WO2024001857A1 - 一种洗涤设备的自动投放装置及洗涤设备 - Google Patents

一种洗涤设备的自动投放装置及洗涤设备 Download PDF

Info

Publication number
WO2024001857A1
WO2024001857A1 PCT/CN2023/101200 CN2023101200W WO2024001857A1 WO 2024001857 A1 WO2024001857 A1 WO 2024001857A1 CN 2023101200 W CN2023101200 W CN 2023101200W WO 2024001857 A1 WO2024001857 A1 WO 2024001857A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
mover
diaphragm
magnetic field
sleeve
Prior art date
Application number
PCT/CN2023/101200
Other languages
English (en)
French (fr)
Inventor
赵志强
许升
吕佩师
Original Assignee
青岛海尔洗衣机有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210772395.1A external-priority patent/CN117375352A/zh
Priority claimed from CN202210772238.0A external-priority patent/CN117364430A/zh
Priority claimed from CN202210778997.8A external-priority patent/CN117364408A/zh
Priority claimed from CN202210770958.3A external-priority patent/CN117364427A/zh
Application filed by 青岛海尔洗衣机有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔洗衣机有限公司
Publication of WO2024001857A1 publication Critical patent/WO2024001857A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/02Devices for adding soap or other washing agents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets

Definitions

  • the invention belongs to the technical field of washing machine equipment, and specifically relates to an automatic putting device for washing equipment and washing equipment.
  • the object of the present invention is to provide an AC drive device and washing equipment for an automatic dosing device of washing equipment, so as to realize rapid and automatic addition of detergent liquid, reduce the complexity of the liquid dosing device, simplify the structure of the liquid dosing device, and improve the efficiency of the equipment. stability.
  • the invention provides an AC driving device for an automatic delivery device of washing equipment, which includes a sleeve with an axial opening on one side.
  • a coil is arranged outside the sleeve, and a magnetic conductor that can reciprocate is arranged axially inside the sleeve.
  • the sleeve opening is correspondingly provided with a first elastic structure capable of producing deformation; under continuous AC current, the magnetic conductor is at least continuously connected under the alternating action of magnetic attraction generated by AC current flowing into the coil and the resilience of the elastic structure. Make reciprocating movements.
  • the coil is arranged around the sleeve, and the coil is supplied with alternating current to generate an alternating magnetic field.
  • the intensity of the alternating magnetic field becomes stronger, the magnetic conductive body moves from the initial position under the action of magnetic attraction.
  • the first The deformation of the elastic structure stores elastic potential energy.
  • the intensity of the alternating magnetic field weakens, the elastic potential energy is greater than the magnetic attraction force, causing the magnetic conductor to move in the opposite direction, causing the first elastic structure to vibrate in a small amplitude.
  • the inner end of the sleeve is provided with a second elastic structure, and the second elastic structure is a spring.
  • the magnetic conductor moves from the initial position under the action of magnetic attraction, causing the spring to move
  • the deformation stores elastic potential energy.
  • the elastic potential energy is greater than the magnetic attraction generated by the magnetic field, the magnetically conductive body rebounds and moves in the opposite direction.
  • the magnetic conductor moves back and forth at a certain frequency when alternating current is continuously supplied, and the elastic structure and the magnetic conductor together form a resonance system that is independent of changes in the positive and negative voltages of the alternating current.
  • the frequency of the resonant system is determined by the mass of the magnetic conductor and the elastic coefficient K of the elastic structure.
  • the magnetic conductor is a material that is not magnetic but can conduct magnets.
  • the magnetic conductor can produce a force toward the end of the sleeve. of magnetic attraction.
  • the magnetic conductor is connected to the first elastic structure, and the amplitude of the first elastic structure toward the liquid absorbing device cavity increases with the increase in the movement frequency of the magnet conductor.
  • the movement frequency of the magnet conductor increases,
  • the natural frequency of the resonant system reaches the maximum value, the amplitude of the first elastic structure also rises to the maximum value.
  • the position of the magnetic conductor from the centroid of the coil gradually shortens, so that the magnetic attraction force in the direction of movement of the magnetic conductor is divided.
  • the force gradually decreases during the movement, so that most of the force received when the magnetic conductor hits the second elastic element is inertial force.
  • the magnetic attraction force generated by the coil on the magnetic conductor gradually decreases.
  • the magnetic attraction force generated by the coil on the magnetic conductor gradually increases.
  • the first elastic structure only relies on its own elastic deformation to overcome the magnetic attraction and produce a small vibration; the first elastic structure deforms to the lotion level under the joint action of the first elastic structure and the second elastic structure.
  • device cavity Opposite end walls of the diaphragm.
  • the volume of the liquid suction device connected to the first elastic structure is less than or equal to 20 ml.
  • the present invention also provides a washing equipment, which includes an AC driving device of the automatic delivery device as described above.
  • the present invention has the following beneficial effects compared with the prior art.
  • the structure of the invention is simple and easy to process, thereby reducing production costs.
  • the present invention provides a power source through alternating current, and utilizes the characteristics of the alternating current flowing into the coil to generate an alternating magnetic field, thereby realizing automatic addition of detergent quickly and efficiently.
  • the present invention is smaller in size, reduces installation requirements, and facilitates corresponding installation design with equipment.
  • the present invention makes full use of the characteristics of alternating current to drive the magnetic conductor, and the driving method is simple, direct and efficient.
  • the present invention adopts a simple and efficient structural design. After the diaphragm is deformed, a return spring is used to assist the deformation and reset of the diaphragm, which slows down the aging speed of the diaphragm and increases the service life of the consumable parts.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the prior art and provide an automatic delivery device for washing equipment to solve the problems of the prior art of detergent residue suction chamber and low liquid discharge efficiency.
  • An automatic delivery device for washing equipment including a casing and a liquid suction chamber connected thereto.
  • a magnetic driving device is provided in the casing.
  • the magnetic driving device includes a mover, a coil and a sleeve arranged coaxially.
  • the sleeve has an axial opening on the side of the liquid suction chamber, and a diaphragm is provided between the housing and the liquid suction chamber.
  • the first end of the mover is connected to the diaphragm through the opening of the sleeve.
  • the coil continuously supplies periodically changing direct current to generate a magnetic field force, driving the mover to move along the first movement direction in the sleeve, causing the diaphragm to deform, and the mover and the diaphragm The piece resets against the force of the magnetic field under the action of rebound force, causing the pressure in the liquid suction chamber to change to absorb and discharge liquid.
  • the direct current gradually increases, and the magnetic field force and the resilience force gradually increase; before the current increases to the first threshold, the magnetic field force is greater than the resilience force; the current After it is greater than the first threshold, the magnetic field force is smaller than the resilience force; the first movement direction is the direction in which the mover moves toward the end of the sleeve away from the liquid suction chamber.
  • the deformation of the diaphragm generates a rebound force opposite to the direction of the magnetic field force, driving the mover and the diaphragm to reset.
  • the DC current gradually decreases, and the rebound force and magnetic field force gradually decrease; before the current decreases to the second threshold, the rebound force is greater than the magnetic field force; after the current is less than the second threshold, the rebound force is less than the magnetic field force. force.
  • the elastic element also includes an elastic element, one end of the elastic element is fixedly connected to the bottom of the sleeve, and the other end is connected and arranged correspondingly to the second end of the mover; the resilience includes the common deformation of the diaphragm and the elastic element. The rebound force produced.
  • the direct current gradually increases, the magnetic field force and the resilience force gradually increase; before the current increases to the third threshold, the magnetic field force is greater than the rebound force; after the current is greater than the third threshold, the magnetic field force is less than the rebound force;
  • the deformation of the diaphragm and the elastic element generates a rebound force opposite to the direction of the magnetic field force, driving the mover, the diaphragm and the elastic element to reset; during the reset process of the diaphragm and the elastic element, the DC current gradually decreases and the return.
  • the elastic force and magnetic field force gradually decrease; before the current decreases to the fourth threshold, the rebound force is greater than the magnetic field force; after the current is less than the fourth threshold, the rebound force is less than the magnetic field force.
  • the diaphragm and the elastic element deform to the maximum deformation amount, the direction of the resultant force of the rebound force and the magnetic field force is opposite to the magnetic field force.
  • the diaphragm and the elastic element have a tendency to reset.
  • the movement speed of the mover in the sleeve is controlled, and the vibration frequency of the diaphragm is controlled.
  • the movement speed of the mover in the sleeve is controlled, and the movement speed of the mover is controlled.
  • the vibration frequency of the diaphragm is controlled.
  • the mover and the middle area of the diaphragm are bonded; or the mover and the middle area of the diaphragm are embedded through an embedded part.
  • a method for controlling an automatic delivery device of washing equipment including:
  • the coil in the magnetic drive device is supplied with direct current to generate a magnetic field force, which drives the mover to move and deform the diaphragm; before the DC current increases to the first threshold, the magnetic field force is greater than the rebound force, and the moving force The mover accelerates; after the current is greater than the first threshold, the magnetic field force is less than the rebound force, and the mover decelerates;
  • the mover and the diaphragm are at least reset under the action of the rebound force; before the current decreases to the second threshold, the rebound force is greater than the magnetic field force, and the mover accelerates; after the current is less than the second threshold, the rebound force is less than the magnetic field force, and the mover accelerates. Sub-deceleration motion;
  • the liquid suction chamber absorbs and discharges liquid.
  • the present invention has the following beneficial effects compared with the existing technology:
  • the mover prompts the diaphragm to reciprocate under the action of the magnetic field force, causing the diaphragm itself to vibrate.
  • the liquid suction chamber makes it easier to absorb or discharge liquid, improving liquid suction. cavity drainage effect.
  • an elastic element is provided to cooperate with the mover, and combined with the resilience of the elastic element, the vibration amplitude of the diaphragm is increased, the liquid drainage effect of the liquid suction chamber is improved, the liquid drainage efficiency is improved, and the accuracy of liquid delivery is achieved.
  • the movement speed of the mover in the sleeve is controlled, the vibration frequency of the diaphragm is increased, and the discharge capacity of the liquid suction chamber is further improved. liquid effect to prevent liquid residue.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the prior art and provide a control method for the automatic delivery device of the washing equipment to solve the problems of the prior art of detergent residue suction chamber and low drain efficiency.
  • the delivery device includes a driving device and a delivery device.
  • the driving device includes a sleeve, a coil provided outside the sleeve, and a mover provided inside the sleeve.
  • the delivery device includes a diaphragm, Suction chamber, including:
  • the coil in the driving device is supplied with alternating current to generate a magnetic field force, which drives the mover to move and deform the diaphragm;
  • the mover and diaphragm are at least reset under the action of resilience
  • the liquid suction chamber absorbs and discharges liquid.
  • step S1 includes:
  • the coil is supplied with alternating current, which generates a changing magnetic field force in the direction in which the mover approaches the center of the coil, driving the mover to drive the diaphragm to deform to the first deformation;
  • Step S2 includes: S21.
  • the deformation of the diaphragm generates a rebound force in the opposite direction to the magnetic field force.
  • the rebound force overcomes the magnetic field force and drives the diaphragm and the mover to reset to the second deformation;
  • the distance of the second deformation is greater than the distance of the first deformation, and the two deformation directions are opposite.
  • Step S1 includes:
  • the coil is supplied with alternating current, which generates a magnetic field force that changes in the direction in which the mover approaches the center of the coil, driving the mover to drive the diaphragm and compress the elastic element to deform to the first deformation;
  • Step S2 includes: S22.
  • the deformation of the diaphragm and the elastic element generates a rebound force in the opposite direction to the magnetic field force.
  • the rebound force overcomes the magnetic field force and drives the mover, the diaphragm and the elastic element to reset to the second deformation.
  • step S1 includes:
  • Step S2 includes: S23.
  • the second deformation reaches the initial position.
  • the inertial force overcomes the magnetic field force and drives the mover and diaphragm or the mover, diaphragm and elastic element to continue moving beyond the initial position to the second deformation.
  • step S1 includes:
  • Step S2 includes: S24.
  • the magnetic field force, rebound force and inertial force gradually decrease, and the sum of the rebound force and inertial force is greater than the magnetic field force; the mover and the diaphragm or the mover, the diaphragm and the elasticity
  • the movement speed of the component in the second deformation direction first increases and then decreases.
  • step S1 includes:
  • Step S2 includes: S241. Before the mover approaches the center of the coil, the resultant force of the rebound force, inertial force and magnetic field force increases; after the mover exceeds the center of the coil, the resultant force of the rebound force, inertial force and magnetic field force decreases; the direction of the resultant force is with Magnetic forces are in opposite directions.
  • step S1 includes:
  • Step S2 includes: S25.
  • the speed of the mover and the diaphragm or the mover, the diaphragm and the elastic element to the second deformation is zero, and the direction of the resultant force is the same as the direction of the magnetic field force.
  • step S2 includes:
  • step S2 includes:
  • the rebound force of the elastic element and the diaphragm gradually increases, and the inertial force gradually decreases.
  • the inertial force is greater than the sum of the rebound force and the magnetic field force.
  • step S3 includes:
  • the coil is continuously supplied with alternating current, and the magnetic field force and resilience force periodically drive the mover to deform and reset the diaphragm, generating resonant oscillation, causing the pressure in the liquid suction chamber to change, and driving the liquid suction chamber to absorb and discharge liquid. .
  • the present invention has the following beneficial effects compared with the existing technology:
  • the mover and diaphragm under the action of magnetic field force and rebound force, the mover and diaphragm can achieve high-frequency reciprocating motion and generate resonant oscillation.
  • the pressure in the liquid suction chamber continuously changes, and liquid suction and discharge are performed periodically, effectively improving the efficiency of the liquid delivery device.
  • the present invention provides an automatic delivery device for washing equipment; on the other hand, the present invention provides a washing equipment; according to the automatic delivery device of the washing equipment provided by the present invention The device can directly use alternating current to drive the automatic delivery device of the washing equipment, thereby reducing manufacturing costs.
  • the washing equipment according to the present invention adopts the automatic delivery device of the washing equipment.
  • the present invention provides an automatic feeding device for washing equipment, including a liquid feeding device connected to a driving device, and the driving device includes: a sleeve, which is a cylinder structure with one end open and the other end closed. A coil is wound around the outside of the sleeve, and a mover is provided in the inner cavity; a magnetic shielding element is installed between the mover and the coil to shield the magnetic field lines from entering the sleeve axially after the coil is energized.
  • a part of the area on the sleeve, and another part of the area in the axial direction of the sleeve forms a continuous magnetic field with periodic changes in size; an elastic element is located between the closed end of the sleeve and the mover; when the magnetic field is generated When the magnetic attraction force becomes smaller, the elastic force of the elastic element on the mover overcomes the magnetic attraction force, causing the mover to move in the direction opposite to the magnetic attraction force. The magnetic attraction force and the elastic force work together to make the mover move in the direction opposite to the magnetic attraction force. The mover moves continuously back and forth.
  • the electromagnetic driving principle is adopted. After the coil is energized, a magnetic field is generated.
  • the magnetic induction lines extend along the metal magnetic conductive structure outside the coil. In the cylinder structure wound by the coil, the magnetic induction lines extend along the magnetic shielding element. extension, magnetic screen
  • the shielding element can only shield part of the magnetic induction lines from entering the inner cavity of the cylinder structure, so that the unshielded magnetic induction lines enter the inner cavity of the cylinder structure from the gap, and then drive the magnetic conductor to move. Since the present invention is not affected by household alternating current , as the current changes periodically, the magnetic field force of the coil also changes periodically.
  • the elastic element drives the magnetizer to move in the opposite direction of the magnetic attraction.
  • the combined action of the elastic force of the elastic element causes the magnetic conductor to reciprocate, thereby driving the liquid feeding device to absorb and discharge liquid.
  • the magnetic shielding element surrounds part of the cavity in the sleeve in the axial direction of the sleeve, and the unenclosed area in the axial direction forms a gap for the magnetic flux lines to pass through.
  • the coil After the coil is energized, the The coil generates a continuous magnetic field that changes periodically in size.
  • the magnetic field is concentrated at the gap, forming a magnetic attraction force that attracts the mover to move in the direction of the gap.
  • the magnetic attraction force is continuous and changes periodically in size. force.
  • the magnetic shielding element is arranged on the outer periphery of the sleeve, extends from the closed end of the sleeve toward the open end, and forms a gap near the open end; the magnetic field generated when the coil is energized, As the current changes periodically, the magnitude of the magnetic field changes accordingly, and the magnetic attraction generated at the notch is always directed toward the open end of the sleeve.
  • the elastic element is a tension spring.
  • the magnetic attraction force is generated, and the magnetic attraction force attracts the mover to move toward the open end of the sleeve.
  • the tension spring is affected by the mover force.
  • the pull of the spring causes deformation, and the tension spring accumulates elastic force.
  • the elastic force gradually increases.
  • the mover moves by inertia to the first extreme position. At the first extreme position, the elastic force is greater than the magnetic force.
  • the suction force and current become smaller, and the magnetic suction force becomes smaller accordingly, and the mover starts to move toward the closed end of the sleeve.
  • the mover is located at the first limit position, the elastic force of the tension spring drives the mover to move toward the closed end of the sleeve, the deformation of the tension spring gradually recovers, and the elastic force Gradually decreases, and when it is the same as the magnetic attraction again, the mover moves to the second limit position due to inertia, the tension spring is compressed, the elastic force moves toward the open end of the sleeve, and the current becomes larger.
  • the magnetic attraction force increases accordingly, and the mover begins to move toward the open end of the sleeve again.
  • the magnetic shielding element is arranged on the outer periphery of the sleeve, extends from the open end of the sleeve toward the closed end, and forms a gap near the closed end; the magnetic field generated when the coil is energized, As the current changes periodically, the magnitude of the magnetic field changes accordingly, and the magnetic attraction generated at the notch is always directed toward the closed end of the sleeve.
  • the elastic element is a compression spring.
  • the magnetic attraction force is generated, and the magnetic attraction force attracts the mover to move toward the closed end of the sleeve.
  • the compression spring is compressed by the mover. Deformation occurs, the compression spring accumulates elastic force, and the elastic force gradually increases.
  • the elastic force is the same as the magnetic attraction, the mover moves by inertia to the second extreme position. At the first extreme position, the elastic force is greater than the magnetic attraction, and the current becomes smaller, the magnetic attraction force becomes smaller, and the mover starts to move toward the open end of the sleeve.
  • the mover is located at the second limit position, and the elastic force of the compression spring drives the mover to move toward the open end of the sleeve.
  • the deformation of the compression spring gradually recovers, and the elastic force gradually decreases.
  • annular plate is provided at the open end of the sleeve, and an edge of the annular plate extends away from one side of the sleeve to form an annular connecting wall, and the annular connecting wall is connected to the liquid injection device.
  • the liquid feeding device includes: a liquid suction chamber, which is a cavity with one end open; an elastic diaphragm, which is disposed at the open end of the liquid suction chamber, for closing the liquid suction chamber, the The elastic diaphragm can be deformed, and the mover is connected to the elastic diaphragm.
  • the shape of the elastic diaphragm is adjusted through the reciprocating motion of the mover, thereby changing the pressure inside the liquid suction chamber, so that the The liquid feeding device performs liquid suction and liquid discharge.
  • the present invention also provides a kind of washing equipment, including the automatic feeding device of the above-mentioned washing equipment.
  • the liquid suction pipe of the liquid feeding device is connected to the liquid storage box of the washing equipment.
  • the liquid draining device of the liquid feeding device The pipeline is connected to the washing chamber of the washing equipment.
  • Figure 1 is a schematic structural diagram of Embodiment 1 of the present invention.
  • Figure 2 is a schematic structural diagram of Embodiment 2 of the present invention.
  • Figure 3 is a schematic structural diagram of Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural diagram of Embodiment 5 of the present invention.
  • FIG. 5 is a schematic structural diagram of Embodiment 6 of the present invention.
  • FIG. 6 is a schematic structural diagram of Embodiment 7 of the present invention.
  • Figure 7 is a schematic diagram of the shape of the first elastic structure of the present invention.
  • Figure 8 is a second schematic diagram of the shape of the first elastic structure of the present invention.
  • Figure 9 is a schematic structural diagram of the delivery device in the embodiment of the present invention.
  • Figure 10 is a schematic structural diagram of a delivery device in another embodiment of the present invention.
  • Figure 11 is a schematic structural diagram of a delivery device in another embodiment of the present invention.
  • Figure 12 is a schematic diagram of the normal structure of a specific embodiment provided by the present invention.
  • Figure 13 is a schematic structural diagram of the second limit position of a specific embodiment provided by the present invention.
  • Figure 14 is a schematic structural diagram of the first limit position of a specific embodiment provided by the present invention.
  • Figure 15 is a schematic diagram of the normal structure of another specific embodiment of the present invention.
  • Figure 16 is a schematic structural diagram of the first limit position of another specific embodiment of the present invention.
  • Figure 17 is a schematic structural diagram of the second limit position of another specific embodiment of the present invention.
  • Liquid feeding device 9101. Liquid suction chamber; 91011. End wall; 91012. Side wall; 9102. Elastic diaphragm; 91021. Card slot; 91022. Annular protrusion; 9103. Liquid suction pipe; 9104. Drainage pipeline;
  • Driving device 9201, coil; 9202, magnetic shielding element; 92021, gap; 9203, sleeve; 92031, annular plate; 920311, annular connecting wall; 920312, annular groove; 920313, deformation chamber; 9204, elasticity Components; 9205, mover; 92051, clamping block; 9206, coil bracket; 92061, coil slot; 9207, annular magnetic conductive plate; 9208, magnetic conductive cylinder.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection. connect, or connect in one piece Connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • connection or connect in one piece Connection
  • it can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium.
  • specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the invention provides an AC driving device for an automatic dispensing device of washing equipment.
  • the dispensing device is used in the detergent dispensing part of the washing machine.
  • the driving device is established to make the dispensing more stable and efficient.
  • the automatic dispensing device includes a housing 2, a driving device 5 and a liquid suction device 6.
  • the liquid suction device 6 includes an end cover 601, a liquid suction chamber 602, a liquid suction pipe 603, a liquid discharge pipe 604 and a mounting position 605.
  • the end cover 601 of the liquid suction device 6 is fixedly connected to the housing 2 through bolts.
  • the liquid suction chamber 602 is connected to the detergent storage component, and the drain pipe 604 is connected to the washing chamber of the washing machine.
  • the housing 2 includes a flange 201 and a sleeve 202.
  • the flange 201 and the sleeve 202 are an integrated structure.
  • the sleeve 202 is axially open on one side.
  • the end cover 601 is fixedly connected to the flange 201 through bolts.
  • the end cover 601 and the flange are The inside of the combined sides 201 forms a suction pipe 603, and a mounting position 605 is provided inside the joint between the end cap 601 and the flange 201.
  • the driving device 5 is an AC driving device. Specifically, a coil 501 is provided outside the sleeve 202, and a magnetic conductor 4 that can reciprocate is disposed axially inside the sleeve 202. The magnetic conductor 4 is also It is called the mover 9205.
  • the sleeve opening is correspondingly provided with a first elastic structure capable of producing deformation. When the alternating current is continuously supplied, the magnetic conductor 4 at least generates magnetic attraction and the resilience of the first elastic structure when the alternating current is supplied to the coil. Continuous reciprocating movement under alternating action realizes the function of pumping liquid.
  • the first elastic structure is a diaphragm 1, and the outer edge part of the diaphragm 1 is installed on the installation position 605 of the liquid suction device 6, that is, the outer edge part of the diaphragm 1 is fixed on the end cover 601 and Between flanging 201.
  • the diaphragm 1 separates the chamber formed by the end cap 601 and the flange 201, forming the suction pipe 603 on the side close to the suction chamber 602 and the discharge pipe 604 and the avoidance chamber on the side close to the sleeve 202.
  • the shape of the diaphragm 1 can be disk-shaped, bowl-shaped and bladder-shaped. Changing the shape of the diaphragm 1 can achieve a larger vibration amplitude and better sealing effect. Prevent detergent from penetrating into the avoidance chamber.
  • the coil 501 is embedded and installed in the coil holder 502.
  • a sleeve 202 is fixedly installed on the inner wall of the coil holder 502.
  • a magnetic conductor 4 is slidably provided in the sleeve 202.
  • the open end of the sleeve 202 is equipped with a flange 201, and the flange 201 is close to the coil 501.
  • a coil installation plate is installed on one side, and the coil installation plate and the coil bracket 502 are connected through an installation frame.
  • An end cover 601 is provided on the side of the flange 201 away from the sleeve 202.
  • the end cover 601 is equipped with a liquid absorber on the wall away from the sleeve 202.
  • a one-way valve 206 is installed in the drain pipe 604. Since the pressure required for suction from the drain pipe 604 and the suction chamber 602 is different, at least a single check valve 206 is added to the drain pipe 604. A one-way valve can meet the working needs. It is preferable to install two one-way valves 206 in opposite directions to each other in the two pipes, so that the pumping effect of the device is more stable.
  • the diaphragm 1 limits the magnetic conductor 4 to a certain position.
  • One end of the sleeve 202 is open and the other end is sealed.
  • the coil 501 is an annular wire winding.
  • the coil 501 is mounted coaxially with the sleeve 202 .
  • the end cover 601, the coil mounting plate and the sleeve 202 have corresponding holes, and the three are fixed together by bolts.
