涤设备自动投放装置的排液和吸液;支撑弹簧301和复位弹簧303主要起支撑作用,反弹弹簧302主要起提供反弹力的作用;避免了使用单个弹簧功能受限;弹性元件3设置复位弹簧303为膜片1的一端提供了支撑力;在一定程度上避免出现膜片1过度形变引起的疲劳破坏的情况;动子4受支撑弹簧301和反弹弹簧302的合力向相反方向运动作用于膜片1使膜片1发生形变;膜片1发生形变后膜片1依靠自身的复位力和复位弹簧303提供的弹簧弹力的合力快速复位,进而实现了动子4在套筒202内部延轴线以一定频率往复运动和膜片1以一定频率不断的振动。
如图27所示,在本发明的另一种实施方式中提供一种洗涤设备;洗涤设备具备前述任一 所述实施方式中的自动投放装置和/或驱动装置;其中,自动投放装置包括吸液腔602;吸液腔602中的吸液管603连接洗涤设备的储液腔室,吸液腔602中的排液管204连接洗涤设备的洗涤容腔或者液水混合腔。
以上所述仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专利的技术人员在不脱离本发明技术方案范围内,当可利用上述提示的技术内容作出些许更动或修饰为等同变化的等效实施例,上述实施例中的实施方案也可以进一步组合或者替换,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明方案的范围内。

Claims (50)

  1. 一种洗涤设备的自动投放装置的驱动装置,包括:壳体(2)和吸液腔(602),所述壳体(2)内设置有可移动的动子(4)和驱动所述动子(4)运动的驱动装置;其特征在于:所述壳体(2)具有一个朝向吸液腔(602)的开口(203),所述动子(4)的第一端部至少设置在所述壳体(2)开口(203)处,所述动子(4)的第一端部对应设置有膜片(1);一个弹性元件(3)设置在所述动子(4)轴向方向延伸的第二端部,或设置在所述壳体(2)开口(203)对应的吸液腔(602)侧壁上;所述动子(4)向吸液腔(602)运动,动子(4)第一端局部作用于所述膜片(1)并伸出所述开口(203),使所述膜片(1)至少向吸液腔(602)形变。
  2. 根据权利要求1所述的一种洗涤设备的自动投放装置的驱动装置,其特征在于:所述动子(4)的第一端部伸出所述壳体(2)开口(203),所述膜片(1)与所述的开口(203)有一距离设置;所述驱动装置的最小驱动力大于所述动子(4)的重力,动子(4)受到驱动力作用的同时,通过膜片(1)提供的恢复力在所述壳体(2)内做高频反复振荡。
  3. 根据权利要求2所述的一种洗涤设备的自动投放装置的驱动装置,其特征在于:所述动子(4)在驱动装置的驱动力和弹性元件(3)的反弹力作用下在壳体(2)内反复振荡,所述膜片(1)在所述动子(4)作用下基本上以相同的频率振荡;所述弹性元件(3)被所述动子(4)压缩产生最大形变量等于所述弹性元件(3)被所述动子(4)拉伸产生最大形变量。
  4. 根据权利要求3所述的一种洗涤设备的自动投放装置的驱动装置,其特征在于,所述壳体(2)还包括套筒(202),所述套筒(202)第一端的开口与壳体(2)开口(203)重合,套筒(202)第二端为封闭的桶底,所述动子(4)至少部分设置在所述套筒(202)内;所述动子(4)向所述套筒(202)的开口端方向运动时,所述驱动装置的驱动力充当阻力阻止所述动子(4)运动。
  5. 根据权利要求4所述的一种洗涤设备的自动投放装置的驱动装置,其特征在于,所述驱动装置包括在所述套筒(202)轴向设置的线圈支架(502)和环绕在所述线圈支架(502)上的线圈(501),所述动子(4)受到所述线圈(501)产生的磁场力快速压缩或拉伸弹性元件(3)产生最大形变量时,所述弹性元件(3)的反弹力大于所述线圈(501)产生的磁场力;当所述弹性元件(3)的弹力和所述膜片(1)的恢复力与等于所述线圈(501)产生的磁场力时,所述动子(4)速度不为零,加速度为零,所述动子(4)运动方向保持不变;当所述弹性元件(3)被压缩或被拉伸到最大形变量时,所述动子(4)的速度为零,加速度不为零,所述动子(4)运动方向改变,向所述套筒(202)开口端移动。
