WO2023123034A1 - 电化学装置和电子装置 - Google Patents

电化学装置和电子装置 Download PDF

Info

Publication number
WO2023123034A1
WO2023123034A1 PCT/CN2021/142421 CN2021142421W WO2023123034A1 WO 2023123034 A1 WO2023123034 A1 WO 2023123034A1 CN 2021142421 W CN2021142421 W CN 2021142421W WO 2023123034 A1 WO2023123034 A1 WO 2023123034A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive plate
protrusion
layer
region
distance
Prior art date
Application number
PCT/CN2021/142421
Other languages
English (en)
French (fr)
Inventor
闫东阳
Original Assignee
东莞新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞新能源科技有限公司 filed Critical 东莞新能源科技有限公司
Priority to PCT/CN2021/142421 priority Critical patent/WO2023123034A1/zh
Priority to CN202180042767.9A priority patent/CN115843399A/zh
Priority to JP2023563897A priority patent/JP2024515180A/ja
Publication of WO2023123034A1 publication Critical patent/WO2023123034A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of energy storage, and in particular to an electrochemical device and an electronic device having the electrochemical device.
  • Electrochemical devices such as batteries
  • electronic products such as electronic mobile devices, electric tools, and electric vehicles, and people's requirements for electrochemical devices are getting higher and higher.
  • the upper casing and the lower casing need to be sealed to form a storage space for accommodating the electrode assembly and the electrolyte, and the conductive plate electrically connected to the electrode assembly protrudes from the casing.
  • the airtightness of the shell may decrease at the position where the conductive plate protrudes.
  • the present application provides an electrochemical device, including a casing, an electrode assembly and a first conductive plate.
  • the electrode assembly is arranged in the casing, and the first conductive plate is electrically connected with the electrode assembly and protrudes from the casing.
  • the electrochemical device also includes a first layer, defining the protruding direction of the first conductive plate as the first direction, in the first direction, the first layer includes a connected first region and a second region, and the first region is arranged on the shell Inside the body, the second area is set outside the casing.
  • a direction perpendicular to a surface of the first conductive plate is defined as a second direction, and viewed along the second direction, the second region partially overlaps with the first conductive plate.
  • the first layer includes insulating material.
  • the second area includes a first protrusion and a second protrusion. Viewed along the second direction, the first protrusion partially overlaps the first conductive plate and protrudes along the first direction, and the second protrusion partially overlaps the first conductive plate and protrudes along the first direction. It is defined that the third direction, the first direction and the second direction are perpendicular to each other, and in the third direction, the first convex part is separated from the second convex part.
  • the first protrusion and the second protrusion are arranged on the first layer.
  • the stress generated by the first layer can be dispersed along the extension direction of the first protrusion and the second protrusion, which is not only beneficial to reduce The possibility of separating the first layer from the first conductive plate is reduced, and the sealing performance of the first layer is improved, thereby increasing the service life of the electrochemical device.
  • first convex portion and the second convex portion increase the contact area between the first layer and the first conductive plate, so when the first conductive plate charges and generates heat, the first convex portion and the second convex portion increase the contact area between the first layer and the first conductive plate.
  • the heat dissipation efficiency of the first layer improves the deterioration of the first layer due to frequent temperature changes, and is also conducive to improving the sealing performance of the first layer.
  • the second region further includes a third protrusion disposed between the first protrusion and the second protrusion, and the third protrusion protrudes along the first direction.
  • the third protrusion further increases the contact area between the first layer and the first conductive plate, thus further improving the heat dissipation efficiency of the first layer, thereby improving the sealing performance of the first layer.
  • the housing includes a first side disposed between the first region and the second region.
  • the distance from the first side to the vertex of the first convex portion is defined as the first distance
  • the distance from the first side to the vertex of the third convex portion is defined as the second distance
  • the first distance is greater than the second distance. Therefore, the first protruding part can better play the role of dispersing stress and improving the heat dissipation effect, and it is also beneficial to improve the third protruding part protruding far enough to cause the first region connected to the surface of the first conductive plate. In the case of a correspondingly smaller thickness, the impact on the sealing of the first layer is reduced.
  • the overlapping portion of the second region and the first conductive plate is defined as an overlapping region.
  • the overlapping area includes a fourth protrusion protruding along the second direction. Therefore, when the first conductive plate needs to be bent, the fourth protrusion can reduce the possibility of short circuit or corrosion caused by direct contact between the first conductive plate and the metal layer exposed from the first edge.
  • the first layer includes a second edge, and the second edge extends along a third direction.
  • the first protrusion is disposed between the second side and the second protrusion.
  • the distance from the first side to the second side is a third distance, and the first distance is greater than the third distance. Therefore, the first convex part can better play the role of dispersing stress and improving the heat dissipation effect, and at the same time, it also improves the thickness of the first region connected to the side of the first conductive plate when the first side protrudes a large distance. Correspondingly smaller cases, thereby reducing the impact on the sealing of the first layer.
  • the second distance is greater than the third distance.
  • the third distance is 0.2 mm to 3.5 mm, and the ratio of the first distance to the third distance ranges from 1.09 to 16.
  • the present application reduces the possibility that the first side protrudes less (the pressure exerted by the sealing head on the first layer is insufficient) to reduce the sealing performance of the first layer, and at the same time reduces the The impact on the sealing performance of the first layer when the first side protrudes farther.
  • the possibility of cracking after the first layer is bent can also be reduced.
  • the present application improves the problem of reduced stress dispersion effect and heat dissipation effect when the first distance is small, and also reduces the impact on the energy of the electrochemical device when the first distance is large.
  • the effect of density is a measure of density of the first distance.
  • the first conductive plate viewed from the second direction, includes a first side and a second side that are oppositely disposed.
  • the apex of the first protrusion overlaps the first side surface
  • the apex of the second protrusion overlaps the second side surface.
  • the housing includes a main body and a connection part connected to the main body, and the connection part is used to seal the main body.
  • the electrode assembly is arranged in the main body.
  • the first conductive plate is electrically connected with the electrode assembly and protrudes from the connection part.
  • the first region connects the first conductive plate and the connecting portion. Therefore, the first region can be used to seal the gap between the first conductive plate and the connecting part, reducing the possibility of liquid leakage.
  • the housing includes a first housing and a second housing that are oppositely arranged.
  • the first shell includes a first polymer layer
  • the second shell includes a second polymer layer
  • the first polymer layer and the second polymer layer are adhered to each other to form a connection portion, thereby achieving sealing.
  • the first polymer layer and the second polymer layer can also reduce the possibility of the shell being dissolved or swelled by the organic solvent in the electrolyte.
  • the first polymer layer includes a first polymer material
  • the second polymer layer includes a second polymer material
  • the first polymer material and the second polymer material are each independently selected from polypropylene , propylene copolymer, polyethylene or polymethyl methacrylate at least one.
  • the first layer further includes a third area.
  • the first area is connected between the second area and the third area, and the third area is arranged in the main body.
  • the third area includes fifth and sixth protrusions. Viewed along the second direction, the fifth protrusion partially overlaps the first conductive plate and protrudes away from the first direction, and the sixth protrusion partially overlaps the first conductive plate and protrudes away from the first direction.
  • the fifth protrusion is separated from the sixth protrusion. Therefore, when mechanical abuse occurs, the fifth convex portion and the sixth convex portion can disperse the stress generated by the first layer, and can improve the heat dissipation efficiency of the first layer, thereby improving the sealing performance of the first layer.
  • the insulating material is selected from polypropylene, polyethylene, polyethylene terephthalate, polyethylene naphthalate, polypropylene modified materials or polyethylene modified materials. at least one.
  • the present application also provides an electronic device, including the above-mentioned electrochemical device.
  • FIG. 1 is a perspective view of an electrochemical device provided by an embodiment of the present application.
  • FIG. 2 is a front view of the electrochemical device shown in FIG. 1 .
  • FIG. 3 is a back view of the electrochemical device shown in FIG. 1 .
  • FIG. 4 is a partially enlarged view at point A of the electrochemical device shown in FIG. 2 .
  • FIG. 5 is a cross-sectional view along V-V of the electrochemical device shown in FIG. 2 .
  • FIG. 6 is a sectional view along VI-VI of the electrochemical device shown in FIG. 2 .
  • FIG. 7 is a cross-sectional view of the electrochemical device shown in FIG. 2 in some other embodiments.
  • FIG. 8 is a cross-sectional view of the electrochemical device shown in FIG. 5 after the first conductive plate is connected to the circuit board.
  • FIG. 9A is a cross-sectional view along VIII-VIII of the electrochemical device shown in FIG. 2 .
  • FIG. 9B is a schematic structural diagram of the first layer of the electrochemical device shown in FIG. 2 .
  • FIG. 10 is a top view of an electrode assembly of the electrochemical device of FIG. 2 in some embodiments.
  • FIG. 11 is a schematic structural diagram of the electrochemical device shown in FIG. 1 before sealing.
  • FIG. 12 is a partial cross-sectional view of the first casing of the electrochemical device shown in FIG. 11 .
  • FIG. 13 is a partial cross-sectional view of the second casing of the electrochemical device shown in FIG. 11 .
  • Fig. 14 is a front view of an electrochemical device provided in another embodiment of the present application.
  • FIG. 15 is a partially enlarged view at point B of the electrochemical device shown in FIG. 14 .
  • FIG. 16 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the first pole piece 21 is the first pole piece 21
  • the second layer 60 is the second layer 60
  • Second side wall 114 Second side wall 114
  • Second conductive material layer 221 Second conductive material layer 221
  • the first transfer department 240 The first transfer department 240
  • the second transfer department 250 The second transfer department 250
  • the first convex part 521 is the first convex part 521
  • the third convex part 523 is the third convex part 523
  • the sixth convex part 532 is the sixth convex part 532
  • an embodiment of the present application provides an electrochemical device 100 , including a housing 10 , an electrode assembly 20 , a first conductive plate 30 and a second conductive plate 40 .
  • the electrode assembly 20 is disposed in the casing 10 .
  • Both the first conductive plate 30 and the second conductive plate 40 are electrically connected to the electrode assembly 20 and protrude from the casing 10 .
  • the first conductive plate 30 and the second conductive plate 40 can be connected to external components (not shown). It is defined that the first direction X, the second direction Y and the third direction Z are perpendicular to each other.
  • the protruding direction of the first conductive plate 30 is the first direction X.
  • the direction perpendicular to the first surface of the first conductive plate 30 is the second direction Y.
  • the direction from the first conductive plate 30 to the second conductive plate 40 is the third direction Z.
  • the housing 10 includes a first housing 101 and a second housing 102 oppositely disposed in the second direction Y.
  • the first housing 101 includes a first part 101a and a second part 101b connected to each other. Three sides of the second part 101b are surrounded by the first part 101a.
  • the second housing 102 includes a third portion 102a and a fourth portion 102b connected to each other. Three sides of the fourth part 102b are surrounded by the third part 102a.
  • the first part 101a is connected to the third part 102a.
  • the second part 101b and the fourth part 102b jointly constitute an accommodating space for accommodating the electrode assembly 20 .