  • the diaphragm 1 is provided with an embedding groove (not shown in the figure), and the magnetic conductor 4 is provided with an embedding block.
  • the embedding block and the embedding groove cooperate to fix the diaphragm 1 and the magnetic conductor 4 .
  • it can also be an integrated flexible arc-shaped diaphragm 1 in which the magnetic conductor 4 is placed into a mold for in-mold injection molding or vulcanization. Integrated molding and manufacturing can improve the accuracy of the workpiece and facilitate subsequent assembly processes.
  • the magnetic conductor 4 After the coil 501 is energized, the magnetic conductor 4 receives the magnetic attraction generated by the coil 501. The magnetic conductor 4 moves toward the end of the sleeve 202, thereby pulling the diaphragm 1, causing the diaphragm 1 to elastically deform.
  • the intensity of the magnetic field changes with the periodic change of the alternating current.
  • the elastic potential energy generated by the pulling of diaphragm 1 takes effect.
  • the magnetic field intensity decreases.
  • the effect of the resilience of diaphragm 1 is pulled back to the direction of the pipette 603.
  • the magnetic conductor 4 pulls the diaphragm 1 toward the end of the sleeve 202 again.
  • the diaphragm 1 vibrates slightly.
  • the volume of the suction pipe 603 begins to decrease, and the pressure inside the suction pipe 603 becomes positive.
  • the positive pressure discharges the liquid to the discharge pipe 604 through the one-way valve 206.
  • centroid of the magnetic conductor 4 is located on the side of the axis of the coil 501 away from the end of the sleeve 202.
  • the specific design of the relative position of the magnetic conductor 4 relative to the coil 501 and the diaphragm 1 is based on the required amplitude of the diaphragm 1.
  • the displacement stroke is determined.
  • the cross section of the sleeve 202 is annular.
  • the pulling direction of the magnetic permeable body 4 by the above-mentioned magnetic attraction force is always toward the position with the highest magnetic flux density in the magnetic field generated after the coil 501 is energized. Furthermore, the resultant direction of countless magnetic attraction forces generated by the coil 501 being energized is always along the axis of the coil 501 .
  • the sleeve 202 closes the end direction.
  • the volume of the suction tube 603 of the liquid suction device 6 connected to the diaphragm 1 is less than or equal to 20 ml.
  • the volume of the suction tube 603 is between 5-10 ml. The smaller volume reduces the space occupied by the entire delivery device inside the washing machine. , conveniently optimizing the overall space design of the washing machine.
  • the device provided in this embodiment not only has a simple overall structure and is easy to process, which is beneficial to reducing production costs, but also reduces the size of the device, reduces installation requirements, and facilitates installation and use.
  • the device provides a power source through alternating current, and utilizes the characteristics of alternating current flowing into the coil to generate an alternating magnetic field, thereby realizing automatic addition of detergent quickly and efficiently. At the same time, it fully utilizes the characteristics of alternating current to drive the magnetic conductor.
  • the driving method is simple, direct and efficient. Improved device stability.
  • This embodiment also provides a washing equipment, which includes an AC driving device of the automatic delivery device as described above.
  • the difference between this embodiment and Embodiment 1 is that the elastic element 3 is installed at the closed end of the sleeve 202 .
  • the elastic element 3 is a rebound spring 302.
  • One end of the rebound spring 302 is installed on the sleeve 202, and the other end is against the magnetic conductor 4.
  • the magnetic conductor 4 moves toward the end of the sleeve 202, thereby pulling the diaphragm 1, causing the diaphragm 1 to elastically deform, and at the same time compressing the rebound spring 302. , causing 302 to undergo elastic deformation and accumulate elastic potential energy.
  • the elastic potential energy overcomes the magnetic attraction force and the diaphragm 1 rebounds in the direction of the one-way valve 206 and compresses the suction tube 603.
  • the diaphragm 1 reciprocates under the driving of alternating current to realize the pumping operation.
  • the rebound spring 302 and the magnetic conductor 4 are in contact with each other to reduce the working noise and reduce the vibration of the device.
  • the rebound spring 302 is not in contact with the magnetic conductor 4, and the two maintain a certain distance in the initial non-working state.
  • AC current is passed into the coil 501 and the coil 501 generates magnetic attraction, due to the positions of the coil 501 and the magnetic conductor 4
  • the design combined with the periodic changes of the alternating current causes the magnetic attraction force received by the magnetic conductor 4 to gradually decrease during the process of rushing towards the rebound spring 302. A large part of the force relied on when the magnetic conductor 4 hits the rebound spring 302 comes from the inertial force. .
  • the non-contact design between the rebound spring 302 and the magnet conductor 4 enables the magnet conductor 4 to move downward without having to pay extra wasted effort to overcome the elastic force of the rebound spring 302, which increases the upper limit of the deformation amplitude of the diaphragm 1 and improves the device's efficiency. Work efficiency.
  • This embodiment also provides a washing equipment, which includes an AC driving device of the automatic delivery device as described above.
  • the difference between this embodiment and the second embodiment is that the elastic element 3 includes a support spring 301 and a supporting spring 301.
  • the second elastic structure installed inside the spring 301.
  • the support spring 301 limits the magnetic conductor 4 so that the magnetic conductor 4 and the sleeve 202 remain coaxial. Under the fixation of the support spring 302, the magnetic conductor 4 maintains a coaxial relationship with the sleeve 202, so that the magnetic conductor 4 and the elastic
  • the resonant system composed of the elements 3 together receives less friction from the sleeve 202 during operation, thereby improving the working efficiency and reducing the heat generation of the device.
  • the second elastic structure is a rebound spring 302 or other elastic elements that meet the design requirements.
  • the rebound spring 302 and the support spring 301 have a certain relationship: the support spring 301 is longer than the rebound spring 302, and the rebound spring The elastic coefficient of 302 is larger than that of the support spring 301, and the elastic coefficient of the rebound spring 302 should be large enough to ensure that sufficient rebound force is provided to drive the magnetizer 4.
  • the magnetic conductor 4 After the coil 501 is energized, the magnetic conductor 4 receives the magnetic attraction generated by the coil 501, and the magnetic conductor 4 moves toward the end of the sleeve 202, thereby pulling the diaphragm 1, causing the diaphragm 1 to elastically deform, and the voltage of the sinusoidal alternating current is changed from When 0 rises to the maximum value, the magnetic conductor 4 is pulled in the direction of the elastic element 3. Before approaching the rebound spring 302, the voltage variation curve of the sinusoidal alternating current crosses the maximum value and begins to decrease, causing the magnetic attraction generated by the coil 501 to begin to decrease.
  • the magnetic attraction force generated by the coil 501 cooperates with the inertial force generated during the movement of the magnetic conductor 4 and hits the rebound 302 .
  • the rebound spring 302 is compressed to a certain extent, the inertial force of the magnetic conductor 4 is exhausted, and the magnetic attraction force of the coil 501 is also smaller than the elastic force of the rebound spring 302.
  • the magnetic conductor 4 is rebounded by the spring after a moment of pause. 302 bounces up and begins to move toward the opening of sleeve 202.
  • the liquid suction tube 603 also reaches the maximum volume.
  • the magnetic conductor 4 moves toward the opening direction of the sleeve 202, the magnetic conductor 4 drives the diaphragm 1 to move, and the volume of the liquid suction pipe 603 begins to decrease. , the inside of the liquid suction pipe 603 becomes positive pressure, and the positive pressure discharges the liquid to the discharge pipe 604 through the one-way valve 206.
  • the magnetic conductor 4 pops up via the rebound spring 302, when it moves to the extreme position, that is, when the volume of the pipette 603 is the smallest, the inertial force of the magnetic conductor 4 itself is exhausted, and the voltage curve of the sinusoidal alternating current has crossed the zero point and begins to move towards the voltage again. The maximum value rises. Therefore, the magnetic conductor 4 moves toward the end of the sleeve 202 again under the action of the magnetic attraction force of the coil 501 and enters the next cycle.
  • the magnetic conductor 4 drives the diaphragm 1 to move at a certain frequency, continuously pumping the liquid into the suction pipe 603 through the liquid suction chamber 602, and then pumping it out through the discharge pipe 604.
  • the AC drive device of the automatic delivery device of the washing equipment When the amount is reached, the coil 501 is powered off and the device stops working.
  • the magnetic conductor 4 and the elastic element 3 form a resonance system, which determines the vibration frequency of the diaphragm 1.
  • the positive voltage or negative voltage part of the periodic variation curve of the alternating current voltage is equal to It can generate a magnetic attraction force toward the end of the sleeve 202 on the magnetic conductor 4, making full use of the characteristics of the alternating current.
  • This embodiment also provides a washing equipment, which includes an AC driving device of the automatic delivery device as described above.
  • the difference between this embodiment and the above embodiment is that another control method of the AC drive device of the automatic delivery device of the washing equipment is to set a current frequency converter or controller before the current passes into the coil 501, so that the AC power can be realized.
  • the high-frequency switching on and off or the positive and negative reversal of the current or changing the size of the current and voltage achieve resonant motion with a controllable frequency.
  • the magnetic force of the coil 501 pulls the magnetic conductor 4 to move and compress the support spring 301, and encounters and compresses the rebound spring 302. is rebounded, and then the magnetic conductor 4 can reciprocate to achieve resonance.
  • the flexible diaphragm 1 embedded with the magnetic conductor 4 or integrated in the mold is also driven to move, so that the diaphragm 1 undergoes elastic deformation, and the volume of the liquid suction tube 603 enters a process of repeated increase and decrease, and the liquid is transferred from the liquid suction chamber 602 Pumped in, and then discharged through the drain pipe 604.
  • the liquid dosing device can achieve a frequency conversion of 1-500hz to change the dosing rate.
  • the dosing is more accurate and avoids pumping too much at one time. Liquid waste.
  • This embodiment also provides a washing equipment, which includes an AC driving device of the automatic delivery device as described above.
  • the difference from the first, second and third embodiments is that the flange 201 and the end cover 601 are integrated designs, the middle section of the inner wall of the end cover 601 is provided with an installation position, and the edge of the diaphragm is directly embedded in the end cover 601 In the installation position, the integrated design of the end cover 601 can reduce the assembly process, improve the installation accuracy, and reduce the work intensity.
  • the diaphragm 1 and the magnetic conductor 4 are not set to be fixedly connected.
  • the action mode of the magnetic conductor 4 on the diaphragm 1 becomes that the magnetic conductor 4 repeatedly hits the diaphragm 1 under the action of the driving device 5, and the diaphragm 1 is damaged.
  • the elastic deformation protrudes in the direction of the suction tube 603
  • the volume of the suction tube 603 begins to decrease, and the inside of the suction tube 603 becomes a positive pressure.
  • the positive pressure discharges the liquid to the discharge pipe 604 through the one-way valve 206, and the magnetic conductor 4
  • the diaphragm 1 When out of contact with the diaphragm 1, the diaphragm 1 begins to reset driven by the deformation force, the volume of the suction tube 603 begins to increase, the inside of the suction tube 603 becomes negative pressure, and the negative pressure draws the liquid from the suction chamber 602 Inhalation of liquid.
  • This embodiment also provides a washing equipment, which includes an AC driving device of the automatic delivery device as described above.
  • this embodiment As shown in Figure 5, the difference between this embodiment and the fourth embodiment is that the installation position on the end cover 601 is moved to the junction of the end cover 601 and the coil installation plate, and the diaphragm 1 is installed into the end cover against the coil installation plate. In the installation position of 601, compared with the fourth embodiment, this embodiment further simplifies the installation steps. Workers do not need to extend the diaphragm 1 into the inside of the end cover 601 for installation, which is convenient and quick.
  • This embodiment also provides a washing equipment, which includes an AC driving device of the automatic delivery device as described above.
  • the difference between this embodiment and the fifth embodiment is that the magnetic permeable body 4 consists of a magnetic permeable part (not marked in the figure) and a conductive part (in the figure) installed on the side of the magnetic permeable part close to the liquid suction tube 602. (not marked) and an embedded block (not marked in the figure) installed at the other end of the conductive part.
  • the embedded block is installed on the diaphragm 1.
  • This embodiment also provides a washing equipment, which includes an AC driving device of the automatic delivery device as described above.
  • this embodiment discloses an automatic delivery device for washing equipment, including a housing 2 and a liquid suction chamber 602 connected thereto.
  • the liquid suction chamber 602 here refers to a chamber for storing liquid. Specifically, as shown in FIG. 9 , the liquid suction chamber 602 is connected with a liquid suction pipe 603 and a liquid discharge pipe 604 .
  • the liquid suction pipe 603 is used to extract the liquid in the liquid storage box, and the liquid discharge pipe 604 is used to discharge the liquid in the liquid suction chamber 602 .
  • one-way valves 206 are respectively provided in the liquid suction pipe 603 and the liquid discharge pipe 604.
  • the opening of the one-way valve 206 in the liquid suction pipe 603 faces the liquid suction chamber 602, so that the liquid suction pipe 603 can only suck liquid from the liquid storage box.
  • the opening of the one-way valve 206 in the liquid discharge pipe 604 faces the outside of the liquid suction chamber 602, so that the liquid discharge pipe 604 can only discharge the liquid in the liquid suction cavity 602 and prevent the liquid in the liquid discharge pipe 604 from flowing back.
  • the housing 2 is provided with a magnetic driving device.
  • the magnetic driving device includes a mover 4, a coil 501 and a sleeve 202 arranged coaxially.
  • the coil 501 mentioned here refers to an annular wire winding.
  • the coil 501 is coaxially disposed on both sides of the sleeve 202 .
  • the axial direction mentioned here can be understood as the direction along the central axis of the housing 2 .
  • the coil 501 and the housing 2 The sleeve 202 is coaxially arranged and distributed on both sides of the sleeve 202 .
  • the winding directions of the energized wires of the coils 501 on both sides are the same, ensuring that the magnetic field formed after the coil 501 is energized has the same direction and provides the same driving force for the movement of the mover 4 in the sleeve 202 .
  • a certain distance is left between the coils 501 on both sides of the sleeve 202 and the two side walls of the sleeve 202 in the axial direction. Setting the above spacing allows the magnetic field force generated after the coil 501 is energized to act more extensively on the mover 4 in the sleeve 202 , thereby improving the utilization of the magnetic field force and providing sufficient driving force for the movement of the mover 4 .
  • the coil 501 is provided only on one side of the sleeve 202 in the axial direction.
  • the requirement of providing driving force for the mover 4 can also be met.
  • the number of turns, quantity and distribution position of the coil 501 can be adaptively adjusted according to specific usage requirements.
  • the mover 4 here refers to a metal block made of steel, iron or other metal materials that can move under the action of magnetic field force.
  • the mover 4 is axially installed in the sleeve 202 and is arranged axially parallel to the sleeve 202 .
  • the mover 4 can move in the sleeve 202 along the axial direction.
  • the coaxial sides of the mover 4 do not fit the sleeve 202 . It can be understood that there is a certain distance between the two coaxial sides of the mover 4 and the axial side walls of the sleeve 202 to facilitate the movement of the mover 4 along the axial direction of the sleeve 202 . There is a certain distance between the end of the mover 4 close to the bottom of the sleeve 202 and the bottom of the sleeve 202 to provide space for the mover 4 to move within the sleeve 202 .
  • the mover 4 has an initial position.
  • the initial position means that the position of the mover 4 is on the right side of the center of the coil 501, ensuring that the electromagnetic attraction of the coil 501 causes the mover 4 to move to the left.
  • the size of the mover 4 can be adjusted adaptively according to specific usage requirements.
  • the sleeve 202 has an axial opening on the liquid suction chamber 602 side.
  • the sleeve 202 is installed in the housing 2 to provide installation and movement space for the mover 4 .
  • the sleeve 202 has an opening. The opening is provided at one axial end of the sleeve 202 and is close to one side of the liquid suction chamber 602 .
  • the diaphragm 1 is provided between the housing 2 and the liquid suction chamber 602 .
  • the first end of the mover 4 is connected to the diaphragm 1 through the opening of the sleeve 202 .
  • the first end of the mover 4 mentioned here refers to the end of the mover 4 close to the diaphragm 1 .
  • the diaphragm 1 here refers to a flexible sheet or flexible film made of rubber, silicone, polyurethane and other materials.
  • the diaphragm 1 is provided between the housing 2 and the liquid suction chamber 602 .
  • one side of the diaphragm 1 is disposed close to the housing 2 and the other side is disposed in the liquid suction chamber 602 .
  • the opening of the sleeve 202 corresponds to the middle area of the diaphragm 1, forming a space for the diaphragm 1 to deform toward the inside of the sleeve 202.
  • the coil 501 continuously supplies a periodically changing direct current to generate a magnetic field force.
  • the periodically changing direct current mentioned here can be understood as the direct current obtained through the rectifier circuit, the voltage of which can change within a fixed period, but the direction of the current does not change.
  • the process of generating a magnetic field force after the coil 501 continues to be supplied with direct current can be understood as, viewed from the axial bottom side of the sleeve 202 (the axial left side of the sleeve 202), the magnetic field force flowing into the coil 501 is The direction of current all points to the counterclockwise direction of coil 501. According to Ampere's rule (hold the energized solenoid with your right hand and let the four fingers point in the direction of the current, then the end pointed by the thumb is the N pole of the energized solenoid). It can be concluded that after the coil 501 is energized, an axial direction is generated. Magnetic field force on the left.
  • the magnetic field force drives the mover 4 to move in the first movement direction within the sleeve 202, causing the diaphragm 1 to deform.
  • the mover 4 and the diaphragm 1 at least overcome the magnetic field force and reset under the action of resilience, causing the pressure in the liquid suction chamber 602 to change to absorb and discharge liquid.
  • the first movement direction described here can be understood as the mover 4 receives an axial leftward magnetic field force and moves in the axial leftward direction within the sleeve 202 .
  • the coil 501 is continuously supplied with direct current, and the magnetic field force always exists.
  • the direction of the magnetic field force does not change, but the magnitude of the magnetic field force changes periodically.
  • the magnetic field force continues to do work on the mover 4, driving the mover 4 to move in the direction of the deformation of the diaphragm 1. Since the rebound force of diaphragm 1 is in the opposite direction to the magnetic field force, the rebound force changes with the deformation of diaphragm 1 until Until it can overcome the magnetic field force, the diaphragm 1 is driven to drive the mover 4 to reset.
  • the mover 4 drives the diaphragm 1 to move axially to the left, increasing the area in the liquid suction chamber 602, forming a negative pressure, and extracting liquid through the liquid suction tube 603.
  • the mover 4 and the diaphragm 1 are reset, squeezing the liquid suction chamber 602, and the area in the liquid suction chamber 602 is reduced, causing the liquid to be discharged from the liquid suction chamber 602 through the discharge pipe 604.
  • the magnetic field force drives the mover 4 to move, driving the diaphragm 1 to repeatedly deform, and under the action of the rebound force of the diaphragm 1, and overcoming the magnetic field force to reset, causing the pressure in the liquid suction chamber 602 to change, using this
  • the pressure difference drives the liquid suction chamber 602 to complete liquid suction and discharge, thereby realizing automatic delivery of liquid in the liquid suction chamber 602.
  • This embodiment is a further description of the eighth embodiment mentioned above.
  • the direct current gradually increases, and the magnetic field force and resilience force gradually increase.
  • the direct current mentioned above changes periodically, and the current first increases to the maximum value of the current within a cycle, and then decreases to zero. Since the magnetic field force is generated by the coil 501 being energized, the changing rule of the magnetic field force is the same as the changing rule of the current. The magnetic field force first increases to the maximum value of the magnetic field force in a cycle, and then decreases to zero. The deformation of diaphragm 1 produces a rebound force. As the deformation amount of diaphragm 1 increases, the rebound force gradually increases.
  • the process of the diaphragm 1 deforming in the first movement direction is within the half cycle of the DC current increasing. It can be imagined that as the current increases and the deformation of the diaphragm 1 increases, the magnetic field force and the resilience force gradually increase.
  • the magnetic field force is greater than the resilience force; after the current exceeds the first threshold value, the magnetic field force is less than the resilience force.
  • the first threshold mentioned here means that when the direct current increases to a certain value, the magnetic field force and the resilience force are balanced.
  • the magnetic field force is greater than the rebound force, and the mover 4 has a tendency to accelerate.
  • the magnetic field force is smaller than the resilience force, and the mover 4 has a tendency to slow down.
  • This embodiment is a further description of the above-mentioned ninth embodiment.
  • the deformation of the diaphragm 1 generates a rebound force in the direction opposite to the magnetic field force, driving the mover 4 and the diaphragm 1 to reset.
  • the diaphragm 1 since the diaphragm 1 itself has elasticity, it can generate rebound force after deformation.
  • the rebound force refers to the force generated after the diaphragm 1 is deformed to restore the diaphragm 1 to an undeformed state.
  • the direction of the resilience force is opposite to the direction in which the diaphragm 1 is deformed, that is to say, the direction of the resilience force is opposite to the direction of the magnetic field force.
  • the DC current gradually decreases, and the resilience and magnetic field force gradually decrease.
  • the process of resetting the diaphragm 1 is within the half cycle of the reduction of the DC current. It can be imagined that as the current gradually decreases, the magnetic field force and the resilience force gradually decrease.
  • the resilience is greater than the magnetic field force; after the current is less than the second threshold, the resilience is less than the magnetic field force.
  • the second threshold mentioned here means that when the direct current decreases to a certain value, the magnetic field force and the resilience force are balanced.
  • the resilience force is greater than the magnetic field force, and the diaphragm 1 has a tendency to accelerate.
  • the rebound force is smaller than the magnetic field force, and the diaphragm 1 has a tendency to slow down.
  • the delivery device provided by this embodiment also includes an elastic element 3 .
  • one end of the elastic element 3 is fixedly connected to the bottom of the sleeve 202 .
  • the elastic element 3 mentioned here refers to a component that can generate a resilient force after receiving a force.
  • the elastic element 3 can be a screw Coil springs, rubber springs and other resilient parts.
  • the elastic element 3 is a coil spring.
  • the length and volume of the elastic element 3 can be adjusted adaptively according to specific usage requirements.
  • one end of the elastic element 3 is fixedly connected to the bottom of the sleeve 202 , so that the elastic element 3 is fixedly installed in the sleeve 202 .
  • the fixed connection here can adopt various connection forms such as bonding and clamping, which are not limited here.
  • the elastic element 3 is disposed in the middle area of the bottom of the sleeve 202 .
  • One end of the elastic element 3 is connected to the middle area of the bottom of the sleeve 202 to provide sufficient space for the mover 4 to move later.
  • the other end of the elastic element 3 is connected to the second end of the mover 4 .
  • the other end of the elastic element 3 refers to the end of the elastic element 3 close to the mover 4 .
  • the second end of the mover 4 mentioned here can be understood as the end of the mover 4 away from the diaphragm 1 .
  • the elastic element 3 is connected to the end of the mover 4 away from the diaphragm 1 to increase the distance of the mover 4 to compress the elastic element 3, thereby increasing the deformation amount of the elastic element 3 and providing greater resilience.
  • the other end of the elastic element 3 is spaced correspondingly to the second end of the mover 4 .
  • the end of the elastic element 3 close to the mover 4 and the end of the mover 4 away from the diaphragm 1 are arranged at corresponding intervals. It can be understood that there is a certain distance between the elastic element 3 and the mover 4 . Setting the distance can ensure that the mover 4 has sufficient movement distance and increase the deformation amount of the diaphragm 1 .
  • the elastic element 3 is provided to effectively increase the vibration amplitude of the diaphragm 1 when it is reset, improve the reset ability of the mover 4 and the diaphragm 1, and further improve the deformation ability of the liquid suction chamber 602.
  • the direct current gradually increases, and the magnetic field force and resilience force gradually increase.
  • the process of deformation of the diaphragm 1 and the elastic element 3 in the first movement direction is within the half cycle of the DC current increasing. It can be imagined that as the current increases and the deformation of the diaphragm 1 increases, the magnetic field force and the resilience force gradually increase.
  • the magnetic field force is greater than the rebound force; after the current exceeds the third threshold, the magnetic field force is less than the rebound force.
  • the third threshold mentioned here means that when the DC current increases to a certain value, the magnetic field force and the resilience force are balanced.
  • the magnetic field force is greater than the rebound force, and the mover 4 has a tendency to accelerate.
  • the magnetic field force is smaller than the rebound force, and the mover 4 has a tendency to slow down.
  • the deformation of the diaphragm 1 and the elastic element 3 generates a rebound force in the direction opposite to the magnetic field force, driving the mover 4, the diaphragm 1 and the elastic element 3 to return to their original position.
  • the resilience mentioned here refers to the sum of the resilience produced by the compression of the elastic element 3 and the resilience produced by the stretching of the diaphragm 1 .
  • the DC current gradually decreases, and the resilience force and magnetic field force gradually decrease.
  • the process of resetting the diaphragm 1 and the elastic element 3 is within the half cycle of the DC current decreasing. It can be imagined that as the current gradually decreases, the magnetic field force and the resilience force gradually decrease.
  • the resilience force is greater than the magnetic field force; after the current is less than the second threshold value, the resilience force is less than the magnetic field force.
  • the fourth threshold mentioned here means that when the DC current is reduced to a certain value, the magnetic field force and the resilience force are balanced.
  • the rebound force is greater than the magnetic field force, and the diaphragm 1 and the elastic element 3 have a tendency to accelerate.
  • the rebound force is less than the magnetic field force, and the diaphragm 1 and the elastic element 3 have a tendency to decelerate the movement.
  • Diaphragm 1 has a tendency to reset.
  • the magnetic field force and the resilience force gradually increase.
  • the current increases, when the deformation amount of the diaphragm 1 and the elastic element 3 reaches the maximum deformation amount, the current reaches the maximum value, and the magnetic field force and resilience force also reach the maximum value.
  • the rebound force can completely overcome the magnetic field force in the opposite direction, and the direction of the resultant force of the rebound force and the magnetic field force is opposite to the direction of the magnetic field force, so that the elastic element 3 begins to move toward the reset direction.
  • k is the elastic coefficient of the spring
  • m is the mass of the mover 4. It can be seen from the formula that the resonant frequency of the system is related to the elastic coefficient of the spring and the mass of the mover 4.
  • the vibration frequency of the diaphragm 1 is controlled.
  • reducing the mass of the mover 4 can increase the resonance frequency of the system, thereby increasing the movement speed of the mover 4 in the sleeve 202, accelerating the deformation of the diaphragm 1, and improving the diaphragm 1. vibration frequency.
  • increasing the elastic coefficient of the elastic element 3 can increase the resonance frequency of the system and increase the liquid delivery speed of the automatic delivery device.
  • This embodiment is a further description of the eighth embodiment mentioned above.