  6. 根据权利要求5所述的一种洗涤设备的自动投放装置的驱动装置,其特征在于,所述弹性元件(3)的一端设置在所述动子(4)第二端部轴向的延伸方向,另一端固定设置在所述套筒(202)桶底,所述动子(4)的第一端与所述膜片(1)固定连接或无接触;所述动子(4)受到所述线圈(501)产生的磁场力快速压缩所述弹性元件(3)产生最大形变量时,所述弹性元件(3)的反弹力和膜片(1)的恢复力驱动所述的动子(4)反弹超过初始设置位置(7),使所述膜片(1)在所述动子(4)反复振荡下振荡。
  7. 根据权利要求6所述的一种洗涤设备的自动投放装置的驱动装置,其特征在于,所述弹性元件(3)的一端设置在所述壳体(2)开口(203)对应的吸液腔(602)侧壁上,另一端与所述膜片(1)位于吸液腔(602)一侧固定连接;所述动子(4)受到所述线圈(501)产生的磁场力快速拉伸所述弹性元件(3)产生最大形变量时,所述弹性元件(3)的拉力和膜片(1)的恢复力驱动所述的动子(4)超过初始设置位置(7),使所述膜片(1)在所述动子(4)反复振荡下振荡。
  8. 根据权利要求1-7任一所述的一种洗涤设备的自动投放装置的驱动装置,其特征在于,所述套筒(202)开口端的外周向径向方向延伸形成翻边(201),所述翻边(201)包括第一翻边(2011)和第二翻边(2012),所述第一翻边(2011)和第二翻边(2012)的延伸终端嵌套在所述壳体(2)内;所述吸液腔(602)和/或固定所述膜片(1)边缘的两个对应的侧壁 上,与所述壳体(2)有一预设距离处分别设置有第一(605)凸起,所述膜片(1)的两端由所述壳体(2)与所述第一凸起(605)挤压固定并封闭所述吸液腔(602)。
  9. 根据权利要求1-8任一所述的一种洗涤设备的自动投放装置的驱动装置,其特征在于,所述壳体(2)开口(203)对应的吸液腔(602)侧壁上设置有吸液管(603)和排液管(204),所述吸液管(603)和所述排液管(204)内部设置有单向阀(206),膜片(1)振荡时带动洗涤剂从所述吸液管(603)进入吸液腔(602),从所述排液管(204)排出,进入洗衣机内筒。
  10. 一种洗涤设备,其特征在于:采用如权利要求1-9任一所述的自动投放装置的驱动装置。
  11. 一种洗涤设备的自动投放装置,包括:驱动结构、吸液装置(6),其特征在于:膜片(1)的圆周固定在所述驱动结构和/或所述吸液装置(6)上,所述膜片(1)受到所述驱动结构施加的一个驱动方向固定、驱动大小周期性变化的力,配合所述膜片(1)的弹性复位力驱动所述膜片(1)在轴向方向上往复振动,将洗涤液吸入/排出所述吸液装置(6)。
  12. 根据权利要求11所述的一种洗涤设备的自动投放装置,其特征在于,包括:所述驱动结构驱动所述膜片(1)向靠近所述驱动结构的方向产生弹性形变,所述膜片(1)依靠自身弹性复位力向靠近所述吸液装置(6)的方向做往复振动。
  13. 根据权利要求11所述的一种洗涤设备的自动投放装置,其特征在于,包括:所述驱动结构驱动所述膜片(1)向靠近所述吸液装置(6)的方向产生弹性形变,所述膜片(1)依靠自身弹性复位力向靠近所述驱动结构的方向做往复振动。
  14. 根据权利要求11-13中任意一项所述的一种洗涤设备的自动投放装置,其特征在于,包括:所述吸液装置(6)外周设有端盖(601),所述膜片(1)的圆周固定在所述端盖(601)的周壁的端部上;或者,所述端盖(601)的周壁的端部上设有凹槽,所述膜片(1)的圆周固定在所述凹槽内。
  15. 根据权利要求14所述的一种洗涤设备的自动投放装置,其特征在于,包括:所述膜片(1)与所述吸液装置(6)配合形成吸液腔(602),所述吸液腔(602)为所述膜片(1)提供第一形变区域。
  16. 根据权利要求14所述的一种洗涤设备的自动投放装置,其特征在于,包括:所述驱动结构外部设置有壳体(2),所述壳体(2)上设置有翻边(201),所述驱动结构通过所述翻边(201)与所述膜片(1)的圆周连接;或者所述翻边(201)向靠近所述吸液装置(6)方向设有延伸部,所述驱动结构通过所述延伸部与所述膜片(1)的圆周连接。
  17. 根据权利要求16所述的一种洗涤设备的自动投放装置,其特征在于,包括:所述翻边(201)以及所述翻边(201)的延伸部与所述膜片(1)形成第二形变区域。