  • the housing 10 includes a main body portion 11 and a connection portion 12 .
  • the second part 101b of the first housing 101 is connected with the fourth part 102b of the second housing 102 to form the main body 11 .
  • the first part 101 a of the first housing 101 is connected to the third part 102 a of the second housing 102 to form a connection part 12 , and the connection part 12 is used to seal the main body part 11 .
  • the electrode assembly 20 is disposed inside the main body 11 .
  • the casing 10 may be packaged in a packaging bag obtained by packaging the packaging film, that is, the electrochemical device 100 is a pouch battery. That is, the connection part 12 is an edge sealing formed after the first part 101a and the third part 102a are packaged. Both the first conductive plate 30 and the second conductive plate 40 are clamped in the connecting portion 12 and protrude from the edge of the connecting portion 12 out of the casing 10 .
  • the main body 11 in the first direction X, includes a first end wall 111 and a second end wall 112 oppositely disposed.
  • the second portion 101b of the first housing 101 in the first direction X, includes a first end surface 1111 and a second end surface 1121 that are oppositely disposed, and the fourth portion 102b of the second housing 102 includes an oppositely disposed The third end surface 1112 and the fourth end surface 1122 of the.
  • the first end surface 1111 and the third end surface 1112 are connected to form the first end wall 111
  • the second end surface 1121 and the fourth end surface 1122 are connected to form the second end wall 112 .
  • the main body 11 includes a first side wall 113 and a second side wall 114 oppositely disposed.
  • the second part 101b of the first housing 101 includes a first side surface 1131 and a second side surface 1141 oppositely disposed
  • the fourth part 102b of the second housing 102 includes The third side surface 1132 and the fourth side surface 1142 are oppositely disposed.
  • the first side surface 1131 and the third side surface 1132 are connected to form the first sidewall 113
  • the second side surface 1141 and the fourth side surface 1142 are connected to form the second sidewall 114 .
  • the main body 11 includes a third side wall 115 and a fourth side wall 116 oppositely disposed.
  • the connection portion 12 includes a first connection region 12 a , a second connection region 12 b and a third connection region 12 c connected together.
  • the first connection area 12a of the connection part 12 is connected to the first end wall 111.
  • the first conductive plate 30 and the second conductive plate 40 are clamped in the first connection area 12a, The edge of the first connection area 12 a protrudes from the housing 10 .
  • the second connection region 12 b is connected to the first sidewall 113
  • the third connection region 12 c is connected to the second sidewall 114 .
  • the casing 10 includes a first side 121 , and the first side 121 is also an edge of the first connection area 12 a in the first direction X.
  • the first conductive plate 30 and the second conductive plate 40 protrude from the housing 10 from the first side 121 . More specifically, the first end surface 1111 and the third end surface 1112 are respectively located on two sides of the first connection area 12a.
  • the first end surface 1111 connects the first connection area 12 a and the third side surface 115
  • the third end surface 1112 connects the first connection area 12 a and the fourth side surface 116 .
  • the distance between the first connection area 12a and the third side 115 is greater than the distance between the first connection area 12a and the fourth side 116, that is, the distance between the first connection area 12a and the fourth side 116
  • One end surface 1111 is a deep pit surface
  • the third end surface 1112 is a shallow pit surface.
  • the first connection area 12a does not need to be bent, that is, the surface where the first connection area 12a is located may be substantially perpendicular to the surface where the first end wall 111 is located.
  • the first direction X is the direction in which the first conductive plate 30 protrudes from the electrode assembly 20 (the direction in which the first conductive plate 30 protrudes from the electrode assembly 20), and is also the direction in which the first conductive plate 30 is in the first connection area 12a The direction in which to protrude.
  • the second direction Y is a direction perpendicular to the first surface of the first conductive plate 30 located in the first connection region 12a.
  • the first connecting region 12a can also be bent to the first end wall 111 , so as to reduce the size of the electrochemical device 100 in the first direction X and improve space utilization and energy density.
  • the first connection area 12a is bent onto the first end wall 111, the direction in which the first conductive plate 30 protrudes in the first connection area 12a changes.
  • the first direction X is the convexity of the first conductive plate 30
  • the direction of the electrode assembly 20 is also the direction in which the first conductive plate 30 protrudes in the first connection region 12 a when the first connection region 12 a is folded back to a state perpendicular to the first end wall 111 .
  • the second direction Y is a direction perpendicular to the first surface of the first conductive plate 30 in the first connection region 12 a when the first connection region 12 a is folded back to a state perpendicular to the first end wall 111 .
  • the electrode assembly 20 is a winding structure, which includes a first pole piece 21, a second pole piece 22 and a separator 23, and the separator 23 is arranged on the first pole piece 21 and the separator 23. Between the second pole piece 22. The first pole piece 21 , the separator 23 and the second pole piece 22 are stacked and wound in sequence to form the electrode assembly 20 .
  • the first pole piece 21 includes a first conductive layer 210 and a first conductive material layer 211 disposed on the first conductive layer 210 .
  • the second pole piece 22 includes a second conductive layer 220 and a second conductive material layer 221 disposed on the second conductive layer 220 .
  • the electrode assembly 20 also includes a plurality of first tabs 24 and a plurality of second tabs 25 .
  • One end of the plurality of first tabs 24 is electrically connected to the first conductive layer 210 , and the other end is electrically connected to the first conductive plate 30 .
  • One end of the second tab 25 is electrically connected to the second conductive layer 220 , and the other end is electrically connected to the second conductive plate 40 .
  • the plurality of first tabs 24 can be connected to the first conductive plate 30 through the first transition portion 240 .
  • the plurality of second tabs 25 can also be connected to the second conductive plate 40 through the second transition portion 250 . In other embodiments, please refer to FIG. 7, the difference between it and the electrode assembly 20 shown in FIG. ear 25.
  • the first conductive plate 30 can be directly connected to the first conductive layer 210
  • the second conductive plate 40 can also be directly connected to the second conductive layer 220
  • the electrode assembly 20 may also be a lamination structure, that is, the first pole piece 21 , the separator 23 and the second pole piece 22 are stacked in sequence to form the electrode assembly 20 .
  • the first pole piece 21 may be a positive pole piece.
  • the first conductive layer 210 may be a positive electrode conductive layer, and the first conductive material layer 211 may be a positive electrode conductive material layer.
  • the first conductive layer 210 may have a function of collecting current.
  • the second pole piece 22 may be a negative pole piece.
  • the second conductive layer 220 may be a negative electrode conductive layer, and the second conductive material layer 221 may be a negative electrode active material layer.
  • the second conductive layer 220 may have a function of collecting current.
  • the positive electrode conductive material layer contains a positive electrode active material including a compound that reversibly intercalates and deintercalates lithium ions (ie, a lithiated intercalation compound).
  • the negative electrode conductive material layer contains negative electrode active materials, that is, negative electrode active materials capable of reversible deintercalation of active ions.
  • the isolation film 23 includes at least one of polyethylene, polypropylene, polyvinylidene fluoride, polyethylene terephthalate, polyimide, or aramid.
  • the electrochemical device 100 further includes a first layer 50 including an insulating material.
  • the first layer 50 can be used for sealing and connecting the first conductive plate 30 and the casing 10 , and can also maintain electrical insulation between the first conductive plate 30 and the casing 10 .
  • the first layer 50 fills the gap that may exist between the first conductive plate 30 and the connecting portion 12, thereby sealingly connecting the first conductive plate 30 and the housing 10, and reducing the size of the first conductive plate during subsequent use. 30 and the possibility of separation from the connecting portion 12.
  • the insulating material of the first layer 50 is selected from polypropylene, polyethylene, polyethylene terephthalate, polyethylene naphthalate, polypropylene modified materials or polyethylene modified materials. at least one of the materials.
  • the first layer 50 can be formed by stacking one or more layers of materials along the second direction Y.
  • the first layer 50 is formed by stacking three layers of materials, including a substrate 50a, a first adhesive layer 50b, and a second adhesive layer 50c.
  • the base layer 50a is disposed between the first adhesive layer 50b and the second adhesive layer 50c.
  • the materials of the substrate 50a, the first adhesive layer 50b and the second adhesive layer 50c are each independently selected from polypropylene, polyethylene, polyethylene terephthalate, polyethylene naphthalate, polyethylene At least one of propylene modified material or polyethylene modified material.
  • the melting point of the substrate 50a may be higher than the melting point of the first adhesive layer 50b, and may also be higher than the melting point of the second adhesive layer 50c. Referring to FIG. 9A and FIG. 9B together, one surface of the first adhesive layer 50 b is bonded to the first conductive plate 30 , and the other surface is bonded to the substrate 50 a.
  • the second adhesive layer 50 c has a welded portion with the first portion 101 a of the first housing 101 or the third portion 102 a of the second housing 102 .
  • the first conductive plate 30 includes a first surface 301 , a second surface 302 , a first side 303 and a second side 304 .
  • the first surface 301 and the second surface 302 are disposed opposite to each other.
  • the first surface 301 faces the first casing 101
  • the second surface 302 faces the second casing 102 .
  • the first side 303 and the second side 304 are oppositely arranged.
  • the first side 303 is connected between the first surface 301 and the second surface 302
  • the second side 304 is connected between the first surface 301 and the second surface 302 .
  • the first angled region 300 may be approximately 90 degrees.
  • the first layer 50 respectively covers the first surface 301 , the second surface 302 , the first side 303 and the second side 304 of the first conductive plate 30 , so as to seal the above-mentioned surfaces of the first conductive plate 30 and the casing 10 . Therefore, viewed from the direction opposite to the first direction X, the first layer 50 includes four second angled regions 500 .
  • the four second angled regions 500 are respectively connected to the four first angled regions 300 of the first conductive plate 30 .
  • the first conductive plate 30 includes a first conductive region 31 , a second conductive region 32 and a third conductive region 33 which are connected.
  • the first conductive region 31 and the third conductive region 33 are located in the casing 10 , that is, viewed from the second direction Y, the first conductive region 31 and the second conductive region 33 overlap with the casing 10 .
  • the first conductive region 31 overlaps the first portion 101a
  • the third conductive region 33 overlaps the second portion 101b.
  • the first conductive region 31 is used for electrical connection with the first tab 24 of the electrode assembly 20 .
  • the second conductive region 32 extends out of the casing 10 .
  • the first layer 50 in the first direction X, includes a first region 51 and a second region 52 connected.
  • the first area 51 is disposed in the casing 10 .
  • the first side 121 is disposed between the first region 51 and the second region 52 , and the first side 121 partially overlaps the boundary line between the first region 51 and the second region 52 .
  • the first region 51 is sandwiched in the connecting portion 12 .
  • the first area 51 is the orthographic projection of the first layer 50 along the second direction Y coincides with the first part 101a of the first casing 101, and is sandwiched between the first part 101a in the second direction Y.
  • the second area 52 is disposed outside the casing 10 .
  • the second region 52 is a region in the first layer 50 that is connected to the first region 51 and is farther away from the second part 101b in the first direction X than the first part 101a of the first casing 101 when viewed along the second direction Y. .