  • the movement speed of the mover 4 in the sleeve 202 is controlled, and the vibration frequency of the diaphragm 1 is controlled.
  • the frequency of the input voltage described here can affect the magnitude of the magnetic field force generated after passing through the coil 501 .
  • the mover 4 has a greater movement speed. That is to say, within the same period of time, the number of deformations of the diaphragm 1 increases, thereby increasing the vibration frequency of the diaphragm 1 .
  • the liquid dosage m when the liquid dosage is small, the liquid dosage m is 10 ml, and the frequency of the output voltage of the DC converter is set to 10 Hz. , the delivery time to realize automatic delivery of liquid is T.
  • the amount of liquid M is 70ml and the frequency of the output voltage of the DC inverter is set to 30Hz, the time for automatic liquid dosing can also be T.
  • the DC frequency converter controls the DC power flowing into the coil 501 to be forward.
  • the direct current described here is forward. It can be understood that when viewed from the bottom side of the sleeve 202 in the axial direction (the left side of the sleeve 202 in the axial direction), the direction of the current flowing into the coil 501 points to the counterclockwise direction of the coil 501 .
  • the DC inverter controls the DC power flowing into the coil 501 to be negative.
  • the direct current described here is negative, which can be understood as, from the bottom side of the sleeve 202 in the axial direction (the axial direction of the sleeve 202 Viewed from the left), the direction of the current flowing into the coil 501 points to the clockwise direction of the coil 501.
  • the axial rightward magnetic field force combined with the rebound force of the diaphragm 1 drives the mover 4 and the diaphragm 1 to quickly reset to reduce the area of the liquid suction chamber 602.
  • the changing magnetic field force and the resilience of the diaphragm 1 repeatedly drive the mover 4 to stretch or reset the diaphragm 1 .
  • the high-frequency reciprocating mover 4 can increase the vibration amplitude of the diaphragm 1, thereby improving the liquid suction and discharge capabilities of the liquid suction chamber 602.
  • the sleeve 202 is connected to the side wall of the housing 2 .
  • the housing 2 includes a closed end and an open end.
  • the open end of the housing 2 can be understood as the side of the housing 2 that has an opening and is located close to the liquid suction chamber 602 .
  • the closed end of the housing 2 can be understood as the side of the housing 2 away from the liquid suction chamber 602 .
  • a flange 201 is provided at the open end of the housing 2 .
  • the flange 201 can serve as a side wall of the housing 2 .
  • the sleeve 202 includes a sleeve 202 bottom and an opening.
  • the opening of the sleeve 202 is oriented in the same direction as the open end of the housing 2 .
  • the opening of the sleeve 202 is connected to the flange 201 of the housing 2 , that is to say, the sleeve 202 is connected to the side wall of the housing 2 , so that the sleeve 202 is fixedly installed in the housing 2 .
  • a flange 201 is provided at the opening of the sleeve 202 , and the flange 201 is connected to the open end of the housing 2 so that the sleeve 202 is fixedly installed in the housing 2 .
  • the open end of the housing 2 is provided with a flange 201, and the opening of the sleeve 202 is also provided with a flange 201.
  • the flange 201 of the housing 2 is connected to the flange 201 of the sleeve 202 so that the sleeve 202 is fixedly installed in the housing 2 .
  • the sleeve 202 and the housing 2 are arranged coaxially.
  • the sleeve 202 is disposed in the middle area of the housing 2 to provide an activity space for the movement of the mover 4 .
  • the size of the sleeve 202 can be adjusted adaptively according to usage requirements.
  • Embodiment 8 This embodiment is a further description of the above-mentioned Embodiment 8 to Embodiment 17.
  • the shape of the mover 4 can be various shapes such as cylindrical shape and elongated shape.
  • the shape of the mover 4 is cylindrical.
  • the cylindrical mover 4 is easy to process and has low processing cost.
  • the length and volume of the mover 4 can be adjusted adaptively according to specific usage requirements.
  • the mover 4 is bonded to the middle area of the diaphragm 1 .
  • the mover 4 is close to one end of the diaphragm 1 and is bonded to the central area of the diaphragm 1 .
  • the mover 4 and the diaphragm 1 are fixed by bonding. Moreover, the bonding fixation method is simple and convenient, and the manufacturing cost is low.
  • the corresponding areas of the mover 4 and the diaphragm 1 are respectively provided with embedded parts, and one end of the mover 4 close to the diaphragm 1 is embedded with the central area of the diaphragm 1 through the embedded parts, so that the mover 4 Fixing with diaphragm 1.
  • This embodiment provides a method for controlling an automatic delivery device of washing equipment, including:
  • the coil in the magnetic drive device is supplied with periodically changing direct current to generate a magnetic field force, which drives the mover to move and deform the diaphragm; before the direct current current increases to the first threshold, the magnetic field force is greater than The rebound force causes the mover to accelerate; after the current is greater than the first threshold, the magnetic field force is less than the rebound force, and the mover decelerates;
  • the mover and diaphragm are at least reset under the action of the rebound force; before the current decreases to the second threshold, the rebound force is greater than the magnetic field. force, the mover accelerates; after the current is less than the second threshold, the rebound force is less than the magnetic field force, and the mover decelerates;
  • the liquid suction chamber absorbs and discharges liquid.
  • the delivery device is ready for delivery.
  • the coil in the magnetic drive device is supplied with periodically changing direct current, thereby generating a magnetic field force with constant direction and varying magnitude.
  • the periodically changing direct current mentioned here can be understood as the direct current obtained through the rectifier circuit, the voltage of which can change within a fixed period, but the direction of the current does not change.
  • direct current changes periodically, and the current first increases to the maximum value of the current within a cycle, and then decreases to zero. Since the magnetic field force is generated by the coil being energized, the changing rules of the magnetic field force are the same as the changing rules of the current. The magnetic field force first increases to the maximum value of the magnetic field force in a cycle, and then decreases to zero.
  • the magnetic field force drives the mover to move and deform the diaphragm.
  • the mover moves in the direction away from the diaphragm, and pulls the diaphragm to deform, so as to increase the area of the liquid suction chamber of the delivery device, reduce the pressure in the liquid suction chamber, and promote the liquid to enter. In the suction chamber.
  • the magnetic field force is greater than the rebound force; after the current exceeds the first threshold, the magnetic field force is less than the rebound force.
  • the first threshold mentioned here means that when the direct current increases to a certain value, the magnetic field force and the resilience force are balanced.
  • the magnetic field force is greater than the rebound force, and the mover has a tendency to accelerate.
  • the magnetic field force is smaller than the rebound force, and the mover has a tendency to slow down.
  • the mover and the diaphragm are at least reset under the action of resilience.
  • the diaphragm after the diaphragm is deformed, it can generate a rebound force in the opposite direction to the magnetic field force.
  • the rebound force can overcome the magnetic field force and drive the mover and diaphragm to reset in the opposite direction to the magnetic field force, thereby reducing the area of the liquid suction chamber, increasing the pressure in the liquid suction chamber, and prompting the liquid to be discharged from the liquid suction chamber.
  • the rebound force is greater than the magnetic field force; after the current is less than the second threshold, the rebound force is less than the magnetic field force;
  • the second threshold mentioned here means that when the direct current decreases to a certain value, the magnetic field force and the resilience force are balanced.
  • the rebound force is greater than the magnetic field force, and the mover has a tendency to accelerate.
  • the rebound force is less than the magnetic field force, and the mover has a tendency to slow down.
  • the liquid suction chamber absorbs and discharges liquid.
  • the magnetic field force changes periodically.
  • the mover and the diaphragm can achieve high-frequency reciprocating motion and produce resonant oscillation.
  • the pressure in the liquid suction chamber continuously changes, and liquid suction and discharge are performed periodically, effectively improving the efficiency of the liquid delivery device.
  • This embodiment is a further description of the eighth embodiment mentioned above.
  • the flange 201 has an extension portion close to the side wall of the housing 2 in the direction of the liquid suction chamber 602.
  • a protrusion is provided at the end of the side wall of the liquid suction chamber 602, and the diaphragm 1 is provided on the protrusion.
  • the flange 201 In the groove formed by the extension of the flange 201.
  • the diaphragm 1 is disposed on the flange 201.
  • the end of the flange 201 has two protruding structures. The ends of the diaphragm 1 are fixed on the protruding structures. inside the groove.
  • the diaphragm 1 is disposed on the side wall of the liquid suction chamber 602, and the end of the side wall of the liquid suction chamber 602 has two protruding structures. The end is fixed all around in the groove formed by the raised structure. The end of the side wall of the liquid suction chamber 602 is connected to the end of the flange 201 .
  • the deformation chamber 240 provides a deformation space for the diaphragm 1 to move in a direction away from the liquid suction chamber 602, so that the deformation amount of the diaphragm becomes larger, and the frequency of the diaphragm 1's reciprocating movement is higher, effectively increasing the dosage and improving the liquid absorption. cavity drainage efficiency.
  • This embodiment provides a method for controlling an automatic delivery device of washing equipment.
  • the dispenser includes a driving device and a delivery device.
  • the driving device is arranged in the housing 2 of the dispenser.
  • the driving device includes a sleeve 202, a coil 501 arranged outside the sleeve 202, and a mover 4 arranged inside the sleeve 202.
  • the coil 501 mentioned here refers to an annular wire winding.
  • the coil 501 is coaxially disposed on both sides of the sleeve 202 .
  • the axial direction mentioned here can be understood as the direction along the central axis of the housing.
  • the coil 501 is axially arranged in the housing 2 .
  • the coil 501 is coaxially arranged with the sleeve 202 and distributed on both sides of the sleeve 202 .
  • the winding directions of the energized wires of the coils 501 on both sides are the same, ensuring that the magnetic field formed after the coil 501 is energized has the same direction and provides the same driving force for the movement of the mover 4 in the sleeve 202 .
  • a certain distance is left between the coils 501 on both sides of the sleeve 202 and the two side walls of the sleeve 202 in the axial direction. Setting the above spacing allows the magnetic field force generated after the coil 501 is energized to act more extensively on the mover 4 in the sleeve 202 , thereby improving the utilization of the magnetic field force and providing sufficient driving force for the movement of the mover 4 .
  • the coil 501 is provided only on one side of the sleeve 202 in the axial direction.
  • the requirement of providing driving force for the mover 4 can also be met.
  • the number of turns, quantity and distribution position of the coil 501 can be adaptively adjusted according to specific usage requirements.
  • the mover 4 mentioned here refers to a metal block made of steel, iron or other metal materials that can move under the action of magnetic field force.
  • the mover 4 is axially installed in the sleeve 202 and is arranged axially parallel to the sleeve 202 .
  • the mover 4 can move in the sleeve 202 along the axial direction.
  • the coaxial sides of the mover 4 do not fit the sleeve 202 . It can be understood that there is a certain distance between the two coaxial sides of the mover 4 and the axial side walls of the sleeve 202 to facilitate the movement of the mover 4 along the axial direction of the sleeve 202 . There is a certain distance between the end of the mover 4 close to the bottom of the sleeve 202 and the bottom of the sleeve 202 to provide space for the mover 4 to move within the sleeve 202 .
  • the mover 4 has an initial position.
  • the initial position means that the position of the mover 4 is on the right side of the center of the coil 501, ensuring that the electromagnetic attraction of the coil 501 causes the mover 4 to move to the left.
  • the size of the mover 4 can be adjusted adaptively according to specific usage requirements.
  • the sleeve 202 has an axial opening on the liquid suction chamber 602 side.
  • the sleeve 202 is installed in the housing 2 to provide installation and movement space for the mover 4 .
  • the sleeve 202 has an opening. The opening is provided at one axial end of the sleeve 202 and is close to one side of the liquid suction chamber 602 .
  • the delivery device includes a diaphragm 1 and a liquid suction chamber 602 .
  • the liquid suction chamber 602 here refers to a chamber for storing liquid. Specifically, as shown in FIG. 9 , the liquid suction chamber 602 is connected with a liquid suction pipe 603 and a liquid discharge pipe 604 .
  • the liquid suction tube 603 is connected to the liquid storage box and is used to extract the liquid in the liquid storage box.
  • the drain pipe 604 is connected to the detergent box or the waterway, and puts the liquid in the liquid suction chamber 602 into the detergent box, or directly puts the liquid into the waterway for dilution.
  • one-way valves 206 are respectively provided in the liquid suction pipe 603 and the liquid discharge pipe 604.
  • the opening of the one-way valve 206 in the liquid suction pipe 603 faces the liquid suction chamber 602, so that the liquid suction pipe 603 can only suck liquid from the liquid storage box.
  • the opening of the one-way valve 206 in the liquid discharge pipe 604 faces the outside of the liquid suction chamber 602, so that the liquid discharge pipe 604 can only discharge the liquid in the liquid suction cavity 602 and prevent the liquid in the liquid discharge pipe 604 from flowing back.
  • the diaphragm 1 is provided between the housing 2 and the liquid suction chamber 602 .
  • the first end of the mover 4 is connected to the diaphragm 1 through the opening of the sleeve 202 .
  • the first end of the mover 4 mentioned here refers to the end of the mover 4 close to the diaphragm 1, that is, the right end of the mover 4 in Figure 9.
  • the diaphragm 1 here refers to a flexible sheet or flexible film made of rubber, silicone, polyurethane and other materials.
  • the diaphragm 1 is provided between the housing 2 and the liquid suction chamber 602 .
  • one side of the diaphragm 1 is disposed close to the housing 2 and the other side is disposed in the liquid suction chamber 602 .
  • the opening of the sleeve 202 corresponds to the middle area of the diaphragm 1, forming a space for the diaphragm 1 to deform toward the inside of the sleeve 202.
  • control methods include:
  • the coil 501 in the driving device is supplied with alternating current to generate a magnetic field force, which drives the mover 4 to move and deform the diaphragm;
  • the liquid suction chamber 602 absorbs and discharges liquid.
  • the magnetic field force drives the mover 4 to move, driving the diaphragm 1 to repeatedly deform and reset under the elastic force of the diaphragm 1, causing the pressure in the liquid suction chamber 602 to change, and the pressure difference is used to drive the liquid suction.
  • the cavity 602 completes liquid suction and liquid discharge, realizing automatic delivery of liquid in the liquid suction cavity 602 .
  • step S1 includes S11.
  • the coil 501 is supplied with alternating current to generate a changing magnetic field force in the direction in which the mover 4 approaches the center of the coil 501, and the mover 4 is driven to drive the diaphragm 1 to deform to the first deformation.
  • the process of generating a magnetic field force after the coil 501 is supplied with alternating current can be understood as, when viewed from the bottom side of the sleeve axis (the left side of the sleeve axis), the direction of the current flowing into the coil 501 is uniform. Pointing counterclockwise to coil 501. According to Ampere's rule (hold the energized solenoid with your right hand and let the four fingers point in the direction of the current, then the end pointed by the thumb is the N pole of the energized solenoid). It can be concluded that after the coil 501 is energized, an axial direction is generated. Magnetic field force on the left. In other words, the direction of the magnetic field force is the direction in which the mover 4 approaches the center of the coil 501 .
  • the first deformation mentioned here means that the mover 4 and the diaphragm 1 deform in the axial left direction under the action of the magnetic field force to the maximum deformation amount of the mover 4 and the diaphragm 1 .
  • Step S2 includes S21.
  • the deformation of the diaphragm 1 generates a rebound force opposite to the direction of the magnetic field force.
  • the diaphragm 1 since the diaphragm 1 itself has elasticity, it can generate rebound force after deformation. At this time, the rebound force refers to the force generated after the diaphragm 1 is deformed to restore the diaphragm 1 to an undeformed state.
  • the direction of the resilience force is opposite to the direction in which the diaphragm 1 is deformed, that is to say, the direction of the resilience force is opposite to the direction of the magnetic field force.
  • the resilience force overcomes the magnetic field force and drives the diaphragm 1 and the mover 4 to return to the second deformation.
  • the second deformation described here means that the mover 4 and the diaphragm 1 are reset from the maximum deformation amount to the opposite direction to the deformation direction, and the maximum deformation amount of the reset exceeds the initial position of the mover 4 and the diaphragm 1 .
  • the direction of the second deformation is opposite to the direction of the first deformation.
  • the distance of the second deformation is greater than the distance of the first deformation. It can be understood that the distance of the diaphragm 1 deforming in the direction in which the centers of the mover 4 and the coil 501 coincide is less than the distance of the diaphragm 1 returning to the initial position.
  • the magnetic field force continues to do work on the mover 4, driving the mover 4 to move in the direction of the deformation of the diaphragm 1. Since the rebound force of the diaphragm 1 is in the opposite direction to the magnetic field force, the rebound force changes with the deformation of the diaphragm 1 until it can overcome the magnetic field force and drive the diaphragm 1 to drive the mover 4 to reset.
  • step S3 under the action of the resonant oscillation of the mover 4 and the diaphragm 1, the liquid suction chamber 602 absorbs and discharges liquid.
  • the magnetic field force changes periodically.
  • the mover 4 and the diaphragm 1 can achieve high-frequency reciprocating motion.
  • the changing magnetic field force and the resilience of the diaphragm 1 repeatedly drive the mover 4 and the diaphragm 1 to deform or reset, eventually producing resonant oscillation.
  • the mover 4 is subjected to the axial magnetic field force to the left, driving the diaphragm 1 to move in the axial left direction in the sleeve 202 to increase the area of the liquid suction chamber 602 .
  • the pressure in the liquid suction chamber 602 decreases, forming a negative pressure, and liquid is extracted through the liquid suction tube 603.
  • the mover 4 and the diaphragm 1 are reset, squeezing the liquid suction chamber 602, the area in the liquid suction chamber 602 is reduced, and the pressure in the liquid suction chamber 602 is increased, causing the liquid to be discharged from the liquid suction chamber 602 through the discharge pipe 604.
  • the high-frequency reciprocating mover 4 can increase the vibration amplitude of the diaphragm 1, thereby improving the liquid suction and discharge capabilities of the liquid suction chamber 602. force.
  • step S1 includes: S13.
  • the diaphragm 1 has a movement tendency opposite to the direction of the magnetic field force.
  • the first deformation mentioned here includes the maximum deformation amount of the mover 4 and the diaphragm 1 in the direction approaching the center of the coil 501 .
  • the rebound force when the first deformation of the mover 4 and the diaphragm 1 reaches the maximum deformation amount, the rebound force reaches the maximum at this time, and the rebound force is greater than the magnetic field force.
  • the rebound force can completely overcome the magnetic field force and start to drive the diaphragm 1 to drive the mover 4 to reset in the second deformation direction. That is to say, when the first deformation of the diaphragm 1 reaches a point where the resilience force is greater than the magnetic field force, the diaphragm 1 has a tendency to move toward the second deformation direction. Alternatively, the diaphragm 1 has a tendency to move in the opposite direction to the magnetic field force.
  • step S2 includes S23, the second deformation is to the initial position, and the inertial force overcomes the magnetic field force to drive the mover 4 and the diaphragm 1 beyond the initial position and continue to move to the second deformation.
  • the second deformation mentioned here means that the mover 4 and the diaphragm 1 reset from the maximum deformation amount of the first deformation to the direction opposite to the first deformation direction, and the maximum deformation amount of the reset exceeds the maximum deformation amount of the mover 4 and the diaphragm 1. Initial position of diaphragm 1.
  • the mover 4 and the diaphragm 1 return to the initial position under the action of resilience. Since the mover 4 and the diaphragm 1 have weight, there must be an inertia force to continue moving. At the initial position, the inertial force can overcome the magnetic field force and continue to drive the mover 4 and the diaphragm 1 beyond the initial position and move in the second deformation direction until the maximum deformation amount of the second deformation is reached.
  • step S1 includes S14.
  • the magnetic field force and the rebound force gradually increase, and the magnetic field force is greater than the rebound force.
  • the first deformation mentioned here may be the deformation process of the mover 4 and the diaphragm 1 in the first deformation direction.
  • Resilience refers to the resilience of diaphragm 1.
  • the voltage first increases and then decreases.
  • the coil 501 is supplied with alternating current, and the magnetic field force generated changes.
  • the voltage is in an increasing stage, and the mover 4 approaches the center of the coil 501, and the magnetic field force received by the mover 4 gradually increases.
  • the deformation amount of diaphragm 1 gradually increases, so the resilience generated by the deformation of diaphragm 1 also gradually increases.
  • the magnetic field force is greater than the rebound force, and the magnetic field force overcomes the rebound force and drives the mover 4 and the diaphragm 1 to move in the first deformation direction.
  • step S2 includes S24.
  • the magnetic field force, the rebound force and the inertial force gradually decrease, and the sum of the rebound force and the inertial force is greater than the magnetic field force.
  • the voltage is in a decreasing stage and the magnetic field force gradually decreases.
  • the resilience gradually decreases.
  • the inertial force of mover 4 and diaphragm 1 also gradually decreases during the reset process.
  • the sum of the resilience force and the inertia force is greater than the magnetic field force.
  • the resilience force and the inertia force jointly overcome the magnetic field force and drive the mover 4 and the diaphragm 1 to reset in the second deformation direction.
  • the movement speed of the mover 4 and the diaphragm 1 in the first deformation direction first increases and then decreases.
  • the diaphragm 1 does not have resilience before deformation occurs.
  • the relative value of the magnetic field force and the resilience force is relatively large, so that the movement speed of the mover 4 and the diaphragm 1 begins to accelerate.
  • the relative value of the magnetic field force and the rebound force decreases, and the movement speed of the mover 4 and the diaphragm 1 begins to slow down.
  • the movement speed of the mover 4 and the diaphragm 1 in the second deformation direction first increases and then decreases.
  • the resilience reaches the maximum.
  • the relative values of the magnetic field force, the rebound force and the inertial force are larger, and the movement speed of the mover 4 and the diaphragm 1 is accelerated.
  • the resilience force and inertia force decrease, the relative values of the magnetic field force and the resilience force and inertia force decrease, and the movement speed of the mover 4 and the diaphragm 1 slows down.
  • step S14 includes S141. Before the mover 4 approaches the center of the coil 501, the resultant force of the magnetic field force and the resilience force increases.
  • the coil 501 is energized to generate a magnetic field force, and the density of magnetic flux lines at the center of the coil 501 is the densest. It is conceivable that the magnetic field force near the center of the coil 501 is larger. When the mover 4 approaches the center of the coil 501, the magnetic field force received by the mover 4 gradually increases, and the relative value of the magnetic field force and the resilience force is relatively large. It can be imagined that the resultant force of the magnetic field force and the rebound force is increasing, so the movement speed of the mover 4 and the diaphragm 1 increases. The direction of the resultant force mentioned here is the same as that of the magnetic field force.
  • the resultant force of the magnetic field force and the resilience force decreases. Specifically, after the mover 4 moves away from the center of the coil 501, the magnetic field force received by the mover 4 gradually decreases, and the rebound force gradually increases. It can be imagined that the resultant force of the magnetic field force and the rebound force decreases, and the moving speed of the mover 4 and the diaphragm 1 decreases.
  • step S2 includes: S241. Before the mover 4 approaches the center of the coil 501, the resultant force of the rebound force, the inertial force and the magnetic field force increases. The direction of the resultant force is opposite to the direction of the magnetic field force.
  • the relative value of the resilience force and the magnetic field force is larger. It can be imagined that as the resultant force of the magnetic field force, resilience force and inertial force increases, the movement speed of the mover 4 and the diaphragm 1 increases. The direction of the resultant force mentioned here is opposite to that of the magnetic field force.
  • step S1 includes: S15.
  • the speed of the mover 4 and the diaphragm 1 to the first deformation is zero, and the direction of the resultant force is opposite to the direction of the magnetic field force.
  • the movement speed is zero.
  • the direction of the resultant force received by the diaphragm 1 is opposite to the direction of the magnetic field force, and has a movement trend opposite to the first deformation direction.
  • step S2 includes: S25.
  • the speed of the mover 4 and the diaphragm 1 to the second deformation is zero, and the direction of the resultant force is the same as the direction of the magnetic field force.
  • the movement speed is zero.
  • the direction of the resultant force received by the diaphragm 1 is the same as the direction of the magnetic field force, and has a movement trend opposite to the second deformation direction.
  • Embodiment 21 is a further description of the above-mentioned Embodiment 21.
  • the bottom of the sleeve 202 in the driving device is provided with an elastic element 3.
  • the elastic element 3 and the mover 4 are spaced apart or in contact with each other.
  • one end of the elastic element 3 is fixedly connected to the bottom of the sleeve 202 .
  • the elastic element 3 mentioned here refers to a component that can generate a resilient force after receiving a force.
  • the elastic element 3 may be a coil spring, a rubber spring, or any other component with resilience.
  • the elastic element 3 is a coil spring.
  • the length and volume of the elastic element 3 can be adjusted adaptively according to specific usage requirements.
  • One end of the elastic element 3 is fixedly connected to the bottom of the sleeve 202, so that the elastic element 3 is fixedly installed in the sleeve 202.
  • the fixed connection here can adopt various connection forms such as bonding and clamping, which are not limited here.
  • the elastic element 3 is disposed in the middle area of the bottom of the sleeve 202 .
  • One end of the elastic element 3 is connected to the middle area of the bottom of the sleeve 202 to provide sufficient space for the mover 4 to move later.
  • the other end of the elastic element 3 is spaced correspondingly to the second end of the mover 4 .
  • the second end of the mover 4 mentioned here can be understood as the end of the mover 4 away from the diaphragm 1 .
  • the other end of the elastic element 3 is spaced correspondingly from the end of the mover 4 far away from the diaphragm 1. That is, there is a certain distance between the elastic element 3 and the mover 4. Setting the distance can ensure that the mover 4 has sufficient movement distance and increase the deformation amount of the diaphragm 1 .
  • the other end of the elastic element 3 is connected to the second end of the mover 4 .
  • the other end of the elastic element 3 is connected to the end of the mover 4 away from the diaphragm 1 to increase the distance of the mover 4 to compress the elastic element 3, thereby increasing the deformation of the elastic element 3 and providing greater resilience.
  • alternating current is supplied to the coil 501 to generate a magnetic field force that changes in the direction in which the mover 4 approaches the center of the coil 501, driving the mover 4 to drive the diaphragm 1 and compress the elastic element 3 to deform to the first deformation.
  • the first deformation described here means that the diaphragm 1 and the elastic element 3 deform in the axial left direction under the action of the magnetic field force to the maximum deformation amount of the elastic element 3 and the diaphragm 1 .
  • the direction of the first deformation is the direction in which the mover 4 approaches the center of the coil 501 .
  • the magnetic field force in the axial direction to the left drives the mover 4 to drive the diaphragm 1 to stretch.
  • the mover 4 moves in the sleeve 202, it contacts the elastic element 3 and starts to compress the elastic element 3 until The maximum deformation of elastic element 3 and diaphragm 1 is reached.
  • the deformation of the diaphragm 1 and the elastic element 3 generates a rebound force opposite to the direction of the magnetic field force.