  18. 根据权利要求11-15中任意一项所述的一种洗涤设备的自动投放装置,其特征在于,所述驱动结构还包括动子(4),所述动子(4)与所述膜片(1)不连接;优选的,所述膜片(1)设有嵌入部(101),所述动子(4)的一端与所述嵌入部(101)连接。
  19. 根据权利要求11所述的一种洗涤设备的自动投放装置,其特征在于,所述膜片(1)的材质为塑料、橡胶、硅胶、动物皮、合金板、聚氨酯中的任意一种和/或所述膜片(1)为膜片、弹性囊片中的任意一种;优选的,所述驱动装置还包括电源和线圈(501),所述线圈(501)通过接入直流电/交流电与所述电源连通;优选的,所述吸液装置(6)包括吸液口和排液口,所述吸液口与所述吸液管(603)连接;所述排液口与所述排液管(204)连接,所述吸液管(603)和所述排液管(204)内均设有单向阀(206)。
  20. 一种洗涤设备,其特征在于,包括:如权利要求11-19任一项所述的洗涤设备的自动投放装置。
  21. 一种洗涤设备的自动投放装置,包括,套筒(202),套筒(202)一端为封闭的筒底,对应的另一端开设开口;线圈(501),同轴的套设于套筒(202)的外周;动子(4),可活动 的设置于套筒(202)的套筒腔内(203);其特征在于,套筒(202)开口上设置有与动子(4)相连的膜片(1);动子(4)的中心设置于线圈(501)中心偏向套筒(202)的开口方向上;动子(4)在线圈(501)通电产生的电磁力和膜片(1)的弹性力共同作用下,于套筒(202)内做高频低振幅的振动。
  22. 根据权利要求21所述的一种洗涤设备的自动投放装置,其特征在于,动子(4)的质量为1g到100g之间;膜片(1)弹性系数较大,令膜片(1)和动子(4)组成的系统的固有频率在30-300Hz;动子(4)受电磁力作用的同时,通过膜片(1)提供的反向的弹性力在套筒(202)内做高频往复运动。
  23. 根据权利要求21所述的一种洗涤设备的自动投放装置,其特征在于,套筒(202)的开口上扣设有端盖(601),端盖(601)和套筒(202)内部通过膜片(1)分隔为相对独立的吸液腔(602)和套筒腔(203);套筒(202)和端盖(601)分别与膜片(1)之间具有供膜片(1)形变的空间。
  24. 根据权利要求23所述的一种洗涤设备的自动投放装置,其特征在于,套筒(202)开口端的外周连接有径向向外延伸的翻边(201);翻边(201)与套筒(4)的开口相平齐;端盖(601)与翻边(201)的外周边沿相连;膜片(1)的外周边沿密封的设置于端盖(601)与翻边(201)的连接处上,令膜片(1)与翻边(201)一侧相贴合;膜片(1)在被动子(4)拉伸时,通过套筒(202)开口向套筒腔(203)内部形变延伸。
  25. 根据权利要求23所述的一种洗涤设备的自动投放装置,其特征在于,套筒(202)开口端的外周连接有沿套筒(202)径向向外延伸的翻边(201),翻边(201)的外周边沿连接有向远离套筒(202)方向延伸的第二翻边(2012);端盖(601)与第二翻边(2012)的延伸端对应连接;膜片(1)的外周边沿密封的设置于端盖(601)与第二翻边(2012)的连接处上;膜片(1)与翻边(201)之间间隔一定距离,形成缓冲腔(605);膜片(1)在被动子(4)拉伸时,膜片(1)向缓冲腔(605)内形变延伸。
  26. 根据权利要求23所述的一种洗涤设备的自动投放装置,其特征在于,膜片(1)一侧与动子(4)相连,相对的另一侧与支撑弹簧(301)的一端相连;支撑弹簧(301)与动子(4)同轴设置,且对应的另一端与端盖(601)相连;动子(4)受电磁力作用的同时,通过膜片(1)和支撑弹簧(301)提供的反向的弹性力,在套筒(202)内做高频往复运动。
  27. 根据权利要求21所述的一种洗涤设备的自动投放装置,其特征在于,动子(4)一端与膜片(1)相连,相对的另一端连接或抵接有弹性元件(3);弹性元件(3)与动子(4)同轴设置,且对应的另一端与套筒(202)筒底相连;动子(4)受电磁力作用的同时,通过膜片(1)和弹性元件(3)提供的反向的弹性力在套筒(202)内做高频往复运动。