  • the first region 51 partially overlaps the first conductive plate 30, for example, the first region 51 may partially overlap the first conductive region 31 of the first conductive plate 30; the second region 52 overlaps with the first conductive plate 30; The plates 30 partially overlap, eg, the second region 52 may partially overlap the second conductive region 32 of the first conductive plate 30 .
  • the first layer 50 may also include a third region 53 .
  • the first region 51 is connected between the second region 52 and the third region 53 .
  • the third area 53 is connected to the first area 51 in the first layer 50 , and the third area 53 is disposed in the main body 11 . That is, when viewed from the second direction Y, the third region 53 is a region closer to the interior of the main body portion 11 in the first direction X than the first portion 101 a. Viewed along the second direction Y, the third region 53 partially overlaps the first conductive plate 30 , for example, the third region 53 may partially overlap the third conductive region 33 of the first conductive plate 30 .
  • the head exerts pressure on the connecting portion 12 part of the first layer 50 can be squeezed to the position where the pressure on both sides is less after being compressed, thereby forming the second region 52 and the third region 53 .
  • the second region 52 includes a first convex portion 521 and a second convex portion 522 .
  • the first protrusion 521 partially overlaps the first conductive plate 30 and protrudes along the first direction X
  • the second protrusion 522 partially overlaps the first conductive plate 30 and protrudes along the first direction X .
  • the first protrusion 521 and the second protrusion 522 protrude from the second angled region 500 along the first direction X.
  • the first protrusion 521 is separated from the second protrusion 522 .
  • the first convex portion 521 has a vertex T 1
  • the second convex portion 522 has a vertex T.
  • the vertex T 1 is the furthest distance from the first convex portion 521 to the first side 121
  • the vertex T 2 is the furthest distance from the second convex portion 522 to the first side 121 .
  • the first layer is connected to the first angled area of the first conductive plate (that is, the second angled area)
  • the second angled area due to a sudden change in thickness, it is from an insulating material to a metal material of the first conductive plate.
  • the location of the transition, so the seal strength is relatively low.
  • the second angled area is more likely to generate stress concentration, so that the first layer may separate from the first conductive plate at the second included angled area, reducing the sealing performance and causing liquid leakage or external moisture to enter the housing internally, affecting the lifetime of the electrochemical device.
  • water vapor may cause the internal acid content of the electrochemical device to increase after entering the casing, and accelerate the stripping of transition metal ions in lithium cobaltate (such as accelerating the cobalt ion in lithium cobaltate in the positive electrode conductive layer). Dissolution), affecting the storage performance and cycle performance of electrochemical devices.
  • heat will be generated at the first conductive plate during charging, especially during fast charging. Since the second angled area is in direct contact with the first conductive plate, the insulating material at the second angled area will deteriorate due to frequent temperature changes during the long-term charge and discharge process, making the second angled area more prone to cracks or degradation. tightness.
  • the first protruding portion 521 and the second protruding portion 522 are set on the first layer 50.
  • the stress generated by the first layer 50 at the second angled region 500 can be along the first protruding portion 521 and the The extension directions of the second protrusions 522 are scattered, which not only helps to reduce the possibility of separation of the second angled region 500 from the first conductive plate 30, but also improves the sealing performance of the first layer 50, thereby improving the reliability of the electrochemical device 100. service life.
  • first protruding portion 521 and the second protruding portion 522 increase the contact area between the first layer 50 and the first conductive plate 30, so when the first conductive plate 30 is charged to generate heat, the first protruding portion 521 and the second protruding portion 522
  • the second convex portion 522 improves the heat dissipation efficiency of the first layer 50 , thereby improving the deterioration of the first layer 50 due to frequent temperature changes, and is also beneficial to improving the sealing performance of the first layer 50 .
  • the apex T1 of the first protrusion 521 overlaps with the first side 303
  • the apex T of the second protrusion 522 2 overlaps the second side 304.
  • the second region 52 further includes a third convex portion 523 disposed between the first convex portion 521 and the second convex portion 522 , the third convex portion The portion 523 protrudes in the first direction X.
  • the overlapping portion of the second region 52 and the first conductive plate 30 is defined as an overlapping region 520 .
  • the overlapping region 520 may be a portion where the second region 52 overlaps with the second conductive region 32 of the first conductive plate 30 .
  • the third protrusion 523 is located in the overlapping area 520 .
  • the overlapping region 520 is also a portion of the second region 52 disposed between the first side 303 and the second side 304 of the first conductive plate 30 .
  • the third convex portion 523 has a vertex T 3 , and the vertex T 3 is the furthest distance from the third convex portion 523 to the first side 121 .
  • the number of overlapping regions 520 is two. In the second direction Y, the two overlapping regions 520 are respectively located on two sides of the first conductive plate 30 . One overlapping region 520 is connected to the first surface 301 of the first conductive plate 30 , and the other overlapping region 520 is connected to the second surface 302 of the first conductive plate 30 . Each overlapping area 520 is provided with a third protrusion 523 .
  • the number of third protrusions 523 located on the first surface 301 may be multiple, and the plurality of third protrusions 523 are connected along the third direction Z.
  • the number of the third protrusions 523 on the second surface 302 may also be multiple, and the plurality of third protrusions 523 are connected along the third direction Z.
  • the distance from the first side 121 to the vertex T 1 of the first convex portion 521 is defined as the first distance H 1
  • the distance from the first side 121 to the vertex T 3 of the third convex portion 523 is the second distance.
  • the first distance H 1 is greater than the second distance H 2 (H 1 >H 2 ). It can be understood that when the number of third protrusions 523 located on the first surface 301 (or the second surface 302) is multiple, the second distance H2 may be from the first side 121 to the vertex T of the plurality of third protrusions 523 The maximum value in the distance of 3 .
  • the extension distance of the third protrusion 523 is relatively large, it indicates that a large part of the first area 51 connected to the first surface 301 or the second surface 302 of the first conductive plate 30 is squeezed out of the connecting portion 12, resulting in the connection to the first conductive plate 30.
  • the thickness of the first region 51 on the surface of the first conductive plate 30 is correspondingly smaller, and the sealing strength of the first layer 50 is also smaller. Therefore, by setting H 1 >H 2 in the present application, the first protrusion 521 can better disperse stress and improve the effect of heat dissipation, and reduce the impact on the sealing strength of the first layer 50 .
  • the fourth distance H 4 from the first side 121 to the vertex T 2 of the second convex portion 522 is greater than the second distance H 2 .
  • the first layer 50 includes a first end 501 , a second end 502 , a third end 503 and a fourth end 504 .
  • the first end side 501 and the second end side 502 are disposed opposite to each other.
  • the first end side 501 is located on a side of the first side 121 away from the first portion 101 a , and the second end side 502 overlaps with the first portion 101 .
  • the third end 503 is opposite to the fourth end 504
  • the fourth end 504 is an edge of the first layer 50 closer to the second conductive plate 40 .
  • Both the third end side 503 and the fourth end side 504 extend along the first direction X. Viewed along the second direction Y, the first protrusion 521 , the second protrusion 522 and the third protrusion 523 are all formed on the first edge 501 .
  • the first end side 501 includes a second side 54 extending along the third direction Z.
  • the first protrusion 521 is disposed between the second side 54 and the second protrusion 522 .
  • the second side 54 , the first protrusion 521 , the third protrusion 523 and the second protrusion 522 are sequentially connected.
  • the distance from the first side 121 to the second side 54 is defined as a third distance H 3 , then the first distance H 1 is greater than the third distance H 3 (H 1 >H 3 ).
  • the first convex portion 521 can better disperse the stress and improve the effect of heat dissipation, and reduce the large extension distance of the first side 121 that would cause the first side 121 to be connected to the first conductive plate.
  • the thickness of the first region 51 on the side of 30 is correspondingly smaller, reducing the possibility of tightness.
  • the second distance H 2 is greater than the third distance H 3 (H 2 >H 3 ).
  • the third distance H 3 is 0.2 mm to 3.5 mm, and the ratio of the first distance H 1 to the third distance H 3 is in a range of 1.09 to 16.
  • the present application limits the range of the third distance H3 , which reduces the possibility that the first side 121 protrudes from a small distance (the pressure applied to the first layer 50 by the packaging head is insufficient) and the possibility of reducing the airtightness of the first layer 50 is reduced. At the same time, the impact on the sealing performance of the first layer 50 when the first side 121 protrudes a large distance is also reduced.
  • the first conductive plate 30 exposed to the housing 10 needs to be bent towards the first end wall 111 (for example, to facilitate the connection of the first conductive plate 30 to external elements), when the first side protrudes farther At the same time, the first layer needs to be bent simultaneously with the first conductive plate, and stress concentration may occur at the bending position during mechanical abuse, which increases the possibility of cracking of the first layer. Therefore, by limiting the upper limit of H 3 , the possibility of cracking after bending of the first layer 50 can also be reduced.
  • the present application improves the problem that the stress dispersion effect and heat dissipation effect are reduced when H 1 is small by limiting the ratio range of the first distance H 1 to the third distance H 3 , and also reduces the impact on the electrochemical performance when H 1 is large. Effect of Device 100 Energy Density.
  • the first distance H 1 is 3 mm to 4.5 mm.
  • the second distance H 2 is 2.3 mm to 3 mm.
  • the third distance H 3 is 1.8 mm to 2.5 mm.
  • the ratio of the fourth distance H 4 to the third distance H 3 can be set to range from 1.09 to 16.
  • the fourth distance H 4 is 3 mm to 4.5 mm.
  • the electrochemical device 100 further includes a circuit board 70 electrically connected to the first conductive plate 30 and the second conductive plate 40 .
  • the third conductive region 33 of the first conductive plate 30 exposed on the housing 10 is bent toward the first end surface 1111 of the first end wall 111 to form a first segment 331 and a second segment 332, and a third segment 333 connected between the first segment 331 and the second segment 332.
  • the first segment 331 is connected to the first conductive region 31 .
  • the circuit board 70 is disposed on the first end surface 1111 .
  • the circuit board 70 is provided with a first electrical connector 71 and a second electrical connector (not shown).
  • the circuit board 70 is connected to the second segment 332 of the third conductive region 33 through the first electrical connection member 71 .
  • the area of the second conductive plate 40 exposed to the housing 10 can also be bent toward the first end surface 1111 and connected to the second electrical connector.
  • the first electrical connector 71 and the second electrical connector may be nickel sheets.
  • an adhesive member 72 may also be provided between the first segment 331 and the second segment 332 .
  • the two opposite surfaces of the bonding member 72 in the second direction Y are respectively bonded to the first segment 331 and the second segment 332 .
  • the materials of the first shell 101 and the second shell 102 can be both multi-layer sheets.
  • the first casing 101 may include a first protective layer 1011 , a first metal layer 1012 and a first polymer layer 1013 stacked in sequence. Compared with the first protection layer 1011 , the first polymer layer 1013 is closer to the electrode assembly 20 .