  • the elastic element 3 and the diaphragm 1 After the elastic element 3 and the diaphragm 1 reach the maximum deformation amount, they begin to return to the initial position. While the coil 501 continues to be energized, the magnetic field force always exists and continues to attract the mover 4 to move in the direction of the magnetic field force. Since the elastic element 3 and the diaphragm 1 themselves are elastic, they can generate a rebound force opposite to the deformation direction. The direction of the rebound force is also opposite to the direction of the magnetic field force.
  • the resilience force overcomes the magnetic field force and drives the mover 4 and the diaphragm 1 or the mover 4, the diaphragm 1 and the elastic element 3 to return to the second deformation.
  • the resilience changes.
  • the resilience force can overcome the magnetic field force and drive the elastic element 3 and the diaphragm 1 to drive the mover 4 to reset in the direction of the second deformation.
  • the mover 4, the elastic element 3 and the diaphragm 1 are reset under the action of the rebound force overcoming the magnetic field force in the opposite direction. Therefore, the elastic element 3 is provided to effectively increase the vibration amplitude of the diaphragm 1 when it is reset, improve the reset ability of the mover 4 and the diaphragm 1, and further improve the deformation ability of the liquid suction chamber 602.
  • This embodiment is a further description of the twenty-sixth embodiment mentioned above.
  • step S1 includes: S13.
  • the first deformation mentioned here includes the maximum deformation amount of the mover 4, the diaphragm 1 and the elastic element 3 in the direction approaching the center of the coil 501.
  • the rebound force can completely overcome the magnetic field force and start to drive the diaphragm 1 and the elastic element 3 to drive the mover 4 to reset in the second deformation direction.
  • step S2 includes S23, the second deformation to the initial position, the inertial force overcomes the magnetic field force, driving the mover 4, the diaphragm 1 and the elastic element 3 beyond the initial position to continue to move to the second deformation.
  • the second deformation mentioned here means that the mover 4, the diaphragm 1 and the elastic element 3 reset from the maximum deformation amount of the first deformation to the direction opposite to the first deformation direction, and the maximum deformation amount of the reset exceeds Initial position of mover 4, diaphragm 1 and elastic element 3.
  • the mover 4, the diaphragm 1 and the elastic element 3 return to the initial position under the action of resilience. Since the mover 4, the diaphragm 1 and the elastic element 3 have weight, there must be an inertial force to continue moving. At the initial position, The inertial force can overcome the magnetic field force and continue to drive the mover 4, the diaphragm 1 and the elastic element 3 beyond the initial position and move in the second deformation direction until the maximum deformation amount of the second deformation is reached.
  • step S1 includes S14.
  • the magnetic field force and the rebound force gradually increase, and the magnetic field force is greater than the rebound force.
  • the first deformation mentioned here may be the deformation process of the mover 4, the diaphragm 1 and the elastic element 3 in the first deformation direction.
  • the resilience refers to the resilience of the diaphragm 1 and the elastic element 3.
  • the voltage first increases and then decreases.
  • the coil 501 is supplied with alternating current, and the magnetic field force generated changes.
  • the voltage is in an increasing stage, and the mover 4 approaches the center of the coil 501, and the magnetic field force received by the mover 4 gradually increases.
  • the deformation amounts of the diaphragm 1 and the elastic element 3 gradually increase, so the resilience generated by the deformation of the diaphragm 1 and the elastic element 3 also gradually increases.
  • the magnetic field force is greater than the rebound force, and the magnetic field force overcomes the rebound force and drives the mover 4, the diaphragm 1 and the elastic element 3 to move in the first deformation direction.
  • step S2 includes S24.
  • the magnetic field force, the rebound force and the inertial force gradually decrease, and the sum of the rebound force and the inertial force is greater than the magnetic field force.
  • the voltage is in a decreasing stage and the magnetic field force gradually decreases.
  • the resilience gradually decreases.
  • the inertial force of the mover 4, the diaphragm 1 and the elastic element 3 also gradually decreases during the reset process.
  • the sum of the resilience force and the inertia force is greater than the magnetic field force.
  • the resilience force and the inertia force jointly overcome the magnetic field force and drive the mover 4, the diaphragm 1 and the elastic element 3 to reset toward the second deformation direction.
  • the movement speed of the mover 4, the diaphragm 1 and the elastic element 3 in the first deformation direction first increases and then decreases.
  • the diaphragm 1 and the elastic element 3 do not have resilience before deformation occurs.
  • the relative value of the magnetic field force and the resilience force is relatively large, so that the movement speed of the mover 4, the diaphragm 1 and the elastic element 3 begins to accelerate.
  • the resilience force increases, the relative value of the magnetic field force and the resilience force decreases, and the movement speed of the mover 4, the diaphragm 1 and the elastic element 3 begins to slow down.
  • the movement speed of the mover 4, the diaphragm 1 and the elastic element 3 in the second deformation direction first increases and then decreases.
  • the resilience reaches the maximum.
  • the relative values of the magnetic field force, the resilience force and the inertial force are larger, and the movement speed of the mover 4, the diaphragm 1 and the elastic element 3 is accelerated.
  • the resilience force and inertia force decrease, the relative values of the magnetic field force and the resilience force and inertia force decrease, and the movement speed of the mover 4, the diaphragm 1 and the elastic element 3 slows down.
  • step S14 includes S141. Before the mover 4 approaches the center of the coil 501, the resultant force of the magnetic field force and the resilience force increases.
  • the coil 501 is energized to generate a magnetic field force, and the density of magnetic flux lines at the center of the coil 501 is the densest. It is conceivable that the magnetic field force near the center of the coil 501 is larger. When the mover 4 approaches the center of the coil 501, the magnetic field force received by the mover 4 gradually increases, and the relative value of the magnetic field force and the resilience force is relatively large. It can be imagined that the resultant force of the magnetic field force and the rebound force is increasing, so the movement speed of the mover 4, the diaphragm 1 and the elastic element 3 increases. The direction of the resultant force mentioned here is the same as that of the magnetic field force.
  • the resultant force of the magnetic field force and the resilience force decreases. Specifically, after the mover 4 moves away from the center of the coil 501, the magnetic field force received by the mover 4 gradually decreases, and the rebound force gradually increases. It can be imagined that the resultant force of the magnetic field force and the resilience force decreases, and the movement speed of the mover 4, the diaphragm 1 and the elastic element 3 decreases.
  • step S2 includes: S241. Before the mover 4 approaches the center of the coil 501, the resultant force of the rebound force, the inertial force and the magnetic field force increases. The direction of the resultant force is opposite to the direction of the magnetic field force.
  • the relative value of the rebound force and the magnetic field force is larger. It can be imagined that the magnetic field
  • the resultant force of force, resilience force and inertia force increases, and the movement speed of mover 4, diaphragm 1 and elastic element 3 increases.
  • the direction of the resultant force mentioned here is opposite to that of the magnetic field force.
  • step S1 includes: S15.
  • the speed of the mover 4, the diaphragm 1 and the elastic element 3 to the first deformation is zero, and the direction of the resultant force is opposite to the direction of the magnetic field force.
  • the movement speed is zero.
  • the direction of the resultant force received by the diaphragm 1 and the elastic element 3 is opposite to the direction of the magnetic field force, and has a movement trend opposite to the first deformation direction.
  • step S2 includes: S25.
  • the speed of the mover 4, the diaphragm 1 and the elastic element 3 to the second deformation is zero, and the direction of the resultant force is the same as the direction of the magnetic field force.
  • the movement speed is zero.
  • the direction of the resultant force received by the diaphragm 1 and the elastic element 3 is the same as the direction of the magnetic field force, and has a movement trend opposite to the second deformation direction.
  • step S23 includes S231. After the diaphragm 1 and the elastic element 3 exceed the initial position, they continue to move in the second deformation direction, generating a rebound force in the same direction as the magnetic field force.
  • the diaphragm 1 and the elastic element 3 are reset to the initial position, they continue to move in the direction of the second deformation under the action of inertial force. After the deformation occurs, a force in the opposite direction to the second deformation occurs. of resilience. That is, the direction of the rebound force is the same as the direction of the magnetic field force.
  • the inertial force is greater than the sum of the rebound force and the magnetic field force.
  • the inertial force overcomes the rebound force and the magnetic field force, and drives the diaphragm 1 and the elastic element 3 to continue to move to the maximum deformation of the second deformation. variable.
  • step S3 includes: S31, the coil 501 continues to be supplied with alternating current, and the magnetic field force and resilience force periodically drive the mover 4 to drive the diaphragm 1 to deform and reset, generating resonant oscillation, causing the pressure in the liquid suction chamber 602 to change. , driving the liquid suction chamber 602 to suck and discharge liquid.
  • the magnetic field force changes periodically.
  • the mover 4 and the diaphragm 1 can achieve high-frequency reciprocating motion and generate resonant oscillation.
  • the pressure in the liquid suction chamber 602 continuously changes, and liquid suction and discharge are performed periodically, effectively improving the efficiency of liquid dispensing of the dispensing device.
  • Embodiment 21 is a further description of the above-mentioned Embodiment 21 to Embodiment 28.
  • k is the elastic coefficient of the spring
  • m is the mass of the mover 4. It can be seen from the formula that the resonant frequency of the system is related to the elastic coefficient of the spring and the mass of the mover 4.
  • the vibration frequency of the diaphragm 1 is controlled.
  • reducing the mass of the mover 4 can increase the resonance frequency of the system, thereby increasing the movement speed of the mover 4 in the sleeve 202, accelerating the deformation of the diaphragm 1, and improving the diaphragm 1. vibration frequency.
  • increasing the elastic coefficient of the elastic element 3 can increase the resonance frequency of the system and increase the liquid delivery speed of the automatic delivery device.
  • This embodiment is a further description of the above-mentioned Embodiment 21.
  • the movement speed of the mover 4 in the sleeve 202 is controlled, and the vibration frequency of the diaphragm 1 is controlled.
  • the frequency of the input voltage described here can affect the magnitude of the magnetic field force generated after passing through the coil 501 .
  • the mover 4 has a greater movement speed. That is to say, within the same period of time, the number of deformations of the diaphragm 1 increases, thereby increasing the vibration frequency of the diaphragm 1 .
  • the liquid dosage m when the liquid dosage is small, the liquid dosage m is 10 ml, and the frequency of the input voltage is set to 10 Hz. , the delivery time to realize automatic delivery of liquid is T.
  • the liquid injection volume M is 70ml, and the input voltage frequency is set to 30Hz, the injection time to realize automatic liquid injection can also be T.
  • Embodiment 21 is a further description of the above-mentioned Embodiment 21 to Embodiment 34.
  • the shape of the mover 4 can be various shapes such as cylindrical shape and elongated shape.
  • the shape of the mover 4 is cylindrical.
  • the cylindrical mover 4 is easy to process and has low processing cost.
  • the length and volume of the mover 4 can be adjusted adaptively according to specific usage requirements.
  • the mover 4 is bonded to the middle area of the diaphragm 1 .
  • the mover 4 is close to one end of the diaphragm 1 and is bonded to the central area of the diaphragm 1 .
  • the mover 4 and the diaphragm 1 are fixed by bonding. Moreover, the bonding fixation method is simple and convenient, and the manufacturing cost is low.
  • the corresponding areas of the mover 4 and the diaphragm 1 are respectively provided with embedded parts, and one end of the mover 4 close to the diaphragm 1 is embedded with the central area of the diaphragm 1 through the embedded parts, so that the mover 4 Fixing with diaphragm 1.
  • the flange 201 has an extension portion close to the side wall of the housing 2 in the direction of the liquid suction chamber 602.
  • a protrusion is provided at the end of the side wall of the liquid suction chamber 602, and the diaphragm 1 is provided on the protrusion.
  • the flange 201 In the groove formed by the extension of the flange 201.
  • the diaphragm 1 is disposed on the flange 201.
  • the end of the flange 201 has two protruding structures. The ends of the diaphragm 1 are fixed on the protruding structures. inside the groove.
  • the diaphragm 1 is disposed on the side wall of the liquid suction chamber 602, and the end of the side wall of the liquid suction chamber 602 has two protruding structures. The end is fixed all around in the groove formed by the raised structure. The end of the side wall of the liquid suction chamber 602 is connected to the end of the flange 201 .
  • the deformation chamber 240 provides a deformation space for the diaphragm 1 to move in a direction away from the liquid suction chamber 602, so that the deformation amount of the diaphragm becomes larger, and the frequency of the diaphragm 1's reciprocating movement is higher, effectively increasing the dosage and improving the liquid absorption. cavity drainage efficiency.
  • an automatic feeding device for washing equipment includes a liquid feeding device 91.
  • the liquid feeding device 91 is connected to a driving device 92, and the moving device 9205 in the driving device 92 continuously reciprocates to change the feeding device.
  • the pressure of the liquid suction chamber 9101 of the liquid feeding device 91 When the internal pressure of the liquid feeding device 91 is greater than the external pressure, the liquid drain pipe 9104 of the liquid feeding device 91 will discharge the detergent and other liquids in the liquid sucking chamber 9101 into the washing equipment. ;
  • the liquid suction pipe 9103 of the liquid feeding device 91 sucks the detergent and other liquids in the liquid storage box into the liquid suction chamber. 9101 in.
  • the driving device 92 has a sleeve 9203.
  • the sleeve 9203 is a cylinder structure with one end open and the other end closed.
  • the liquid feeding device 91 is provided at the open end of the sleeve 9203.
  • the coil 9201 is wound around the outside of the sleeve 9203.
  • the inner cavity is provided with a moving Sub9205.
  • the driving device 92 includes a coil holder 9206.
  • the coil holder 9206 is provided with a coil slot 92061 on the outer wall, and the coil 9201 is wound in the coil slot 92061; the sleeve 9203 is provided in the inner cavity of the coil holder 9206.
  • the mover 9205 is made of a material that can be attracted by magnetic force, but will not be magnetized by the magnetic force of the electromagnetic field.
  • the coil 9201 When the coil 9201 is energized to generate a magnetic field, the magnetic attraction to the mover 9205 is always in one direction, even if current is passed through.
  • the alternating current that does not change periodically can only produce a magnetic attraction force that changes periodically in the size of the mover 9205, and the direction of the magnetic attraction force does not change with the change of the alternating current.
  • the automatic delivery device of the washing equipment provided by this application is only The periodic changes in the size of the current are used to generate a magnetic attraction force that changes in size periodically. Therefore, this application can also pass in a DC current that changes in size periodically. Therefore, the liquid dispensing device provided by this application is not limited to alternating current or direct current. It only requires the size of the current. Just have periodic changes.
  • the delivery device provided by the present invention is also provided with a magnetic shielding element 9202 made of metal between the mover 9205 and the coil 9201 for shielding the mover.
  • the magnetic flux lines in a part of the area between the mover 9205 and the coil 9201 form a gap 92021 in another part of the area between the mover 9205 and the coil 9201; after the coil 9201 is energized, the coil 9201 generates a continuous magnetic field that changes periodically in size. , the magnetic field is concentrated at the gap 92021, forming a magnetic attraction force that attracts the mover 9205 to move in the direction of the gap 92021. The magnitude of the magnetic attraction force changes with the periodic change of the current.
  • the magnetic shielding element 9202 is disposed on the outer periphery of the sleeve 9203, from the closed end to the open end of the sleeve 9203 direction extends, and a gap 92021 is formed near the open end; when the coil 9201 is energized, the magnetic field generated changes with the periodic change of the current, and the magnetic field size changes accordingly, and the magnetic attraction generated at the gap 92021 is always directed toward the The open end of sleeve 9203.
  • the elastic element 9204 is a tension spring.
  • the coil 9201 When the coil 9201 is energized, the magnetic attraction force is generated, and the magnetic attraction force attracts the mover 9205 to move toward the open end of the sleeve 9203.
  • the tension spring is affected by The pull of the mover 9205 produces deformation, the tension spring accumulates elastic force, and the elastic force gradually increases.
  • the force of the mover 9205 is the same as the magnetic attraction force, the mover 9205 moves by inertia to the first limit position. At the extreme position, the elastic force is greater than the magnetic attraction force, the current becomes smaller, the magnetic attraction force becomes smaller, and the mover 9205 starts to move toward the closed end of the sleeve 9203.
  • the mover 9205 is located at the first limit position, and the elastic force of the tension spring drives the mover 9205 to move toward the closed end of the sleeve 9203.
  • the deformation of the tension spring gradually recovers, and the elastic force Gradually decreases, and when it is the same as the magnetic attraction again, the mover 9205 is inertially moved to the second limit position, the tension spring is compressed, and the elastic force is directed toward the open end of the sleeve 9203, and the current changes becomes larger, the magnetic attraction force increases accordingly, and the mover 9205 begins to move toward the open end of the sleeve 9203 again.
  • the mover 9205 after the coil is energized, the mover 9205 has a normal position and moves toward the first limit position.
  • the mover 9205 moves to the first limit position and then moves toward the closed end of the sleeve 9203, due to the mover 9205 Inertia, at this time, the second limit position of the mover 9205 is not at the normal position, but closer to the closed end of the sleeve 9203 relative to the normal position.
  • the mover 9205 moves to the first limit position, and then moves to the third After reaching the second limit position, a stroke is completed.
  • the mover 9205 starts the second stroke. At this time, when the mover 9205 moves from the second limit position to the open end of the sleeve 9203 again, since the mover 9205 compresses the tension spring to a certain extent, this The force on the mover 9205 is not only the magnetic attraction, but also the elastic force of the spring. Therefore, during the stroke, the first limit position reached by the mover is farther from the closed end of the sleeve 9203 than in the previous stroke.
  • the second limit position of the mover is closer to the closed end of the sleeve 9203 than in the previous stroke; when the coil 9201 continues to be energized, the mover 9205 continues to move back and forth in the sleeve 9203, and the length of each stroke
  • the first limit position is farther from the closed end of the sleeve 9203 than the previous stroke
  • the second limit position is closer to the closed end of the sleeve 9203 than the previous stroke, until the mover 9205 reaches the maximum first limit position. and the second extreme position, and the movement frequency of the mover 9205 gradually increases, and the amplitude gradually increases.
  • the magnetic shielding element 9202 is provided with On the outer periphery of the sleeve 9203, it extends from the open end of the sleeve 9203 toward the closed end, and forms a gap 92021 close to the closed end; when the coil 9201 is energized, the magnetic field generated changes with the periodicity of the current. , the magnitude of the magnetic field changes accordingly, and the magnetic attraction force generated at the notch 92021 is always directed toward the closed end of the sleeve 9203.
  • the elastic element 9204 is a compression spring.
  • the coil 9201 When the coil 9201 is energized, the magnetic attraction force is generated, and the magnetic attraction force attracts the mover 9205 to move toward the closed end of the sleeve 9203.
  • the compression spring is affected by the mover.
  • the compression of 9205 produces deformation, and the compression spring accumulates elastic force.
  • the elastic force gradually increases.
  • the mover 9205 moves by inertia to the second extreme position. At the first extreme position, the elastic force is greater than The magnetic attraction force, the current becomes smaller, the magnetic attraction force becomes smaller accordingly, and the mover 9205 starts to move toward the open end of the sleeve 9203.
  • the mover 9205 is located at the second extreme position, and the elastic force of the compression spring drives the mover 9205 to move toward the open end of the sleeve 9203.
  • the deformation of the compression spring gradually recovers, and the elastic force gradually decreases.
  • the mover 9205 is inertially moved to the first limit position, the compression spring is stretched, the elastic force is toward the closed end of the sleeve 9203, the current becomes larger, and the The magnetic attraction force increases accordingly, and the mover 9205 begins to move toward the closed end of the sleeve 9203 again.
  • the mover 9205 after the coil is energized, the mover 9205 has a normal position and moves toward the second limit position.
  • the mover 9205 moves to the second limit position and then moves toward the open end of the sleeve 9203, due to the mover 9205 Inertia, at this time, the first limit position of the mover 9205 is not at the normal position, but closer to the open end of the sleeve 9203 relative to the normal position.
  • the mover 9205 moves to the second limit position, and then moves to the third After reaching a limit position, a stroke is completed.
  • the mover 9205 starts the second stroke.
  • the mover 9205 moves from the first limit position to the closed end of the sleeve 9203 again, since the mover 9205 stretches the compression spring to a certain extent, this The force on the mover 9205 is not only the magnetic attraction, but also the elastic force of the spring. Therefore, during the stroke, the second limit position reached by the mover 9205 is farther from the open end of the sleeve 9203 than in the previous stroke.
  • the first limit position of the mover 9205 is also closer to the open end of the sleeve 9203 than in the previous stroke; when the coil 9201 continues to be energized, the mover 9205 continuously moves back and forth in the sleeve 9203, and each The first limit position of the stroke is farther from the closed end of the sleeve 9203 than the previous stroke, and the second limit position is closer to the closed end of the sleeve 9203 than the previous stroke, until the mover 9205 reaches the maximum first The extreme position and the second extreme position, and the movement frequency of the mover 9205 gradually increases, and the amplitude gradually increases.
  • the driving device 92 also includes a magnetic conductive cylinder 9208 that is sleeved on the outer circumference of the coil 9201.
  • the magnetic conductive cylinder 9208 is a cylinder with one end open.
  • An annular magnetic conductive plate 9207 is provided at the open end of the magnetic conductive cylinder 9208.
  • the magnetic conductive cylinder 9208 The annular magnetic conductive plate 9207 is also made of metal material; the magnetic shielding element 9202 is provided on the inner circumference of the coil 9201, and can be provided on either the inner wall of the sleeve 9203 or the outer wall of the sleeve 9203. At the same time, it is connected with the guide plate 9207.
  • This metal magnetic conductive structure can collect the magnetic field generated by the coil 9201, which is more conducive to the concentration of the magnetic field force at the gap 92021.
  • the liquid feeding device 91 of the washing liquid feeding device provided by the present invention includes a liquid suction chamber 9101.
  • the liquid suction chamber 9101 is a cavity with one end open and is enclosed by an end wall 91011 and a side wall 91012.
  • a liquid suction pipe 9103 and a liquid discharge pipe 9104 are provided on the wall 91011.
  • the liquid feeding device 91 is connected to the open end of the sleeve 9203 through bolts 93; the open end of the sleeve 9203 is provided with an annular plate 92031, and the edge of the annular plate 92031 extends away from the side of the sleeve 9203 to form an annular connecting wall 920311.
  • the annular connecting wall 920311 is connected to the side wall 91012 of the liquid suction chamber 9101 through bolts 93.
  • an elastic diaphragm 9102 for closing the liquid suction chamber 9101 is provided.
  • the elastic diaphragm 9102 can be deformed.
  • the mover 9205 is connected to the elastic diaphragm 9102, and is adjusted by the reciprocating motion of the mover 9205.
  • the shape of the elastic diaphragm 9102 can change the pressure inside the liquid suction chamber 9101, so that the liquid feeding device 91 can absorb and discharge liquid.
  • the edge of the elastic diaphragm 9102 is sandwiched between the side wall 91012 of the liquid suction chamber 9101 and the annular connecting wall 920311.
  • the annular connecting wall 920311 and the annular plate 92031 form a deformation chamber 920313.
  • the elastic diaphragm 9102 can be in the deformation chamber. Deformation occurs between the chamber 920313 and the liquid suction chamber 9101 to change the pressure inside the liquid suction chamber 9101.
  • the present invention also provides an annular protrusion 91022 on the edge of the elastic diaphragm 9102, and the annular protrusion 91022 is clamped Connected to the annular groove 920312 provided on the end surface of the annular connecting wall 920311.
  • the center of the elastic diaphragm 9102 is provided with a card slot 91021 on one side facing the driving device 92.
  • the card slot 91021 is used to accommodate the card block 92051 provided at the end of the mover 9205.
  • the card block 92051 can be relatively stably engaged in the card slot. 91021, so that the mover 9205 can continuously drive the elastic diaphragm 9102 to deform during the reciprocating motion.
  • the notch 92021 is located at the open end of the sleeve 9203.
  • the coil 9201 is energized, the magnetic field gathered at the notch 92021 provides the mover 9205 with a magnetic field formed by the sleeve 9203.
  • the magnetic attraction force from the closed end toward the open end changes with the periodic change of the alternating current, but the direction of the magnetic attraction force always remains from the closed end of the sleeve 9203 toward the open end.
  • the mover 9205 moves to the position of the notch 92021 due to the magnetic force, causing the elastic element 9204 to compress and at the same time pull the elastic diaphragm 9102 to deform toward the deformation chamber 920313.
  • the pressure in the liquid suction chamber 9101 becomes smaller, and the liquid injection device 91 Liquid is sucked; specifically, the mover 9205 moves in the direction away from the gap 92021 by the elastic force of the elastic element 9204, pushing the elastic diaphragm 9102 to deform toward the liquid suction chamber 9101, the pressure of the liquid suction chamber 9101 becomes larger, and the liquid feeding device 91 is Drain.
  • the elastic diaphragm 9102 When the mover 9205 completes a reciprocating motion, the elastic diaphragm 9102 will deform between the deformation chamber 920313 and the liquid suction chamber 9101, changing the pressure of the liquid suction chamber 9101, allowing the liquid feeding device 91 to absorb and discharge liquid. .
  • the coil 9201 When the present invention is working, when the household power supply is turned on, the coil 9201 generates a magnetic field that changes periodically in size.
  • the magnetic attraction of the magnetic field to the mover 9205 does not change direction without changes in the current, and under the action of the metal magnetic conductive structure, the magnetic attraction Gathered at the gap 92021; the mover 9205 is acted upon by the magnetic force and moves toward the closed end of the sleeve 9203, that is, toward the gap 92021, compressing the elastic element 9204.
  • the elastic element 9204 When the elastic element 9204 is squeezed, elastic force is generated.
  • the mover 9205 moves in the direction of the liquid injection device 91, that is, the end away from the gap 92021.
  • the mover 9205 makes continuous reciprocating motion in the sleeve 9203.
  • the elastic diaphragm 9102 also continuously deforms between the liquid suction chamber 9101 and the deformation chamber 920313, causing the internal pressure of the liquid suction chamber 9101 to continuously increase and decrease, so that the liquid feeding device 91 can pass through the liquid suction pipe.
  • 9103 sucks the liquid and removes the liquid from the drain pipe 9104.
  • the present invention also provides a washing equipment, which includes the automatic delivery device of the washing equipment in the previous embodiment, wherein the liquid suction pipe 9103 of the liquid delivery device 91 of the automatic delivery device of the washing equipment and the liquid storage box of the washing equipment is connected, and the drain pipe 9104 of the liquid adding device 91 is connected with the washing chamber of the washing equipment.
  • the automatic dispensing device of the washing equipment sucks liquid from the liquid storage box of the washing equipment through the liquid suction pipe 9103, and then discharges the sucked liquid into the washing chamber through the liquid discharge pipe 9104.
  • the washing equipment Realize automatic delivery of liquid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Textile Engineering (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