  28. 根据权利要求21-27任一所述的一种洗涤设备的自动投放装置,其特征在于,动子(4)靠近膜片(1)的一端设置有嵌入块(401),膜片(1)内部对应的开设有嵌入部(101);动子通过嵌入块(401)对应嵌入嵌入部(101)内与膜片(1)相连;优选的,套筒(202)的底部连接有弹性元件(3);动子(4)距膜片(1)较近一端与膜片(1)相抵接,对应的另一端与弹性元件(3)相连或抵接;动子(4)受电磁力作用的同时,通过膜片(1)和支撑弹簧提供的反向的弹性力在套筒(202)内做高频往复运动。
  29. 根据权利要求26或28所述的一种洗涤设备的自动投放装置,其特征在于,弹性元件(3)与动子(4)相连;弹性元件(3)外周或内部套设有反弹弹簧(302);反弹弹簧(302)与弹性元件(3)同轴设置,长度不大于弹性元件(301)的长度,反弹弹簧(302)一端与套筒(202)的筒底相连,对应的另一端向动子(4)所在方向延伸。
  30. 根据权利要求21所述的一种洗涤设备的自动投放装置,其特征在于,线圈(501)通入的电流为直流电或者交流电,通过控制电流间歇性的通断,令线圈(501)对动子(4)产生间歇性的电磁力,从而令动子(4)做频率可调的高频往复运动;优选的,线圈(501)电连接有直流接触器或交流接触器,通过直流接触器或交流接触器控制线圈(501)通过的直 流电或交流电形成频率可变的间歇性的通断,令线圈(501)对动子(4)产生不同频率的间歇性的电磁力,从而控制动子(4)以不同的频率做高频往复运动;优选的,线圈(501)通入的电流为交流电,线圈(501)电连接有一变频器,通过变频器改变线圈(501)内通过交流电的频率,从而控制动子(4)以不同的频率做高频往复运动。
  31. 一种洗涤设备,其特征在于,洗涤设备采用权利要求21-30任一所述的一种洗涤设备的自动投放装置。
  32. 一种洗涤设备的自动投放装置,包括吸液腔(602)和安装腔(205),其特征在于,所述自动投放装置还包括:膜片(1),所述膜片(1)设置在吸液腔(602)和安装腔(205)之间,所述膜片(1)的周侧与所述吸液腔(602)相连接;线圈(501),所述线圈(501)设置在所述安装腔(205)内;动子(4),所述动子(4)与所述线圈(501)同一延伸方向设置,所述动子(4)包括依次连接的运动部(402)和传导部(403),所述线圈(501)对所述运动部(402)产生朝向所述吸液腔(602)运动的磁吸力,通过所述传导部(403)带动所述膜片(1)形变,并对动子(4)产生反向的弹性力,实现所述膜片(1)在磁吸力的作用和膜片(4)自身的回弹力的作用下做往复振动。
  33. 根据权利要求32所述的洗涤设备的自动投放装置,其特征在于,所述传导部(403)带动所述膜片(1)振动幅度不超过所述运动部(402)的形心与所述线圈(501)的形心连线的距离,运动过程中,所述运动部(402)受到的磁吸力总是朝向吸液腔方向,所述膜片(1)、所述动子(4)组成的系统的平衡位置位于所述膜片(1)初始位置的右侧,使所述膜片(1)做周期性振动。
  34. 根据权利要求33所述的洗涤设备的自动投放装置,其特征在于,在周期性振动的回复过程,所述膜片(1)产生的远离吸液腔(602)方向的回弹力能够克服所述运动部(402)受到朝向吸液腔(602)方向的磁吸力,使所述膜片(1)的振幅逐渐减小。
  35. 根据权利要求33所述的洗涤设备的自动投放装置,其特征在于,所述运动部(403)至少部分与所述线圈(501)重合,所述传导部(403)和所述运动部(402)均与所述线圈(501)同轴设置,且所述运动部(402)与所述传导部(403)的长度之和大于或等于所述线圈(501)的长度,且所述运动部(402)的长度小于所述线圈(501)的长度。