  • the material of the first protective layer 1011 can be polymer resin, which can be used to protect the first metal layer 1012, reduce the possibility of damage to the first metal layer 1012 due to external force, and at the same time delay the air penetration of the external environment and maintain the electrochemical The interior of device 100 is in a normal operating environment.
  • the material of the first protective layer 1011 can be selected from ethylene terephthalate, polybutylene terephthalate, polyvinylidene fluoride, polytetrafluoroethylene, polypropylene, polyamide , at least one of polyimide.
  • the first metal layer 1012 can be used to delay moisture penetration of the external environment and reduce damage to the electrode assembly 20 caused by external forces.
  • the first metal layer 1012 may be an aluminum foil layer or a steel foil layer.
  • the first polymer layer 1013 has the property of heating and melting, can be used for sealing, and can reduce the possibility of the multi-layer sheet being dissolved or swollen by the organic solvent in the electrolyte.
  • the first polymer layer 1013 can also be used to reduce the possibility that the electrolyte in the electrolytic solution contacts the first metal layer 1012 and causes the metal layer to be corroded.
  • the first polymer layer 1013 includes a polymer material, which may be selected from at least one of polypropylene, propylene copolymer, polyethylene, and polymethylmethacrylate.
  • the second housing 102 may include a second protective layer 1021 , a second metal layer 1022 and a second polymer layer 1023 stacked in sequence. It can be understood that when the first casing 101 and the second casing 102 can be obtained by folding a packaging film, the materials of the second protective layer 1021 , the second metal layer 1022 and the second polymer layer 1023 are respectively different from those of the first protective layer. The materials of the layer 1011 , the first metal layer 1012 and the first polymer layer 1013 are completely the same, and will not be repeated here.
  • a certain temperature can be applied to the first part 101a of the first housing 101 and the third part 102a of the second housing 102 at the same time by using the sealing head of the packaging device. and pressure, the first polymer layer 1013 and the second polymer layer 1023 are melted and bonded together to form the connection part 12 .
  • the first layer 50 is disposed between the first polymer layer 1013 and the second polymer layer 1023, and is fused and bonded together with the first polymer layer 1013 and the second polymer layer 1023 when sealed.
  • the second adhesive layer 50c of the first layer 50 fuses with the first polymer layer 1013 and the second polymer layer 1023 during sealing and glued together.
  • the pressure exerted by the head on the connection part 12 is relatively high, so that part of the first layer 50 is squeezed to a position with less pressure after being compressed, thereby forming the second region 52 and the third region. 53.
  • the first layer 50 fills the gap that may exist between the first conductive plate 30 and the connecting portion 12 , and reduces the possibility of separation of the first conductive plate 30 and the connecting portion 12 during subsequent use.
  • the materials of the first layer 50 , the first polymer layer 1013 and the second polymer layer 1023 are all polymers, their melting points are relatively close, so the bonding degree is better in a high temperature and pressurized environment, and the sealing performance is improved.
  • the first layer 50 can also improve the electrical insulation between the first conductive plate 30 and the first metal layer 1012 and the second metal layer 1022 , reducing the possibility of a short circuit caused by contact between the three.
  • the overlapping region 520 may further include a fourth protrusion 524 protruding along the second direction Y.
  • the fourth protrusion 524 is located on one side of the first side 121 so as to cover the exposed edge of the first side 121 . Therefore, when the third conductive region 33 of the first conductive plate 30 needs to be bent toward the side of the first end wall 111 , the fourth protrusion 524 can reduce the contact between the first conductive plate 30 and the exposed metal from the edge of the first side 121 . Possibility of short circuit or corrosion due to direct contact of layers.
  • the electrochemical device 100 may further include a second layer 60 including an insulating material.
  • the second layer 60 can be used for sealing the connection between the second conductive plate 40 and the casing 10 , and can also electrically insulate the second conductive plate 40 from the casing 10 .
  • the second layer 60 can also adopt a design similar to that of the first layer 50 , that is, a convex portion is provided on the second layer 60 , so as to further improve the sealing performance. No repeated description is given here.
  • another embodiment of the present application also provides an electrochemical device 200 .
  • the third region 53 includes a fifth protrusion 531 and a sixth protrusion 532 .
  • the fifth protrusion 531 partially overlaps the first conductive plate 30 and protrudes away from the first direction X
  • the sixth protrusion 532 partially overlaps the first conductive plate 300 and protrudes away from the first direction X .
  • the number of fifth protrusions 531 is two
  • the number of sixth protrusions 532 is also two.
  • the two fifth protrusions 531 and the two sixth protrusions 532 protrude from the four second angled regions 500 away from the first direction X respectively. In the third direction Z, the fifth protrusion 531 is separated from the sixth protrusion 532 .
  • the stress generated by the first layer 50 at the second angled region 500 can also be dispersed along the extension direction of the fifth convex portion 531 and the sixth convex portion 532, which is also beneficial to reduce the second
  • the possibility of separating the angled area 500 from the first conductive plate 30 improves the sealing performance of the first layer 50 and is also beneficial to reduce the possibility of breaking the first conductive plate 30 when the stress is transmitted to the first conductive plate 30 .
  • the service life of the electrochemical device 200 is increased.
  • the fifth protrusion 531 and the sixth protrusion 532 also improve the heat dissipation efficiency of the first layer 50 , thereby improving the sealing performance of the first layer 50 .
  • the electrochemical device 100 (or electrochemical device 200 ) of the present application includes all devices capable of electrochemical reactions.
  • the electrochemical device 100 includes all kinds of primary batteries, secondary batteries, fuel cells, solar cells and capacitors (such as supercapacitors).
  • the electrochemical device 100 may be a lithium secondary battery, including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, and a lithium ion polymer secondary battery.
  • an embodiment of the present application further provides an electronic device 1 , and the electronic device 1 includes an electrochemical device 100 (or an electrochemical device 200 ).
  • the electrochemical device 100 of the present application is applicable to electronic devices 1 in various fields.
  • the electronic device 1 of the present application may be, but not limited to, a notebook computer, a pen input computer, a mobile computer, an e-book player, a portable phone, a portable fax machine, a portable copier, a portable printer, a head-mounted Stereo headphones, VCRs, LCD TVs, portable cleaners, portable CD players, mini-discs, transceivers, electronic organizers, calculators, memory cards, portable tape recorders, radios, backup power supplies, electric motors, automobiles, motorcycles, power-assisted bicycles , bicycles, lighting appliances, toys, game consoles, clocks, electric tools, flashlights, cameras, large household batteries and lithium-ion capacitors, etc.
  • the negative pole piece Preparation of the negative pole piece: mix the negative active material artificial graphite, conductive carbon black (Super P), and styrene-butadiene rubber (SBR) in a weight ratio of 96:1.5:2.5, add deionized water as a solvent, and prepare The weight percentage is 70wt% slurry, and stir evenly.
  • the slurry was uniformly coated on one surface of a negative electrode current collector copper foil with a thickness of 10 ⁇ m, and dried at 110° C. to obtain a negative electrode sheet with a coating thickness of 150 ⁇ m coated on one side with a negative electrode active material layer.
  • the above steps are repeated on the other surface of the negative electrode sheet to obtain a negative electrode sheet coated with negative electrode active material layers on both sides.
  • the negative pole piece includes a negative pole lug, and the negative pole lug is nickel (Ni).
  • the positive active material lithium cobaltate (LiCoO 2 ), conductive carbon black (Super P), and polyvinylidene fluoride (PVDF) were mixed according to the weight ratio of 97.5:1.0:1.5, and N - Using methylpyrrolidone (NMP) as a solvent, prepare a slurry with a solid content of 75 wt%, and stir evenly. The slurry was uniformly coated on one surface of a positive electrode current collector aluminum foil with a thickness of 12 ⁇ m, and dried at 90° C. to obtain a positive electrode sheet with a positive electrode active material layer thickness of 100 ⁇ m.
  • NMP methylpyrrolidone
  • the positive pole piece includes a positive pole lug, and the positive pole lug is made of aluminum (Al).
  • Preparation of battery connect the first layer to the first conductive plate, connect the second layer to the second conductive plate, then connect the first conductive plate and the second conductive plate to the first tab and the second pole respectively Ears are welded. Wherein, the sequence of the gluing process and the welding process can be exchanged. Next, the first pole piece, the separator and the second pole piece are stacked and wound in sequence to obtain the electrode assembly, and the separator is made of a polyethylene (PE) film with a thickness of 15 ⁇ m. Then perform liquid injection, chemical formation, and packaging to make a battery with a size of 5.40mm ⁇ 94mm ⁇ 90mm, and bend the first conductive plate and the second conductive plate out of the shell and connect them to the circuit board.
  • PE polyethylene
  • a first protrusion and a second protrusion partially overlapping with the first conductive plate are formed on the first layer, and the second region of the first layer also includes the first protrusion and the second protrusion.
  • the third protrusion between the two protrusions See Table 1 for the values of H 1 , H 2 and H 3 and the ratio of H 1 /H 3 .
  • Example 1 The difference from Example 1 is that, when viewed along the second direction, the first convex part and the second convex part overlapping with the first conductive plate are not formed on the first layer, nor are the first convex part and the second convex part formed on the first layer. A third protrusion between the protrusions.
  • Example 1 The difference from Example 1 is that the values of H 1 , H 2 and H 3 and the ratio of H 1 /H 3 are different.
  • the steps of the drop test include: 1) Adjust the voltage of the battery to 100% SOC (State of Charge) under the ambient condition of 25°C. 2) Put the battery into the fixture compartment, and use the automatic drop equipment to place the bottom, left, right, front, back, and top of the battery in a round from the position of 1.8m to the ground at 45 ⁇ 15 degrees. Falling onto the steel plate at an angle of 10 degrees, a total of 14 rounds of falling or 84 times in one cycle. 3) After the drop is completed, check if there is no leakage in the connection area between the first layer and the first conductive plate, and there is no crack or break in the area where the first layer is exposed to the shell, then it is determined that the battery has passed the test.
  • SOC State of Charge
  • the steps of the drop + high temperature and high humidity test include: 1) Adjust the voltage of the battery to 100% SOC (State of Charge) under the ambient condition of 25°C. 2) After the drop is completed, put the battery into the fixture compartment, and use the automatic drop device to land the bottom, left, right, front, back, and top of the battery in a round from the position of 1.8m to 45 Falling on the steel plate at an angle of ⁇ 15 degrees, a total of 14 rounds of falling or 84 times in one cycle. 3) Store the battery in a heating furnace for 30 days, the temperature in the furnace is 65°C, and the relative humidity is 90%. 4) Take out the battery and check if there is no liquid leakage in the connection area between the first layer and the first conductive plate, then it is judged that the battery has passed the test.
  • SOC State of Charge
  • the steps of the high-rate charge-discharge test include: 1) Charge to 4.15V at a constant current of 10.0C, and then charge at a constant voltage to 8C. 2) Charge to 4.35V with 8.0C constant current, and then charge to 6C with constant voltage. 3) Charge to 4.45V with a constant current of 6.0C, and then charge to 1C with a constant voltage. 4) Charge to 4.5V with a constant current of 1.0C, and then charge to 0.05C with a constant voltage. 5) Discharge at 2C to a voltage of 3.0V. 6) During the cycle, discharge at the 100th, 500th, and 1000th time respectively, and check if there is no leakage in the connection area between the first layer and the first conductive plate, then the battery is judged to have passed the test.
