WO2024001571A1 - 电源模块以及用电装置 - Google Patents

电源模块以及用电装置 Download PDF

Info

Publication number
WO2024001571A1
WO2024001571A1 PCT/CN2023/094034 CN2023094034W WO2024001571A1 WO 2024001571 A1 WO2024001571 A1 WO 2024001571A1 CN 2023094034 W CN2023094034 W CN 2023094034W WO 2024001571 A1 WO2024001571 A1 WO 2024001571A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power module
battery core
circuit board
circuit
Prior art date
Application number
PCT/CN2023/094034
Other languages
English (en)
French (fr)
Inventor
明帮生
高源�
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Publication of WO2024001571A1 publication Critical patent/WO2024001571A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular, to a power module and a power device.
  • Battery cells are widely used in electronic products such as electronic mobile devices, and people have increasingly higher requirements for the performance of battery cells.
  • a battery pack composed of multiple cells connected in series and parallel can provide a larger supply voltage, but the structure is complex, the manufacturing cost is high, and the energy density of the battery pack is not high.
  • this application provides a power module. Including a battery core and a circuit board electrically connected to the battery core, the number of battery cells in the power module is only one.
  • the battery core is used to provide the first voltage to the circuit board.
  • the battery core includes a casing and an electrode assembly located in the casing.
  • the circuit board includes a boost/buck circuit and at least two output terminals.
  • the boost/step-down circuit is used to receive a first voltage and boost or step-down the first voltage to output at least two different second voltages to at least two output terminals.
  • the output terminal is used to provide the second voltage to the driving circuit in the load electrically connected to the output terminal.
  • the power supply voltage range of a single battery core can be increased to separately control different drive circuits in loads powered by power modules.
  • the power module provided by this application reduces the packaging space of the cells, and does not require parameter matching of multiple cells based on parameters such as capacity, voltage, and internal resistance. This reduces the risk of the voltage difference between multiple cells affecting the quality of the cells, and improves the production yield, quality and service life of the cells.
  • the circuit board is also used to receive at least one feedback signal output by the driving circuit in the load.
  • the feedback signal is used to indicate the rated voltage of the drive circuit.
  • the boost/step-down circuit adjusts the corresponding second voltage to the rated voltage according to the feedback signal, and outputs it to the driving circuit through the corresponding output terminal.
  • the feedback signal is received through the circuit board, so that the boost/step-down circuit can learn the rated voltage of the drive circuit, thereby controlling the voltage value of the second voltage output by it, forming a feedback mechanism so that the boost/step-down circuit can meet the needs of different drives.
  • the power supply requirements of the circuit is also used to receive at least one feedback signal output by the driving circuit in the load.
  • the feedback signal is used to indicate the rated voltage of the drive circuit.
  • the boost/step-down circuit adjusts the corresponding second voltage to the rated voltage according to the feedback signal, and outputs it to the driving circuit through the corresponding output terminal.
  • the feedback signal is received through the circuit board, so that the
  • the feedback signal is a pulse signal; the drive circuit can feed back different rated voltages to the circuit board by adjusting the duty cycle of the pulse signal.
  • the drive circuit outputs a pulse signal with a specific duty cycle to indicate the rated voltage of the drive circuit, and adjusts the duty cycle of the pulse signal to output feedback signals indicating different rated voltages, so that the drive circuit can be adapted to a variety of functions.
  • Electronic components with different rated voltage values expand the application range of drive circuits.
  • the boost/buck circuit includes a switching element.
  • the switch element includes a control terminal and a first connection terminal. The control end is used to receive feedback signals.
  • the first connection terminal receives the first voltage.
  • the switching element switches between the on state and the off state according to the duty cycle of the feedback signal to adjust the voltage value of the second voltage.
  • the boost/buck circuit also includes an inductor.
  • the switching element also includes a second connection terminal. The second connection end is electrically connected to the inductor.
  • the inductor is electrically connected to the drive circuit.
  • the inductor provides energy to the driving circuit to power the driving circuit.
  • the inductance value of the inductor By adjusting the inductance value of the inductor, the voltage drop across the inductor can be adjusted, thereby affecting the charging and discharging process of the inductor, thereby adjusting the voltage value of the second voltage.
  • the capacity of a single battery cell in the voltage module is 5-100A/h
  • the first voltage is 3.0V-5.0V
  • the ratio of the second voltage to the first voltage It is 0.2-3 to meet the battery capacity requirements of different electrical equipment. Since this application uses a single battery cell combined with a boost/step-down circuit to meet the power demand of the load (external electrical equipment), the ratio of the second voltage to the first voltage is preferably 1.5-2.5. In this way, when using When tablet computers, notebook computers, sweeping robots, power tools, etc. use electrical equipment whose voltage is significantly higher than the output voltage of a conventional single cell, the voltage boost/buck circuit can increase the voltage of a single cell to meet the requirements. Usage requirements.
  • the power module also includes a casing, the battery core and the power module are accommodated in the casing, and the circuit board is fixed on the battery core or the casing.
  • the casing can package the battery core and the circuit board together, which can better adapt to the power needs of different loads, facilitate the installation of the power module and the load, and there is no need to consider the circuit board with the boost/step-down function when designing the load. Installation and layout issues.
  • the housing includes a first encapsulation film and a second encapsulation film arranged oppositely.
  • the first encapsulation film includes a first metal layer.
  • the second packaging film includes a second metal layer.
  • At least one of the first metal layer and the second metal layer has a thickness greater than 40 ⁇ m.
  • the electrode assembly is a laminate structure or a winding structure.
  • the electrode assembly has a multi-electrode structure to improve the charge and discharge capacity and reduce the heating of a single cell caused by the sharp change in the internal current of the cell due to voltage boosting/voltage reduction or the impact on safety performance. Influence.
  • the electrode assembly provided by this application can have a variety of structures and has a wide range of applications.
  • the electrode assembly includes a positive electrode piece.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the preferred safety primer is a lithium iron phosphate coating. .
  • the housing includes a first end wall and a second end wall disposed oppositely.
  • the battery cell has positive and negative electrodes.
  • the positive electrode and the negative electrode are led out from the first end wall and electrically connected to the circuit board.
  • a first insulating piece is disposed between the circuit board and the first end wall.
  • the power module further has a second insulating member.
  • the second insulating member is connected to the surface of the housing and forms an accommodating space surrounding the first end wall.
  • the circuit board and the first insulating member are arranged in the accommodation space.
  • a third insulating member is provided on the second end wall.
  • the first insulating member is a silicone pad, which can provide good shock resistance for the circuit board and the battery core without affecting the electrical connection between the battery core and the circuit board.
  • the present application provides an electrical device. It includes a load and the above-mentioned power module electrically connected to the load; the load includes at least two drive circuits.