  36. 根据权利要求35所述的洗涤设备的自动投放装置,其特征在于,所述传导部(403)包括同轴设置的第一端(4031)、传动杆(4033)和第二端(4032),所述传动杆的两端分别与所述第一端(4031)和所述第二端(4032)相连接,所述第一端(4031)的直径小于所述第二端(4032)的直径,所述第一端(4031)与所述运动部(402)连接或抵接,所述第二端(4032)与所述膜片(1)连接或抵接;其中,所述传动杆(4033)的两端的直径相等,且所述传动杆(4033)的直径不大于所述第一端(4031)的直径;优选的,所述安装腔(205)设置有套筒(202),所述套筒(202)与所述线圈(501)同轴设置,所述第一端(4031)将所述运动部(402)抵靠在所述套筒(202)的端部,所述传导部(403)的第二端(4032)与所述套筒(202)的开口齐平或突出所述套筒(202)的开口设置;所述套筒(202)的长度大于所述线圈(501)的长度,至少部分所述套筒(202)与所述线圈(501)重合,所述运动部(402)靠近所述套筒(202)的端部。
  37. 根据权利要求36所述的洗涤设备的自动投放装置,其特征在于,所述套筒(202)的开口设置有第一翻边(2011)和第二翻边(2012),所述第一翻边(2021)设置为所述套筒(202)的开口沿径向方向向外弯折,所述第二翻边(2012)由所述第一翻边(2011)朝向所述吸液腔(602)方向弯折,所述膜片(1)的周侧与所述第二翻边(2012)的端部相连接,所述膜片(1)与所述第一翻边(2011)和所述第二翻边(2012)之间围成一个缓冲腔室,用于缓冲所述膜片(1)朝向所述套筒(202)方向变形量;优选的,所述传导部(403)的第一端抵接在所述运动部(402),所述传导部(403)的第二端(4032)设置有嵌入块(401),所述膜片(1)对应设置有嵌入部(101),所述嵌入块(401)与所述嵌入部(101)卡接配合,用于使所述运动部(403)通过所述传导部(403)与所述膜片(1)相连接。
  38. 根据权利要求32-37中任一所述的洗涤设备的自动投放装置,其特征在于,所述自 动投放装置还包括弹性元件(3),所述弹性元件(3)设置在所述吸液腔(602)内,所述弹性元件(3)的一端与所述膜片(1)连接或抵接,所述弹性元件(3)的另一端与吸液腔(602)的内壁抵接或连接,所述弹性元件(3)和所述膜片(1)形成的反向弹性力拉动所述膜片(1)恢复至初始值。
  39. 根据权利要求32-37中任一所述的洗涤设备的自动投放装置,其特征在于,所述自动投放装置还包括弹性元件(3),所述弹性元件(3)设置在所述传导部(403)和所述运动部(402)之间,所述弹性元件(3)的一端与所述运动部(402)连接,另一端与传导部(403)相连接,所述弹性元件(3)和所述膜片(1)形成的反向弹性力拉动所述膜片(1)恢复至初始值;优选的,所述线圈(501)内通入交流电后产生大小和方向时刻变化的交变磁场,所述交变磁场存在时,对运动部(402)的磁场驱动力大小实时变化但方向朝向吸液腔,所述弹性元件(3)和膜片(1)复位时,所述弹性力逐渐衰减但实时大于所述磁吸力。
  40. 一种洗涤设备,其特征在于,洗涤设备采用如权利要求32-39任一所述的洗涤设备的自动投放装置。
  41. 一种洗涤设备自动投放装置的驱动装置,其特征在于:包括套筒(202)和设置在所述套筒(202)内部的动子(4);一个弹性元件(3)将所述动子(4)轴向定位于所述套筒(202)中;所述动子(4)在驱动力和所述弹性元件(3)弹簧弹力的共同作用下在所述套筒(202)内部延轴线以一定频率往复运动;当所述弹性元件(3)累积的弹性势能达到最大时,所述弹性元件(3)给所述动子(4)提供一个弹簧弹力,所述动子(4)向相反方向运动。
  42. 根据权利要求41所述的一种洗涤设备自动投放装置的驱动装置,其特征在于:所述弹性元件(3)包括,反弹弹簧(302),固定安装在所述套筒(202)内部封闭端;支撑弹簧(301),嵌套安装在所述反弹弹簧(302)外部或内部;所述支撑弹簧(301)一端固定安装在所述套筒(202)内部封闭端;所述弹性元件(3)从刚开始被压缩一直到被压缩累积的弹性势能达到最大时,所述动子(4)在驱动力作用下克服所述弹性元件(3)的弹簧弹力从初始位置运动到第一个行程的终端。
  43. 根据权利要求42所述的一种洗涤设备自动投放装置的驱动装置,其特征在于:所述支撑弹簧(301)另一端与所述动子(4)的一端固定连接;所述支撑弹簧(301)为所述动子(4)提供弹簧弹力的同时还提供支撑的作用;所述弹性元件(3)释放弹性势能后所述动子(4)克服驱动力向相反方向运动回到初始位置;所述动子(4)从初始位置克服所述支撑弹簧(301)的拉力继续向相反方向运动到离所述弹性元件(3)最远时运动到第二个行程的终端。