  • the steps of the cobalt dissolution test include: 1) After the 1000th discharge of the battery, the battery is centrifuged; 2) The liquid obtained after centrifugation is subjected to ICP (Inductive Coupled Plasma Emission Spectrometer, Inductively Coupled Plasma Spectrometer) test to obtain the electrolytic The cobalt content of the liquid is used to characterize the cobalt dissolution amount of lithium cobaltate in the positive electrode sheet.
  • ICP Inductive Coupled Plasma Emission Spectrometer, Inductively Coupled Plasma Spectrometer
  • the first layer of Example 1 As can be seen from the data in Table 1, compared with Comparative Example 1, since the first layer of Example 1 is provided with the first convex portion, the second convex portion and the third convex portion, the first layer has improved sealing performance, so that the implementation The passing rate of the drop test, drop + high temperature and high humidity test and high rate charge and discharge test of the battery in Example 1 is relatively high, and the amount of cobalt ion dissolved after long-term cycling is relatively low.
  • the value of H 3 and the ratio of H 1 /H 3 will further affect the sealing performance of the first layer.
  • H 3 is too small and the ratio of H 1 /H 3 is too large, so the sealing performance of the first layer is relatively reduced, the pass rate of the large-rate charge-discharge test after long-term cycling is reduced, and cobalt ions are eluted
  • the volume also increased relatively.
  • H 3 is too large and the ratio of H 1 /H 3 is too small, stress concentration is likely to occur in the first layer at the bending position of the first conductive plate, so the proportion of cracks or fractures increases.
  • Example 4 Compared with Example 4, the ratio of H 1 /H 3 in Comparative Example 5 is too large, so the sealing performance of the first layer is relatively reduced, the pass rate of the high-rate charge-discharge test is reduced, and the amount of cobalt ions dissolved after long-term cycling is also relatively increased .
  • the ratio of H3 and H1 / H3 satisfies the predetermined conditions, so the pass rate of the drop test, drop + high temperature and high humidity test and large rate charge and discharge test of the battery is high, and the cobalt ion after long-term cycle The dissolution rate is low.

Abstract

一种电化学装置,包括壳体、电极组件和导电板。电极组件设置于壳体内。导电板与电极组件电连接并从壳体伸出。电化学装置还包括第一层,定义导电板的伸出方向为第一方向,在第一方向上,第一层包括相连接的第一区域和第二区域,第一区域设于壳体内,第二区域设于壳体外。定义与导电板的一个表面相垂直的方向为第二方向,沿第二方向观察,第二区域与导电板部分重叠第二区域包括第一凸部和第二凸部。沿第二方向观察,第一凸部与导电板部分重叠且沿第一方向凸出,第二凸部与导电板部分重叠且沿第一方向凸出。在第三方向上,第一凸部与第二凸部相分离。本申请还提供一种电子装置。本申请具有改善的密封性和使用寿命。

Description

电化学装置和电子装置 技术领域
本申请涉及储能技术领域,尤其涉及一种电化学装置以及具有该电化学装置的电子装置。
背景技术
电化学装置(如电池)在电子移动设备、电动工具及电动汽车等电子产品中有着广泛使用,人们对电化学装置的要求也越来越高。
在电化学装置的制备过程中,需要密封上壳体和下壳体以形成用于收容电极组件和电解液的收容空间,电连接于电极组件的导电板从壳体伸出。然而,壳体于导电板伸出的位置可能存在气密性下降的问题。当发生机械滥用(跌落、碰撞、振动)时,壳体存在漏液的可能性,降低产品的使用寿命。
发明内容
鉴于现有技术存在的不足,有必要提出一种具有改善的密封性的电化学装置。
另,还有必要提供一种具有该电化学装置的电子装置。
本申请提供一种电化学装置,包括壳体、电极组件和第一导电板。电极组件设置于壳体内,第一导电板与电极组件电连接并从壳体伸出。电化学装置还包括第一层,定义第一导电板的伸出方向为第一方向,在第一方向上,第一层包括相连接的第一区域和第二区域,第一区域设于壳体内,第二区域设于壳体外。定义与第一导电板的一个表面相垂直的方向为第二方向,沿第二方向观察,第二区域与第一导电板部分重叠。第一层包括绝缘材料。第二区域包括第一凸部和第二凸部。沿第二方向观察,第一凸部与第一导电板部分重叠且沿第一方向凸出,第二凸部与第一导电板部分重叠且沿第一方向凸出。定义第三方向、第一方向和第二方向相互垂直,在第三方向上,第一凸部与第二凸部相分离。
本申请在第一层上设置第一凸部和第二凸部,当发生机械滥用时,第一层产生的应力可沿第一凸部和第二凸部的延伸方向分散,不仅有利于减小第一层与第一导电板分离的可能性,提高了第一层的密封性,从而提高了电化学装置的使用寿命。同时,也有利于减小由于第一层密封性下降、水汽进入壳体而使正极导电层中过渡金属离子溶出的可能性,提高电化学装置的存储性能和循环性能。再者,第一凸部和第二凸部增加了第一层与第一导电板之间的接触面积,因此当第一导电板充电产热时,第一凸部和第二凸部提高了第一层的散热效率,从而改善了第一层由于频繁的温度变化而劣化的情况,同样有利于提高第一层的密封性。
在一些可能的实现方式中,沿第二方向观察,第二区域还包括设于第一凸部与第二凸部之间的第三凸部,第三凸部沿第一方向凸出。第三凸部进一步增加了第一层与第一导电板之间的接触面积,因此进一步提高了第一层的散热效率,从而提高了第一层的密封性。
在一些可能的实现方式中,沿第二方向观察,壳体包括设于第一区域和第二区域之间的第一边。在第一方向上,定义第一边至第一凸部的顶点的距离为第一距离,第一边至第三凸部的顶点的距离为第二距离,第一距离大于第二距离。因此,使得第一凸部能够较好地起到分散应力和提高散热效果的作用,同时也有利于改善第三凸部伸出距离较大而导致连接于第一导电板表面的第一区域的厚度相应较小的情况,从而减小了对第一层密封性的影响。
在一些可能的实现方式中,第三凸部的数量为多个。
在一些可能的实现方式中,沿第二方向观察,定义第二区域与第一导电板重叠的部分为重叠区。重叠区包括第四凸部,第四凸部沿第二方向凸出。因此,当第一导电板需要弯折时,第四凸部可减小第一导电板与从第一边边缘裸露的金属层直接接触而导致的短路或腐蚀的可能性。
在一些可能的实现方式中,第一层包括第二边,第二边沿第三方向延伸。在第三方向上,第一凸部设于第二边和第二凸部之间。在第一方向上,第一边至第二边的距离为第三距离,第一距离大于第三距离。因此,使得第一凸部能够较好地起到分散应力和提高散热效果的作用,同时也改善了当第一边伸出距离较大时而导致连接于第一导电板侧面的第一区域的厚度相应较小的情况,从而减小对第一层密封性的影响。
在一些可能的实现方式中,第二距离大于第三距离。
在一些可能的实现方式中,第三距离为0.2mm至3.5mm,第一距离与第三距离的比值范围为1.09至16。本申请通过限定第三距离的范围,减小了第一边伸出距离较小(封装封头施加于第一层的压力不足)使第一层密封性降低的可能性,同时也减小了第一边伸出距离较大时对第一层密封性的影响。通过限定第三距离的上限值,还能够减小第一层弯折后破裂的可能性。同时,本申请通过限定第一距离与第三距离的比值范围,改善了第一距离较小时应力分散效果和散热效果降低的问题,同时也减小了第一距离较大时对电化学装置能量密度的影响。
在一些可能的实现方式中,从第二方向观察,第一导电板包括相对设置的第一侧面和第二侧面。在第一方向上,第一凸部的顶点与第一侧面重叠,第二凸部的顶点与第二侧面重叠。
在一些可能的实现方式中,壳体包括主体部和连接主体部的连接部,连接部用于密封主体部。电极组件设置于主体部中。第一导电板与电极组件电连接并从连接部伸出。第一区域连接第一导电板和连接部。因此,第一区域可用于密封第一导电板和连接部之间的空隙,减小漏液可能性。
在一些可能的实现方式中,壳体包括相对设置的第一壳体和第二壳体。第一壳体包括第一聚合物层,第二壳体包括第二聚合物层,第一聚合物层和第二聚合物层相互粘合以形成连接部,从而实现密封。而且,第一聚合物层和第二聚合物层还可以降低壳体被电解液中的有机溶剂溶解或溶胀的可能性。
在一些可能的实现方式中,第一聚合物层包括第一聚合物材料,第二聚合物层包括第二聚合物材料,第一聚合物材料和第二聚合物材料各自独立地选自聚丙烯、丙烯共聚物、聚乙烯或聚甲基丙烯酸甲酯中的至少一种。
在一些可能的实现方式中,第一层还包括第三区域。在第一方向上,第一区域连接于第二区域与第三区域之间,第三区域设于主体部内。第三区域包括第五凸部和第六凸部。沿第二方向观察,第五凸部与第一导电板部分重叠且远离第一方向凸出,第六凸部与第一导电板部分重叠且远离第一方向凸出。在第三方向上,第五凸部与第六凸部相分离。因此,当发生机械滥用时,第五凸部和第六凸部能够分散第一层产生的应力,而且能够提高第一层的散热效率,从而提高第一层的密封性。
在一些可能的实现方式中,绝缘材料选自聚丙烯、聚乙烯、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚丙烯改性材料或聚乙烯改性材料中的至少一种。
本申请还提供一种电子装置,包括上述电化学装置。
附图说明
图1为本申请一实施方式提供的电化学装置的立体图。
图2为图1所示的电化学装置的主视图。
图3为图1所示的电化学装置的背视图。
图4为图2所示的电化学装置于A处的局部放大图。
图5为图2所示的电化学装置沿V-V的剖视图。
图6为图2所示的电化学装置沿VI-VI的剖视图。
图7为图2所示的电化学装置于另一些实施例中的剖视图。
图8为图5所示的电化学装置的第一导电板连接电路板后的剖视图。
图9A为图2所示的电化学装置沿VIII-VIII的剖视图。
图9B为图2所示的电化学装置的第一层的结构示意图。