本发明提供了一种洗涤设备的自动投放装置及洗涤设备,所述洗涤设备的自动投放装置的驱动装置包括一个轴向单侧开口的套筒,所述套筒外设置线圈,所述套筒内轴向设置可在其中往复移动的导磁体,所述套筒开口对应设置有能够产生形变的第一弹性结构,在持续通入交流电下,所述导磁体至少分别在交流电通入线圈产生电磁力驱动、弹性结构的回弹力交替作用下连续进行往复移动。本发明从驱动方式上改进了现有设备中结构复杂,投放精度差等问题。

Description

一种洗涤设备的自动投放装置及洗涤设备 技术领域
本发明属于洗衣机设备技术领域,具体地说,涉及一种洗涤设备自动投放装置及洗涤设备。
背景技术
当前市面上流通的自动投放洗衣液功能的洗衣机大部分都是需要人工干预,在每个洗涤程序前,按照衣物的多少量以及所选的洗涤程序的不同按照大体估值投入洗涤剂,操作复杂且因为洗涤剂不足或过多造成衣物洗涤效果不好。
为了追求操作的简便,提高使用体验,市场上推出了一次性加入大量洗涤剂,然后使用泵体定量加入不同的洗涤程序中,但现有设备的实现方式过于复杂,成本高,且自动添加的量不够准确,投放性差。
发明内容
本发明的目的在于提供一种洗涤设备自动投放装置的交流电驱动装置及洗涤设备,以实现快速且地自动添加洗涤剂液体,减少投液装置的复杂程度,简化投液装置的结构,提高设备的稳定性。
为实现上述目的,本发明的技术方案是:
本发明提供一种洗涤设备自动投放装置的交流电驱动装置,包括一个轴向单侧开口的套筒,所述套筒外设置线圈,所述套筒内轴向设置可在其中往复移动的导磁体;所述套筒开口对应设置有能够产生形变的第一弹性结构;在持续通入交流电下,所述导磁体至少分别在交流电通入线圈产生磁吸力、弹性结构的回弹力交替作用下连续进行往复移动。
优选地,所述线圈环绕所述套筒设置,所述线圈通入交流电产生交变磁场,在交变磁场的强度变强时所述导磁体在磁吸力的作用下自初始位置移动,第一弹性结构形变储存弹性势能,在交变磁场的强度变弱时,所述的弹性势能大于所述的磁吸力,使导磁体向相反的方向移动,使所述第一弹性结构产生小幅度颤动。
优选地,所述套筒内端部设置有第二弹性结构,所述第二弹性结构为弹簧,所述线圈通入交流电后,所述导磁体在磁吸力作用下自初始位置移动,使弹簧形变储存弹性势能,当所述的弹性势能大于所述的磁场产生的磁吸力时,所述导磁体反弹向相反的方向移动。
优选地,在一个投放程序中,在持续通入交流电下,所述的导磁体以一定的频率进行往复移动,所述弹性结构和导磁体共同组成一个与交流电正负电压的改变无关的谐振系统,所述谐振系统的频率由导磁体的质量和弹性结构的弹性系数K确定。
优选地,所述导磁体为本身不带有磁性但又能够导磁的材料,在交流电周期性变化中,交流电的电压处于正电压或负电压时,均能对导磁体产生朝向套筒端部的磁吸力。
优选地,所述导磁体与所述第一弹性结构连接,所述第一弹性结构向吸液装置容腔的振幅随导磁体运动频率的升高而升高,在所述导磁体运动频率升高至所述的谐振系统固有频率的最大值时,所述第一弹性结构的振幅也升至最大值。
优选地,所述导磁体在朝向所述套筒端部方向的运动过程中,所述导磁体距离所述线圈形心的位置逐渐缩短,使所述导磁体受到的运动方向的磁吸力的分力在运动过程中逐渐减小,使在所述导磁体撞击到第二弹性元件时所受到的力的大部分为惯性力。
优选地,所述导磁体在朝向所述套筒端部方向运动过程中,在交流电的电压开始由最大值向零变动时,所述线圈对导磁体产生的磁吸力逐渐降低,在交流电的电压开始由零向最大值变动时,所述线圈对导磁体产生的磁吸力逐渐增大。
优选地,所述第一弹性结构仅依靠其自身的弹性形变克服磁吸力,产生小幅度颤动;所述第一弹性结构在第一弹性结构和第二弹性结构共同作用下,产生形变至洗液装置的容腔的 膜片相对的端壁。
优选地,和所述第一弹性结构连接的吸液装置的容腔体积小于等于20ml。
本发明还提供一种洗涤设备,所述洗涤设备包括如上所述的自动投放装置的交流电驱动装置。
采用上述技术方案后,本发明与现有技术相比具有以下有益效果。
(1)本发明结构简单易于加工,降低了生产成本。
(2)本发明通过交流电提供动力源,利用交流电通入线圈产生交变磁场的特性,实现了快速高效地自动添加洗涤剂。
(3)本发明的体积较小,降低了安装需求,方便配合设备进行相应的安装设计。
(4)本发明充分利用交流电的特性来驱动导磁体,驱动方式简单直接且高效。
(5)本发明采用简洁高效的结构设计,在膜片变形后利用复位弹簧辅助膜片变形复位,减缓了膜片的老化速度,提升了损耗件的使用寿命。
本发明要解决的技术问题在于克服现有技术的不足,提供一种洗涤设备的自动投放装置,以解决现有技术的洗涤剂残留吸液腔、排液效率低的问题。
为实现上述发明目的,本发明采用技术方案的基本构思是:
一种洗涤设备的自动投放装置,包括壳体和与之连接的吸液腔,所述壳体内设有磁力驱动装置,所述磁力驱动装置包括动子,以及同轴设置的线圈和套筒,所述套筒在所述吸液腔侧具有轴向开口,膜片设于所述壳体和吸液腔之间,所述动子第一端,通过套筒的开口与所述膜片连接设置;所述线圈持续通入周期性变化的直流电后产生磁场力,驱动所述动子在所述套筒内沿第一运动方向移动,使所述膜片发生形变,所述动子及膜片在回弹力作用下克服磁场力复位,使所述吸液腔内压力变化而吸液、排液。
进一步地,所述膜片向第一运动方向发生形变的过程中,直流电的电流逐渐增大,磁场力和回弹力逐渐增大;电流增大至第一阈值前,磁场力大于回弹力;电流大于第一阈值后,磁场力小于回弹力;所述第一运动方向为所述动子朝向所述套筒远离吸液腔的一端移动的方向。
进一步地,所述膜片形变产生与磁场力方向相反的回弹力,驱动所述动子及膜片复位。所述膜片复位过程中,直流电的电流逐渐减小,回弹力和磁场力逐渐减小;电流减小至第二阈值前,回弹力大于磁场力;电流小于第二阈值后,回弹力小于磁场力。
进一步地,还包括弹性元件,所述弹性元件的一端固定连接在所述套筒的底部,另一端与动子的第二端相对应连接设置;所述回弹力包括膜片和弹性元件共同形变产生的回弹力。
进一步地,所述膜片及弹性元件向所述第一运动方向发生形变的过程中,直流电的电流逐渐增大,磁场力和回弹力逐渐增大;电流增大至第三阈值前,磁场力大于回弹力;电流大于第三阈值后,磁场力小于回弹力;
所述膜片及弹性元件形变产生与磁场力方向相反的回弹力,驱动所述动子、膜片及弹性元件复位;所述膜片及弹性元件复位过程中,直流电的电流逐渐减小,回弹力和磁场力逐渐减小;电流减小至第四阈值前,回弹力大于磁场力;电流小于第四阈值后,回弹力小于磁场力。
进一步地,在所述膜片及弹性元件形变的过程中,当电流增大至最大值,膜片及弹性元件形变至最大形变量,回弹力与磁场力的合力方向与磁场力相反,所述膜片和弹性元件具有复位的运动趋势。
进一步地,通过改变动子的质量,和/或弹性元件的弹性系数,控制所述动子在所述套筒内的运动速度,控制所述膜片的振动频率。
进一步地,通过改变输入电压的频率,控制所述动子在所述套筒内的运动速度,控制所 述膜片的振动频率。
进一步地,所述动子与所述膜片的中间区域粘接;或所述动子与所述膜片的中间区域通过嵌入部嵌接。
根据本发明的另一目的,还提供一种洗涤设备的自动投放装置的控制方法,包括:
S1、启动洗涤设备的投放程序;磁力驱动装置中的线圈通入直流电产生磁场力,驱动动子运动,使膜片形变;直流电的电流增大至第一阈值前,磁场力大于回弹力,动子加速运动;电流大于第一阈值后,磁场力小于回弹力,动子减速运动;
S2、动子及膜片至少在回弹力的作用下复位;电流减小至第二阈值前,回弹力大于磁场力,动子加速运动;电流小于第二阈值后,回弹力小于磁场力,动子减速运动;
S3、在动子及膜片的谐振振荡的作用下,吸液腔进行吸液和排液。
采用上述技术方案后,本发明与现有技术相比具有以下有益效果:
本申请中,动子在磁场力的作用下,促使膜片往复运动,使得膜片自身产生振动,结合吸液腔内压力的变化,使得吸液腔更容易吸液或排液,提高吸液腔的排液效果。
本申请中,设置弹性元件与动子配合,结合弹性元件的回弹力,增大膜片的振动幅度,提高吸液腔的排液效果,提高排液效率,以及实现液体投放的精准度。
本申请中,通过改变动子质量或者弹性元件的弹性系数,再或者改变输入电压的频率,控制动子在套筒内的运动速度,提高膜片的振动频率,进一步地提高吸液腔的排液效果,防止液体残留。
本发明要解决的技术问题在于克服现有技术的不足,提供一种洗涤设备的自动投放装置的控制方法,以解决现有技术的洗涤剂残留吸液腔、排液效率低的问题。
为实现上述发明目的,本发明采用技术方案的基本构思是:
一种洗涤设备的自动投放装置的控制方法,投放器包括驱动装置和投放装置,驱动装置包括套筒、设置在套筒外的线圈、设置在套筒内的动子,投放装置包括膜片、吸液腔,包括:
S1、启动洗涤设备的投放程序;驱动装置中的线圈通入交流电产生磁场力,驱动动子运动,使膜片形变;
S2、动子及膜片至少在回弹力的作用下复位;
S3、在动子及膜片的谐振振荡的作用下,吸液腔进行吸液和排液。
进一步地,步骤S1包括:
S11、线圈通入交流电,产生沿动子向线圈中心靠近的方向的变化磁场力,驱动动子带动膜片发生形变至第一形变;
步骤S2包括:S21、膜片的形变产生与磁场力方向相反的回弹力,回弹力克服磁场力,驱动膜片及动子复位至第二形变;
所述第二形变的距离大于所述第一形变的距离,二者形变方向相反。
进一步地,所述套筒底部设有弹性元件,所述弹性元件与所述动子接触设置,步骤S1包括:
S12、线圈通入交流电,产生沿动子向线圈中心靠近的方向变化的磁场力,驱动动子带动膜片并压缩弹性元件形变至第一形变;
步骤S2包括:S22、膜片和弹性元件的形变产生与磁场力方向相反的回弹力,回弹力克服磁场力,驱动动子、膜片和弹性元件复位至第二形变。
进一步地,步骤S1中包括:
S13、所述第一形变至回弹力大于磁场力时,膜片具有与磁场力方向相反的运动趋势;
步骤S2包括:S23、所述第二形变至初始位置,惯性力克服磁场力,驱动动子及膜片或者动子、膜片和弹性元件超过初始位置继续移动至第二形变。
进一步地,步骤S1包括:
S14、在第一形变的过程中,磁场力和回弹力逐渐增大,磁场力大于回弹力;动子及膜片或者动子、膜片和弹性元件向第一形变方向的运动速度先增大后减小;
步骤S2包括:S24、在第二形变的过程中,磁场力、回弹力和惯性力逐渐减小,回弹力与惯性力之和大于磁场力;动子及膜片或者动子、膜片和弹性元件向第二形变方向的运动速度先增大后减小。
进一步地,步骤S1包括:
S141、动子接近线圈中心前,磁场力与回弹力的合力增大;动子超过线圈中心后,磁场力与回弹力的合力减小;合力的方向与磁场力方向相同。
步骤S2包括:S241、动子接近线圈中心前,回弹力、惯性力与磁场力的合力增大;动子超过线圈中心后,回弹力、惯性力与磁场力的合力减小;合力的方向与磁场力方向相反。
进一步地,步骤S1包括:
S15、所述第一形变中,动子及膜片或者动子、膜片和弹性元件至第一形变的速度为零,合力的方向与磁场力的反向相反。
步骤S2包括:S25、所述第二形变中,动子及膜片或者动子、膜片和弹性元件至第二形变的速度为零,合力的方向与磁场力的方向相同。
进一步地,步骤S2包括:
S231、膜片和弹性元件超过初始位置后,继续向第二形变方向移动,产生与磁场力方向相同的回弹力。
进一步地,步骤S2包括:
S232、弹性元件和膜片的回弹力逐渐增大,惯性力逐渐减小,惯性力大于回弹力和磁场力之和。
进一步地,步骤S3包括:
S31、线圈持续通入交流电,磁场力和回弹力周期性的驱动动子带动膜片形变和复位,产生谐振振荡,使得吸液腔内的压强发生变化,驱使吸液腔进行吸液和排液。
采用上述技术方案后,本发明与现有技术相比具有以下有益效果:
本申请中,在磁场力和回弹力的作用下,动子和膜片可实现高频往复运动,产生谐振振荡。在动子和膜片的谐振振荡的作用下,吸液腔内压强不断变化,周期性的进行吸液和排液,有效提高投放装置的液体投放的效率。
本发明要解决的技术问题在于克服现有技术的不足,一方面本发明提供一种洗涤设备的自动投放装置,另一方面本发明提供一种洗涤设备;根据本发明提供的洗涤设备的自动投放装置能够直接使用交流电驱动该洗涤设备的自动投放装置,降低制造成本,根据本发明的洗涤设备采用了该洗涤设备的自动投放装置。
为解决上述技术问题,本发明采用技术方案的基本构思是:
一方面,本发明提供一种洗涤设备的自动投放装置,包括投液装置,所述投液装置连接驱动装置,所述驱动装置包括:套筒,为一端开口,另一端封闭的筒体结构,所述套筒外侧缠绕线圈,内腔设置有动子;磁屏蔽元件,安装于所述动子与所述线圈之间,用于在线圈通电后屏蔽磁感线进入所述套筒内轴向上的一部分区域,所述套筒内轴向上的另一部分区域形成持续的、大小周期变化的磁场;弹性元件,位于所述套筒封闭端与所述动子之间;在所述磁场产生的磁吸力变小时,所述弹性元件对所述动子的弹力克服所述磁吸力,使所述动子向与磁吸力反向的方向运动,所述磁吸力与所述弹力共同作用使所述动子连续往复移动。
根据本发明提供的液体投放装置,采用电磁驱动原理,通电后线圈产生磁场,磁感线在线圈外沿金属导磁结构延伸,在线圈缠绕成的筒体结构内,磁感线沿磁屏蔽元件延伸,磁屏 蔽元件只能屏蔽部分磁感线不进入所述筒体结构内腔,使得不被屏蔽的磁感线从缺口进入筒体结构内腔,然后带动导磁体移动,由于本发明不受家用交流电影响,随着电流的周期变化,线圈磁场力也随之周期变化,当磁场力小于导磁体端部设置的弹性元件的弹力时,弹性元件驱动导磁体向磁吸力的反向移动,通过线圈磁吸力力与弹性元件弹力的共同作用,使得导磁体往复运动,从而驱动投液装置进行液体的吸取与排放。
进一步地,所述磁屏蔽元件在套筒的轴向上包围所述套筒内的部分腔室,轴向上未包围的区域形成供磁感线通过的缺口,在所述线圈通电后,所述线圈产生持续的、大小周期变化的磁场,所述磁场集中于所述缺口处,形成吸引所述动子向所述缺口的方向运动的磁吸力,所述磁吸力为持续的、大小周期变化的力。
可选地,所述磁屏蔽元件设置于所述套筒的外周,自所述套筒的封闭端向开口端方向延伸,并在靠近开口端形成缺口;当所述线圈通电后产生的磁场,随着电流的周期变化,磁场大小随之变化,在所述缺口处产生的磁吸力始终朝向所述套筒的开口端。
进一步地,所述弹性元件为拉伸弹簧,当线圈通电产生所述磁吸力,所述磁吸力吸引所述动子向所述套筒的开口端运动,所述拉伸弹簧受所述动子的拉动产生变形,所述拉伸弹簧积蓄弹力,所述弹力逐渐增大,与磁吸力相同时,所述动子受惯性运动到第一极限位置,在所述第一极限位置,弹力大于磁吸力,电流变小,磁吸力随之变小,所述动子开始向所述套筒封闭端运动。
进一步地,所述动子位于所述第一极限位置,所述拉伸弹簧的弹力驱动所述动子向所述套筒的封闭端运动,所述拉伸弹簧的形变逐渐恢复,所述弹力逐渐减小,再次与所述磁吸力相同时,所述动子受惯性运动到第二极限位置,所述拉伸弹簧受压缩,所述弹力朝向所述套筒的开口端,电流变大,所述磁吸力随之变大,所述动子开始再次向所述套筒开口端运动。
可选地,所述磁屏蔽元件设置于所述套筒的外周,自所述套筒的开口端向封闭端方向延伸,并在靠近封闭端形成缺口;当所述线圈通电后产生的磁场,随着电流的周期变化,磁场大小随之变化,在所述缺口处产生的磁吸力始终朝向所述套筒的封闭端。
进一步地,所述弹性元件为压缩弹簧,当线圈通电产生所述磁吸力,所述磁吸力吸引所述动子向所述套筒的封闭端运动,所述压缩弹簧受所述动子的压缩产生变形,所述压缩弹簧积蓄弹力,所述弹力逐渐增大,与磁吸力相同时,所述动子受惯性运动到第二极限位置,在所述第一极限位置,弹力大于磁吸力,电流变小,磁吸力随之变小,所述动子开始向所述套筒开口端运动。
进一步地,所述动子位于所述第二极限位置,所述压缩弹簧的弹力驱动所述动子向所述套筒的开口端运动,所述压缩弹簧的形变逐渐恢复,所述弹力逐渐减小,再次与所述磁吸力相同时,所述动子受惯性运动到第一极限位置,所述压缩弹簧受拉伸,所述弹力朝向所述套筒的封闭端,电流变大,所述磁吸力随之变大,所述动子开始再次向所述套筒封闭端运动。
进一步地,所述套筒的开口端设置有环形板,所述环形板的边缘背向所述套筒一侧延伸形成环形连接壁,所述环形连接壁与所述投液装置连接。
进一步地,所述投液装置包括:吸液腔室,为一端开口的腔体;弹性膜片,设置于所述吸液腔室的开口端,用于封闭所述吸液腔室,所述弹性膜片能够变形,所述动子与所述弹性膜片连接,通过所述动子的往复运动调整所述弹性膜片的形状,从而能够改变所述吸液腔室内部的压强,使得所述投液装置进行吸液与排液。
另一方面,本发明还提供了一种洗涤设备,包含上述洗涤设备的自动投放装置,所述投液装置的吸液管道连通所述洗涤设备的储液盒,所述投液装置的排液管道连通所述洗涤设备的洗涤容腔。
下面结合附图对本发明的具体实施方式作进一步详细的描述。
附图说明
附图作为本发明的一部分,用来提供对本发明的进一步的理解,本发明的示意性实施例 及其说明用于解释本发明,但不构成对本发明的不当限定。显然,下面描述中的附图仅仅是一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。在附图中:
图1是本发明实施例一的结构示意图;
图2是本发明实施例二的结构示意图;
图3是本发明实施例三的结构示意图;
图4是本发明实施例五的结构示意图;
图5是本发明实施例六的结构示意图;
图6是本发明实施例七的结构示意图;
图7是本发明第一弹性结构形状示意图一;
图8是本发明第一弹性结构形状示意图二;
图9是本发明实施例中投放装置的结构示意图;
图10是本发明另一实施例中投放装置的结构示意图;
图11是本发明另一实施例中投放装置的结构示意图;
图12是本发明提供的一个具体实施例常态结构示意图;
图13是本发明提供的一个具体实施例的第二极限位置结构示意图;
图14是本发明提供的一个具体实施例的第一极限位置结构示意图;
图15是本发明的另一个具体实施例常态结构示意图;
图16是本发明的另一个具体实施例的第一极限位置结构示意图;
图17是本发明的另一个具体实施例的第二极限位置结构示意图。
图中:1、膜片;2、壳体;201、翻边;202、套筒;206、单向阀;3、弹性原件;301、支撑弹簧;302、反弹弹簧;4、导磁体;402、导磁部;5、驱动装置;501、线圈;502、线圈支架;6、吸液装置;601、端盖;602、吸液腔;603、吸液管;604、排液管;605、安装位;240、形变腔;
91、投液装置;9101、吸液腔室;91011、端壁;91012、侧壁;9102、弹性膜片;91021、卡槽;91022、环形凸起;9103、吸液管道;9104、排液管道;
92、驱动装置;9201、线圈;9202、磁屏蔽元件;92021、缺口;9203、套筒;92031、环形板;920311、环形连接壁;920312、环形凹槽;920313、形变腔室;9204、弹性元件;9205、动子;92051、卡块;9206、线圈支架;92061、线圈槽;9207、环形导磁板;9208、导磁筒。
需要说明的是,这些附图和文字描述并不旨在以任何方式限制本发明的构思范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对实施例中的技术方案进行清楚、完整地描述,以下实施例用于说明本发明,但不用来限制本发明的范围。
在本发明的描述中,需要说明的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连 接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例一
本发明提供的一种洗涤设备自动投放装置的交流电驱动装置,该投放装置应用于洗衣机的洗涤剂投放部分,该驱动装置的设立是为了使投放更加稳定高效。
如图1所示,该自动投放装置包括壳体2、驱动装置5和吸液装置6。
其中,吸液装置6包括端盖601、吸液腔602、吸液管603、排液管604和安装位605,吸液装置6的端盖601通过螺栓固定连接在壳体2上。吸液腔602与洗涤剂存储部件连接,排液管604与洗衣机洗涤腔室连接。
壳体2包括翻边201和套筒202,翻边201和套筒202为一体结构,套筒202轴向单侧开口,端盖601通过螺栓固定连接在翻边201上,端盖601和翻边201组合起来的内部形成了吸液管603,在端盖601和翻边201的结合处内侧设有安装位605。
本实施例中,驱动装置5为交流电驱动装置,具体为,在套筒202外设置有线圈501,在套筒202内轴向设置可在其中往复移动的导磁体4,所述导磁体4亦称为动子9205,套筒开口对应设置有能够产生形变的第一弹性结构,在持续通入交流电下,导磁体4至少分别在交流电通入线圈产生磁吸力、第一弹性结构的回弹力交替作用下连续进行往复移动,实现了泵液的功能。
本实施例中更优选,第一弹性结构为膜片1,在吸液装置6的安装位605上装有膜片1的外边缘部分,即膜片1的外边缘部分卡固在端盖601和翻边201之间。膜片1将端盖601和翻边201形成的腔室隔开,形成了靠近吸液腔602和排液管604一侧的吸液管603和靠近套筒202一侧的避让腔室。进一步地,如图1、图7和图8所示,膜片1的形状可以是盘状,碗状和囊状,改变膜片1的形状可以获得更大振动幅度以及更好的密封效果,防止洗涤剂渗透进避让腔室。
线圈501嵌入安装在线圈支架502内,线圈支架502内壁上固定安装有套筒202,套筒202内滑动设有导磁体4,套筒202开口端装有翻边201,翻边201靠近线圈501一侧装有线圈安装板,线圈安装板和线圈支架502之间通过安装架连接,翻边201远离套筒202一侧设置有端盖601,端盖601远离套筒202的壁上装有吸液腔602和排液管604,在排液管604中装有单向阀206,由于从排液管604和吸液腔602中进行抽吸取所需压力不同,至少在排液管604中加入单向阀就满足工作需要,优选地,在两个管中装入互相之间方向相反的两个单向阀206,使得装置泵液效果更加稳定,
初始状态下,膜片1将导磁体4限位在一定位置,套筒202的一端开口而另一端封住,进一步地,线圈501为环状的导线绕组。优选地,线圈501安装于套筒202同轴的位置。更优选地,端盖601、线圈安装板和套筒202上开有对应的孔,由螺栓将三者固定在一起。
优选地,膜片1上开有嵌入槽(图中未示出),导磁体4上设有嵌入块,嵌入块和嵌入槽相配合将膜片1和导磁体4固定。进一步地,还可以是将导磁体4放入模具内进行模内注塑或硫化成型的一体的柔性弧形的膜片1,一体化成型制造能够提高工件精度,便于后续的装配工序。
启动设备时,给线圈501通入交流电,501产生磁吸力,吸引导磁体4朝向套筒202的端部移动,导磁体4移动带动膜片1向下运动,使得吸液管603容积变大,在吸液管601中产生负压,通过吸液腔602将液体吸入吸液管603中。
导磁体4在线圈501通电后,受到到线圈501产生的磁吸力,导磁体4向套筒202端部方向移动,进而将膜片1拉动,使得膜片1产生弹性变形,在交流电通入线圈501产生的交变磁场中,磁场的强度随着交流电的周期性变化而变化,在电压升高磁场强度升高时,膜片1因被拉动产生的弹性势能发挥作用,在电压降低磁场强度降低时,膜片1在回弹力的作用 下被拉回吸液管603方向,磁场强度升高时,导磁体4又将膜片1重新拉向套筒202端部方向,随着交流电的周期性变化,膜片1产生小幅度颤动,在膜片1向吸液管603方向颤动时,吸液管603的容积开始变小,吸液管603内变为正压,正压力将液体经由单向阀206向排液管604排出。
进一步地,导磁体4的形心位于线圈501的轴线远离套筒202端部一侧,优选地,导磁体4相对于线圈501和膜片1的相对位置的具体设计依据膜片1需要的振幅以及位移行程来确定,进一步地,套筒202的横截面为圆环状。
进一步地,上述磁吸力对导磁体4的牵引方向始终朝向线圈501通电后产生的磁场中磁通量密度最大的位置,进一步地,线圈501通电产生的无数磁吸力的合力方向始终沿线圈501的轴线朝向套筒202封闭端部方向。
进一步地,在导磁体4的形心接近线圈501的形心的过程中,即使交流电不产生周期性变化,通入线圈501的电流的强度始终保持最大,上述的朝向套筒202端部的合力也是逐渐变小的,因为在导磁体4朝向套筒202封闭端部运动时,导磁体4距离线圈501产生的磁场的磁通量密度最大的位置是在逐渐缩短的,因此线圈501对导磁体4产生的朝向套筒202的封闭端部的力也是逐渐减小的。
和膜片1连接的吸液装置6的吸液管603的体积小于等于20ml,优选地,吸液管603的体积在5-10ml,较小的体积使得投放装置整体占据洗衣机内部的空间减小,方便优化了洗衣机整体空间设计。
本实施例所提供的装置,不但整体结构简单易于加工,有利于降低生产成本,同时也使得装置的体积减小,降低了安装需求,方便安装使用。该装置通过交流电提供动力源,利用交流电通入线圈产生交变磁场的特性,实现了快速高效地自动添加洗涤剂,同时,充分利用交流电的特性来驱动导磁体,驱动方式简单直接且高效,提高了设备的稳定性。
本实施例还提供一种洗涤设备,所述洗涤设备包括如上所述的自动投放装置的交流电驱动装置。
实施例二
如图2所示,本实施例与实施例一的区别在于:在套筒202的封闭端部安装有弹性元件3。
进一步地,弹性元件3是反弹弹簧302,反弹弹簧302的一端安装在套筒202上,另一端抵在导磁体4上。在线圈501中通入交流电,受到线圈501产生的磁吸力的吸引,导磁体4向套筒202端部方向移动,进而将膜片1拉动,使得膜片1产生弹性变形,同时压缩反弹弹簧302,使得302产生弹性形变,积累弹性势能,在电压降低导致磁场强度降低时,弹性势能克服磁吸力做工,膜片1向单向阀206的方向回弹,压缩吸液管603。膜片1在交流电的驱动下往复运动实现泵液操作,反弹弹簧302和导磁体4相接触进行工作可以减少工作噪音,降低装置的震动。
优选地,反弹弹簧302与导磁体4不接触,两者在初始不工作状态下保持一定的距离,当线圈501中通入交流电,线圈501产生磁吸力时,因线圈501和导磁体4的位置设计和交流电的周期性变化相结合,使得导磁体4在冲向反弹弹簧302的过程中,受到的磁吸力逐渐减小,在导磁体撞击反弹弹簧302时依靠的很大一部分力来源于惯性力。反弹弹簧302和导磁体4不接触设计,能够使得导磁体4向下运动时不需要为克服反弹弹簧302的弹力而额外付出一部分无用功,增大了膜片1的变形幅度上限,提高了装置的工作效率。
本实施例还提供一种洗涤设备,所述洗涤设备包括如上所述的自动投放装置的交流电驱动装置。
实施例三
如图3所示,本实施例与实施例二的区别在于:弹性元件3包括支撑弹簧301和在支撑 弹簧301内部安装的第二弹性结构。
支撑弹簧301对导磁体4进行限位,使得导磁体4和套筒202保持同轴,在支撑弹簧302的固定下导磁体4保持了和套筒202的同轴关系,使得导磁体4和弹性元件3共同组成的谐振系统在工作时受到的套筒202的摩擦力降低,提高了工作效率,降低了装置的发热量。
优选地,第二弹性结构为反弹弹簧302或其他符合设计要求的弹性元件,进一步地,反弹弹簧302和支撑弹簧301内二者具有一定关系:支撑弹簧301比反弹弹簧302长度要长,反弹弹簧302的弹性系数比支撑弹簧301大,反弹弹簧302的弹性系数要足够大,用以保证提供足够的反弹力驱动导磁体4。
导磁体4在线圈501通电后,受到到线圈501产生的磁吸力,导磁体4向套筒202端部方向移动,进而将膜片1拉动,使得膜片1产生弹性变形,正弦交流电的电压由0升至最大值的过程中,导磁体4受拉向弹性元件3的方向移动,接近反弹弹簧302之前,正弦交流电的电压变化曲线越过最大值开始下降,导致线圈501产生的磁吸力开始下降,同时因导磁体4和线圈501磁感线最密处的位置变化,多方因素使得线圈501对导磁体4产生的朝向弹性元件3的合力逐渐减小的,该合力会降低到始终大于支撑弹簧301的弹力,但是小于反弹弹簧302的弹力。
导磁体4朝向弹性元件运动行程的末端就变成了线圈501产生的磁吸力配合导磁体4在运动中产生的惯性力的双重作用下撞击到反弹302上。在将反弹弹簧302进行一定程度的压缩后,导磁体4的惯性力被消耗殆尽,同时线圈501的磁吸力也小于反弹弹簧302的弹力,导磁体4在经过一瞬间的停顿后被反弹弹簧302弹起,开始朝向套筒202的开口方向移动。
在导磁体4停顿的一瞬间,吸液管603也达到最大容积,在导磁体4朝向套筒202的开口方向移动时,导磁体4带动膜片1运动,吸液管603的容积开始变小,吸液管603内变为正压,正压力将液体经由单向阀206向排液管604排出。
导磁体4经由反弹弹簧302弹出后,在运动至极限位置,也就是吸液管603的容积最小时,导磁体4自身的惯性力消耗完毕,正弦交流电的电压曲线已经越过零点,开始重新向电压最大值攀升,因此,导磁体4在线圈501的磁吸力的作用下重新朝向套筒202的端部方向移动,进入下一次循环。
自此导磁体4以一定频率带动膜片1运动,将液体不断经由吸液腔602泵入吸液管603,再由排液管604泵出,当达到洗涤设备自动投放装置的交流电驱动装置需要的量时,线圈501断电,装置停止工作。
进一步地,导磁体4和弹性元件3组成一谐振系统,该谐振系统决定了膜片1的振动频率,在该谐振系统中,交流电电压的周期性变化曲线中的正电压或负电压部分,均能对导磁体4产生朝向套筒202端部的磁吸力,充分利用了交变电流的特性。
本实施例还提供一种洗涤设备,所述洗涤设备包括如上所述的自动投放装置的交流电驱动装置。
实施例四
本实施例与上述实施例的区别在于:一种洗涤设备自动投放装置的交流电驱动装置的另一种控制方法是:在电流通入线圈501之前设置电流变频器或控制器,可以实现交流电的通电的高频通和断或者电流的正负换向或改变电流电压的大小,实现可控频率的谐振运动,线圈501的磁力拉动导磁体4移动压缩支撑弹簧301,碰到并压缩反弹弹簧302,被反弹,进而导磁体4可以往复运动实现谐振。与导磁体4嵌结或模内注塑一体的柔性膜片1也被带动移动,实现膜片1发生弹性形变,吸液管603的容积进入反复增大缩小的过程,将液体由吸液腔602泵入,再由排液管604排出。