  44. 根据权利要求43所述的一种洗涤设备自动投放装置的驱动装置,其特征在于:所述第一个行程的终端与所述第二个行程的终端之间的距离为所述动子(4)的最大行程;所述动子(4)在所述最大行程中以一定频率往复运动。
  45. 根据权利要求44所述的一种洗涤设备自动投放装置的驱动装置,其特征在于:所述套筒(202)外周安装有线圈(501);所述动子(4)的初始位置设置为所述动子(4)的中垂线与所述线圈(501)的中垂线设置有预设间距;在所述线圈(501)通电后,所述线圈(501)的中垂线与所述动子(4)的中垂线之间的间距从预设间距不断缩小,直到所述弹性元件(3)释放弹性势能,所述动子(4)的中垂线与所述线圈(501)的中垂线之间的间距由最小达到最大。
  46. 一种洗涤设备的自动投放装置,其特征在于:包括权利要求41-45任何一项所述的驱动装置;所述驱动装置(5)包括套筒(202)和设置在所述套筒(202)内部的动子(4);一个弹性元件(3)将所述动子(4)轴向定位于所述套筒(202)中;所述套筒(202)开口端安装有吸液腔(602);所述吸液腔(602)包括膜片(1);所述膜片(1)周边与所述吸液腔(602)内壁密封固定连接;所述吸液腔(602)上设置吸液管(603)和排液管(204);当所述动子(4)在驱动力和所述弹性元件(3)弹簧弹力的共同作用下在所述套筒(202)内部延轴线以一定频率往复运动时,所述动子(4)也以一定的频率作用于所述膜片(1)使所述 膜片(1)发生形变;所述膜片(1)压向所述吸液腔(602)时,所述吸液腔(602)内空间变小压力变大,所述排液管(204)进行排液;所述膜片(1)远离所述吸液腔(602)时,所述吸液腔(602)内空间变大压力变小,所述吸液管(603)进行吸液。
  47. 根据权利要求46所述的一种洗涤设备的自动投放装置,其特征在于:所述弹性元件(3)还包括复位弹簧(303);所述吸液腔(602)中与所述膜片(1)对立的一端与所述复位弹簧(303)固定连接;当所述膜片(1)发生形变过程中不断挤压所述复位弹簧(303),当所述膜片(1)发生形变后所述膜片(1)依靠自身的复位力和所述复位弹簧(303)提供的弹簧弹力的合力快速复位;优选的,所述支撑弹簧(301)长度大于所述反弹弹簧(302);所述反弹弹簧(302)弹性系数大于所述支撑弹簧(301);所述反弹弹簧(302)弹性系数大于所述复位弹簧(303)。
  48. 根据权利要求47所述的一种洗涤设备的自动投放装置,其特征在于:所述驱动装置(5)通交流电产生驱动力使所述动子(4)向所述套筒(202)内部封闭端方向运动;所述动子(4)先挤压所述支撑弹簧(301);所述动子(4)继续向所述套筒(202)内部封闭端方向运动接触并挤压所述反弹弹簧(302);所述弹性元件(3)被压缩后累积的弹性势能达到最大时,弹性势能释放转化为弹力,所述动子(4)克服驱动力向相反方向运动;在所述驱动装置(5)和所述弹性元件(3)的作用下,所述动子(4)在所述套筒(202)内部延轴线以一定频率往复运动。
  49. 根据权利要求47所述的一种洗涤设备的自动投放装置,其特征在于:所述驱动装置(5)通交流电产生驱动力使所述动子(4)向所述套筒(202)内部封闭端方向运动;所述动子(4)先挤压所述支撑弹簧(301);所述动子(4)继续向所述套筒(202)内部封闭端方向运动接触并挤压所述反弹弹簧(302);当所述支撑弹簧(301)和所述反弹弹簧(302)被压缩后累积的弹性势能达到最大时,弹性势能释放转化为弹力,所述动子(4)克服驱动力向相反方向运动作用于所述膜片(1)使所述膜片(1)发生形变;所述膜片(1)发生形变后所述膜片(1)依靠自身的复位力和所述复位弹簧(303)提供的弹簧弹力的合力快速复位;在所述驱动装置(5)和所述弹性元件(3)的作用下,所述动子(4)在所述套筒(202)内部延轴线以一定频率往复运动。
  50. 一种洗涤设备,其特征在于:包括权利要求41-42任一项所述的一种洗涤设备的自动投放装置,所述吸液腔(602)中的所述吸液管(603)连接洗涤设备的储液腔室,所述吸液腔(602)中的所述排液管(204)连接洗涤设备的洗涤容腔或者液水混合腔。