  • Figure 1 is a structural block diagram of a power module provided by an embodiment of the present application.
  • FIG. 2 is a circuit diagram of a boost/step-down circuit provided by an embodiment of the present application.
  • FIG. 3 is a structural diagram of a power module provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of the first packaging film of the battery core housing shown in FIG. 3 .
  • FIG. 5 is a schematic structural diagram of the second packaging film of the battery core housing shown in FIG. 3 .
  • Figure 6 is a cross-sectional view of an electrode assembly provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of the overall structure of the electrical device provided by this application.
  • Power module 100 Batteries 10 Housing 101 First end wall 1011 Second end wall 1012 Electrode assembly 102 First electrode 103 Second electrode 104 Main body 11 Packaging Department 11a First direction D1 Second direction D2 Third direction D3 First packaging film 12 Second encapsulation film 13 First layer of protection 125 First metal layer 126 First polymer layer 127 Second protective layer 131 Second metal layer 132 Second polymer layer 133 First pole piece 14 Second pole piece 15 Isolation film 16 First collection 141 First active material layer 142 Safety Primer 143 Episode 2 151 Second active material layer 152 Ji Er 17 Transition Department 18 circuit board 20 Boost/Buck Circuit 21 Switching elements 211 Console 2111 First connection terminal 2112 Second connection terminal 2113 Inductor 212 Output terminal 22 First insulation part 23 Second insulating piece 24 Third insulation part 25 Load 200 Drive circuit 201 Electrical device 1
  • the power module 100 is electrically connected to the load 200 to provide power to the load 200.
  • the load 200 includes at least two driving circuits 201 and electronic components (not shown in the figure) electrically connected to the driving circuits 201 .
  • the power module 100 includes a battery core 10 and a circuit board 20.
  • the number of the battery core 10 is only one.
  • Circuit board 20 includes l voltage/step-down circuit 21 and at least two output terminals 22.
  • the boost/step-down circuit 21 is electrically connected to the battery core 10 .
  • At least two output terminals 22 are electrically connected to at least two driving circuits 201 in the load 200 .
  • the load 200 is an application terminal, such as a mobile phone, a notebook computer and other electrical devices.
  • the battery cell 10 may include all types of primary batteries, secondary batteries, fuel cells or solar cells.
  • the battery cell 10 may be a lithium secondary battery, including lithium metal secondary battery, lithium ion secondary battery, sodium ion secondary battery, etc.
  • the battery core 10 is used to provide a first voltage to the circuit board 20 to power the circuit board 20 .
  • the battery core 10 outputs a first voltage to the boost/step-down circuit 21, and the step-up/step-down circuit 21 boosts or steps down the first voltage to output at least two different second voltages to at least two different voltages.
  • Each of the output terminals 22 can output different second voltages to different driving circuits 201 through the output terminals 22 .
  • the driving circuit 201 is used to drive the electronic components in the load 200 to operate according to the second voltage. It can be understood that since the load 200 is provided with a plurality of different electronic components, and the plurality of different electronic components respectively have different operating voltages, different driving circuits 201 can drive corresponding electronic components according to different second voltages, so that It works normally under the operating voltage.
  • the driving circuit 201 is also electrically connected to the boost/step-down circuit 21 .
  • the driving circuit 201 can also feed back the rated operating voltage of the electronic component to the circuit board 20 .
  • the electronic component may provide its rated working voltage to the driving circuit 201, and the driving circuit 201 may output a feedback signal to the boost/step-down circuit 21 according to the rated working voltage of the electronic component.
  • the boost/step-down circuit 21 can learn the rated operating voltage of the electronic component according to the feedback signal, thereby adjusting the voltage value of the second voltage output by it.
  • the boost/step-down circuit 21 includes a switching element 211 and an inductor 212 .
  • the switching element 211 can be an electronic component such as a diode, a transistor, a field effect transistor, a switching transistor, etc.
  • the inductor 212 can be a coil, a chip inductor, a plug-in inductor, etc.
  • the switching element 211 includes a control terminal 2111, a first connection terminal 2112 and a second connection terminal 2113.
  • the control terminal 2111 of the switching element 211 is electrically connected to the driving circuit 201
  • the first connection terminal 2112 of the switching element 211 is electrically connected to the battery core 10
  • the second connection terminal 2113 of the switching element 211 is electrically connected to the inductor 212 .
  • the inductor 212 is electrically connected to the drive circuit 201 in the load 200 .
  • the driving circuit 201 is electrically connected to the first connection end 2112 of the switching element 211 .
  • the switching element 211 is used to receive the first voltage provided by the battery core 10 and the feedback signal output by the driving circuit 201, and switch between the on and off states according to the feedback signal.
  • the feedback signal may be a pulse signal.
  • the duty cycle of the feedback signal indicates the rated voltage of the driving circuit 201 and the electronic component.
  • the driving circuit 201 can feed back different rated voltages to the switching element 211 by adjusting the duty cycle of the feedback signal. For example, a feedback signal with a duty cycle of 100% indicates that the rated voltage of the drive circuit 201 is 12V, and a feedback signal with a duty cycle of 50% indicates that the rated voltage of the drive circuit 201 is 6V. Therefore, the switching element 211 can learn the rated voltage of the driving circuit 201 or the electronic component by detecting the duty cycle of the feedback signal, thereby switching between the on and off states to output driving signals with different voltage values.
  • the switching element 211 is an N-type metal-oxide-semiconductor (NMOS) tube
  • the gate of the switching element 211 is the control terminal 2111. Then when the feedback signal is low level, the switching element 211 is in the off state. When the feedback signal is at a high level, the switching element 211 is in a conductive state, thereby enabling the switching element 211 to switch between the on and off states according to the duty cycle of the feedback signal.
  • NMOS N-type metal-oxide-semiconductor
  • the inductance values of the inductors 212 connected to different driving circuits 201 may be the same. Or different, no specific limitation is made here.
  • switching the switching element 211 between the on and off states actually adjusts the voltage value of the driving signal by adjusting the duty cycle of the driving signal, that is, boosting/stepping down the first voltage. to get the driving signal.
  • the duty cycles of the feedback signal and the driving signal may be the same. For example, if the duty cycle of the feedback signal is 20%, the switching element 211 can control the duty cycle of the driving signal it outputs to be 20%.
  • the duty ratios of the feedback signal and the driving signal can also be complementary. The complementary duty ratios of the feedback signal and the driving signal may be that the sum of the duty ratios of the feedback signal and the driving signal is 100%.
  • the switching element 211 can control the duty cycle of the driving signal it outputs to be 80%.
  • the voltage value of the driving signal can also be adjusted by adjusting the inductance value of the inductor 212 .
  • the inductor 212 is an adjustable inductor
  • the inductance value of the inductor 212 can be adjusted in real time to change the voltage drop on the inductor 212, thereby affecting the charging and discharging process of the inductor 212, and thus changing the power provided by the inductor 212 to the driver.
  • the energy of the circuit 201 realizes the adjustment of the second voltage.
  • the inductors 212 connected to different driving circuits 201 may have different inductance values, so that the second voltage can be adjusted by arranging the inductors 212 with different inductance values.
  • the battery core 10 provided in this application is a single large-capacity battery core.
  • the capacity of the battery core 10 is 5 to 100A/h.