图10为图2的电化学装置的电极组件于一些实施例中的俯视图。
图11为图1所示的电化学装置在密封前的结构示意图。
图12为图11所示的电化学装置的第一壳体的局部剖视图。
图13为图11所示的电化学装置的第二壳体的局部剖视图。
图14为本申请另一实施方式提供的电化学装置的主视图。
图15为图14所示的电化学装置于B处的局部放大图。
图16为本申请一实施方式提供的电子装置的结构示意图。
主要元件符号说明
电子装置                         1
壳体                             10
主体部                           11
连接部                           12
第一连接区                       12a
第二连接区                       12b
第三连接区                       12c
电极组件                         20
第一极片                         21
第二极片                         22
隔离膜                           23
第一极耳                         24
第二极耳                         25
第一导电板                       30
第一导电区                       31
第二导电区                       32
第三导电区                       33
第二导电板                       40
第一层                           50
基材                             50a
第一胶粘层                       50b
第二胶粘层                       50c
第一区域                         51
第二区域                         52
第三区域                         53
第二边                           54
第二层                           60
电路板                           70
第一电连接件                     71
粘接件                           72
电化学装置                       100、200
第一壳体                         101
第一部分                         101a
第二部分                         101b
第二壳体                         102
第三部分                         102a
第四部分                         102b
第一端壁                         111
第二端壁                         112
第一侧壁                         113
第二侧壁                         114
第三侧壁                         115
第四侧壁                         116
第一边                           121
第一导电层                       210
第一导电材料层                   211
第二导电层                       220
第二导电材料层                   221
第一转接部                       240
第二转接部                       250
第一夹角区                       300
第一表面                         301
第二表面                         302
第一侧面                         303
第二侧面                         304
第一段                           331
第二段                           332
第三段                           333
第二夹角区                       500
第一端边                         501
第二端边                         502
第三端边                         503
第四端边                         504
重叠区                           520
第一凸部                         521
第二凸部                         522
第三凸部                         523
第四凸部                         524
第五凸部                         531
第六凸部                         532
第一保护层                       1011
第一金属层                       1012
第一聚合物层                     1013
第二保护层                       1021
第二金属层                       1022
第二聚合物层                       1023
第一端面                           1111
第二端面                           1121
第三端面                           1112
第四端面                           1122
第一侧表面                         1131
第二侧表面                         1141
第三侧表面                         1132
第四侧表面                         1142
第一方向                           X
第二方向                           Y
第三方向                           Z
第一距离                           H 1
第二距离                           H 2
第三距离                           H 3
第四距离                           H 4
顶点                               T 1、T 2、T 3
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面对本申请实施例中的技术方案进行清楚、详细地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
下文,将详细地描述本申请的实施方式。但是,本申请可体现为许多不同的形式,并且不应解释为限于本文阐释的示例性实施方式。而是,提供这些示例性实施方式,从而使本申请透彻的和详细的向本领域技术人员传达。
另外,为了简洁和清楚,在附图中,各种组件、层的尺寸或厚度可被放大。遍及全文,相同的数值指相同的要素。如本文所使用,术语“及/或”、“以及/或者”包括一个或多个相关列举项目的任何和所有组合。另外,应当理解,当要素A被称为“连接”要素B时,要素A可直接连接至要素B,或可能存在中间要素C并且要素A和要素B可彼此间接连接。
进一步,当描述本申请的实施方式时使用“可”指“本申请的一个或多个实施方式”。
本文使用的专业术语是为了描述具体实施方式的目的并且不旨在限制本申请。如本文所使用,单数形式旨在也包括复数形式,除非上下文另外明确指出。应进一步理解,术语“包括”,当在本说明书中使用时,指存在叙述的特征、数值、步骤、操作、要素和/或组分,但是不排除存在或增加一个或多个其他特征、数值、步骤、操作、要素、组分和/或其组合。
空间相关术语,比如“上”等可在本文用于方便描述,以描述如图中阐释的一个要素或特征与另一要素(多个要素)或特征(多个特征)的关系。应理解,除了图中描述的方向之外,空间相关术语旨在包括设备或装置在使用或操作中的不同方向。例如,如果将图中的设备翻转,则描述为在其他要素或特征“上方”或“上”的要素将定向在其他要素或特征的“下方”或“下面”。因此,示例性术语“上”可包括上面和下面的方向。应理解,尽管术语第一、第二、第三等可在本文用于描述各种要素、组分、区域、层和/或部分,但是这些要素、组分、区域、层和/或部分不应受这些术语的限制。这些术语用于区分一个要素、组分、区域、层或部 分与另一要素、组分、区域、层或部分。因此,下面讨论的第一要素、组分、区域、层或部分可称为第二要素、组分、区域、层或部分,而不背离示例性实施方式的教导。
请参阅图1至图3,本申请一实施方式提供一种电化学装置100,包括壳体10、电极组件20、第一导电板30和第二导电板40。电极组件20设置于壳体10内。第一导电板30和第二导电板40均电连接电极组件20,并从壳体10伸出。第一导电板30和第二导电板40可以连接外部元件(图未示)。定义第一方向X、第二方向Y和第三方向Z相互垂直。第一导电板30的伸出方向为第一方向X。与第一导电板30的第一表面相垂直的方向为第二方向Y。自第一导电板30至第二导电板40的方向为第三方向Z。
请一并参照图5,壳体10包括在第二方向Y上相对设置的第一壳体101和第二壳体102。第一壳体101包括相互连接的第一部分101a和第二部分101b。第二部分101b的三个侧边被第一部分101a包围。第二壳体102包括相互连接的第三部分102a和第四部分102b。第四部分102b的三个侧边被第三部分102a包围。所述第一部分101a与第三部分102a相连接。第二部分101b和第四部分102b共同组成用于收容电极组件20的容置空间。
壳体10包括主体部11和连接部12。第一壳体101的第二部分101b和第二壳体102的第四部分102b连接形成主体部11。第一壳体101的第一部分101a和第二壳体102的第三部分102a连接形成连接部12,连接部12用于密封主体部11。电极组件20设置于主体部11内。在一些实施例中,壳体10可以采用封装膜封装得到的包装袋,即电化学装置100为软包电池。即,连接部12为第一部分101a和第三部分102a经封装后形成的封边。第一导电板30和第二导电板40均夹持于连接部12中,并从连接部12的边缘伸出壳体10。
如图1至图3所示,在第一方向X上,主体部11包括相对设置的第一端壁111和第二端壁112。在一些实施例中,在第一方向X上,第一壳体101的第二部分101b包括相对设置的第一端面1111和第二端面1121,第二壳体102的第四部分102b包括相对设置的第三端面1112和第四端面1122。在第二方向Y上,第一端面1111和第三端面1112相连接以形成第一端壁111,第二端面1121和第四端面1122相连接以形成第二端壁112。在第三方向Z上,主体部11包括相对设置的第一侧壁113和第二侧壁114。在一些实施例中,在第三方向Z上,第一壳体101的第二部分101b包括相对设置的第一侧表面1131和第二侧表面1141,第二壳体102的第四部分102b包括相对设置的第三侧表面1132和第四侧表面1142。在第二方向Y上,第一侧表面1131和第三侧表面1132相连接以形成第一侧壁113,第二侧表面1141和第四侧表面1142相连接以形成第二侧壁114。在第二方向Y上,主体部11包括相对设置的第三侧壁115和第四侧壁116。在一些实施例中,连接部12包括相连接的第一连接区12a、第二连接区12b和第三连接区12c。沿第二方向Y观察,连接部12的第一连接区12a连接第一端壁111,此时,第一导电板30和第二导电板40均夹持于第一连接区12a中,并从第一连接区12a的边缘伸出壳体10。沿第二方向Y观察,第二连接区12b连接第一侧壁113,第三连接区12c连接第二侧壁114。进一步地,从第二方向Y观察,壳体10包括第一边121,第一边121也为第一连接区12a在第一方向X上的边缘。第一导电板30和第二导电板40从第一边121伸出壳体10。更具体地,第一端面1111和第三端面1112分别位于第一连接区12a两侧。在第二方向Y上,第一端面1111连接第一连接区12a和第三侧面115,第三端面1112连接第一连接区12a和第四侧面116。请一并参照图5至图7,在在一些实施例中,第二方向Y上,第一连接区12a和第三侧面115的距离大于第一连接区12a和第四侧面116,即,第一端面1111为深坑面,第三端面1112为浅坑面。