PCT/CN2023/101203 2022-06-30 2023-06-20 一种洗涤设备的自动投放装置及洗涤设备 WO2024001858A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202210772918.2 2022-06-30
CN202210778970.9 2022-06-30
CN202210770802.5A CN117364425A (zh) 2022-06-30 2022-06-30 一种洗涤设备的自动投放装置及洗涤设备
CN202210772863.5 2022-06-30
CN202210772863.5A CN117364434A (zh) 2022-06-30 2022-06-30 一种洗涤设备的自动投放装置及洗涤设备
CN202210772918.2A CN117375353A (zh) 2022-06-30 2022-06-30 一种自动投放装置的驱动装置、自动投放装置及洗涤设备
CN202210772470.4 2022-06-30
CN202210772470.4A CN117364432A (zh) 2022-06-30 2022-06-30 一种洗涤设备的自动投放装置及洗涤设备
CN202210778970.9A CN117364418A (zh) 2022-06-30 2022-06-30 一种洗涤设备的添加剂投放器的驱动装置及洗涤设备
CN202210770802.5 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024001858A1 true WO2024001858A1 (zh) 2024-01-04

Family

ID=89383257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101203 WO2024001858A1 (zh) 2022-06-30 2023-06-20 一种洗涤设备的自动投放装置及洗涤设备

Country Status (1)

Country Link
WO (1) WO2024001858A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1225958A (zh) * 1998-02-14 1999-08-18 岑深 洗衣机等的洗涤助剂供给装置
KR20030026687A (ko) * 2001-09-26 2003-04-03 주식회사 대우일렉트로닉스 세탁기의 소금투입장치
CN205152630U (zh) * 2015-11-10 2016-04-13 南京乐金熊猫电器有限公司 可自动投入液态洗涤剂的装置
CN106350966A (zh) * 2015-07-15 2017-01-25 青岛海尔洗衣机有限公司 一种自动投放装置及洗衣机
CN110004668A (zh) * 2018-01-04 2019-07-12 青岛海尔滚筒洗衣机有限公司 一种衣物处理剂投放结构及洗衣机
CN110004665A (zh) * 2018-01-04 2019-07-12 青岛海尔滚筒洗衣机有限公司 一种衣物处理剂投放结构及洗衣机
CN111387902A (zh) * 2020-04-14 2020-07-10 浙江宏昌电器科技股份有限公司 一种液态洗涤剂自动投放装置
CN218115897U (zh) * 2022-06-30 2022-12-23 青岛海尔洗衣机有限公司 一种液体投放装置的投放室、投放装置及洗涤设备
CN218345718U (zh) * 2022-06-30 2023-01-20 青岛海尔洗衣机有限公司 一种洗涤设备的自动投放装置及洗涤设备
CN218492035U (zh) * 2022-06-30 2023-02-17 青岛海尔洗衣机有限公司 一种洗涤设备的投放室、液体投放装置及洗涤设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1225958A (zh) * 1998-02-14 1999-08-18 岑深 洗衣机等的洗涤助剂供给装置