  • the battery cell 10 provided in this application has a larger capacity and can provide a wider range of supply voltages.
  • the battery core 10 by configuring the battery core 10 as a single large-capacity battery cell, and then cooperating with the boost/step-down circuit 21 to boost/step down the first voltage provided by the battery core 10, the power supply voltage of the battery core 10 can be increased. range to supply power to different driving circuits 201 respectively.
  • the battery cell 10 provided by the present application can make full use of the internal space of the power module 100. For example, a circuit board for connecting multiple cells in series and parallel can be omitted.
  • the space for welding multiple cells to the circuit board the space occupied by the packaging edges of multiple cells when the cells are soft-packed cells, the gaps at the connections of multiple cells, and the space used to bond multiple cells
  • the reserved space for glue, the space at the corners of the electrode assemblies of multiple cells, the space for packaging films used to encapsulate each cell, etc. allow the cell 10 provided in the present application to increase the energy density. At the same time, this application reduces the number of battery cells 10 required, and is also conducive to simplifying the structure of the entire power module 100 and reducing manufacturing costs and maintenance costs.
  • the battery core 10 provided in this application does not need to match the capacity, voltage, internal resistance and other parameters of multiple battery cells, and can also reduce the voltage difference between multiple battery cells to replenish power, and the voltage of a single battery core 10
  • the calorific value is less than that of a battery pack composed of multiple cells. Therefore, this application simplifies the manufacturing process of the battery cells and improves the service life and reliability of the battery cells.
  • the battery core 10 includes a case 101, an electrode assembly 102, an electrolyte (not shown), a first electrode 103 and a second electrode 104.
  • the electrode assembly 102 is located within the housing 101 .
  • the housing 101 includes a first end wall 1011 and a second end wall 1012 that are oppositely arranged in the first direction D1.
  • the first electrode 103 and the second electrode 104 are both electrically connected to the electrode assembly 102 and extend from the first end wall 1011. Housing 101.
  • the first electrode 103 and the second electrode 104 may be connected to external components, such as the circuit board 20 provided by the present application.
  • the first insulating member 23 is disposed between the circuit board 20 and the first end wall 1011 .
  • the first insulator 23 can provide a buffering effect when the power module 100 is mechanically abused, so as to reduce the mechanical collision between the circuit board 20 and the battery core 10 and reduce the risk of damage and leakage of the casing 101 .
  • the first insulating member 23 can also isolate the head of the battery core 10 (ie, the portion of the battery core 10 close to the first end wall 1011 ) from other components such as the circuit board 20 , the first electrode 103 or the second electrode 104 .
  • the first insulating member 23 may be disposed in a space formed by the packaging portion 11 a and the first end wall 1011 .
  • the first insulating member 23 may be made of insulating resin such as silicone or epoxy resin. In some embodiments, the first insulating member 23 may be a silicone pad.
  • the power module 100 may also be provided with a second insulating member 24, and the second insulating member 24 is connected to the first end wall 1011. Enclosed to form an accommodating space, the first insulating member 23, the first electrode 103, the second electrode 104 and the circuit board 20 are all located in the accommodating space.
  • the second insulating member 24 is used to fix the circuit board 20 on the first end wall 1011 of the battery core 10, and can also reduce the impact on the circuit board 20 and the head of the battery core 10 when the power module 100 is mechanically abused, thereby reducing failure. risk.
  • the power module 100 needs to electrically connect the output terminal of the circuit board to the driving circuit in the load through conventional methods in the art, including but not limited to, the output terminal of the circuit board passing through the second insulating member 24 electrically connected to the drive circuit.
  • a third insulating member 25 may also be provided on the second end wall 1012 .
  • the third insulator 25 can reduce the impact on the rear of the battery core 10 (ie, the portion of the battery core 10 close to the second end wall 1012) when the power module 100 is mechanically abused, thereby reducing the risk of failure.
  • the second insulating member 24 and the third insulating member 25 are insulating tape.
  • the battery core 10 may be, but is not limited to, a soft-packed battery core.
  • the housing 101 includes a main body part 11 and a packaging part 11a.
  • the first electrode 103 and the second electrode 104 extend from the packaging part 11a, and the electrode assembly 102 is disposed in the main body part 11.
  • the main body part 11 includes the above-mentioned first end wall 1011 and the second end wall 1012, and the packaging part 11a is connected to the first end wall 1011.
  • the thickness direction of the electrode assembly 102 is defined as the second direction D2, and the direction perpendicular to the first direction D1 and the second direction D2 is defined as the third direction D3.
  • the housing 101 can be formed by sealing the first packaging film 12 and the second packaging film 13 and then folding the sealing edges.
  • the first encapsulation film 12 may include a first protective layer 125 , a first metal layer 126 and a first polymer layer 127 that are stacked in sequence. Compared with the first protective layer 125 , the first polymer layer 127 is closer to the electrode assembly 102 .
  • the material of the first protective layer 125 can be polymer resin, which can be used to protect the first metal layer 126 and reduce the risk of damage of the first metal layer 126 due to external force. At the same time, it can delay the air penetration of the external environment and maintain the battery core 10 The interior is in a normal operating environment.
  • the material of the first protective layer 125 can be selected from the group consisting of ethylene terephthalate, polybutylene terephthalate, polyvinylidene fluoride, polytetrafluoroethylene, polypropylene, and polyamide. , at least one of polyimide.
  • the thickness of the first protective layer 125 may range from 15 ⁇ m to 35 ⁇ m.
  • the first metal layer 126 can be used to delay the penetration of moisture from the external environment and reduce damage to the electrode assembly 102 caused by external forces.
  • the first metal layer 126 may be an aluminum foil layer or a steel foil layer. Since the capacity and weight of the battery core 10 are relatively large, in order to reduce the risk of failure of the power module 100 due to mechanical abuse (such as falling, impact) and improve reliability, the thickness of the first metal layer 126 is greater than 40 ⁇ m.
  • the first polymer layer 127 has the property of being heated and melted, can be used for encapsulation, and can reduce the risk of the multi-layer sheet being dissolved or swollen by the organic solvent in the electrolyte.
  • the first polymer layer 127 can also be used to reduce the risk of the electrolyte in the electrolyte coming into contact with the first metal layer 126, causing the metal layer to be corroded.
  • the first polymer layer 127 includes a polymer material, which may be selected from at least one polymer material selected from the group consisting of polypropylene, propylene copolymer, polyethylene, and polymethylmethacrylate.
  • the thickness of the first polymer layer 127 may range from 10 ⁇ m to 40 ⁇ m.
  • the first encapsulation film 12 may further include a first adhesive layer (not shown) and a second adhesive layer (not shown), and the first adhesive layer is provided between the first protective layer 125 and the second adhesive layer 125 . Between the metal layers 126, the first protective layer 125 and the first metal layer 126 can be bonded. The second adhesive layer is provided between the first metal layer 126 and the first polymer layer 127 and can be used to bond the first metal layer 126 and the first polymer layer 127 .
  • the second encapsulation film 13 may include a second protective layer 131 , a second metal layer 132 and a second polymer layer 133 that are stacked in sequence.