进一步地,由于增加了控制系统或变频系统,投液装置可以实现1-500hz的变频,改变投放速率,配合导磁体5mm的小行程特点,使得投放更加精确,同时也避免了一次泵出过多 液体的浪费行为。
本实施例还提供一种洗涤设备,所述洗涤设备包括如上所述的自动投放装置的交流电驱动装置。
实施例五
如图4所示,与实施例一、二、三的区别在于:翻边201和端盖601为一体化设计,端盖601的内壁中段设有安装位,膜片的边缘直接嵌入端盖601的安装位中,端盖601的一体化设计可以减少装配工序,提高安装精度,降低工作强度。
进一步地,膜片1和导磁体4不设置为固定连接,导磁体4对膜片1的动作方式随之变为在驱动装置5的作用下导磁体4反复撞击膜片1,膜片1发生弹性变形向吸液管603方向突出时,吸液管603的容积开始变小,吸液管603内变为正压,正压力将液体经由单向阀206向排液管604排出,导磁体4脱离和膜片1的接触时,膜片1在变形力的驱使下开始复位,吸液管603的容积开始变大,吸液管603内变为负压,负压力将液体从吸液腔602吸入液体。
本实施例还提供一种洗涤设备,所述洗涤设备包括如上所述的自动投放装置的交流电驱动装置。
实施例六
如图5所示,该实施例与实施例四的区别在于:端盖601上的安装位移动至端盖601和线圈安装板的结合处,膜片1贴合着线圈安装板装入端盖601的安装位上,相比于实施例四,该实施例进一步简化了安装步骤,工人不需要将膜片1伸入端盖601的内部进行安装,方便快捷。
本实施例还提供一种洗涤设备,所述洗涤设备包括如上所述的自动投放装置的交流电驱动装置。
实施例七
如图6所示,该实施例和实施例五的区别在于:导磁体4由导磁部(图中未标出)、安装于导磁部靠近吸液管602一侧的传导部(图中未标出)和装于传导部另一端的嵌入块(图中未标出)组成,嵌入块安装在膜片1上,在驱动装置5工作时,导磁部在磁吸力的作用下,进行朝向或远离膜片1方向的动作,使得膜片1产生形变,吸液装置6完成泵液工作。
本实施例还提供一种洗涤设备,所述洗涤设备包括如上所述的自动投放装置的交流电驱动装置。
实施例八
如图9所示,本实施例公开了一种洗涤设备的自动投放装置,包括壳体2和与之连接的吸液腔602。
这里的吸液腔602是指,用于储存液体的腔室。具体的,如图9所示,吸液腔602连通有吸液管603和排液管604。吸液管603用于抽取储液盒内的液体,排液管604用于排出吸液腔602内的液体。
在本实施例中,吸液管603和排液管604内分别设置有单向阀206。其中,吸液管603内的单向阀206的开口朝向吸液腔602,使得吸液管603只能从储液盒内吸取液体。排液管604内的单向阀206的开口朝向吸液腔602外部,使得排液管604只能排出吸液腔602内的液体,防止排液管604内的液体回流。
进一步地,壳体2内设有磁力驱动装置。磁力驱动装置包括动子4,以及同轴设置的线圈501和套筒202。
这里所述的线圈501是指,呈环形的导线绕组。
在本实施例的一种方案中,线圈501同轴设置在套筒202的两侧。
这里所述的轴向,可以理解为沿壳体2的中心轴线方向。具体的,线圈501与壳体2内 的套筒202同轴设置,且分布在套筒202的两侧。两侧线圈501的通电导线的绕线方向相同,确保线圈501通电后形成的磁场方向相同,为套筒202内的动子4的移动提供相同的驱动力。
此外,套筒202两侧的线圈501与套筒202轴向上的两侧壁分别留有一定间距。设置上述间距,使得线圈501通电后产生的磁场力能够更广泛地作用于套筒202内的动子4上,提高对磁场力的利用率,为动子4的移动提供充足的驱动力。
在本实施例的另一种方案中,线圈501只设置在套筒202轴向上的一侧。通过增加线圈501的匝数,增大线圈501通电后产生的磁场力,也能满足为动子4提供驱动力的要求。而线圈501的匝数、数量及分布位置可根据具体的使用需求进行适应性的调整。
这里的动子4是指,能够在磁场力的作用下运动的,由钢、铁等金属材料制成的金属块。
在本实施例中,动子4轴向安装在套筒202内,且与套筒202轴向平行设置。动子4可在套筒202内沿轴向运动。
进一步的,动子4同轴向的两侧与套筒202不贴合。可以理解为,动子4同轴向的两侧与套筒202轴向的两侧壁留有一定间距,便于动子4沿套筒202的轴向移动。而动子4靠近套筒202底部的一端与套筒202底部留有一定间距,为动子4在套筒202内的移动提供活动空间。
在本实施例中,动子4具有初始位置。所述初始位置是指,动子4的位置在线圈501的中间偏右侧,确保线圈501的电磁吸引力使得动子4朝向左侧移动。此外,动子4的尺寸大小可根据具体使用需求进行适应性的调整。
套筒202在吸液腔602侧具有轴向开口。
在本实施例中,套筒202安装在壳体2内,为动子4提供安装和活动空间。套筒202具有开口,所述开口设置在套筒202轴向的一端,且所述开口靠近吸液腔602的一侧。
进一步地,膜片1设于所述壳体2和吸液腔602之间。所述动子4第一端,通过套筒202的开口与所述膜片1连接设置。
这里所述的动子4的第一端,是指动子4靠近膜片1的一端。
这里的膜片1是指橡胶、硅胶、聚氨酯等材料制作的柔性片或柔性膜。
在本实施例中,如图9所示,膜片1设于壳体2和吸液腔602之间。具体的,膜片1的一侧靠近壳体2设置,另一侧设置在吸液腔602内。并且,套筒202的开口处与膜片1的中间区域对应,形成膜片1朝向套筒202内发生形变的空间。
进一步地,所述线圈501持续通入周期性变化的直流电后产生磁场力。
此处提到的周期性变化的直流电,可以理解为,经过整流电路得到的直流电,其电压大小能在固定周期内进行变化,而电流方向不发生改变。
在本实施例中,线圈501持续通入直流电后产生磁场力的过程,可以理解为,从套筒202轴向的底部一侧(套筒202轴向的左侧)观察,通入线圈501的电流方向均指向线圈501的逆时针方向。根据安培定则(用右手握住通电螺线管,让四指指向电流的方向,那么大拇指所指的那一端是通电螺线管的N极)得出,线圈501通电后产生轴向向左的磁场力。
进一步地,磁场力驱动动子4在套筒202内进行第一运动方向移动,使膜片1发生形变。动子4及膜片1至少在回弹力作用下克服磁场力复位,使吸液腔602内压力变化而吸液、排液。
这里所述的第一运动方向,可以理解为,动子4受到轴向向左的磁场力,在套筒202内沿轴向向左的方向进行移动。
在具体的实现过程中,线圈501持续通入直流电,磁场力一直存在。磁场力的方向不改变,磁场力的大小进行周期性的变化。磁场力持续对动子4做功,驱动动子4向膜片1形变的方向移动。由于膜片1的回弹力与磁场力的方向相反,回弹力随膜片1的形变而变化,直 至能够克服磁场力,驱动膜片1带动动子4复位。
在具体的实现过程中,动子4带动膜片1轴向向左移动,增大吸液腔602内的面积,形成负压,通过吸液管603抽取液体。动子4及膜片1复位,挤压吸液腔602,吸液腔602内的面积减小,使液体通过排液管604排出吸液腔602。
如上所述,通过磁场力驱动动子4运动,带动膜片1反复形变,以及在膜片1的回弹力作用下,且克服磁场力复位,使得吸液腔602内的压力发生变化,利用该压力差驱使吸液腔602完成吸液和排液,实现吸液腔602内液体的自动投放。
实施例九
本实施例是对上述实施例八的进一步描述。
在本实施例中,所述膜片1向第一运动方向发生形变的过程中,直流电的电流逐渐增大,磁场力和回弹力逐渐增大。
具体的,上文提到的直流电呈周期性变化,电流在一个周期内先增大至电流的最大值,后减小至零。由于磁场力是线圈501通电所产生的,磁场力的变化规律与电流的变化规律相同。磁场力在一个周期内先增大至磁场力的最大值,后减小至零。膜片1发生形变产生回弹力,随膜片1形变量的增大,回弹力逐渐增大。
膜片1向第一运动方向形变的过程,处于直流的电流增大的半个周期内。可以想到,随着电流的增大和膜片1的形变增大,磁场力和回弹力逐渐增大。
进一步地,电流增大至第一阈值前,磁场力大于回弹力;电流大于第一阈值后,磁场力小于回弹力。
这里所述的第一阈值是指,当直流电的电流增大到某一值时,磁场力与回弹力平衡。
具体的,在直流电增大的阶段,电流增大至第一阈值前,磁场力大于回弹力,动子4具有加速运动的趋势。电流大于第一阈值后,磁场力小于回弹力,动子4具有减速运动的趋势。
实施例十
本实施例是对上述实施例九的进一步描述。
在实施例中,所述膜片1形变产生与磁场力方向相反的回弹力,驱动动子4及膜片1复位。
在具体的实现过程中,由于膜片1自身具有弹性,在发生形变后,可以产生回弹力。此时,回弹力是指膜片1发生形变后产生的,使膜片1恢复到未形变状态的作用力。回弹力的方向与膜片1发生形变的方向相反,也就是说,回弹力的方向与磁场力的方向相反。
进一步地,所述膜片1复位过程中,直流电的电流逐渐减小,回弹力和磁场力逐渐减小。
具体的,膜片1复位的过程处于直流电的电流减小的半个周期内。可以想到,电流逐渐减小,磁场力和回弹力逐渐减小。
进一步地,电流减小至第二阈值前,回弹力大于磁场力;电流小于第二阈值后,回弹力小于磁场力。
这里所述的第二阈值是指,当直流电的电流减小到某一值时,磁场力与回弹力平衡。
具体的,在直流电减小的阶段,电流从最大值减小至第二阈值前,回弹力大于磁场力,膜片1具有加速运动的趋势。电流小于第二阈值后,回弹力小于磁场力,膜片1具有减速运动的趋势。
实施例十一
本实施例是对上述实施例八至实施例九的进一步描述。如图10所示,本实施例提供的投放装置还包括弹性元件3。
进一步地,弹性元件3的一端固定连接在套筒202的底部。
这里所述的弹性元件3是指,受到作用力后能产生回弹力的部件。弹性元件3可以为螺 旋弹簧、橡胶弹簧等各种具有回弹力的部件。优选的,在本实施例中,所述弹性元件3为螺旋弹簧。所述弹性元件3的长度和体积可根据具体的使用需求进行适应性的调整。
在本实施例中,弹性元件3的一端与套筒202的底部固定连接,实现弹性元件3固定安装在套筒202内。此处固定连接可采用粘接、卡接等各种连接形式,在此不作限制。优选的,弹性元件3设置在套筒202底部的中间区域。弹性元件3的一端与套筒202底部中间区域连接,便于后续为动子4提供充足的活动空间。
在本实施例的一种方案中,弹性元件3的另一端与动子4的第二端连接设置。弹性元件3的另一端,是指弹性元件3靠近动子4的一端。这里所述的动子4的第二端,可以理解为,动子4远离膜片1的一端。
具体的,弹性元件3与动子4远离膜片1的一端连接,增大动子4压缩弹性元件3的路程,以增大弹性元件3的变形量,提供更大的回弹力。
在本实施例的另一种方案中,弹性元件3的另一端与动子4的第二端相对应间隔设置。具体的,弹性元件3靠近动子4的一端与动子4远离膜片1的一端相对应间隔设置,可以理解为,弹性元件3与动子4之间留有一定间距。设置所述间距,可以保证动子4具有充足的运动距离,增大膜片1的形变量。
如上所述,设置弹性元件3,有效增大膜片1复位时的振动幅度,提高动子4及膜片1的复位能力,进一步提高吸液腔602的形变能力。
实施例十二
本实施例是对上述实施例十一的进一步描述。
所述膜片1及弹性元件3向所述第一运动方向发生形变的过程中,直流电的电流逐渐增大,磁场力和回弹力逐渐增大。
具体的,膜片1和弹性元件3向第一运动方向形变的过程,处于直流的电流增大的半个周期内。可以想到,随着电流的增大和膜片1的形变增大,磁场力和回弹力逐渐增大。
进一步地,电流增大至第三阈值前,磁场力大于回弹力;电流大于第三阈值后,磁场力小于回弹力。
这里所述的第三阈值是指,当直流电的电流增大到某一值时,磁场力与回弹力平衡。
具体的,在直流电增大的阶段,电流增大至第三阈值前,磁场力大于回弹力,动子4具有加速运动的趋势。电流大于第三阈值后,磁场力小于回弹力,动子4具有减速运动的趋势。
实施例十三
本实施例是对上述实施例十二的进一步描述。
膜片1及弹性元件3形变产生与磁场力方向相反的回弹力,驱动动子4、膜片1及弹性元件3复位。
此处提到的回弹力是指,弹性元件3被压缩产生的回弹力与膜片1被拉伸产生的回弹力之和。
进一步地,所述膜片1及弹性元件3复位过程中,直流电的电流逐渐减小,回弹力和磁场力逐渐减小。
具体的,膜片1和弹性元件3复位的过程处于直流电的电流减小的半个周期内。可以想到,电流逐渐减小,磁场力和回弹力逐渐减小。
进一步地,电流减小至第四阈值前,回弹力大于磁场力;电流小于第二阈值后,回弹力小于磁场力。
这里所述的第四阈值是指,当直流电的电流减小到某一值时,磁场力与回弹力平衡。
具体的,在直流电减小的阶段,电流从最大值减小至第四阈值前,回弹力大于磁场力,膜片1和弹性元件3具有加速运动的趋势。电流小于第四阈值后,回弹力小于磁场力,膜片 1和弹性元件3具有减速运动的趋势。
实施例十四
本实施例是对上述实施例十三的进一步描述。
进一步地,在膜片1及弹性元件3形变的过程中,当电流增大至最大值,膜片1及弹性元件3形变至最大形变量,回弹力与磁场力的合力方向与磁场力相反,膜片1具有复位的运动趋势。
具体的,膜片1及弹性元件3形变的过程中,磁场力和回弹力逐渐增大。在电流增大的周期内,膜片1及弹性元件3的形变量达到最大形变量时,电流达到最大值,磁场力和回弹力也达到最大值。此时,回弹力能够完全克服方向相反的磁场力,回弹力与磁场力的合力的方向与磁场力方向相反,使得和弹性元件3开始具有向复位方向移动的运动趋势。
实施例十五
本实施例是对上述实施例十一的进一步描述。
在本实施例中,共振频率的计算公式T=1/2π*(k/m)^0.5。其中,k为弹簧的弹性系数,m为动子4的质量。由公式可知,系统的共振频率与弹簧的弹性系数及动子4的质量有关。
在本实施例的一种方案中,通过改变动子4的质量,控制动子4在套筒202内的运动速度,控制所述膜片1的振动频率。
在具体的实现过程中,减小动子4的质量,可以增大系统的共振频率,以此增大动子4在套筒202内的运动速度,加快膜片1的形变,提高膜片1的振动频率。
在本实施例的另一种方案中,通过改变动子4的质量和弹性元件3的弹性系数,控制动子4在套筒202内的运动速度,控制所述膜片1的振动频率。
在具体的实现过程中,增大弹性元件3的弹性系数,可以增大系统的共振频率,提高该自动投放装置的液体投放速度。
实施例十六
本实施例是对上述实施例八的进一步描述。在本实施例中,通过改变输入电压的频率,控制动子4在套筒202内的运动速度,控制膜片1的振动频率。
这里所述的输入电压的频率,可以影响通入线圈501后产生磁场力的大小。
增大输入电压的频率,以增大磁场力,此时动子4具有较大的运动速度。也就是说,在相同时间内,膜片1发生形变的次数增加,从而提高膜片1的振动频率。
在本实施例中,当液体投放量较小时,液体投放量m为10ml,设置直流变频器的输出电压的频率为10Hz。,实现自动投放液体的投放时间为T。当液体投放量M为70ml,设置直流变频器的输出电压的频率为30Hz,实现自动投放液体的投放时间同样可以为T。
其结果是,在同样的投放时间T内,实现较多量的液体投放。增大输出电压的频率,实现动子4高频次的往复运动,以及膜片1高频次的振动,达到缩短液体投放时间的目的。
本实施例中还可以:通过直流变频器改变直流电的电流方向,产生与第一运动方向相反的磁场力。
在具体的实现过程中,直流变频器控制通入线圈501的直流电为正向。
这里所述的直流电为正向,可以理解为,从套筒202轴向的底部一侧(套筒202轴向的左侧)观察,通入线圈501的电流方向均指向线圈501的逆时针方向。
线圈501通入正向的直流电时,可以产生轴向向左的磁场力。动子4在该磁场力的作用下朝向远离膜片1的方向移动,拉伸膜片1向套筒202内发生形变,以增大吸液腔602的面积。
在具体的实现过程,直流变频器控制通入线圈501的直流电为负向。
这里所述的直流电为负向,可以理解为,从套筒202轴向的底部一侧(套筒202轴向的 左侧)观察,通入线圈501的电流方向均指向线圈501的顺时针方向。
线圈501通入负向的直流电时,可以产生轴向向右的磁场力。动子4在该磁场力的作用下朝向靠近膜片1的方向移动。由于膜片1自身具有弹性,形变后会产生轴向向右的回弹力。
在动子4及膜片1的复位过程中,该轴向向右的磁场力结合膜片1的回弹力,驱使动子4和膜片1快速复位,以减小吸液腔602的面积。
所述变化的磁场力和膜片1的回弹力,重复驱动动子4使所述膜片1拉伸或复位。
如上所述,膜片1在反复形变的过程中,由于膜片1自身具有弹性,可以产生弹性振动。高频往复运动的动子4,能够增大膜片1的振动幅度,从而提高吸液腔602的吸液和排液能力。
实施例十七
本实施例是对上述实施例八的进一步描述,套筒202与壳体2的侧壁连接。
在本实施例中,如图9所示,壳体2包括封闭端和敞口端。壳体2的敞口端,可以理解为,壳体2具有开口且靠近吸液腔602设置的一侧。壳体2的封闭端,可以理解为,壳体2远离吸液腔602的一侧。
在本实施例的一种方案中,壳体2的敞口端处设置有翻边201。翻边201可以作为壳体2的侧壁。
套筒202包括套筒202底和开口。套筒202的开口与壳体2的敞口端的朝向相同。套筒202的开口与壳体2的翻边201连接,也就是说,套筒202与与壳体2的侧壁连接,实现套筒202固定安装在壳体2内。
在本实施例的另一种方案中,套筒202的开口处设置有翻边201,翻边201与壳体2的敞口端处连接,实现套筒202固定安装在壳体2内。
在本实施例的另一种方案中,壳体2的敞口端处设有翻边201,套筒202的开口处也设有翻边201。壳体2的翻边201与套筒202的翻边201连接,实现套筒202固定安装在壳体2内。
在本实施例中,套筒202与壳体2同轴向设置。优选的,套筒202设置在壳体2内的中间区域,为动子4的移动提供活动空间。此外,套筒202的尺寸大小可根据使用需求进行适应性的调整。
实施例十八
本实施例是对上述实施例八至实施例十七的进一步描述。
在本实施例中,动子4的形状可以为圆柱形、长条形等各种形状。优选地,动子4的形状为圆柱形。圆柱形的动子4的加工难度小,加工成本低。此外,动子4的长度和体积大小,可根据具体的使用需求进行适应性的调整。
在本实施例的一种方案中,动子4与膜片1的中间区域粘接。
动子4靠近膜片1的一端,与膜片1的中心区域粘接。通过粘接的方式,实现动子4与膜片1的固定。且粘接的固定方式简单方便,制造成本低。
在本实施例的另一方案中,动子4和膜片1对应区域分别设置嵌入部,动子4靠近膜片1的一端与膜片1的中心区域通过嵌入部嵌接,实现动子4与膜片1的固定。
实施例十九
本实施例提供了一种洗涤设备的自动投放装置的控制方法,包括:
S1、启动洗涤设备的投放程序;磁力驱动装置中的线圈通入周期性变化的直流电产生磁场力,驱动动子运动,使膜片形变;直流电的电流增大至第一阈值前,磁场力大于回弹力,动子加速运动;电流大于第一阈值后,磁场力小于回弹力,动子减速运动;
S2、动子及膜片至少在回弹力的作用下复位;电流减小至第二阈值前,回弹力大于磁场 力,动子加速运动;电流小于第二阈值后,回弹力小于磁场力,动子减速运动;
S3、在动子及膜片的谐振振荡的作用下,吸液腔进行吸液和排液。
在本实施例中,洗涤设备的投放程序启动后,投放装置准备投放。
进一步地,磁力驱动装置中的线圈通入周期性变化的直流电,产生方向不变、大小变化的磁场力。
此处提到的周期性变化的直流电,可以理解为,经过整流电路得到的直流电,其电压大小能在固定周期内进行变化,而电流方向不发生改变。
具体的,直流电呈周期性变化,电流在一个周期内先增大至电流的最大值,后减小至零。由于磁场力是线圈通电所产生的,磁场力的变化规律与电流的变化规律相同。磁场力在一个周期内先增大至磁场力的最大值,后减小至零。
进一步地,磁场力驱动动子运动,使膜片形变。
具体的,在磁场力的作用下,动子向远离膜片的方向运动,并拉动膜片发生形变,以增大投放装置的吸液腔的面积,减小吸液腔内压强,促使液体进入吸液腔内。
进一步地,直流电的电流增大至第一阈值前,磁场力大于回弹力;电流大于第一阈值后,磁场力小于回弹力。
这里所述的第一阈值是指,当直流电的电流增大到某一值时,磁场力与回弹力平衡。
具体的,在直流电增大的阶段,电流增大到第一阈值前,磁场力大于回弹力,动子具有加速运动的趋势。电流大于第一阈值后,磁场力小于回弹力,动子具有减速运动的趋势。
进一步地,动子及膜片至少在回弹力的作用下复位。
具体的,膜片形变后能产生与磁场力方向相反的回弹力。回弹力能够克服磁场力,驱动动子及膜片向与磁场力方向相反的方向复位,以减小吸液腔的面积,增大吸液腔内压强,促使液体从吸液腔排出。
进一步地,电流减小至第二阈值前,回弹力大于磁场力;电流小于第二阈值后,回弹力小于磁场力;
这里所述的第二阈值是指,当直流电的电流减小到某一值时,磁场力与回弹力平衡。
具体的,在直流电减小的阶段,电流减小至第二阈值前,回弹力大于磁场力,动子具有加速运动的趋势。电流小于第二阈值后,回弹力小于磁场力,动子具有减速运动的趋势。
再进一步地,在动子及膜片的谐振振荡的作用下,吸液腔进行吸液和排液。
具体的,磁场力呈周期性变化,在磁场力和回弹力的作用下,动子和膜片可实现高频往复运动,产生谐振振荡。在动子和膜片的谐振振荡的作用下,吸液腔内压强不断变化,周期性的进行吸液和排液,有效提高投放装置的液体投放的效率。
实施例二十
本实施例是对上述实施例八的进一步描述。
如图11所示,所述翻边201靠近壳体2侧壁部分向吸液腔602方向具有延伸部,吸液腔602的侧壁的端部设置凸起,所述膜片1设置在凸起与翻边201的延伸部形成的凹槽内。
在本实施例的一个方案中,所述膜片1设置在翻边201上,所述翻边201的端部具有两个凸起结构,该膜片1的端部四周固定在凸起结构形成的凹槽内。
在本实施例的另一个方案中,所述膜片1设置在吸液腔602的侧壁上,所述吸液腔602的侧壁的端部具有两个凸起结构,该膜片1的端部四周固定在凸起结构形成的凹槽内。其中,吸液腔602的侧壁的端部与翻边201的端部连接。
在本实施例中,所述膜片1与所述翻边201有间隔,该间隔为形变腔240。该形变腔240为膜片1向远离吸液腔602方向运动提供了形变空间,使膜片的形变量变大,膜片1做往复运动的频率更高,有效增大投放量,提高吸液腔的排液效率。
实施例二十一
本实施例提供了一种洗涤设备的自动投放装置的控制方法。其中,投放器包括驱动装置和投放装置。
如图9所示,驱动装置设置在投放器的壳体2内。驱动装置包括套筒202、设置在套筒202外的线圈501和设置在套筒202内的动子4。
这里所述的线圈501是指,呈环形的导线绕组。
在本实施例的一种方案中,线圈501同轴设置在套筒202的两侧。
这里所述的轴向,可以理解为沿壳体的中心轴线方向。具体的,线圈501轴向设置在壳体2内。线圈501与套筒202同轴设置,且分布在套筒202的两侧。两侧线圈501的通电导线的绕线方向相同,确保线圈501通电后形成的磁场方向相同,为套筒202内的动子4的移动提供相同的驱动力。
此外,套筒202两侧的线圈501与套筒202轴向上的两侧壁分别留有一定间距。设置上述间距,使得线圈501通电后产生的磁场力能够更广泛地作用于套筒202内的动子4上,提高对磁场力的利用率,为动子4的移动提供充足的驱动力。
在本实施例的另一种方案中,线圈501只设置在套筒202轴向上的一侧。通过增加线圈501的匝数,增大线圈501通电后产生的磁场力,也能满足为动子4提供驱动力的要求。而线圈501的匝数、数量及分布位置可根据具体的使用需求进行适应性的调整。
这里所述的动子4是指,能够在磁场力的作用下运动的,由钢、铁等金属材料制成的金属块。
在本实施例中,动子4轴向安装在套筒202内,且与套筒202轴向平行设置。动子4可在套筒202内沿轴向运动。
进一步的,动子4同轴向的两侧与套筒202不贴合。可以理解为,动子4同轴向的两侧与套筒202轴向的两侧壁留有一定间距,便于动子4沿套筒202的轴向移动。而动子4靠近套筒202底部的一端与套筒202底部留有一定间距,为动子4在套筒202内的移动提供活动空间。
在本实施例中,动子4具有初始位置。所述初始位置是指,动子4的位置在线圈501的中间偏右侧,确保线圈501的电磁吸引力使得动子4朝向左侧移动。此外,动子4的尺寸大小可根据具体使用需求进行适应性的调整。
进一步地,套筒202在吸液腔602侧具有轴向开口。
套筒202安装在壳体2内,为动子4提供安装和活动空间。套筒202具有开口,所述开口设置在套筒202轴向的一端,且所述开口靠近吸液腔602的一侧。
进一步地,投放装置包括膜片1和吸液腔602。
这里的吸液腔602是指,用于储存液体的腔室。具体的,如图9所示,吸液腔602连通有吸液管603和排液管604。吸液管603连通至储液盒,用于抽取储液盒内的液体。排液管604连通至洗涤剂盒或者水路,将吸液腔602内的液体投放至洗涤剂盒内,或者直接将液体投放至水路中进行稀释。
在本实施例中,吸液管603和排液管604内分别设置有单向阀206。其中,吸液管603内的单向阀206的开口朝向吸液腔602,使得吸液管603只能从储液盒内吸取液体。排液管604内的单向阀206的开口朝向吸液腔602外部,使得排液管604只能排出吸液腔602内的液体,防止排液管604内的液体回流。
进一步地,膜片1设于所述壳体2和吸液腔602之间。动子4的第一端通过套筒202的开口与所述膜片1连接设置。
这里所述的动子4的第一端,是指动子4靠近膜片1的一端,也即图9中动子4的右端。
这里的膜片1是指橡胶、硅胶、聚氨酯等材料制作的柔性片或柔性膜。
在本实施例中,如图9所示,膜片1设于壳体2和吸液腔602之间。具体的,膜片1的一侧靠近壳体2设置,另一侧设置在吸液腔602内。并且,套筒202的开口处与膜片1的中间区域对应,形成膜片1朝向套筒202内发生形变的空间。
所述控制方法包括:
S1、启动洗涤设备的投放程序;驱动装置中的线圈501通入交流电产生磁场力,驱动动子4运动,使膜片形变;
S2、动子4及膜片至少在回弹力的作用下复位;
S3、在动子4及膜片的谐振振荡的作用下,吸液腔602进行吸液和排液。
如上所述,通过磁场力驱动动子4运动,带动膜片1反复形变,以及在膜片1的弹性力作用下复位,使得吸液腔602内的压力发生变化,利用该压力差驱使吸液腔602完成吸液和排液,实现吸液腔602内液体的自动投放。
进一步地,步骤S1包括S11、线圈501通入交流电,产生沿动子4向线圈501中心靠近的方向的变化磁场力,驱动动子4带动膜片1发生形变至第一形变。
在本实施例中,线圈501通入交流电后产生磁场力的过程,可以理解为,从套筒轴向的底部一侧(套筒轴向的左侧)观察,通入线圈501的电流方向均指向线圈501的逆时针方向。根据安培定则(用右手握住通电螺线管,让四指指向电流的方向,那么大拇指所指的那一端是通电螺线管的N极)得出,线圈501通电后产生轴向向左的磁场力。也就是说,磁场力的方向为动子4向线圈501中心靠近的方向。
这里所述的第一形变是指,动子4及膜片1在磁场力的作用下,沿轴向向左的方向形变至动子4和膜片1的最大形变量。
步骤S2包括S21、膜片1的形变产生与磁场力方向相反的回弹力。
具体的,由于膜片1自身具有弹性,在发生形变后,可以产生回弹力。此时,回弹力是指膜片1发生形变后产生的,使膜片1恢复到未形变状态的作用力。回弹力的方向与膜片1发生形变的方向相反,也就是说,回弹力的方向与磁场力的方向相反。
进一步地,回弹力克服磁场力,驱动膜片1及动子4复位至第二形变。
这里所述的第二形变是指,动子4和膜片1从最大的形变量处,向与形变方向相反的方向复位,复位的最大形变量超过动子4及膜片1的初始位置。第二形变的方向与第一形变的方向相反。第二形变的距离大于第一形变的距离,可以理解为,膜片1向动子4与线圈501中心重合方向形变的距离小于膜片1向初始位置方向复位的距离。
具体的,磁场力持续对动子4做功,驱动动子4向膜片1形变的方向移动。由于膜片1的回弹力与磁场力的方向相反,回弹力随膜片1的形变而变化,直至能够克服磁场力,驱动膜片1带动动子4复位。
在步骤S3中,在动子4及膜片1的谐振振荡的作用下,吸液腔602进行吸液和排液。
具体的,磁场力呈周期性变化,在磁场力和回弹力的作用下,动子4和膜片1可实现高频往复运动。变化的磁场力和膜片1的回弹力,重复驱动动子4和膜片1形变或复位,最终产生谐振振荡。
在具体的实现过程中,动子4受到轴向向左的磁场力,带动膜片1在套筒202内沿轴向向左的方向进行移动,增大吸液腔602内的面积。吸液腔602内压强减小,形成负压,通过吸液管603抽取液体。动子4及膜片1复位,挤压吸液腔602,吸液腔602内的面积减小,吸液腔602内压强增大,使液体通过排液管604排出吸液腔602。
如上所述,膜片1在反复形变的过程中,由于膜片1自身具有弹性,可以产生弹性振动。高频往复运动的动子4,能够增大膜片1的振动幅度,从而提高吸液腔602的吸液和排液能 力。
实施例二十二
本实施例是对上述实施例二十一的进一步描述。
进一步地,步骤S1中包括:S13、所述第一形变至回弹力大于磁场力时,膜片1具有与磁场力方向相反的运动趋势。
此处提到的第一形变包括动子4和膜片1向线圈501中心靠近的方向的最大形变量。
具体的,动子4和膜片1的第一形变达到最大形变量时,此时回弹力达到最大,回弹力大于磁场力。回弹力能够完全克服磁场力,开始驱动膜片1带动动子4向第二形变方向复位。也就是说,膜片1的第一形变达到回弹力大于磁场力时,膜片1具有向第二形变方向复位的运动趋势。或者,膜片1具有向与磁场力方向相反的运动趋势。
进一步地,步骤S2包括S23、所述第二形变至初始位置,惯性力克服磁场力,驱动动子4、膜片1超过初始位置继续移动至第二形变。