在一些实施例中,第一连接区12a不需要弯折,即第一连接区12a所在表面可大致垂直于第一端壁111所在表面。此时,第一方向X为第一导电板30伸出电极组件20的方向(第一导电板30凸出于电极组件20的方向),也为第一导电板30在第一连接区12a内伸出的方向。第二方向Y为与位于第一连接区12a内的第一导电板30的第一表面相垂直的方向。
在另一些实施例中,第一连接区12a也可以弯折至第一端壁111上,从而减小电化学装置100在第一方向X上的尺寸,提高空间利用率和能量密度。当第一连接区12a弯折至第一端壁111上时,第一导电板 30在第一连接区12a内伸出的方向发生变化,此时,第一方向X为第一导电板30凸出于电极组件20的方向,也为将第一连接区12a回折至垂直于第一端壁111的状态时,第一导电板30在第一连接区12a内伸出的方向。第二方向Y为将第一连接区12a回折至垂直于第一端壁111的状态时,与位于第一连接区12a内的第一导电板30的第一表面相垂直的方向。
请一并参照图5、图6和图10,电极组件20为卷绕结构,其包括第一极片21、第二极片22和隔离膜23,隔离膜23设置于第一极片21和第二极片22之间。第一极片21、隔离膜23和第二极片22依次层叠卷绕以形成电极组件20。第一极片21包括第一导电层210和设置于第一导电层210上的第一导电材料层211。第二极片22包括第二导电层220和设置于第二导电层220上的第二导电材料层221。电极组件20还包括多个第一极耳24和多个第二极耳25。多个第一极耳24一端电连接于第一导电层210,另一端电连接于第一导电板30。第二极耳25一端电连接于第二导电层220,另一端电连接于第二导电板40。多个第一极耳24可通过第一转接部240与第一导电板30相连接。多个第二极耳25也可通过第二转接部250与第二导电板40相连接。在其它实施例中,请参阅图7,其与图5所示的电极组件20的区别在于,当电极组件20为卷绕结构时,电极组件20可以不包括第一极耳24和第二极耳25。此时,第一导电板30可直接连接至第一导电层210,第二导电板40也可直接连接至第二导电层220。在另一些实施例中,电极组件20还可以是叠片结构,即第一极片21、隔离膜23和第二极片22依次层叠以形成电极组件20。
其中,第一极片21可以是正极极片。对应地,第一导电层210可以是正极导电层,第一导电材料层211可以是正极导电材料层。第一导电层210可以具有汇集电流的功能。第二极片22可以是负极极片。对应地,第二导电层220可以是负极导电层,第二导电材料层221可以是负极活性材料层。第二导电层220可以具有汇集电流的功能。
正极导电层可以采用铝箔或镍箔,负极导电层可以采用铜箔、镍箔或碳基导电层中的至少一种。正极导电材料层包含正极活性物质,正极活性物质包括可逆地嵌入和脱嵌锂离子的化合物(即,锂化插层化合物)。负极导电材料层包含负极活性物质,即能够进行活性离子可逆脱嵌的负极活性物质。隔离膜23包括聚乙烯、聚丙烯、聚偏氟乙烯、聚对苯二甲酸乙二醇酯、聚酰亚胺或芳纶中的至少一种。
如图1至图4、图9A所示,电化学装置100还包括第一层50,第一层50包括绝缘材料。第一层50可用于密封连接第一导电板30与壳体10,还可使得第一导电板30与壳体10之间保持电绝缘。具体地,第一层50填充了第一导电板30与连接部12之间可能存在的空隙,从而密封连接第一导电板30与壳体10,且减小了后续使用过程中第一导电板30与连接部12发生分离的可能性。在一些实施例中,第一层50的绝缘材料选自聚丙烯、聚乙烯、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚丙烯改性材料或聚乙烯改性材料中的至少一种。
请参阅图9B,第一层50可由一层或多层材料沿第二方向Y堆叠形成。在一些实施例中,第一层50由三层材料堆叠形成,包括基材50a、第一胶粘层50b和第二胶粘层50c。基层50a设于第一胶粘层50b和第二胶粘层50c之间。基材50a、第一胶粘层50b和第二胶粘层50c的材料各自独立地选自聚丙烯、聚乙烯、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚丙烯改性材料或聚乙烯改性材料中的至少一种。基材50a的熔点可高于第一胶粘层50b的熔点,也可高于第二胶粘层50c的熔点。结合参照图9A和图9B,第一胶粘层50b一表面与第一导电板30相粘接,另一表面与基材50a粘接。第二胶粘层50c与第一壳体101的第一部分101a或第二壳体102的第三部分102a具有相熔接的部分。
请参阅图9A,其中,第一导电板30包括第一表面301、第二表面302、第一侧面303和第二侧面304。在第二方向Y上,第一表面301和第二表面302相对设置。请一并参阅图2和图3,第一表面301面向第一壳体101,第二表面302面向第二壳体102。在第三方向Z上,第一侧面303和第二侧面304相对设置。第一侧面303连接于第一表面301和第二表面302之间,第二侧面304连接于第一表面301和第二表面302之间。第一表面301和第一侧面303之间、第二表面302和第一侧面303之间、第一表面301和第二侧面304之间、以及第二表面302和第二侧面304之间共形成四个第一夹角区300。在一些实施例中,第一夹 角区300可大致呈90度。第一层50分别覆盖第一导电板30的第一表面301、第二表面302、第一侧面303和第二侧面304,从而将第一导电板30上述各个面与壳体10密封连接。因此,从第一方向X的反方向观察,第一层50包括四个第二夹角区500。四个第二夹角区500分别与第一导电板30的四个第一夹角区300连接。
请参照图4和图5,第一导电板30包括相连接的第一导电区31、第二导电区32和第三导电区33。第一导电区31和第三导电区33位于壳体10内,即从第二方向Y观察,第一导电区31和第二导电区33均与壳体10重叠。如,从第二方向Y观察,第一导电区31与第一部分101a重叠,第三导电区33与第二部分101b重叠。第一导电区31用于与电极组件20的第一极耳24电连接。第二导电区32伸出壳体10外。
如图4所示,在第一方向X上,第一层50包括相连接的第一区域51和第二区域52。第一区域51设于壳体10内。沿第二方向Y观察,第一边121设于第一区域51和第二区域52之间,且第一边121与第一区域51和第二区域52的分界线部分重叠。在一些实施例中,第一区域51夹设于连接部12内。请一并参照图2,第一区域51为第一层50中沿第二方向Y的正投影与第一壳体101的第一部分101a相重合,且在第二方向Y上夹设于第一壳体101的第一部分101a和第二壳体102的第三部分102a之间的区域。第二区域52设于壳体10外。第二区域52为第一层50中与第一区域51相连,且沿第二方向Y观察时相较第一壳体101的第一部分101a在第一方向X上更远离第二部分101b的区域。沿第二方向Y观察,第一区域51与第一导电板30部分重叠,如,第一区域51可与第一导电板30的第一导电区31部分重叠;第二区域52与第一导电板30部分重叠,如,第二区域52可与第一导电板30的第二导电区32部分重叠。
第一层50还可包括第三区域53。在第一方向X上,第一区域51连接于第二区域52与第三区域53之间。请一并参照图2和图4,第三区域53为第一层50中与第一区域51相连接,且第三区域53设于主体部11内。即,第三区域53从第二方向Y观察时相较于第一部分101a在第一方向X上更靠近主体部11内部的区域。沿第二方向Y观察,第三区域53与第一导电板30部分重叠,如,第三区域53可与第一导电板30的第三导电区33部分重叠。其中,当封头施加压力于连接部12处时,部分第一层50受压后可挤向两侧压力较小的位置,从而形成第二区域52和第三区域53。
如图4所示,第二区域52包括第一凸部521和第二凸部522。沿第二方向Y观察,第一凸部521与第一导电板30部分重叠且沿第一方向X凸出,第二凸部522与第一导电板30部分重叠且沿第一方向X凸出。请一并参照图4和图9A,第一凸部521和第二凸部522从第二夹角区500沿第一方向X凸出。在第三方向Z上,第一凸部521与第二凸部522相分离。在第一方向X上,第一凸部521具有顶点T 1,第二凸部522具有顶点T。顶点T 1为第一凸部521距离第一边121的最远处,顶点T 2为第二凸部522距离第一边121的最远处。
现有技术中,第一层在与第一导电板的第一夹角区连接的区域(即第二夹角区)处,由于厚度发生突变,且为绝缘材料向第一导电板的金属材料过渡的位置,因此密封强度相对较低。当发生机械滥用时,第二夹角区更容易产生应力集中,使得第一层可能在第二夹角区处与第一导电板分离,降低了密封性,导致漏液或外部水分进入壳体内部,影响电化学装置的使用寿命。再者,由于第一层密封性下降,水汽进入壳体后可能会导致电化装置内部酸含量升高,加速钴酸锂中过渡金属离子的溶出(如,加速正极导电层钴酸锂中钴离子溶出),影响电化学装置的存储性能和循环性能。另外,充电时第一导电板处会产生热量,尤其在快充时第一导电板产热更大。由于第二夹角区直接与第一导电板接触,因此第二夹角区处的绝缘材料在长期的充放电过程中由于温度频繁变化而劣化,使得第二夹角区更容易产生裂纹或降低密封性。
本申请在第一层50上设置第一凸部521和第二凸部522,当发生机械滥用时,第一层50于第二夹角区500处产生的应力可沿第一凸部521和第二凸部522的延伸方向分散,不仅有利于减小第二夹角区500与第一导电板30分离的可能性,提高了第一层50的密封性,从而提高了电化学装置100的使用寿命。同时,也有利于减小由于第一层50密封性下降、水汽进入壳体10而使正极导电层中过渡金属离子溶出的可能性,提高电化学装置100的存储性能和循环性能。再者,第一凸部521和第二凸部522增加了第一层50 与第一导电板30之间的接触面积,因此当第一导电板30充电产热时,第一凸部521和第二凸部522提高了第一层50的散热效率,从而改善了第一层50由于频繁的温度变化而劣化的情况,同样有利于提高第一层50的密封性。
如图4所示,在一些实施例中,沿第二方向Y观察,在第一方向X上,第一凸部521的顶点T 1与第一侧面303重叠,第二凸部522的顶点T 2与第二侧面304重叠。
如图4所示,在一些实施例中,沿第二方向Y观察,第二区域52还包括设于第一凸部521与第二凸部522之间的第三凸部523,第三凸部523沿第一方向X凸出。其中,沿第二方向Y观察,定义第二区域52与第一导电板30重叠的部分为重叠区520。如,重叠区520可为第二区域52与第一导电板30的第二导电区32重叠的部分。第三凸部523位于重叠区520。沿第二方向Y观察,重叠区520也为第二区域52设于第一导电板30的第一侧面303和第二侧面304之间的部分。第三凸部523具有顶点T 3,顶点T 3为第三凸部523距离第一边121的最远处。通过设置第三凸部523,进一步增加了第一层50与第一导电板30之间的接触面积,因此当第一导电板30充电产热时,第三凸部523进一步提高了第一层50的散热效率,从而改善了第一层50由于频繁的温度变化而劣化的情况,即提高了第一层50的密封性。在一些具体的实施例中,重叠区520的数量为两个。在第二方向Y上,两个重叠区520分别位于第一导电板30的两侧。一个重叠区520连接第一导电板30的第一表面301,另一重叠区520连接第一导电板30的第二表面302。每一重叠区520均设有第三凸部523。
在一些实施例中,位于第一表面301的第三凸部523的数量可以为多个,多个第三凸部523沿第三方向Z相连接。位于第二表面302的第三凸部523的数量也可以为多个,多个第三凸部523沿第三方向Z相连接。