  • the thickness of the second metal layer 132 can also be set to be greater than 40 ⁇ m. It can be understood that when the first packaging film 12 and the second packaging film 13 can be obtained by folding a piece of packaging film, the materials of the second protective layer 131, the second metal layer 132 and the second polymer layer 133 are respectively the same as those of the first packaging film.
  • the protective layer 125, the first metal layer 126 and the first polymer layer 127 are made of the same material, and will not be described again here.
  • the electrode assembly 102 includes a first pole piece 14 , a second pole piece 15 and an isolation film 16 .
  • the isolation film 16 is disposed between the first pole piece 14 and the second pole piece 15 .
  • the first pole piece 14 includes a first current collector 141 and a first active material layer 142 disposed on the first current collector 141 .
  • the second pole piece 15 includes a second current collector 151 and a second active material layer 152 disposed on the second current collector 151 .
  • the first electrode 103 and the second electrode 104 are electrically connected to the first current collector 141 and the second current collector 151 respectively, thereby extracting the polarity of the first pole piece 14 and the second pole piece 15 .
  • the first pole piece 14 is a positive pole piece, and the second pole piece 15 is a negative pole piece.
  • the first pole piece 14 may be a positive pole piece or a negative pole piece.
  • the first current collector 141 may be a positive electrode current collector or a negative electrode current collector, and the first active material layer 142 may be a positive electrode active material layer or a negative electrode active material layer.
  • the first pole piece 14 is a positive pole piece, and the second pole piece 15 is a negative pole piece.
  • the positive electrode current collector can be aluminum foil or nickel foil, and the negative electrode current collector can be at least one of copper foil, nickel foil or carbon-based current collector.
  • the cathode active material layer contains a cathode active material, and the cathode active material includes compounds (ie, lithiated intercalation compounds) that can reversibly intercalate and deintercalate metal ions (such as lithium ions, sodium ions, etc., lithium ions are used as an example below).
  • the cathode active material may include lithium transition metal complex oxide.
  • the lithium transition metal composite oxide contains lithium and at least one element selected from cobalt, manganese and nickel.
  • the positive active material is selected from lithium cobalt oxide (LiCoO2), lithium nickel manganese cobalt ternary material (NCM), lithium nickel cobalt aluminum ternary material (NCA), lithium manganate (LiMn2O4), nickel manganese oxide At least one of lithium (LiNi0.5Mn1.5O4) or lithium iron phosphate (LiFePO4).
  • LiCoO2 lithium cobalt oxide
  • NCM lithium nickel manganese cobalt ternary material
  • NCA lithium nickel cobalt aluminum ternary material
  • LiMn2O4 lithium manganate
  • NiMn2O4 nickel manganese oxide At least one of lithium (LiNi0.5Mn1.5O4) or lithium iron phosphate (LiFePO4).
  • the negative active material layer contains a negative active material, and a negative active material known in the art that can perform reversible deintercalation of active ions is used, which is not limited in this application.
  • a negative active material known in the art that can perform reversible deintercalation of active ions is used, which is not limited in this application.
  • it may include but is not limited to one or more of graphite, soft carbon, hard carbon, carbon fiber, mesophase carbon microspheres, silicon-based materials, tin-based materials, lithium titanate or other metals that can form alloys with lithium. combination of species.
  • the graphite can be selected from one or a combination of artificial graphite, natural graphite and modified graphite;
  • the silicon-based material can be selected from one or more of elemental silicon, silicon oxide compounds, silicon carbon composites, silicon alloys or Various combinations;
  • tin-based materials can be selected from one or a combination of elemental tin, tin oxide compounds, tin alloys, etc.
  • the isolation film 16 includes at least one of polyethylene, polypropylene, polyvinylidene fluoride, polyethylene terephthalate, polyimide, or aramid.
  • polyethylene includes at least one selected from high-density polyethylene, low-density polyethylene, or ultra-high molecular weight polyethylene.
  • polyethylene and polypropylene have a good effect on reducing the risk of short circuit, and can improve the stability of the battery core 10 through the shutdown effect.
  • the electrode assembly 102 has a wound structure, that is, the first pole piece 14 , the isolation film 16 and the second pole piece 15 are stacked and rolled to form the electrode assembly 102 .
  • electrode assembly 102 is a multi-lub structure.
  • the first electrode 103 includes a plurality of tabs 17 and an adapter portion 18 .
  • the plurality of tabs 17 are respectively connected to the first current collector 141 .
  • the adapter portion 18 is connected to the tab 17 and extends out of the housing 101 .
  • the tab 17 can be integrally formed with the first current collector 141 (that is, the tab 17 is cut and formed from the first current collector 141) or fixed by welding.
  • the adapter part 18 is welded and fixed to the plurality of tabs 17 .
  • the second electrode 104 may also include a plurality of tabs (not shown) and an adapter part (not shown).
  • the plurality of tabs are connected to the second current collector 151 respectively, and the adapter part is connected to the tabs and extends in parallel. Out of the housing 101. It can be understood that in some embodiments, due to the large capacity of the battery core 10, providing a multi-lug structure can make the current more dispersed and uniform when the battery core 10 is charged, and reduce the heat generated at the first electrode 103 and the second electrode 104. , reduce the risk of local overheating and improve reliability and safety.
  • the electrode assembly 102 may also be a laminate structure, that is, the first pole piece 14 , the isolation film 16 and the second pole piece 15 are stacked in sequence to form the electrode assembly 102 .
  • a second pole piece 15 is disposed between two adjacent first pole pieces 14
  • a first pole piece 14 is disposed between two adjacent second pole pieces 15 .
  • Each first pole piece 14 and each first Each of the two pole pieces 15 is connected to a tab, so the multi-pole structure can also reduce the heat generated at the first electrode 103 and the second electrode 104, reduce the risk of local overheating, and improve reliability and safety.
  • the first pole piece 14 further includes a safety primer 143 disposed between the first active material layer 142 and the surface of the first current collector 141 .
  • the safety primer 143 By providing the safety primer 143, the adhesive force between the first current collector 141 and the first active material layer 142 can be increased, reducing the risk of the active material falling off during circulation, thereby improving the safety performance of the battery core 10.
  • the safety undercoat 143 is a lithium iron phosphate coating, which can also reduce short-circuit current and thereby reduce heat generation when a short circuit occurs.
  • an adhesive layer 19 may be provided between the inner surface of the housing 101 and the electrode assembly 102 .
  • the adhesive layer 19 can be bonded to the first polymer layer 127, and At the same time, the electrode assembly 102 is bonded.
  • the adhesive layer 19 can inhibit the movement of the electrode assembly 102 within the housing 101 and reduce the risk of liquid leakage or short circuit fire caused by the housing 101 being flushed.
  • the adhesive layer 19 can also reduce the risk of the current collector being torn.
  • the adhesive layer 19 may be hot melt adhesive or double-sided tape.
  • an embodiment of the present application further provides an electrical device 1 .
  • the electrical device 1 includes a power module 100 and an external load 200 .
  • the power module 100 of the present application is suitable for electrical devices 1 in various fields.
  • the electrical device 1 of the present application may be, but is not limited to, a notebook computer, a pen input computer, a mobile computer, an e-book player, a mobile phone, a portable fax machine, a portable copier, a portable printer, a headset Stereo headphones, video recorders, LCD TVs, portable cleaners, portable CD players, mini discs, transceivers, electronic notepads, calculators, memory cards, portable recorders, radios, backup power supplies, motors, lighting fixtures, toys, games Machines, clocks, power tools, flashlights, cameras, large household batteries and lithium-ion capacitors, etc.