此处提到的第二形变是指,动子4和膜片1从第一形变的最大形变量处,向与第一形变方向相反的方向复位,且复位的最大形变量超过动子4和膜片1的初始位置。
在第二形变过程中,动子4和膜片1在回弹力的作用下复位到初始位置后。由于动子4和膜片1具有重量,必然存在继续运动的惯性力。在初始位置处,惯性力能够克服磁场力,继续驱动动子4和膜片1超过初始位置,向第二形变方向运动,直至达到第二形变的最大形变量。
实施例二十三
本实施例是对上述实施例二十二的进一步描述。
进一步地,步骤S1包括S14、在第一形变的过程中,磁场力和回弹力逐渐增大,磁场力大于回弹力。
此处提到的第一形变可以是动子4和膜片1向第一形变方向的形变过程。回弹力是指膜片1的回弹力。
具体的,在交流电压的一个周期内,电压先增大后减小。线圈501通入交流电,产生的磁场力是变化的。在第一形变的过程中,电压处于增大阶段,且动子4向线圈501中心靠近,动子4受到的磁场力逐渐增大。而膜片1的形变量是逐渐增大的,所以膜片1形变产生的回弹力也是逐渐增大。在第一形变的过程中,磁场力大于回弹力,磁场力克服回弹力,驱动动子4和膜片1向第一形变方向运动。
进一步地,步骤S2包括S24、在第二形变的过程中,磁场力、回弹力和惯性力逐渐减小,回弹力与惯性力之和大于磁场力。
具体的,在第二形变过程中,电压处于下降阶段,磁场力逐渐减小。随着膜片1形变后的复位,回弹力也逐渐减小。动子4和膜片1的惯性力在复位过程中也逐渐减小。而回弹力和惯性力之和大于磁场力,回弹力和惯性力共同克服磁场力,驱动动子4和膜片1向第二形变方向复位。
进一步地、动子4和膜片1向第一形变方向的运动速度先增大后减小。
具体的,在第一形变过程中,膜片1在未发生形变前,不具有回弹力。此时,磁场力与回弹力的相对值较大,使得动子4及膜片1的运动速度开始加快。随着回弹力的增大,磁场力与回弹力的相对值减小,动子4及膜片1的运动速度开始减缓。
进一步地,动子4及膜片1向第二形变方向的运动速度先增大后减小。
具体的,在第二形变过程中,膜片1未复位前,回弹力达到最大。此时,磁场力与回弹力和惯性力的相对值较大,动子4和膜片1的运动速度加快。随着回弹力和惯性力的减小,磁场力与回弹力和惯性力的相对值减小,动子4和膜片1的运动速度减缓。
实施例二十四
本实施例是对上述实施例二十三的进一步描述。
进一步地,步骤S14包括S141、动子4接近线圈501中心前,磁场力与回弹力的合力增大。
具体的,线圈501通电产生磁场力,线圈501中心的磁感线密度最密集,可以想到,靠近线圈501中心处的磁场力较大。动子4向线圈501中心接近时,动子4受到的磁场力逐渐增大,且磁场力与回弹力的相对值较大。可以想到,磁场力与回弹力的合力在增大,所以动子4和膜片1的运动速度增大。此处提到的合力的方向与磁场力的方向相同。
进一步地,动子4超过线圈501中心后,磁场力与回弹力的合力减小。具体的,动子4远离线圈501中心后,动子4受到的磁场力逐渐减小,回弹力逐渐增大。可以想到,磁场力与回弹力的合力减小,动子4和膜片1的运动速度减小。
进一步地,步骤S2包括:S241、动子4接近线圈501中心前,回弹力、惯性力与磁场力的合力增大。合力的方向与磁场力方向相反。
具体的,动子4接近线圈501中心前,回弹力与磁场力的相对值较大。可以想到,磁场力与回弹力和惯性力的合力增大,动子4和膜片1的运动速度增大。此处提到的合力的方向与磁场力的方向相反。
进一步地,动子4超过线圈501中心后,回弹力、惯性力与磁场力的合力减小。
具体的,动子4超过线圈501中心后,回弹力和惯性力与磁场力的相对值较小。可以想到,磁场力与回弹力和惯性力的合力减小,动子4和膜片1的运动速度减小。
实施例二十五
本实施例是对上述实施例二十四的进一步描述。
进一步地,步骤S1包括:S15、第一形变中,动子4及膜片1至第一形变的速度为零,合力的方向与磁场力的反向相反。
具体的,在第一形变过程中,动子4和膜片1达到第一形变的最大形变量时,运动速度为零。此时,膜片1受到的合力的方向与磁场力的方向相反,具有与第一形变方向相反的运动趋势。
进一步地,步骤S2包括:S25、所述第二形变中,动子4及膜片1至第二形变的速度为零,合力的方向与磁场力的方向相同。
具体的,在第二形变的过程中,动子4和膜片1达到第二形变的最大形变量时,运动速度为零。此时,膜片1受到的合力的方向与磁场力的方向相同,具有与第二形变方向相反的运动趋势。
实施例二十六
本实施例是对上述实施例二十一的进一步描述。如图10所示,驱动装置中的套筒202底部设有弹性元件3。弹性元件3与动子4间隔或接触设置。
在本实施例中,弹性元件3的一端固定连接在套筒202的底部。
这里所述的弹性元件3是指,受到作用力后能产生回弹力的部件。弹性元件3可以为螺旋弹簧、橡胶弹簧等各种具有回弹力的部件。优选的,在本实施例中,所述弹性元件3为螺旋弹簧。所述弹性元件3的长度和体积可根据具体的使用需求进行适应性的调整。
弹性元件3的一端与套筒202的底部固定连接,实现弹性元件3固定安装在套筒202内。此处固定连接可采用粘接、卡接等各种连接形式,在此不作限制。优选的,弹性元件3设置在套筒202底部的中间区域。弹性元件3的一端与套筒202底部中间区域连接,便于后续为动子4提供充足的活动空间。
在本实施例的一种方案中,弹性元件3的另一端与动子4的第二端相对应间隔设置。
这里所述的动子4的第二端,可以理解为,动子4远离膜片1的一端。
弹性元件3的另一端与动子4远4离膜片1的一端相对应间隔设置,也就是,弹性元件3与动子4之间留有一定间距。设置所述间距,可以保证动子4具有充足的运动距离,增大膜片1的形变量。
在本实施例的另一种方案中,弹性元件3的另一端与动子4的第二端连接设置。
具体的,弹性元件3的另一端与动子4远离膜片1的一端连接,增大动子4压缩弹性元件3的路程,以增大弹性元件3的变形量,提供更大的回弹力。
进一步地,线圈501通入交流电,产生沿动子4向线圈501中心靠近的方向变化的磁场力,驱动动子4带动膜片1并压缩弹性元件3形变至第一形变。
这里所述的第一形变是指,膜片1和弹性元件3在磁场力的作用下,沿轴向向左的方向形变至弹性元件3和膜片1的最大形变量。第一形变的方向为动子4向线圈501中心靠近的方向。
在具体的实施过程中,轴向向左的磁场力驱动动子4带动膜片1拉伸,动子4在套筒202内移动时,接触到弹性元件3,并开始压缩弹性元件3,直至达到弹性元件3和膜片1的最大形变量。
进一步地,膜片1和弹性元件3的形变产生与磁场力方向相反的回弹力。
弹性元件3和膜片1达到最大形变量后,开始向初始位置方向复位。而线圈501持续通电,磁场力是一直存在的,且持续吸引动子4沿磁场力的方向运动。由于弹性元件3和膜片1自身均具有弹性,能产生与形变方向相反的回弹力。回弹力的方向与磁场力的方向也相反。
进一步地,回弹力克服磁场力,驱动动子4及膜片1或者动子4、膜片1和弹性元件3复位至第二形变。
具体的,弹性元件3和膜片1的形变过程中,回弹力是变化的。当弹性元件3和膜片1达到最大形变量时,回弹力能够克服磁场力,驱动弹性元件3和膜片1带动动子4向第二形变的方向复位。
如上所述,动子4、弹性元件3和膜片1在回弹力克服相反方向的磁场力的作用下复位。因此,设置弹性元件3,有效增大膜片1复位时的振动幅度,提高动子4及膜片1的复位能力,进一步提高吸液腔602的形变能力。
实施例二十七
本实施例是对上述实施例二十六的进一步描述。
进一步地,步骤S1中包括:S13、所述第一形变至回弹力大于磁场力时,膜片1和弹性元件3具有与磁场力方向相反的运动趋势。
此处提到的第一形变包括动子4、膜片1和弹性元件3向线圈501中心靠近的方向的最大形变量。
具体的,动子4、膜片1和弹性元件3的第一形变达到最大形变量时,此时回弹力达到最大,回弹力大于磁场力。回弹力能够完全克服磁场力,开始驱动膜片1和弹性元件3带动动子4向第二形变方向复位。
进一步地,步骤S2包括S23、所述第二形变至初始位置,惯性力克服磁场力,驱动动子4、膜片1和弹性元件3超过初始位置继续移动至第二形变。
此处提到的第二形变是指,动子4、膜片1和弹性元件3从第一形变的最大形变量处,向与第一形变方向相反的方向复位,且复位的最大形变量超过动子4、膜片1和弹性元件3的初始位置。
在第二形变过程中,动子4、膜片1和弹性元件3在回弹力的作用下复位到初始位置后。由于动子4、膜片1和弹性元件3具有重量,必然存在继续运动的惯性力。在初始位置处, 惯性力能够克服磁场力,继续驱动动子4、膜片1和弹性元件3超过初始位置,向第二形变方向运动,直至达到第二形变的最大形变量。
实施例二十八
本实施例是对上述实施例二十七的进一步描述。
进一步地,步骤S1包括S14、在第一形变的过程中,磁场力和回弹力逐渐增大,磁场力大于回弹力。
此处提到的第一形变可以是动子4、膜片1和弹性元件3向第一形变方向的形变过程。回弹力是指膜片1和弹性元件3的回弹力。
具体的,在交流电压的一个周期内,电压先增大后减小。线圈501通入交流电,产生的磁场力是变化的。在第一形变的过程中,电压处于增大阶段,且动子4向线圈501中心靠近,动子4受到的磁场力逐渐增大。而膜片1和弹性元件3的形变量是逐渐增大的,所以膜片1和弹性元件3形变产生的回弹力也是逐渐增大。在第一形变的过程中,磁场力大于回弹力,磁场力克服回弹力,驱动动子4、膜片1和弹性元件3向第一形变方向运动。
进一步地,步骤S2包括S24、在第二形变的过程中,磁场力、回弹力和惯性力逐渐减小,回弹力与惯性力之和大于磁场力。
具体的,在第二形变过程中,电压处于下降阶段,磁场力逐渐减小。随着膜片1和弹性元件3形变后的复位,回弹力也逐渐减小。动子4、膜片1和弹性元件3的惯性力在复位过程中也逐渐减小。而回弹力和惯性力之和大于磁场力,回弹力和惯性力共同克服磁场力,驱动动子4、膜片1和弹性元件3向第二形变方向复位。
进一步地、动子4、膜片1和弹性元件3向第一形变方向的运动速度先增大后减小。
具体的,在第一形变过程中,膜片1和弹性元件3在未发生形变前,不具有回弹力。此时,磁场力与回弹力的相对值较大,使得动子4、膜片1和弹性元件3的运动速度开始加快。随着回弹力的增大,磁场力与回弹力的相对值减小,动子4、膜片1和弹性元件3的运动速度开始减缓。
进一步地,动子4、膜片1和弹性元件3向第二形变方向的运动速度先增大后减小。
具体的,在第二形变过程中,膜片1和弹性元件3未复位前,回弹力达到最大。此时,磁场力与回弹力和惯性力的相对值较大,动子4、膜片1和弹性元件3的运动速度加快。随着回弹力和惯性力的减小,磁场力与回弹力和惯性力的相对值减小,动子4、膜片1和弹性元件3的运动速度减缓。
实施例二十九
本实施例是对上述实施例二十八的进一步描述。
进一步地,步骤S14包括S141、动子4接近线圈501中心前,磁场力与回弹力的合力增大。
具体的,线圈501通电产生磁场力,线圈501中心的磁感线密度最密集,可以想到,靠近线圈501中心处的磁场力较大。动子4向线圈501中心接近时,动子4受到的磁场力逐渐增大,且磁场力与回弹力的相对值较大。可以想到,磁场力与回弹力的合力在增大,所以动子4、膜片1和弹性元件3的运动速度增大。此处提到的合力的方向与磁场力的方向相同。
进一步地,动子4超过线圈501中心后,磁场力与回弹力的合力减小。具体的,动子4远离线圈501中心后,动子4受到的磁场力逐渐减小,回弹力逐渐增大。可以想到,磁场力与回弹力的合力减小,动子4、膜片1和弹性元件3的运动速度减小。
进一步地,步骤S2包括:S241、动子4接近线圈501中心前,回弹力、惯性力与磁场力的合力增大。合力的方向与磁场力方向相反。
具体的,动子4接近线圈501中心前,回弹力与磁场力的相对值较大。可以想到,磁场 力与回弹力和惯性力的合力增大,动子4、膜片1和弹性元件3的运动速度增大。此处提到的合力的方向与磁场力的方向相反。
进一步地,动子4超过线圈501中心后,回弹力、惯性力与磁场力的合力减小。
具体的,动子4超过线圈501中心后,回弹力和惯性力与磁场力的相对值较小。可以想到,磁场力与回弹力和惯性力的合力减小,动子4、膜片1和弹性元件3的运动速度减小。
实施例三十
本实施例是对上述实施例二十九的进一步描述。
进一步地,步骤S1包括:S15、第一形变中,动子4、膜片1和弹性元件3至第一形变的速度为零,合力的方向与磁场力的反向相反。
具体的,在第一形变过程中,动子4、膜片1和弹性元件3达到第一形变的最大形变量时,运动速度为零。此时,膜片1和弹性元件3受到的合力的方向与磁场力的方向相反,具有与第一形变方向相反的运动趋势。
进一步地,步骤S2包括:S25、所述第二形变中,动子4、膜片1和弹性元件3至第二形变的速度为零,合力的方向与磁场力的方向相同。
具体的,在第二形变的过程中,动子4、膜片1和弹性元件3达到第二形变的最大形变量时,运动速度为零。此时,膜片1和弹性元件3受到的合力的方向与磁场力的方向相同,具有与第二形变方向相反的运动趋势。
实施例三十一
本实施例是对上述实施例二十七的进一步描述。
进一步地,步骤S23包括S231、膜片1和弹性元件3超过初始位置后,继续向第二形变方向移动,产生与磁场力方向相同的回弹力。
具体的,在第二形变过程中,膜片1和弹性元件3复位到初始位置后,在惯性力的作用下,继续向第二形变的方向移动,发生形变后,产生与第二形变方向相反的回弹力。也即是,回弹力的方向与磁场力的方向相同。
进一步地,在膜片1和弹性元件3超过初始位置继续形变的过程中,回弹力逐渐增大,惯性力逐渐减小。而动子4受到磁场力的作用,可以想到,惯性力大于回弹力和磁场力之和,惯性力克服回弹力和磁场力,驱动膜片1和弹性元件3继续移动到第二形变的最大形变量。
实施例三十二
本实施例是对上述实施例二十一的进一步描述。
进一步地,步骤S3包括:S31、线圈501持续通入交流电,磁场力和回弹力周期性的驱动动子4带动膜片1形变和复位,产生谐振振荡,使得吸液腔602内的压强发生变化,驱使吸液腔602进行吸液和排液。
在具体的实现过程中,磁场力呈周期性变化,在磁场力和回弹力的作用下,动子4和膜片1可实现高频往复运动,产生谐振振荡。在动子4和膜片1的谐振振荡的作用下,吸液腔602内压强不断变化,周期性的进行吸液和排液,有效提高投放装置的液体投放的效率。
实施例三十三
本实施例是对上述实施例二十一至实施例二十八的进一步描述。
在本实施例中,共振频率的计算公式T=1/2π*(k/m)^0.5。其中,k为弹簧的弹性系数,m为动子4的质量。由公式可知,系统的共振频率与弹簧的弹性系数及动子4的质量有关。
在本实施例的一种方案中,通过改变动子4的质量,控制动子4在套筒202内的运动速度,控制所述膜片1的振动频率。
在具体的实现过程中,减小动子4的质量,可以增大系统的共振频率,以此增大动子4在套筒内202的运动速度,加快膜片1的形变,提高膜片1的振动频率。
在本实施例的另一种方案中,通过改变动子4的质量和弹性元件3的弹性系数,控制动子4在套筒202内的运动速度,控制所述膜片1的振动频率。
在具体的实现过程中,增大弹性元件3的弹性系数,可以增大系统的共振频率,提高该自动投放装置的液体投放速度。
实施例三十四
本实施例是对上述实施例二十一的进一步描述。在本实施例中,通过改变输入电压的频率,控制动子4在套筒202内的运动速度,控制膜片1的振动频率。
这里所述的输入电压的频率,可以影响通入线圈501后产生磁场力的大小。
增大输入电压的频率,以增大磁场力,此时动子4具有较大的运动速度。也就是说,在相同时间内,膜片1发生形变的次数增加,从而提高膜片1的振动频率。
在本实施例中,当液体投放量较小时,液体投放量m为10ml,设置输入电压的频率为10Hz。,实现自动投放液体的投放时间为T。当液体投放量M为70ml,设置输入电压的频率为30Hz,实现自动投放液体的投放时间同样可以为T。
其结果是,在同样的投放时间T内,实现较多量的液体投放。增大输入电压的频率,实现动子4高频次的往复运动,以及膜片1高频次的振动,达到缩短液体投放时间的目的。
实施例三十五
本实施例是对上述实施例二十一至实施例三十四的进一步描述。
在本实施例中,动子4的形状可以为圆柱形、长条形等各种形状。优选地,动子4的形状为圆柱形。圆柱形的动子4的加工难度小,加工成本低。此外,动子4的长度和体积大小,可根据具体的使用需求进行适应性的调整。
在本实施例的一种方案中,动子4与膜片1的中间区域粘接。
动子4靠近膜片1的一端,与膜片1的中心区域粘接。通过粘接的方式,实现动子4与膜片1的固定。且粘接的固定方式简单方便,制造成本低。
在本实施例的另一方案中,动子4和膜片1对应区域分别设置嵌入部,动子4靠近膜片1的一端与膜片1的中心区域通过嵌入部嵌接,实现动子4与膜片1的固定。
实施例三十六
本实施例是对上述实施例二十一的进一步描述。
如图11所示,所述翻边201靠近壳体2侧壁部分向吸液腔602方向具有延伸部,吸液腔602的侧壁的端部设置凸起,所述膜片1设置在凸起与翻边201的延伸部形成的凹槽内。
在本实施例的一个方案中,所述膜片1设置在翻边201上,所述翻边201的端部具有两个凸起结构,该膜片1的端部四周固定在凸起结构形成的凹槽内。
在本实施例的另一个方案中,所述膜片1设置在吸液腔602的侧壁上,所述吸液腔602的侧壁的端部具有两个凸起结构,该膜片1的端部四周固定在凸起结构形成的凹槽内。其中,吸液腔602的侧壁的端部与翻边201的端部连接。
在本实施例中,所述膜片1与所述翻边201有间隔,该间隔为形变腔240。该形变腔240为膜片1向远离吸液腔602方向运动提供了形变空间,使膜片的形变量变大,膜片1做往复运动的频率更高,有效增大投放量,提高吸液腔的排液效率。
实施例三十七
如附图12所示,根据本发明提供的一种洗涤设备的自动投放装置,包括投液装置91,投液装置91连接驱动装置92,通过驱动装置92内的动子9205连续往复运动改变投液装置91的吸液腔室9101的压强,当投液装置91内部压强大于外界压强时,投液装置91的排液管道9104将吸液腔室9101内的洗涤剂等液体排出到洗涤设备内;当投液装置91的内部压强小于外界压强时,投液装置91的吸液管道9103将储液盒中的洗涤剂等液体吸入到吸液腔室 9101中。
驱动装置92具有一个套筒9203,套筒9203为一端开口,另一端封闭的筒体结构,投液装置91设置在套筒9203的开口端,套筒9203外侧缠绕线圈9201,内腔设置有动子9205。
具体而言,驱动装置92包括一个线圈支架9206,线圈支架9206为外壁设置线圈槽92061,在线圈槽92061内缠绕线圈9201;套筒9203为设置在线圈支架9206的内腔。
其中,动子9205为能够受磁力吸引,但本身并不会被电磁场的磁力磁化的材料制成,当线圈9201通电产生磁场后,对动子9205的磁吸力始终朝向一个方向,即便通入电流不断成周期变化的交流电,也只能产生一个对动子9205大小周期变化的磁吸力,而磁吸力的方向不随交流电流变化而变化;同时,由于本申请提供的洗涤设备的自动投放装置,只是利用电流的大小周期变化而产生一个大小周期变化的磁吸力,所以本申请也可以通入大小周期变化的直流电流,因此本申请提供的液体投放装置不局限于交流电或者直流电,只需要电流的大小具有周期变化即可。
为了降低驱动装置92的功率,减少线圈9201因通电而产生的热量,本发明提供的投放装置还在动子9205与线圈9201之间设置一个由金属制成的磁屏蔽元件9202,用于屏蔽动子9205与线圈9201之间的一部分区域的磁感线,动子9205与线圈9201之间的另一部分区域形成缺口92021;在线圈9201通入电后,线圈9201产生持续的、大小周期变化的磁场,磁场集中于缺口92021处,形成吸引动子9205向缺口92021的方向运动的磁吸力,磁吸力的大小随着电流的周期变化而变化。
如附图12至附图14所示,在本发明的一个可选实施例中,所述磁屏蔽元件9202设置于所述套筒9203的外周,自所述套筒9203的封闭端向开口端方向延伸,并在靠近开口端形成缺口92021;当所述线圈9201通电后产生的磁场,随着电流的周期变化,磁场大小随之变化,在所述缺口92021处产生的磁吸力始终朝向所述套筒9203的开口端。
进一步地,所述弹性元件9204为拉伸弹簧,当线圈9201通电产生所述磁吸力,所述磁吸力吸引所述动子9205向所述套筒9203的开口端运动,所述拉伸弹簧受所述动子9205的拉动产生变形,所述拉伸弹簧积蓄弹力,所述弹力逐渐增大,与磁吸力相同时,所述动子9205受惯性运动到第一极限位置,在所述第一极限位置,弹力大于磁吸力,电流变小,磁吸力随之变小,所述动子9205开始向所述套筒9203封闭端运动。
所述动子9205位于所述第一极限位置,所述拉伸弹簧的弹力驱动所述动子9205向所述套筒9203的封闭端运动,所述拉伸弹簧的形变逐渐恢复,所述弹力逐渐减小,再次与所述磁吸力相同时,所述动子9205受惯性运动到第二极限位置,所述拉伸弹簧受压缩,所述弹力朝向所述套筒9203的开口端,电流变大,所述磁吸力随之变大,所述动子9205开始再次向所述套筒9203开口端运动。
在上述实施例中,线圈通电后,动子9205有常态下的位置向第一极限位置运动,当动子9205运动到第一极限位置再向套筒9203的封闭端运动时,由于动子9205的惯性,此时动子9205所处的第二极限位置并不在常态位置,而是相对常态位置更接近套筒9203的封闭端,当动子9205运动到第一极限位置,然后再运动到第二极限位置后,即完成一个行程。
当线圈9201继续通电,动子9205开始第二个行程,此时当动子9205由第二极限位置再次向套筒9203的开口端运动,由于动子9205将拉伸弹簧压缩了一定程度,此时动子9205所受的力不仅有磁吸力,还有弹簧的弹力,所以在行程中,动子所达到的第一极限位置相对上一行程距离套筒9203的封闭端更远,同理,在该行程内,动子的第二极限位置相对上一行程也更加接近套筒9203的封闭端;在线圈9201持续通电时,动子9205在套筒9203内不断往复移动,且每个行程的第一极限位置相比上一行程距离套筒9203的封闭端更远,第二极限位置相比上一行程距离套筒9203的封闭端更近,直至动子9205的达到最大的第一极限位置与第二极限位置,而且动子9205的运动频率逐渐增加,振幅逐渐增大。
如附图15至附图17所示,在本发明的另一个可选实施例中,所述磁屏蔽元件9202设置 于所述套筒9203的外周,自所述套筒9203的开口端向封闭端方向延伸,并在靠近封闭端形成缺口92021;当所述线圈9201通电后产生的磁场,随着电流的周期变化,磁场大小随之变化,在所述缺口92021处产生的磁吸力始终朝向所述套筒9203的封闭端。
进一步地,弹性元件9204为压缩弹簧,当线圈9201通电产生所述磁吸力,所述磁吸力吸引所述动子9205向所述套筒9203的封闭端运动,所述压缩弹簧受所述动子9205的压缩产生变形,所述压缩弹簧积蓄弹力,所述弹力逐渐增大,与磁吸力相同时,所述动子9205受惯性运动到第二极限位置,在所述第一极限位置,弹力大于磁吸力,电流变小,磁吸力随之变小,所述动子9205开始向所述套筒9203开口端运动。
动子9205位于所述第二极限位置,所述压缩弹簧的弹力驱动所述动子9205向所述套筒9203的开口端运动,所述压缩弹簧的形变逐渐恢复,所述弹力逐渐减小,再次与所述磁吸力相同时,所述动子9205受惯性运动到第一极限位置,所述压缩弹簧受拉伸,所述弹力朝向所述套筒9203的封闭端,电流变大,所述磁吸力随之变大,所述动子9205开始再次向所述套筒9203封闭端运动。
在上述实施例中,线圈通电后,动子9205有常态下的位置向第二极限位置运动,当动子9205运动到第二极限位置再向套筒9203的开口端运动时,由于动子9205的惯性,此时动子9205所处的第一极限位置并不在常态位置,而是相对常态位置更接近套筒9203的开口端,当动子9205运动到第二极限位置,然后再运动到第一极限位置后,即完成一个行程。
当线圈9201继续通电,动子9205开始第二个行程,此时当动子9205由第一极限位置再次向套筒9203的封闭端运动,由于动子9205将压缩弹簧拉伸了一定程度,此时动子9205所受的力不仅有磁吸力,还有弹簧的弹力,所以在行程中,动子9205所达到的第二极限位置相对上一行程距离套筒9203的开口端更远,同理,在该行程内,动子9205的第一极限位置相对上一行程也更加接近套筒9203的开口端;在线圈9201持续通电时,动子9205在套筒9203内不断往复移动,且每个行程的第一极限位置相比上一行程距离套筒9203的封闭端更远,第二极限位置相比上一行程距离套筒9203的封闭端更近,直至动子9205的达到最大的第一极限位置与第二极限位置,而且动子9205的运动频率逐渐增加,振幅逐渐增大。
进一步地,驱动装置92还包括套设于线圈9201外周导磁筒9208,导磁筒9208为一端开口的圆筒,环形导磁板9207设置于导磁筒9208开口端,而且,导磁筒9208与环形导磁板9207也均为金属材料制成;磁屏蔽元件9202设置于线圈9201的内周,既可以设置在套筒9203的内壁,也可以设置在套筒9203的外壁,同时,与导磁筒9208底部或环形导磁板9207接触,形成一个具有缺口92021的金属导磁结构,该金属导磁结构能够汇集线圈9201产生的磁场,更有利于磁场力集中于缺口92021处。
进一步而言,本发明提供的洗涤液体投放装置中投液装置91包括吸液腔室9101,吸液腔室9101为一端开口的腔体,由端壁91011与侧壁91012围合而成,端壁91011上设置吸液管道9103与排液管道9104。
投液装置91通过螺栓93连接在套筒9203得开口端;套筒9203的开口端设置有环形板92031,环形板92031的边缘背向套筒9203一侧延伸形成环形连接壁920311,环形连接壁920311与吸液腔室9101的侧壁91012通过螺栓93连接。
在吸液腔室9101的开口端,设置用于封闭吸液腔室9101的弹性膜片9102,弹性膜片9102能够变形,动子9205与弹性膜片9102连接,通过动子9205的往复运动调整弹性膜片9102的形状,从而能够改变吸液腔室9101内部的压强,使得投液装置91进行吸液与排液。
进一步地,弹性膜片9102的边缘夹在吸液腔室9101的侧壁91012与环形连接壁920311之间,环形连接壁920311与环形板92031构成形变腔室920313,弹性膜片9102能够在形变腔室920313与吸液腔室9101之间产生形变,以改变吸液腔室9101内部的压强。
再进一步地,为了保证弹性膜片9102能够被稳定的夹紧在侧壁91012与环形连接壁920311之间,本发明还在弹性膜片9102的边缘部分设置环形凸起91022,环形凸起91022卡 接于环形连接壁920311的端面上设置的环形凹槽920312内。
同时,弹性膜片9102的中心朝向驱动装置92的一侧设置有卡槽91021,卡槽91021用于容纳动子9205端部设置的卡块92051,卡块92051能够比较稳定的卡合在卡槽91021内,使得动子9205在往复运动的过程中能够持续带动弹性膜片9102变形。
当磁屏蔽元件9202设置在套筒9203的封闭端时,缺口92021位于套筒9203的开口端,当线圈9201通入电时,汇集于缺口92021处的磁场为动子9205提供一个由套筒9203封闭端朝向开口端的磁吸力,该磁吸力随着交变电流的周期变化而产生大小的变化,但是磁吸力的方向始终保持由套筒9203封闭端朝向开口端。
具体地,动子9205受磁吸力缺口92021的位置移动,使弹性元件9204压缩的同时,拉动弹性膜片9102向形变腔室920313变形,吸液腔室9101内的压强变小,投液装置91进行吸液;具体来说,动子9205受弹性元件9204弹力向远离缺口92021方向运动,推动弹性膜片9102向吸液腔室9101变形,吸液腔室9101压强变大,投液装置91进行排液。
当动子9205完成一个往复运动,弹性膜片9102会在形变腔室920313与吸液腔室9101之间进行变形,改变吸液腔室9101的压强,使得投液装置91进行吸液与排液。
在本发明工作时,接通家用电源,线圈9201产生大小周期变化的磁场,该磁场对动子9205的磁吸力不受电流的变化而改变方向,且在金属导磁结构的作用下,磁吸力汇集在缺口92021处;动子9205受磁吸力作用向套筒9203的封闭端,也就是向缺口92021移动压缩弹性元件9204,当弹性元件9204被挤压后产生弹力,当磁吸力随着电流变化小于弹力时,动子9205向投液装置91所在的方向,也就是远离缺口92021的一端移动,随着电流得周期变化,动子9205在套筒9203内做连续往复运动,随着动子9205的运动,弹性膜片9102也在吸液腔室9101与形变腔室920313之间不断产生形变,从而导致吸液腔室9101内部压强不断增大减小,使得投液装置91能够由吸液管道9103吸取液体,并从排液管道9104排除液体。
本发明还提供一种洗涤设备,该洗涤设备包含前述实施例中的洗涤设备的自动投放装置,其中洗涤设备的自动投放装置的投液装置91的吸液管道9103与该洗涤设备的储液盒连通,而投液装置91的排液管道9104与该洗涤设备的洗涤容腔连通。
具体来说,洗涤设备的自动投放装置通过吸液管道9103从该洗涤设备的储液盒中吸取液体,然后再通过排液管道9104将吸取的液体排入洗涤容腔,由此,该洗涤设备实现液体的自动投放。
以上所述仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专利的技术人员在不脱离本发明技术方案范围内,当可利用上述提示的技术内容作出些许更动或修饰为等同变化的等效实施例,上述实施例中的实施方案也可以进一步组合或者替换,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明方案的范围内。