KR20030026687A (ko) * 2001-09-26 2003-04-03 주식회사 대우일렉트로닉스 세탁기의 소금투입장치
CN106350966A (zh) * 2015-07-15 2017-01-25 青岛海尔洗衣机有限公司 一种自动投放装置及洗衣机
CN205152630U (zh) * 2015-11-10 2016-04-13 南京乐金熊猫电器有限公司 可自动投入液态洗涤剂的装置
CN110004668A (zh) * 2018-01-04 2019-07-12 青岛海尔滚筒洗衣机有限公司 一种衣物处理剂投放结构及洗衣机
CN110004665A (zh) * 2018-01-04 2019-07-12 青岛海尔滚筒洗衣机有限公司 一种衣物处理剂投放结构及洗衣机
CN111387902A (zh) * 2020-04-14 2020-07-10 浙江宏昌电器科技股份有限公司 一种液态洗涤剂自动投放装置
CN218115897U (zh) * 2022-06-30 2022-12-23 青岛海尔洗衣机有限公司 一种液体投放装置的投放室、投放装置及洗涤设备
CN218345718U (zh) * 2022-06-30 2023-01-20 青岛海尔洗衣机有限公司 一种洗涤设备的自动投放装置及洗涤设备
CN218492035U (zh) * 2022-06-30 2023-02-17 青岛海尔洗衣机有限公司 一种洗涤设备的投放室、液体投放装置及洗涤设备

Similar Documents

Publication Publication Date Title
CN109862862B (zh) 用于压力波按摩的按摩装置
CN218345718U (zh) 一种洗涤设备的自动投放装置及洗涤设备
CN218492035U (zh) 一种洗涤设备的投放室、液体投放装置及洗涤设备
EP2161448A1 (en) Motor-driven pump
WO2017140180A1 (zh) 隔膜泵及电动喷雾器
WO2024001858A1 (zh) 一种洗涤设备的自动投放装置及洗涤设备
WO2024001854A1 (zh) 一种洗涤设备自动投液装置及洗涤设备
CN117364425A (zh) 一种洗涤设备的自动投放装置及洗涤设备
WO2024001855A1 (zh) 一种洗涤设备的自动投放装置及洗涤设备
CN101368554A (zh) 电磁振动泵
WO2024001857A1 (zh) 一种洗涤设备的自动投放装置及洗涤设备
CN117364434A (zh) 一种洗涤设备的自动投放装置及洗涤设备
JPH10184553A (ja) 電磁ポンプ
CN117364432A (zh) 一种洗涤设备的自动投放装置及洗涤设备
CN117364423A (zh) 一种用于洗涤设备的自动投液装置及洗涤设备
CN117364408A (zh) 一种洗涤设备的投放器的控制方法
CN117375352A (zh) 一种洗涤设备自动投放装置的交流电驱动装置及洗涤设备
CN210531083U (zh) 一种防堵电磁泵
CN117364428A (zh) 一种洗涤设备的自动投放装置及洗涤设备
CN117364418A (zh) 一种洗涤设备的添加剂投放器的驱动装置及洗涤设备
CN117364429A (zh) 一种洗涤液投放器及洗涤装置
CN117364431A (zh) 一种洗涤设备自动投液装置及洗涤设备
JP3162420U (ja) 周波数、電圧変換機能付き電磁振動型ポンプ
GB2079381A (en) Alternating current energised gas pumping device
CN117364430A (zh) 一种洗涤设备的投放装置及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830038

Country of ref document: EP

Kind code of ref document: A1