Abstract

本申请提供一种电源模块以及用电装置,电源模块包括电芯及与电芯电连接的电路板,电芯的数量仅为一颗,电芯用于提供第一电压给电路板,电芯包括壳体、设于壳体内的电极组件,电路板包括升压/降压电路以及至少两个输出端子;升压/降压电路用于接收第一电压并对第一电压进行升压或降压,以输出至少两个不同的第二电压给至少两个输出端子;输出端子用于将第二电压提供给与输出端子电连接的负载中的驱动电路。由此,上述电源模块通过单电芯输出不同的第二电压,可以节省电源模块的制造成本,提高电源模块的能量密度。

Description

电源模块以及用电装置
相关申请的交叉引用
本申请要求于2022年6月27日提交中国专利局、申请号为202210734401.4,发明名称为“电源模块以及用电装置”的中国专利的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,尤其涉及一种电源模块以及用电装置。
背景技术
电芯在电子移动设备等电子产品中有着广泛使用,人们对电芯的各项性能要求也越来越高。由多个电芯进行串并联组成的电池包可以提供更大的供电电压,但结构复杂,制造成本较高,且电池包的能量密度不高。
发明内容
鉴于现有技术存在的不足,有必要提出一种电源模块。
另,还有必要提供一种具有该电源模块的用电装置。
第一方面,本申请提供一种电源模块。包括电芯及与电芯电连接的电路板,所述电源模块中的电芯数量仅为一颗。电芯用于提供第一电压给电路板。电芯包括壳体、设于壳体内的电极组件。电路板包括升压/降压电路以及至少两个输出端子。升压/降压电路用于接收第一电压并对第一电压进行升压或降压,以输出至少两个不同的第二电压给至少两个输出端子。输出端子用于将第二电压提供给与输出端子电连接的负载中的驱动电路。通过设置升压/降压电路对单颗电芯提供的第一电压进行升压/降压,可以提高单颗电芯的供电电压范围,以对采用电源模块供电的负载中不同的驱动电路分别进行供电。相比于由多个电芯进行串并联组成的电池包,本申请提供的电源模块减少了电芯的封装空间,也无需根据容量、电压以及内阻等参数对多个电芯进行参数匹配,从而减少了由于多电芯之间存在电压差,进而影响电芯品质的风险,提升了电芯的生产良率、品质以及使用寿命。
在一些可能的实现方式中,电路板还用于接收负载中驱动电路输出的至少一个反馈信号。反馈信号用于指示驱动电路的额定电压。升压/降压电路根据反馈信号将对应的第二电压调整至额定电压,并通过对应的输出端子输出给驱动电路。通过电路板接收反馈信号,使得升压/降压电路可以获知驱动电路的额定电压,从而控制其输出的第二电压的电压值,形成了反馈机制,使得升压/降压电路可以满足不同驱动电路的供电需求。
在一些可能的实现方式中,反馈信号为脉冲信号;驱动电路可通过调整脉冲信号的占空比反馈不同的额定电压给电路板。通过驱动电路输出具有特定占空比的脉冲信号,以指示驱动电路的额定电压,并通过调节脉冲信号的占空比,以输出指示不同额定电压的反馈信号,使得驱动电路可以适配多种具有不同额定电压值的电子元件,扩大了驱动电路的应用范围。
在一些可能的实现方式中,升压/降压电路包括开关元件。开关元件包括控制端、第一连接端。控制端用于接收反馈信号。第一连接端接收第一电压。开关元件根据反馈信号的占空比在导通状态和断开状态之间切换,以调节第二电压的电压值。通过开关元件在导通状态和 断开状态之间切换,以调节第二电压的占空比,从而调节第二电压的电压值,使得第二电压的占空比对应于反馈信号的占空比,实现了第二电压与驱动电路的额定电压相匹配。
在一些可能的实现方式中,升压/降压电路还包括电感器。开关元件还包括第二连接端。第二连接端与电感器电连接。电感器电连接于驱动电路。通过调节电感器的电感值,以调节第二电压的电压值。通过设置电感器,并根据开关元件对电感器进行充放电,使得电感器提供能量给驱动电路,以对驱动电路进行供电。通过调节电感器的电感值,可以调节电感器上的电压降,从而影响电感器的充放电过程,进而调节第二电压的电压值。
在一些可能的实现方式中,电压模块中的单颗电芯的容量为5~100A/h,所述第一电压为3.0V-5.0V,所述第二电压与所述第一电压的比值为0.2-3以满足不同用电设备对电池容量的需求。由于本申请采用单颗电芯结合升压/降压电路来满足负载(外部用电设备)的用电需求,优选第二电压与所述第一电压的比值为1.5-2.5,如此,在用于平板电脑、笔记本电脑、扫地机器人、电动工具等使用电压明显高于常规单电芯的输出电压的用电设备时,所述升压/降压电路可以将单电芯的电压升高以满足使用需求。
在一些可能的实现方式中,电源模块还包括外壳,电芯和电源模块收容在外壳中,电路板固定在电芯或壳体上。如此,外壳可以将电芯和电路板封装在一起,可以更好的适配不同的负载的电源需求,方便电源模块与负载的安装,负载设计时无需考虑升压/降压功能的电路板的安装和布局问题。在一些可能的实现方式中,壳体包括相对设置的第一封装膜和第二封装膜。第一封装膜包括第一金属层。第二封装膜包括第二金属层。第一金属层和第二金属层的至少一者的厚度大于40μm。通过设置第一封装膜以及第二封装膜,并封装为壳体以保护电芯,由于单颗电芯重量大于串并联的小电芯,厚度大于40μm的第一金属层或第二金属层可以减少电芯在发生机械滥用时引发的安全风险。
在一些可能的实现方式中,电极组件为叠片结构或卷绕结构。
在一些可能的实现方式中,电极组件为多电极结构,以提高充放电能力,降低单电芯由于升压/降压带来的电芯内部电流的急剧变化带来的发热或者对安全性能的影响。
本申请提供的电极组件可以为多种结构,应用范围较广。
在一些可能的实现方式中,电极组件包括正极极片。正极极片包括正极集流体和正极活性材料层。正极集流体和正极活性材料层之间还设有安全底涂层。通过在正极集流体与正极活性材料层之间设置安全底涂层,可以保护正极集流体,降低电极组件短路的风险,从而提升电芯的安全性能,优选安全底涂层为磷酸铁锂涂层。
在一些可能的实现方式中,壳体包括相对设置的第一端壁和第二端壁。电芯具有正极和负极。正极和负极从第一端壁引出并与电路板电连接。电路板和第一端壁之间设有第一绝缘件。通过在电路板与第一端壁之间设置第一绝缘件,可以减少电路板与电芯的机械碰撞或摩擦,降低电路板与电芯之间接触不良的风险。
在一些可能的实现方式中,电源模块还具有第二绝缘件,第二绝缘件连接于壳体表面,且与第一端壁围设形成容置空间。电路板和第一绝缘件设于容置空间内。通过设置第二绝缘件,将电路板、第一绝缘件收纳于容置空间内,可以减少电源模块在发生机械滥用时受到的机械碰撞,从而提升电源模块的工作稳定性。
在一些可能的实现方式中,第二端壁上设有第三绝缘件。通过设置第三绝缘件,减少了电源模块在发生机械滥用时受到的机械碰撞,从而提升电源模块的工作稳定性。
在一些可能的实现方式中,第一绝缘件为硅胶垫,其可以为电路板以及电芯提供良好的抗震性能,同时不影响电芯与电路板之间的电连接。
第二方面,本申请提供一种用电装置。其包括负载以及电连接于负载的上述电源模块;负载包括至少两个驱动电路。
附图说明
图1为本申请一实施方式提供的电源模块的结构框图。
图2为本申请一实施方式提供的升压/降压电路的电路图。
图3为本申请一实施方式提供的电源模块的结构图。
图4为图3所示的电芯的壳体的第一封装膜的结构示意图。
图5为图3所示的电芯的壳体的第二封装膜的结构示意图。
图6本申请一实施方式提供的电极组件的剖视图。
图7为本申请提供的用电装置的整体结构示意图。
主要元件符号说明
电源模块  100
电芯  10
壳体  101
第一端壁  1011
第二端壁  1012
电极组件  102
第一电极  103
第二电极  104
主体部  11
封装部  11a
第一方向  D1
第二方向  D2
第三方向  D3
第一封装膜  12
第二封装膜  13
第一保护层  125
第一金属层  126
第一聚合物层  127
第二保护层  131
第二金属层  132
第二聚合物层  133
第一极片  14
第二极片  15
隔离膜  16
第一集流体  141
第一活性物质层  142
安全底涂层  143
第二集流体  151
第二活性物质层  152
极耳  17
转接部  18
电路板  20
升压/降压电路  21
开关元件  211
控制端  2111
第一连接端  2112
第二连接端  2113
电感器  212
输出端子  22
第一绝缘件  23
第二绝缘件  24
第三绝缘件  25
负载  200
驱动电路  201
用电装置  1