Claims (42)

  1. 一种洗涤设备的自动投放装置的交流电驱动装置,包括一个轴向单侧开口的套筒(202),所述套筒外设置线圈(501),其特征在于:所述套筒(202)内轴向设置可在其中往复移动的导磁体(4);所述套筒(202)开口对应设置有能够产生形变的第一弹性结构;在持续通入交流电下,所述导磁体(4)至少分别在交流电通入线圈(501)产生磁吸力、弹性结构的回弹力交替作用下连续进行往复移动。
  2. 根据权利要求1所述的自动投放装置的交流电驱动装置,其特征在于:所述线圈(501)环绕所述套筒(202)设置,所述线圈(501)通入交流电产生交变磁场,在交变磁场的强度变强时所述导磁体(4)在磁吸力的作用下自初始位置移动,第一弹性结构形变储存弹性势能,在交变磁场的强度变弱时,所述的弹性势能大于所述的磁吸力,使导磁体(4)向相反的方向移动,使所述第一弹性结构产生小幅度颤动。
  3. 根据权利要求1所述的自动投放装置的交流电驱动装置,其特征在于:所述套筒(202)内端部设置有第二弹性结构,所述第二弹性结构为弹簧,所述线圈(501)通入交流电后,所述导磁体(4)在磁吸力作用下自初始位置移动,使弹簧形变储存弹性势能,当所述的弹性势能大于所述的磁场产生的磁吸力时,所述导磁体(4)反弹向相反的方向移动。
  4. 根据权利要求1至3任何一项所述的自动投放装置的交流电驱动装置,其特征在于:在一个投放程序中,在持续通入交流电下,所述的导磁体(4)以一定的频率进行往复移动,所述弹性结构和导磁体(4)共同组成一个与交流电正负电压的改变无关的谐振系统,所述谐振系统的频率由导磁体(4)的质量和弹性结构的弹性系数K确定。
  5. 根据权利要求1至3任何一项所述的自动投放装置的交流电驱动装置,其特征在于:所述导磁体(4)为本身不带有磁性但又能够导磁的材料,在交流电周期性变化中,交流电的电压处于正电压或负电压时,均能对导磁体(4)产生朝向套筒(202)端部的磁吸力。
  6. 根据权利要求4所述的自动投放装置的交流电驱动装置,其特征在于:所述导磁体(4)与所述第一弹性结构连接,所述第一弹性结构向吸液装置(6)容腔的振幅随导磁体(4)运动频率的升高而升高,在所述导磁体(4)运动频率升高至所述的谐振系统固有频率的最大值时,所述第一弹性结构的振幅也升至最大值。
  7. 根据权利要求3所述的自动投放装置的交流电驱动装置,其特征在于:所述导磁体(4)在朝向所述套筒(202)端部方向的运动过程中,所述导磁体(4)距离所述线圈(501)形心的位置逐渐缩短,使所述导磁体(4)受到的运动方向的磁吸力的分力在运动过程中逐渐减小,使在所述导磁体(4)撞击到第二弹性元件时所受到的力的大部分为惯性力。
  8. 根据权利要求1至3任何一项所述的自动投放装置的交流电驱动装置,其特征在于:所述导磁体(4)在朝向所述套筒(202)端部方向运动过程中,在交流电的电压开始由最大值向零变动时,所述线圈(501)对导磁体(4)产生的磁吸力逐渐降低,在交流电的电压开始由零向最大值变动时,所述线圈(501)对导磁体(4)产生的磁吸力逐渐增大。
  9. 根据权利要求2或3所述的自动投放装置的交流电驱动装置,其特征在于:所述第一弹性结构仅依靠其自身的弹性形变克服磁吸力,产生小幅度颤动;所述第一弹性结构在第一弹性结构和第二弹性结构共同作用下,产生形变至吸液装置(6)的容腔的膜片(1)相对的端壁。
  10. 根据权利要求1至3任何一项所述的自动投放装置的交流电驱动装置,其特征在于:和所述第一弹性结构连接的吸液装置(6)的容腔体积小于等于20ml。
  11. 一种洗涤设备,其特征在于:所述洗涤设备包括如权利要求1至10任何一项所述的自动投放装置的交流电驱动装置。
  12. 一种洗涤设备的自动投放装置,包括壳体(2)和与之连接的吸液腔(602),所述壳体(2)内设有磁力驱动装置,所述磁力驱动装置包括动子(4),以及同轴设置的线圈(501)和套筒(202),所述套筒(202)在所述吸液腔侧具有轴向开口,其特征在于:膜片(1),设于所述壳体(2)和吸液腔(602)之间,所述动子(4)第一端,通过套筒(202)的开口与 所述膜片(1)连接设置;所述线圈(501)持续通入周期性变化的直流电后产生磁场力,驱动所述动子(4)在所述套筒(202)内沿第一运动方向移动,使所述膜片(1)发生形变,所述动子(4)及膜片(1)在回弹力作用下克服磁场力复位,使所述吸液腔(602)内压力变化而吸液、排液。
  13. 根据权利要求12所述的洗涤设备的自动投放装置,其特征在于,所述膜片(1)向第一运动方向发生形变的过程中,直流电的电流逐渐增大,磁场力和回弹力逐渐增大;电流增大至第一阈值前,磁场力大于回弹力;电流大于第一阈值后,磁场力小于回弹力;所述第一运动方向为所述动子(4)朝向所述套筒(202)远离吸液腔(602)的一端移动的方向。
  14. 根据权利要求13所述的洗涤设备的自动投放装置,其特征在于,所述膜片(1)形变产生与磁场力方向相反的回弹力,驱动所述动子(4)及膜片(1)复位。所述膜片(1)复位过程中,直流电的电流逐渐减小,回弹力和磁场力逐渐减小;电流减小至第二阈值前,回弹力小于磁场力;电流小于第二阈值后,回弹力小于磁场力。
  15. 根据权利要求14所述的洗涤设备的自动投放装置,其特征在于,还包括弹性元件(3),所述弹性元件(3)的一端固定连接在所述套筒(202)的底部,另一端与动子(4)的第二端相对应连接设置;所述回弹力包括膜片(1)和弹性元件(3)共同形变产生的回弹力。
  16. 根据权利要求15所述的洗涤设备的自动投放装置,其特征在于,所述膜片(1)及弹性元件(3)向所述第一运动方向发生形变的过程中,直流电的电流逐渐增大,磁场力和回弹力逐渐增大;电流增大至第三阈值前,磁场力大于回弹力;电流大于第三阈值后,磁场力小于回弹力;所述膜片(1)及弹性元件(3)形变产生与磁场力方向相反的回弹力,驱动所述动子(4)、膜片(1)及弹性元件(3)复位;所述膜片(1)及弹性元件(3)复位过程中,直流电的电流逐渐减小,回弹力和磁场力逐渐减小;电流减小至第四阈值前,回弹力大于磁场力;电流小于第四阈值后,回弹力小于磁场力。
  17. 根据权利要求16所述的洗涤设备的自动投放装置,其特征在于,在所述膜片(1)及弹性元件(3)形变的过程中,当电流增大至最大值,膜片(1)及弹性元件(3)形变至最大形变量,回弹力与磁场力的合力方向与磁场力相反,所述膜片(1)和弹性元件(3)具有复位的运动趋势。
  18. 根据权利要求17所述的洗涤设备的自动投放装置,其特征在于,通过改变动子(4)的质量,和/或弹性元件(3)的弹性系数,控制所述动子(4)在所述套筒(202)内的运动速度,控制所述膜片(1)的振动频率。
  19. 根据权利要求12-18任一所述的洗涤设备的自动投放装置,其特征在于,通过改变输入电压的频率,控制所述动子(4)在所述套筒(202)内的运动速度,控制所述膜片(1)的振动频率。
  20. 根据权利要求12-18任一所述的洗涤设备的自动投放装置,其特征在于,所述动子(4)与所述膜片(1)的中间区域粘接;或所述动子(4)与所述膜片(1)的中间区域通过嵌入部嵌接。
  21. 一种洗涤设备的自动投放装置的控制方法,其特征在于,包括:
    S1、启动洗涤设备的投放程序;磁力驱动装置中的线圈通入直流电产生磁场力,驱动动子运动,使膜片形变;直流电的电流增大至第一阈值前,磁场力大于回弹力,动子加速运动;电流大于第一阈值后,磁场力小于回弹力,动子减速运动;
    S2、动子及膜片至少在回弹力的作用下复位;电流减小至第二阈值前,回弹力大于磁场力,动子加速运动;电流小于第二阈值后,回弹力小于磁场力,动子减速运动;
    S3、在动子及膜片的谐振振荡的作用下,吸液腔进行吸液和排液。
  22. 一种洗涤设备的自动投放装置的控制方法,投放器包括驱动装置和投放装置,驱动装置包括套筒、设置在套筒外的线圈、设置在套筒内的动子,投放装置包括膜片、吸液腔, 其特征在于,包括:
    S1、启动洗涤设备的投放程序;驱动装置中的线圈通入交流电产生磁场力,驱动动子运动,使膜片形变;
    S2、动子及膜片至少在回弹力的作用下复位;
    S3、在动子及膜片的谐振振荡的作用下,吸液腔进行吸液和排液。
  23. 根据权利要求22所述的洗涤设备的自动投放装置的控制方法,其特征在于,步骤S1包括:
    S11、线圈通入交流电,产生沿动子向线圈中心靠近的方向的变化磁场力,驱动动子带动膜片发生形变至第一形变;
    步骤S2包括:S21、膜片的形变产生与磁场力方向相反的回弹力,回弹力克服磁场力,驱动膜片及动子复位至第二形变;
    所述第二形变的距离大于所述第一形变的距离,二者形变方向相反。
  24. 根据权利要求22所述的洗涤设备的自动投放装置的控制方法,其特征在于,所述套筒底部设有弹性元件,所述弹性元件与所述动子接触设置,步骤S1包括:
    S12、线圈通入交流电,产生沿动子向线圈中心靠近的方向变化的磁场力,驱动动子带动膜片并压缩弹性元件形变至第一形变;
    步骤S2包括:S22、膜片和弹性元件的形变产生与磁场力方向相反的回弹力,回弹力克服磁场力,驱动动子、膜片和弹性元件复位至第二形变。
  25. 根据权利要求23或24所述的洗涤设备的自动投放装置的控制方法,其特征在于,步骤S1中包括:
    S13、所述第一形变至回弹力大于磁场力时,膜片具有与磁场力方向相反的运动趋势;
    步骤S2包括:S23、所述第二形变至初始位置,惯性力克服磁场力,驱动动子及膜片或者动子、膜片和弹性元件超过初始位置继续移动至第二形变。
  26. 根据权利要求25所述的洗涤设备的自动投放装置的控制方法,其特征在于,步骤S1包括:
    S14、在第一形变的过程中,磁场力和回弹力逐渐增大,磁场力大于回弹力;动子及膜片或者动子、膜片和弹性元件向第一形变方向的运动速度先增大后减小;
    步骤S2包括:S24、在第二形变的过程中,磁场力、回弹力和惯性力逐渐减小,回弹力与惯性力之和大于磁场力;动子及膜片或者动子、膜片和弹性元件向第二形变方向的运动速度先增大后减小。
  27. 根据权利要求26所述的洗涤设备的自动投放装置的控制方法,其特征在于,步骤S1包括:
    S141、动子接近线圈中心前,磁场力与回弹力的合力增大;动子超过线圈中心后,磁场力与回弹力的合力减小;合力的方向与磁场力方向相同;
    步骤S2包括:S241、动子接近线圈中心前,回弹力、惯性力与磁场力的合力增大;动子超过线圈中心后,回弹力、惯性力与磁场力的合力减小;合力的方向与磁场力方向相反。
  28. 根据权利要求26所述的洗涤设备的自动投放装置的控制方法,其特征在于,步骤S1包括:
    S15、所述第一形变中,动子及膜片或者动子、膜片和弹性元件至第一形变的速度为零,合力的方向与磁场力的反向相反;
    步骤S2包括:S25、所述第二形变中,动子及膜片或者动子、膜片和弹性元件至第二形变的速度为零,合力的方向与磁场力的方向相同。
  29. 根据权利要求25所述的洗涤设备的自动投放装置的控制方法,其特征在于,步骤 S2包括:
    S231、膜片和弹性元件超过初始位置后,继续向第二形变方向移动,产生与磁场力方向相同的回弹力。
  30. 根据权利要求29所述的洗涤设备的自动投放装置的控制方法,其特征在于,步骤S2包括:
    S232、弹性元件和膜片的回弹力逐渐增大,惯性力逐渐减小,惯性力大于回弹力和磁场力之和。
  31. 根据权利要求22所述的洗涤设备的自动投放装置的控制方法,其特征在于,步骤S3包括:
    S31、线圈持续通入交流电,磁场力和回弹力周期性的驱动动子带动膜片形变和复位,产生谐振振荡,使得吸液腔内的压强发生变化,驱使吸液腔进行吸液和排液。
  32. 一种洗涤设备的自动投放装置,包括投液装置(91),所述投液装置(91)连接驱动装置(92),其特征在于,所述驱动装置(92)包括:套筒(9203),为一端开口,另一端封闭的筒体结构,所述套筒(9203)外侧缠绕线圈(9201),内腔设置有动子(9205);磁屏蔽元件(9202),安装于所述动子(9205)与所述线圈(9201)之间,用于在线圈通电后屏蔽磁感线进入所述套筒(9203)内轴向上的一部分区域,所述套筒(9203)内轴向上的另一部分区域形成持续的、大小周期变化的磁场;弹性元件(9204),位于所述套筒(9203)封闭端与所述动子(9205)之间;在所述磁场产生的磁吸力变小时,所述弹性元件(9204)对所述动子(9205)的弹力克服所述磁吸力,使所述动子(9205)向与磁吸力反向的方向运动,所述磁吸力与所述弹力共同作用使所述动子(9205)连续往复移动。
  33. 根据权利要求32所述的洗涤设备的自动投放装置,其特征在于,所述磁屏蔽元件(9202)在套筒的轴向上包围所述套筒内的部分腔室,轴向上未包围的区域形成供磁感线通过的缺口(92021),在所述线圈(9201)通电后,所述线圈(9201)产生持续的、大小周期变化的磁场,所述磁场集中于所述缺口(92021)处,形成吸引所述动子(9205)向所述缺口(92021)的方向运动的磁吸力,所述磁吸力为持续的、大小周期变化的力。
  34. 根据权利要求33所述的洗涤设备的自动投放装置,其特征在于,所述磁屏蔽元件(9202)设置于所述套筒(9203)的外周,自所述套筒(9203)的封闭端向开口端方向延伸,并在靠近开口端形成缺口(92021);当所述线圈(9201)通电后产生的磁场,随着电流的周期变化,磁场大小随之变化,在所述缺口(92021)处产生的磁吸力始终朝向所述套筒(9203)的开口端。
  35. 根据权利要求34所述的洗涤设备的自动投放装置,其特征在于,所述弹性元件(9204)为拉伸弹簧,当线圈(9201)通电产生所述磁吸力,所述磁吸力吸引所述动子(9205)向所述套筒(9203)的开口端运动,所述拉伸弹簧受所述动子(9205)的拉动产生变形,所述拉伸弹簧积蓄弹力,所述弹力逐渐增大,与磁吸力相同时,所述动子(9205)受惯性运动到第一极限位置,在所述第一极限位置,弹力大于磁吸力,电流变小,磁吸力随之变小,所述动子(9205)开始向所述套筒(9203)封闭端运动。
  36. 根据权利要求35所述的洗涤设备的自动投放装置,其特征在于,所述动子(9205)位于所述第一极限位置,所述拉伸弹簧的弹力驱动所述动子(9205)向所述套筒(9203)的封闭端运动,所述拉伸弹簧的形变逐渐恢复,所述弹力逐渐减小,再次与所述磁吸力相同时,所述动子(9205)受惯性运动到第二极限位置,所述拉伸弹簧受压缩,所述弹力朝向所述套筒(9203)的开口端,电流变大,所述磁吸力随之变大,所述动子(9205)开始再次向所述套筒(9203)开口端运动。
  37. 根据权利要求33所述的洗涤设备的自动投放装置,其特征在于,所述磁屏蔽元件(9202)设置于所述套筒(9203)的外周,自所述套筒(9203)的开口端向封闭端方向延伸,并在靠近封闭端形成缺口(92021);当所述线圈(9201)通电后产生的磁场,随着电流的周 期变化,磁场大小随之变化,在所述缺口(92021)处产生的磁吸力始终朝向所述套筒(9203)的封闭端。
  38. 根据权利要求37所述的洗涤设备的自动投放装置,其特征在于,所述弹性元件(9204)为压缩弹簧,当线圈(9201)通电产生所述磁吸力,所述磁吸力吸引所述动子(205)向所述套筒(9203)的封闭端运动,所述压缩弹簧受所述动子(9205)的压缩产生变形,所述压缩弹簧积蓄弹力,所述弹力逐渐增大,与磁吸力相同时,所述动子(9205)受惯性运动到第二极限位置,在所述第一极限位置,弹力大于磁吸力,电流变小,磁吸力随之变小,所述动子(9205)开始向所述套筒(9203)开口端运动。
  39. 根据权利要求38所述的洗涤设备的自动投放装置,其特征在于,所述动子(9205)位于所述第二极限位置,所述压缩弹簧的弹力驱动所述动子(9205)向所述套筒(9203)的开口端运动,所述压缩弹簧的形变逐渐恢复,所述弹力逐渐减小,再次与所述磁吸力相同时,所述动子(9205)受惯性运动到第一极限位置,所述压缩弹簧受拉伸,所述弹力朝向所述套筒(9203)的封闭端,电流变大,所述磁吸力随之变大,所述动子(9205)开始再次向所述套筒(9203)封闭端运动。
  40. 根据权利要求32-39任一项所述的洗涤设备的自动投放装置,其特征在于,所述套筒(9203)的开口端设置有环形板(92031),所述环形板(92031)的边缘背向所述套筒(9203)一侧延伸形成环形连接壁(923011),所述环形连接壁(920311)与所述投液装置(91)连接。
  41. 根据权利要求40所述的洗涤设备的自动投放装置,其特征在于,所述投液装置(91)包括:吸液腔室(9101),为一端开口的腔体;弹性膜片(9102),设置于所述吸液腔室(9101)的开口端,用于封闭所述吸液腔室(9101),所述弹性膜片(9102)能够变形,所述动子(9205)与所述弹性膜片(9102)连接,通过所述动子(9205)的往复运动调整所述弹性膜片(9102)的形状,从而能够改变所述吸液腔室(9101)内部的压强,使得所述投液装置(91)进行吸液与排液。
  42. 一种洗涤设备,包括权利要求32至41任一项所述的洗涤设备的自动投放装置,其特征在于,所述投液装置(91)的吸液管道(9103)连通所述洗涤设备的储液盒,所述投液装置(91)的排液管道(9104)连通所述洗涤设备的洗涤容腔。
PCT/CN2023/101200 2022-06-30 2023-06-20 一种洗涤设备的自动投放装置及洗涤设备 WO2024001857A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202210772395.1A CN117375352A (zh) 2022-06-30 2022-06-30 一种洗涤设备自动投放装置的交流电驱动装置及洗涤设备
CN202210772238.0A CN117364430A (zh) 2022-06-30 2022-06-30 一种洗涤设备的投放装置及控制方法
CN202210778997.8A CN117364408A (zh) 2022-06-30 2022-06-30 一种洗涤设备的投放器的控制方法
CN202210772238.0 2022-06-30
CN202210770958.3A CN117364427A (zh) 2022-06-30 2022-06-30 一种洗涤设备液体投放装置及洗涤设备
CN202210772395.1 2022-06-30
CN202210770958.3 2022-06-30
CN202210778997.8 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024001857A1 true WO2024001857A1 (zh) 2024-01-04

Family

ID=89383259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101200 WO2024001857A1 (zh) 2022-06-30 2023-06-20 一种洗涤设备的自动投放装置及洗涤设备

Country Status (1)

Country Link
WO (1) WO2024001857A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB440693A (en) * 1934-03-09 1936-01-03 Max Blaskopf Improvements in electrically driven reciprocating pumps for liquids
CN101997457A (zh) * 2009-08-14 2011-03-30 应德贵 一种滑动屏蔽的瓦型磁力驱动装置
CN106350966A (zh) * 2015-07-15 2017-01-25 青岛海尔洗衣机有限公司 一种自动投放装置及洗衣机
CN206487606U (zh) * 2017-01-18 2017-09-12 深圳华星恒泰泵阀有限公司 电磁隔膜泵
CN110004665A (zh) * 2018-01-04 2019-07-12 青岛海尔滚筒洗衣机有限公司 一种衣物处理剂投放结构及洗衣机
CN112922816A (zh) * 2019-12-05 2021-06-08 浙江多加机电科技股份有限公司 一种高性能稳压出水的电磁隔膜微型水泵装置和增压方法
CN218115897U (zh) * 2022-06-30 2022-12-23 青岛海尔洗衣机有限公司 一种液体投放装置的投放室、投放装置及洗涤设备
CN218345718U (zh) * 2022-06-30 2023-01-20 青岛海尔洗衣机有限公司 一种洗涤设备的自动投放装置及洗涤设备
CN218492035U (zh) * 2022-06-30 2023-02-17 青岛海尔洗衣机有限公司 一种洗涤设备的投放室、液体投放装置及洗涤设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB440693A (en) * 1934-03-09 1936-01-03 Max Blaskopf Improvements in electrically driven reciprocating pumps for liquids
CN101997457A (zh) * 2009-08-14 2011-03-30 应德贵 一种滑动屏蔽的瓦型磁力驱动装置
CN106350966A (zh) * 2015-07-15 2017-01-25 青岛海尔洗衣机有限公司 一种自动投放装置及洗衣机
CN206487606U (zh) * 2017-01-18 2017-09-12 深圳华星恒泰泵阀有限公司 电磁隔膜泵
CN110004665A (zh) * 2018-01-04 2019-07-12 青岛海尔滚筒洗衣机有限公司 一种衣物处理剂投放结构及洗衣机
CN112922816A (zh) * 2019-12-05 2021-06-08 浙江多加机电科技股份有限公司 一种高性能稳压出水的电磁隔膜微型水泵装置和增压方法
CN218115897U (zh) * 2022-06-30 2022-12-23 青岛海尔洗衣机有限公司 一种液体投放装置的投放室、投放装置及洗涤设备
CN218345718U (zh) * 2022-06-30 2023-01-20 青岛海尔洗衣机有限公司 一种洗涤设备的自动投放装置及洗涤设备
CN218492035U (zh) * 2022-06-30 2023-02-17 青岛海尔洗衣机有限公司 一种洗涤设备的投放室、液体投放装置及洗涤设备

Similar Documents

Publication Publication Date Title
CN218345718U (zh) 一种洗涤设备的自动投放装置及洗涤设备
CN100432430C (zh) 往复式压缩机
JP4130548B2 (ja) 往復動式圧縮機のガス圧縮装置
CN106350966B (zh) 一种自动投放装置及洗衣机
CN218492035U (zh) 一种洗涤设备的投放室、液体投放装置及洗涤设备
CN105641763A (zh) 分离型电磁耦合血泵系统
WO2017140180A1 (zh) 隔膜泵及电动喷雾器
CN102105689A (zh) 线性压缩机
WO2024001857A1 (zh) 一种洗涤设备的自动投放装置及洗涤设备
CN108457840B (zh) 一种带有供油装置的线性压缩机
US3075471A (en) Pump and operating means
CN101858325B (zh) 动磁式直驱压缩机
CN117375352A (zh) 一种洗涤设备自动投放装置的交流电驱动装置及洗涤设备
WO2024001854A1 (zh) 一种洗涤设备自动投液装置及洗涤设备
WO2024001858A1 (zh) 一种洗涤设备的自动投放装置及洗涤设备
KR890004257Y1 (ko) 전자왕복운동기의 왕복운동간 보지장치
US3514228A (en) Solenoid type electromagnetic pump
CN117364408A (zh) 一种洗涤设备的投放器的控制方法
CN117364430A (zh) 一种洗涤设备的投放装置及控制方法
CN201705609U (zh) 动磁式直驱压缩机
JPH10184553A (ja) 電磁ポンプ
CN117364425A (zh) 一种洗涤设备的自动投放装置及洗涤设备
CN117375353A (zh) 一种自动投放装置的驱动装置、自动投放装置及洗涤设备
WO2024001855A1 (zh) 一种洗涤设备的自动投放装置及洗涤设备
CN107742967A (zh) 永磁式半波增氧泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830037

Country of ref document: EP

Kind code of ref document: A1