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面对本申请实施例中的技术方案进行清楚、详细地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
下文,将详细地描述本申请的实施方式。但是,本申请可体现为许多不同的形式,并且不应解释为限于本文阐释的示例性实施方式。而是,提供这些示例性实施方式,从而使本申请透彻地和详细地向本领域技术人员传达。本申请实施例中,“第一”、“第二”等词汇,仅是用于区别不同的对象,不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。例如,第一应用、第二应用等是用于区别不同的应用,而不是用于描述应用的特定顺序,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
请参阅图1,本申请提供一种电源模块100,电源模块100电连接于负载200,以为负载200供电。负载200包括至少两个驱动电路201以及与驱动电路201电连接的电子元件(图中未示出)。
电源模块100包括电芯10以及电路板20,电芯10的数量仅为一颗。电路板20包括升 压/降压电路21以及至少两个输出端子22。升压/降压电路21与电芯10电连接。至少两个输出端子22对应电连接于负载200中的至少两个驱动电路201。在一实施例中,所述负载200为应用终端,如手机、笔记本电脑等用电装置。
在本申请实施例中,电芯10可以包括所有种类的原电池、二次电池、燃料电池或太阳能电池。可选地,电芯10可以为锂二次电池,包括锂金属二次电池、锂离子二次电池、钠离子二次电池等。
电芯10用于为电路板20提供第一电压,以为电路板20进行供电。具体地,电芯10输出第一电压到升压/降压电路21,升压/降压电路21对第一电压进行升压或降压,以输出至少两个不同的第二电压给至少两个所述输出端子22,进而通过输出端子22将不同的第二电压输出到不同的驱动电路201。
驱动电路201用于根据第二电压驱动负载200中的电子元件进行工作。可以理解,由于负载200中设置有多个不同的电子元件,多个不同的电子元件分别具有不同的工作电压,因此,不同的驱动电路201可以根据不同的第二电压驱动对应的电子元件,使其在工作电压下正常工作。
可以理解,如图1所示,驱动电路201还电连接升压/降压电路21。如此,驱动电路201还可反馈电子元件的额定工作电压到电路板20。具体地,电子元件可以将其额定工作电压提供给驱动电路201,驱动电路201可以根据电子元件的额定工作电压输出反馈信号到升压/降压电路21。可以理解,升压/降压电路21可以根据反馈信号获知电子元件的额定工作电压,从而调整其输出的第二电压的电压值。
请参阅图2,本申请提供的升压/降压电路21包括开关元件211以及电感器212。在一些实施方式中,开关元件211可以为二极管、三极管、场效应管、开关晶体管等电子元件,电感器212可以为线圈、贴片电感、插件电感等。
在本申请实施例中,开关元件211包括控制端2111、第一连接端2112以及第二连接端2113。开关元件211的控制端2111电连接驱动电路201,开关元件211的第一连接端2112电连接于电芯10,开关元件211的第二连接端2113电连接电感器212。电感器212电连接负载200中的驱动电路201。驱动电路201电连接于开关元件211的第一连接端2112。
在本申请实施例中,开关元件211用于接收电芯10提供的第一电压以及驱动电路201输出的反馈信号,并根据反馈信号在导通与断开状态之间进行切换。具体地,在一些实施方式中,反馈信号可以为脉冲信号。可以理解,反馈信号的占空比指示驱动电路201以及电子元件的额定电压。驱动电路201可以通过调整反馈信号的占空比,以反馈不同的额定电压给开关元件211。例如,100%占空比的反馈信号指示驱动电路201的额定电压为12V,50%占空比的反馈信号指示驱动电路201的额定电压为6V。因此,开关元件211可以通过检测反馈信号的占空比,获知驱动电路201或电子元件的额定电压,从而在导通与断开状态之间进行切换,以输出不同电压值的驱动信号。
例如,若开关元件211为N型金属-氧化物-半导体(N-Metal-Oxide-Semiconductor,NMOS)管,开关元件211的栅极为控制端2111。则当反馈信号为低电平时,开关元件211为断开状态。当反馈信号为高电平时,开关元件211为导通状态,由此实现开关元件211根据反馈信号的占空比在导通与断开状态之间进行切换。
可以理解,在该实施例中,连接于不同驱动电路201的电感器212的电感值可以是相同 或不同,在此不作具体限定。
可以理解,开关元件211在导通与断开状态之间进行切换,实际上是通过调整驱动信号的占空比以调整驱动信号的电压值,也即对第一电压进行升压/降压,以得到驱动信号。在一些实施方式中,反馈信号与驱动信号的占空比可以相同。例如,若反馈信号的占空比为20%,开关元件211可以控制其输出的驱动信号的占空比为20%。当然,在其他实施例中,反馈信号与驱动信号的占空比也可以互补。其中,反馈信号与驱动信号的占空比互补可以为反馈信号与驱动信号的占空比之和为100%。例如,若反馈信号的占空比为20%,开关元件211可以控制其输出的驱动信号的占空比为80%。在另一些实施方式中,还可以通过调节电感器212的电感值以调整驱动信号的电压值。例如,当电感器212为可调电感时,可以实时调整电感器212的电感值,来改变电感器212上的电压降,从而影响电感器212的充放电过程,进而改变电感器212提供给驱动电路201的能量,实现对第二电压的调节。又如,连接于不同驱动电路201的电感器212本身的电感值可以是不同的,从而可以通过设置具有不同电感值的电感器212实现对第二电压的调节。
请参阅图3至图4,在一些实施例中,本申请提供的电芯10单颗大容量电芯,可选地,电芯10的容量为5~100A/h。相比于用于通过多个电芯串并联组成的电池包,本申请提供的电芯10的容量更大,可以提供更大范围的供电电压。
可以理解,通过将电芯10设置为单颗大容量电芯,再配合升压/降压电路21对电芯10提供的第一电压进行升压/降压,可以提高电芯10的供电电压范围,以对不同的驱动电路201分别进行供电。相比于由多个电芯进行串并联组成的电池包,本申请提供的电芯10可充分利用电源模块100的内部空间,例如,可省略用于将多个电芯进行串并联的电路板及多个电芯与电路板焊接的空间,当电芯为软包电芯时多个电芯封装边占用的空间、多个电芯连接处的缝隙、以及用于粘接多个电芯的胶水的预留空间、多个电芯的电极组件拐角处的空间、用于将各个电芯进行封装的封装膜的空间等,从而本申请提供的电芯10可以提升能量密度。同时,本申请减小了电芯10所需的数量,也有利于简化整个电源模块100的结构,降低了制造成本以及维护成本。此外,本申请提供的电芯10无需匹配多个电芯的容量、电压以及内阻等参数,也可减少多个电芯之间出现电压差而进行补电的步骤,且单个电芯10的发热量小于多电芯组成的电池包的发热量,因此本申请简化了电芯的制造工序,提高了电芯的使用寿命和可靠性。
具体地,电芯10包括壳体101、电极组件102、电解液(图未示)、第一电极103和第二电极104。电极组件102位于壳体101内。壳体101在第一方向D1上包括相对设置的第一端壁1011以及第二端壁1012,第一电极103和第二电极104均电连接电极组件102,并从第一端壁1011伸出壳体101。第一电极103和第二电极104可以连接外部元件,例如本申请提供的电路板20。
在一些实施例中,电路板20与第一端壁1011之间设置有第一绝缘件23。第一绝缘件23可以在电源模块100发生机械滥用时提供缓冲作用,以减少电路板20与电芯10的机械碰撞,且减小壳体101破损和漏液的风险。而且,第一绝缘件23还可使电芯10的头部(即电芯10靠近第一端壁1011的部分)与电路板20、第一电极103或第二电极104等其它元件隔绝开。具体地,第一绝缘件23可设于封装部11a与第一端壁1011围设形成的空间内。第一绝缘件23可以是硅胶、环氧树脂等绝缘树脂。在一些实施方式中,第一绝缘件23可以为硅胶垫。
进一步地,电源模块100还可以设置有第二绝缘件24,第二绝缘件24与第一端壁1011 围合形成容置空间,第一绝缘件23、第一电极103、第二电极104以及电路板20均位于该容置空间内。第二绝缘件24用于将电路板20固定于电芯10的第一端壁1011上,还可减小电源模块100发生机械滥用时电路板20及电芯10头部受到的撞击,降低失效风险。值得注意的是,所述电源模块100需要通过本领域常规方式将电路板的输出端子与负载中的驱动电路电连接,包括但不限于,电路板的输出端子穿过所述第二绝缘件24与驱动电路电连接。
第二端壁1012上还可以设置有第三绝缘件25。第三绝缘件25可减小电源模块100发生机械滥用时电芯10尾部(即电芯10靠近第二端壁1012的部分)受到的撞击,降低失效风险。在一些实施方式中,第二绝缘件24以及第三绝缘件25为绝缘胶带。
如图3所示,在一些实施例中,电芯10可以为,但并不限于软包电芯。壳体101包括主体部11以及封装部11a。第一电极103和第二电极104由封装部11a伸出,电极组件102设置于主体部11内。主体部11包括上述第一端壁1011和第二端壁1012,而封装部11a连接于第一端壁1011。定义电极组件102的厚度方向为第二方向D2,垂直于第一方向D1和第二方向D2的方向为第三方向D3。
壳体101可由第一封装膜12与第二封装膜13通过封装后对密封边折叠形成。
如图4所示,第一封装膜12可包括依次层叠设置的第一保护层125、第一金属层126和第一聚合物层127。相较于第一保护层125,第一聚合物层127更靠近电极组件102。第一保护层125的材质可以为高分子树脂,其可以用于保护第一金属层126,降低第一金属层126因外力作用破损的风险,同时能够延缓外部环境的空气渗透,维持电芯10内部处于正常运作的环境。
在一些实施例中,第一保护层125的材质可选自对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚偏氟乙烯、聚四氟乙烯、聚丙烯、聚酰胺、聚酰亚胺中的至少一种。第一保护层125的厚度范围可以为15μm至35μm。
第一金属层126可以用于延缓外部环境的水分渗透,并减少外力对电极组件102造成的损伤。在一些实施例中,第一金属层126可以为铝箔层或钢箔层。由于电芯10的容量相对较大,重量提高,为了减小电源模块100在发生机械滥用(如跌落、撞击)发生失效的风险,提高可靠性,第一金属层126的厚度大于40μm。第一聚合物层127具有加热熔融的性质,可以用于封装,且可以降低多层片材被电解液中的有机溶剂溶解或溶胀的风险。第一聚合物层127还可用于降低电解液中的电解质与第一金属层126接触而导致金属层被腐蚀的风险。在一些实施例中,第一聚合物层127包括聚合物材料,其可选自聚丙烯、丙烯共聚物、聚乙烯、聚甲基丙烯酸甲酯中的至少一种聚合物材料。第一聚合物层127的厚度范围可以为10μm至40μm。
在一些实施例中,第一封装膜12还可包括第一粘接层(图未示)和第二粘接层(图未示),第一粘接层设于第一保护层125和第一金属层126之间,可以用于粘接第一保护层125和第一金属层126。第二粘接层设于第一金属层126和第一聚合物层127之间,可以用于粘接第一金属层126和第一聚合物层127。
请参阅图5,第二封装膜13可包括依次层叠设置的第二保护层131、第二金属层132和第二聚合物层133。为了进一步提高电源模块100在机械滥用发生失效的风险,还可设置第二金属层132的厚度大于40μm。可以理解,当第一封装膜12和第二封装膜13可由一张封装膜折叠后得到时,第二保护层131、第二金属层132和第二聚合物层133的材质分别与第一 保护层125、第一金属层126和第一聚合物层127的材质相同,在此不作重复描述。
请参阅图6,电极组件102包括第一极片14、第二极片15和隔离膜16,隔离膜16设置于第一极片14和第二极片15之间。第一极片14包括第一集流体141和设置于第一集流体141上的第一活性物质层142。第二极片15包括第二集流体151和设置于第二集流体151上的第二活性物质层152。第一电极103和第二电极104分别电连接于第一集流体141和第二集流体151,从而将第一极片14和第二极片15的极性引出。在一些实施例中,第一极片14为正极片,第二极片15为负极片。第一极片14可以是正极极片或负极极片。对应地,第一集流体141可以是正极集流体或负极集流体,第一活性物质层142可以是正极活性物质层或负极活性物质层。在一些实施例中,第一极片14为正极极片,第二极片15为负极极片。
正极集流体可以采用铝箔或镍箔,负极集流体可以采用铜箔、镍箔或碳基集流体中的至少一种。
正极活性物质层包含正极活性物质,正极活性物质包括可逆地嵌入和脱嵌金属离子(如锂离子、钠离子等,以下以锂离子为例)的化合物(即,锂化插层化合物)。在一些实施例中,正极活性物质可以包括锂过渡金属复合氧化物。该锂过渡金属复合氧化物含有锂以及从钴、锰和镍中选择的至少一种元素。在一些实施例中,正极活性物质选自钴酸锂(LiCoO2)、锂镍锰钴三元材料(NCM)、锂镍钴铝三元材料(NCA)、锰酸锂(LiMn2O4)、镍锰酸锂(LiNi0.5Mn1.5O4)或磷酸铁锂(LiFePO4)中的至少一种。
负极活性物质层包含负极活性物质,采用本领域已知的能够进行活性离子可逆脱嵌的负极活性物质,本申请不做限制。例如,可以包括但不限于石墨、软碳、硬碳、碳纤维、中间相碳微球、硅基材料、锡基材料、钛酸锂或其他能与锂形成合金的金属等中的一种或多种的组合。其中,石墨可选自人造石墨、天然石墨以及改性石墨中的一种或多种的组合;硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅合金中的一种或多种的组合;锡基材料可选自单质锡、锡氧化合物、锡合金等中的一种或多种的组合。
隔离膜16包括聚乙烯、聚丙烯、聚偏氟乙烯、聚对苯二甲酸乙二醇酯、聚酰亚胺或芳纶中的至少一种。例如,聚乙烯包括选自高密度聚乙烯、低密度聚乙烯或超高分子量聚乙烯中的至少一种。其中聚乙烯和聚丙烯对降低短路风险具有良好的作用,并可以通过关断效应改善电芯10的稳定性。
请参阅图6,电极组件102为卷绕结构,即第一极片14、隔离膜16和第二极片15层叠卷绕以形成电极组件102。在一些实施例中,电极组件102为多极耳结构。第一电极103包括多个极耳17和一个转接部18。多个极耳17分别连接第一集流体141。转接部18连接极耳17并伸出壳体101。其中,极耳17可与第一集流体141一体成型(即极耳17由第一集流体141裁切形成)或焊接固定。转接部18与多个极耳17焊接固定。同理,第二电极104也可以包括多个极耳(图未示)和一个转接部(图未示),多个极耳分别连接第二集流体151,转接部连接极耳并伸出壳体101。可以理解,在一些实施方式中,由于电芯10的容量较大,设置多极耳结构可使得电芯10充电时电流更加分散和均匀,降低第一电极103和第二电极104处产生的热量,减小局部过热风险,提高可靠性和安全性。
在其它实施例中,电极组件102还可以是叠片结构,即第一极片14、隔离膜16和第二极片15依次层叠以形成电极组件102。在叠片结构中,相邻两个第一极片14之间设有一个第二极片15,相邻两个第二极片15之间设有一个第一极片14。每一第一极片14和每一个第 二极片15上均连接有一个极耳,因此该多极耳结构同样可以降低第一电极103和第二电极104处产生的热量,减小局部过热风险,提高可靠性和安全性。
在一些实施例中,第一极片14还包括设置于安全底涂层143,安全底涂层143设置于第一活性物质层142和第一集流体141的表面之间。通过设置安全底涂层143,可以增加第一集流体141与第一活性物质层142之间的粘接力,减小循环过程中活性物质脱落的风险,以提升电芯10的安全性能。在一些实施例中,安全底涂层143为磷酸铁锂涂层,其还可以在发生短路时,减小短路电流进而减少发热。
在一些实施例中,壳体101的内表面和电极组件102之间可设有粘接层19。例如,当第一封装膜12包括依次层叠设置的第一保护层125、第一金属层126和第一聚合物层127时,粘接层19可粘接于第一聚合物层127上,并同时粘接电极组件102。如此,当电源模块100发生机械滥用时,粘接层19可抑制电极组件102在壳体101内的窜动,减少壳体101被冲开导致的漏液或短路起火的风险。当电极组件102最外侧为集流体时,粘接层19还可减小集流体被撕裂的风险。其中,粘接层19可以为热熔胶或双面胶。
请参阅图7,本申请一实施方式还提供一种用电装置1,用电装置1包括电源模块100以及外部负载200。
其中,本申请的电源模块100适用于各种领域的用电装置1。在一实施方式中,本申请的用电装置1可以是,但不限于笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
本技术领域的普通技术人员应当认识到,以上的实施方式仅是用来说明本申请,而并非用作为对本申请的限定,只要在本申请的实质精神范围之内,对以上实施例所作的适当改变和变化都落在本申请要求保护的范围之内。

Claims (16)

  1. 一种电源模块,包括电芯及与所述电芯电连接的电路板,所述电芯的数量仅为一颗,所述电芯用于提供第一电压给所述电路板,所述电芯包括壳体、设于所述壳体内的电极组件,其特征在于:
    所述电路板包括升压/降压电路以及至少两个输出端子;
    所述升压/降压电路用于接收所述第一电压并对所述第一电压进行升压或降压,以输出至少两个不同的第二电压给所述至少两个输出端子;
    所述输出端子用于将所述第二电压提供给与所述输出端子电连接的负载中的驱动电路;
    所述电源模块包括外壳,所述电芯和电源模块收容在所述外壳中,所述电路板固定在所述电芯或所述壳体上。
  2. 如权利要求1所述的电源模块,其特征在于,所述电路板还用于接收所述驱动电路输出的至少一个反馈信号;所述反馈信号用于指示所述驱动电路的额定电压;所述升压/降压电路根据所述反馈信号将对应的所述第二电压调整至所述额定电压,并通过对应的所述输出端子输出给所述驱动电路。
  3. 如权利要求2所述的电源模块,其特征在于,所述反馈信号为脉冲信号;所述驱动电路可通过调整所述脉冲信号的占空比反馈不同的所述额定电压给所述电路板。
  4. 如权利要求3所述的电源模块,其特征在于,所述升压/降压电路包括开关元件,所述开关元件包括控制端、第一连接端,所述控制端用于接收所述反馈信号,所述第一连接端接收第一电压,所述开关元件根据所述反馈信号的占空比在导通状态和断开状态之间切换,以调节所述第二电压的电压值。
  5. 如权利要求4所述的电源模块,其特征在于,所述升压/降压电路还包括电感器,所述开关元件还包括第二连接端,所述第二连接端与所述电感器电连接,所述电感器电连接于所述驱动电路,通过调节所述电感器的电感值,以调节所述第二电压的电压值。
  6. 如权利要求1所述的电源模块,其特征在于,所述电芯的容量为5~100A/h,所述第一电压为3.0V-5.0V,所述第二电压与所述第一电压的比值为0.2-3。
  7. 如权利要求6所述的电源模块,其特征在于,所述第二电压与所述第一电压的比值为1.5-2.5。
  8. 如权利要求1所述的电源模块,其特征在于,所述壳体包括相对设置的第一封装膜和第二封装膜,所述第一封装膜包括第一金属层,所述第二封装膜包括第二金属层,所述第一金属层和所述第二金属层的至少一者的厚度大于40μm。
  9. 如权利要求8所述的电源模块,其特征在于,所述电极组件为多极耳结构。
  10. 如权利要求1所述的电源模块,其特征在于,所述电极组件包括正极极片,所述正极极片包括正极集流体和正极活性材料层,所述正极集流体和正极活性材料层之间还设有安全底涂层。
  11. 如权利要求10所述的电源模块,其特征在于,所述安全底涂层为磷酸铁锂涂层。
  12. 如权利要求1所述的电源模块,其特征在于,所述壳体包括相对设置的第一端壁和第二端壁,所述电芯具有正极和负极,所述正极和所述负极从所述第一端壁引出并与所述电路板电连接,所述电路板和所述第一端壁之间设有第一绝缘件。
  13. 如权利要求12所述的电源模块,其特征在于,还具有第二绝缘件,所述第二绝缘件连 接于所述壳体,且所述第一端壁和所述第二绝缘件围设形成容置空间,所述电路板和第一绝缘件设于所述容置空间内。
  14. 如权利要求12所述的电源模块,其特征在于,所述第二端壁上设有第三绝缘件。
  15. 如权利要求12-14任一项所述的电源模块,其特征在于,所述第一绝缘件为硅胶垫。
  16. 一种用电装置,其包括负载以及电连接于所述负载的电源模块;所述负载包括至少两个驱动电路;其特征在于,所述电源模块采用如权利要求1至15中任意一项所述的所述电源模块。
PCT/CN2023/094034 2022-06-27 2023-05-12 电源模块以及用电装置 WO2024001571A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210734401.4 2022-06-27
CN202210734401.4A CN114825562B (zh) 2022-06-27 2022-06-27 电源模块以及用电装置

Publications (1)

Publication Number Publication Date
WO2024001571A1 true WO2024001571A1 (zh) 2024-01-04

Family

ID=82523464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094034 WO2024001571A1 (zh) 2022-06-27 2023-05-12 电源模块以及用电装置

Country Status (2)

Country Link
CN (2) CN114825562B (zh)
WO (1) WO2024001571A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114825562B (zh) * 2022-06-27 2022-11-25 宁德新能源科技有限公司 电源模块以及用电装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008131736A (ja) * 2006-11-21 2008-06-05 Yaskawa Electric Corp 分散型電源システムと昇降圧チョッパ装置
CN201789309U (zh) * 2010-04-21 2011-04-06 路华科技(深圳)有限公司 数码产品外置电池
CN106711388A (zh) * 2017-03-02 2017-05-24 宁德新能源科技有限公司 电芯
CN109510261A (zh) * 2018-11-21 2019-03-22 深圳市道通智能航空技术有限公司 一种充电电路及充电系统
CN109661739A (zh) * 2016-09-21 2019-04-19 宁德时代新能源科技股份有限公司 二次电池及其阴极极片
CN109888857A (zh) * 2019-01-08 2019-06-14 深圳天俊通科技有限公司 一种pps移动电源
CN110168892A (zh) * 2018-08-02 2019-08-23 深圳欣锐科技股份有限公司 一种直流升降压电路
CN114825562A (zh) * 2022-06-27 2022-07-29 宁德新能源科技有限公司 电源模块以及用电装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9461487B2 (en) * 2013-12-27 2016-10-04 Dialog Semiconductor (Uk) Limited Battery stack configuration in a multi-battery supply system
CN204349496U (zh) * 2014-12-24 2015-05-20 刘冬兰 便携式多电压输出移动电源
CN208226027U (zh) * 2018-04-12 2018-12-11 宁德新能源科技有限公司 电芯
CN209233522U (zh) * 2018-12-24 2019-08-09 广东太阳库新能源科技有限公司 一种复合降压式太阳能移动电源
CN113066959B (zh) * 2021-03-23 2022-05-13 宁德新能源科技有限公司 电芯
CN215072178U (zh) * 2021-04-29 2021-12-07 深圳市普博医疗科技股份有限公司 一种配备稳压电源的医疗监护设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008131736A (ja) * 2006-11-21 2008-06-05 Yaskawa Electric Corp 分散型電源システムと昇降圧チョッパ装置
CN201789309U (zh) * 2010-04-21 2011-04-06 路华科技(深圳)有限公司 数码产品外置电池
CN109661739A (zh) * 2016-09-21 2019-04-19 宁德时代新能源科技股份有限公司 二次电池及其阴极极片
CN106711388A (zh) * 2017-03-02 2017-05-24 宁德新能源科技有限公司 电芯
CN110168892A (zh) * 2018-08-02 2019-08-23 深圳欣锐科技股份有限公司 一种直流升降压电路
CN109510261A (zh) * 2018-11-21 2019-03-22 深圳市道通智能航空技术有限公司 一种充电电路及充电系统
CN109888857A (zh) * 2019-01-08 2019-06-14 深圳天俊通科技有限公司 一种pps移动电源
CN114825562A (zh) * 2022-06-27 2022-07-29 宁德新能源科技有限公司 电源模块以及用电装置
CN115549262A (zh) * 2022-06-27 2022-12-30 宁德新能源科技有限公司 电源模块以及用电装置

Also Published As

Publication number Publication date
CN114825562A (zh) 2022-07-29
CN115549262A (zh) 2022-12-30
CN114825562B (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
CN101478034B (zh) 保护电路板、电池包及其制造方法
US10103412B2 (en) Universal rechargeable battery constituted by employing lithium-ion battery and control method
JP5339407B2 (ja) 電池パック
CN100477337C (zh) 用于二次电池模块的检测板组件
US20060269831A1 (en) Pouch type lithium secondary battery
US10629886B2 (en) Battery pack system
CN107275557A (zh) 一种采用锂离子电芯构成的通用型充电电池及其组装方法
US9764655B2 (en) Hybrid power supply and electric vehicle using the same
JP6302271B2 (ja) リチウムイオン二次電池の回復方法
CN108711647A (zh) 一种具快速充电功能的电池
KR20150034498A (ko) 벤팅 커버를 구비하는 배터리 셀 및 이를 포함하는 이차전지
WO2024001571A1 (zh) 电源模块以及用电装置
US20150303538A1 (en) Compact battery with high energy density and power density
WO2022205141A1 (zh) 一种电极组件、电化学装置及用电设备
JP5989405B2 (ja) 電源装置
KR20010047185A (ko) 2차 전지
WO2020192206A1 (zh) 一种电池、用电装置及电芯安装方法
JP2005267886A (ja) 二次電池
CN109616608A (zh) 电池、电子设备及电池组
CN207009532U (zh) 一种采用锂离子电芯构成的通用型充电电池
CN111180798B (zh) 电芯
CN201069808Y (zh) 充电电池
WO2022051914A1 (zh) 一种电化学装置及电子装置
JPH11233076A (ja) 組電池
WO2023123034A1 (zh) 电化学装置和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829757

Country of ref document: EP

Kind code of ref document: A1