在第一方向X上,定义第一边121至第一凸部521的顶点T 1的距离为第一距离H 1,第一边121至第三凸部523的顶点T 3的距离为第二距离H 2,则在一些实施例中,第一距离H 1大于第二距离H 2(H 1>H 2)。可以理解,当位于第一表面301(或第二表面302)的第三凸部523的数量为多个时,第二距离H 2可以为第一边121至多个第三凸部523的顶点T 3的距离中的最大值。若第三凸部523伸出距离较大,则表明连接于第一导电板30的第一表面301或第二表面302的第一区域51中较大部分被挤出连接部12,导致连接于第一导电板30表面的第一区域51的厚度相应较小,第一层50的密封强度也较小。因此本申请通过设置H 1>H 2,使得第一凸部521能够较好地起到分散应力和提高散热效果的作用,而且减小了对第一层50密封强度的影响。而且,也有利于减小第一层50对电化学装置100能量密度的影响。另外,也可以限定第一边121至第二凸部522的顶点T 2的第四距离H 4大于第二距离H 2
如图4所示,在一些实施例中,在第二方向Y观察,第一层50包括第一端边501、第二端边502、第三端边503和第四端边504。在第一方向X上,第一端边501和第二端边502相对设置。沿第二方向Y观察,第一端边501位于第一边121远离第一部分101a的一侧,第二端边502与第一部分101重叠。在第三方向Z上,第三端边503和第四端边504相对设置,且第四端边504为第一层50更靠近第二导电板40的边缘。第三端边503和第四端边504均沿第一方向X延伸。沿第二方向Y观察,第一凸部521、第二凸部522和第三凸部523均形成于第一端边501。
其中,第一端边501包括第二边54,第二边54沿第三方向Z延伸。在第三方向Z上,第一凸部521设于第二边54和第二凸部522之间。在一些实施例中,在第三方向Z上,第二边54、第一凸部521、第三凸部523和第二凸部522依次连接。在第一方向X上,定义第一边121至第二边54的距离为第三距离H 3,则第一距离H 1大于第三距离H 3(H 1>H 3)。通过限定H 1>H 3,使得第一凸部521能够较好地起到分散应力和提高散热效果的作用,而且减小了第一边121伸出距离较大而导致连接于第一导电板30侧面的第一区域51的厚度相应较小、密封性降低的可能性。而且,也有利于减小第一层50对电化学装置100能量密度的影响。
进一步地,第二距离H 2大于第三距离H 3(H 2>H 3)。
在一些实施例中,第三距离H 3为0.2mm至3.5mm,且第一距离H 1与第三距离H 3的比值范围为1.09至16。本申请通过限定第三距离H 3的范围,减小了第一边121伸出距离较小(封装封头施加于第一层50的压力不足)导致第一层50密封性降低的可能性,同时也减小了第一边121伸出距离较大时对第一层50密封性的影响。而且可以理解,若露出于壳体10的第一导电板30需要朝向第一端壁111一侧弯折(如,便于第一导电板30连接外部元件),当第一边伸出距离较大时,第一层需随着第一导电板同时弯折,弯折位置在机械滥用时可能会发生应力集中,提高第一层破裂的可能性。因此通过限定H 3的上限值,还能够减小第一层50弯折后破裂的可能性。同时,本申请通过限定第一距离H 1与第三距离H 3的比值范围,改善了H 1较小时应力分散效果和散热效果降低的问题,同时也减小了H 1较大时对电化学装置100能量密度的影响。
在一些具体的实施例中,第一距离H 1为3mm至4.5mm。第二距离H 2为2.3mm至3mm。第三距离H 3为1.8mm至2.5mm。
同理,可设置第四距离H 4与第三距离H 3的比值范围为1.09至16。在一些具体的实施例中,第四距离H 4为3mm至4.5mm。
如图8所示,在一些实施例中,电化学装置100还包括与第一导电板30和第二导电板40电连接的电路板70。具体地,第一导电板30露出于壳体10的第三导电区33朝向第一端壁111的第一端面1111弯折,形成在第二方向Y上相对设置的第一段331和第二段332,以及连接于第一段331和第二段332之间的第三段333。第一段331连接第一导电区31。电路板70设于第一端面1111上。电路板70上设有第一电连接件71和第二电连接件(图未示)。电路板70通过第一电连接件71连接第三导电区33的第二段332。同理,第二导电板40露出于壳体10的区域也可朝向第一端面1111弯折,并连接第二电连接件。其中,第一电连接件71和第二电连接件可以为镍片。
进一步地,为了减小第三导电区33沿弯折方向的反方向张开的可能性,还可以在第一段331和第二段332之间设置粘接件72。粘接件72在第二方向Y上的相对两表面分别粘接第一段331和第二段332。
在一些实施例中,第一壳体101和第二壳体102的材料可均为多层片材。如图12所示,第一壳体101可包括依次叠设的第一保护层1011、第一金属层1012和第一聚合物层1013。相较于第一保护层1011,第一聚合物层1013更靠近电极组件20。第一保护层1011的材质可以为高分子树脂,其可以用于保护第一金属层1012,降低第一金属层1012因外力作用破损的可能性,同时能够延缓外部环境的空气渗透,维持电化学装置100内部处于正常运作的环境。在一些实施例中,第一保护层1011的材质可选自对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚偏氟乙烯、聚四氟乙烯、聚丙烯、聚酰胺、聚酰亚胺中的至少一种。第一金属层1012可以用于延缓外部环境的水分渗透,并减少外力对电极组件20造成的损伤。在一些实施例中,第一金属层1012可以为铝箔层或钢箔层。第一聚合物层1013具有加热熔融的性质,可以用于密封,且可以降低多层片材被电解液中的有机溶剂溶解或溶胀的可能性。第一聚合物层1013还可用于降低电解液中的电解质与第一金属层1012接触而导致金属层被腐蚀的可能性。在一些实施例中,第一聚合物层1013包括聚合物材料,其可选自聚丙烯、丙烯共聚物、聚乙烯、聚甲基丙烯酸甲酯中的至少一种。
如图13所示,第二壳体102可包括依次叠设的第二保护层1021、第二金属层1022和第二聚合物层1023。可以理解,当第一壳体101和第二壳体102可由一张封装膜折叠后得到时,第二保护层1021、第二金属层1022和第二聚合物层1023的材质分别与第一保护层1011、第一金属层1012和第一聚合物层1013的材质完全相同,在此不作重复描述。
请一并参阅图11至图13,制备壳体10时,可利用封装设备的封头同时在第一壳体101的第一部分101a和第二壳体102的第三部分102a处施加一定的温度和压力,使第一聚合物层1013和第二聚合物层1023相互熔融并粘合在一起,形成连接部12。第一层50设于第一聚合物层1013和第二聚合物层1023之间,且在密封时与第一聚合物层1013和第二聚合物层1023熔融并粘合在一起。在一些实施例中,当第一层50由三层材料堆叠而成时,第一层50的第二胶粘层50c在密封时与第一聚合物层1013和第二聚合物层1023 熔融并粘合在一起。其中,在密封形成连接部12时,封头施加于连接部12处的压力较大,使得部分第一层50受压后挤向压力较小的位置,从而形成第二区域52和第三区域53。第一层50填充了第一导电板30与连接部12之间可能存在的空隙,且减小了后续使用过程中第一导电板30与连接部12发生分离的可能性。而且,由于第一层50、第一聚合物层1013和第二聚合物层1023的材料均为聚合物,熔点较为接近,因此在高温加压环境下结合度较好,提高了密封性。第一层50还可提高第一导电板30与第一金属层1012及第二金属层1022之间的电绝缘性,减小三者接触而引发短路的可能性。
请再次参照图8和图9A所示,在一些实施例中,重叠区520还可包括第四凸部524,第四凸部524沿第二方向Y凸出。在第一方向X上,第四凸部524位于第一边121的一侧,从而覆盖第一边121裸露的边缘。因此,当第一导电板30的第三导电区33需要朝向第一端壁111一侧弯折时,第四凸部524可减小第一导电板30与从第一边121边缘裸露的金属层直接接触而导致的短路或腐蚀的可能性。
如图1至图4所示,在一些实施例中,电化学装置100还可包括第二层60,第二层60包括绝缘材料。第二层60可用于密封连接第二导电板40与壳体10,还可使得第二导电板40与壳体10之间电绝缘。第二层60也可采用与第一层50相似的设计,即在第二层60上设置凸部,从而进一步提高密封性。在此不作重复描述。
请参阅图14和图15,本申请另一实施方式还提供一种电化学装置200。与电化学装置100不同之处在于,第三区域53包括第五凸部531和第六凸部532。沿第二方向Y观察,第五凸部531与第一导电板30部分重叠且远离第一方向X凸出,第六凸部532与第一导电板300部分重叠且远离第一方向X凸出。在一些具体的实施例中,第五凸部531的数量为两个,第六凸部532的数量也为两个。两个第五凸部531和两个第六凸部532分别从四个第二夹角区500远离第一方向X凸出。在第三方向Z上,第五凸部531与第六凸部532相分离。
因此,当发生机械滥用时,第一层50于第二夹角区500处产生的应力还可沿第五凸部531和第六凸部532的延伸方向分散,这同样有利于减小第二夹角区500与第一导电板30分离的可能性,提高了第一层50的密封性,也有利于减小应力传导至第一导电板30时导致第一导电板30断裂的可能性,提高了电化学装置200的使用寿命。其次,第五凸部531和第六凸部532也同样提高了第一层50的散热效率,从而提高第一层50的密封性。
其中,本申请的电化学装置100(或电化学装置200)包括所有能够发生电化学反应的装置。具体的,电化学装置100包括所有种类的原电池、二次电池、燃料电池、太阳能电池和电容器(例如超级电容器)。可选地,电化学装置100可以为锂二次电池,包括锂金属二次电池、锂离子二次电池、锂聚合物二次电池和锂离子聚合物二次电池。
请参阅图16,本申请一实施方式还提供一种电子装置1,电子装置1包括电化学装置100(或电化学装置200)。
其中,本申请的电化学装置100适用于各种领域的电子装置1。在一实施方式中,本申请的电子装置1可以是,但不限于笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
以下通过具体实施例和对比例对本申请作详细说明。其中,以电化学装置为软包电池为例并结合具体制备过程和测试方法对本申请进行说明,本领域技术人员应理解,本申请中描述的制备方法仅是实例,其他任何合适的制备方法均在本申请的范围内。
实施例1
(1)负极极片的制备:将负极活性材料人造石墨、导电炭黑(Super P)、丁苯橡胶(SBR)按照重量比 96:1.5:2.5进行混合,加入去离子水作为溶剂,调配成重量百分比为70wt%的浆料,并搅拌均匀。将浆料均匀涂覆在厚度为10μm的负极集流体铜箔的一个表面上,110℃条件下烘干,得到涂层厚度为150μm的单面涂覆有负极活性材料层的负极极片。在该负极极片的另一个表面上重复以上步骤,得到双面涂覆有负极活性材料层的负极极片。负极极片上包含一个负极极耳,负极极耳为镍(Ni)。
(2)正极极片的制备:将正极活性材料钴酸锂(LiCoO 2)、导电炭黑(Super P)、聚偏二氟乙烯(PVDF)按照重量比97.5:1.0:1.5进行混合,加入N-甲基吡咯烷酮(NMP)作为溶剂,调配成固含量为75wt%的浆料,并搅拌均匀。将浆料均匀涂覆在厚度为12μm的正极集流体铝箔的一个表面上,90℃条件下烘干,得到正极活性材料层厚度为100μm的正极极片。在正极集流体铝箔的另一个表面上,重复以上步骤,得到双面涂覆有正极活性材料层的正极极片。正极极片上包含一个正极极耳,正极极耳为铝(Al)。
(3)电解液的制备:在干燥氩气气氛中,首先将有机溶剂碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)以质量比EC:EMC:DEC=30:50:20混合,然后向有机溶剂中加入锂盐六氟磷酸锂(LiPF 6)溶解并混合均匀,得到锂盐的浓度为1.15mol/L的电解液。
(4)电池的制备:将第一层与第一导电板连接,将第二层与第二导电板连接,然后将第一导电板和第二导电板分别与第一极耳和第二极耳进行焊接。其中,贴胶工序和焊接工序的顺序可交换。接着,将第一极片、隔离膜和第二极片依次层叠卷绕得到电极组件,隔离膜选用厚度为15μm的聚乙烯(PE)膜。然后进行注液、化成、封装,制成尺寸为5.40mm×94mm×90mm的电池,并将第一导电板和第二导电板伸出壳体的区域进行弯折并连接电路板。封装后,沿第二方向观察,第一层上形成有与第一导电板部分重叠的第一凸部和第二凸部,第一层的第二区域还包括设于第一凸部与第二凸部之间的第三凸部。H 1、H 2和H 3的值以及H 1/H 3的比值参表1。
对比例1
与实施例1不同之处在于,沿第二方向观察,第一层上未形成与第一导电板部分重叠的第一凸部和第二凸部,也未形成位于第一凸部和第二凸部之间的第三凸部。
对比例2-3和实施例2-5
与实施例1不同之处在于,H 1、H 2和H 3的值以及H 1/H 3的比值不同。
然后,对各实施例和对比例的电池分别进行跌落测试、跌落+高温高湿测试、大倍率充放电测试和钴溶出率测试。实施例和对比例各取100个进行测试,对应的测试结果记录于表1中。
跌落测试的步骤包括:1)在25℃的环境条件下,将电池的电压调整至100%SOC(State of Charge,荷电状态)。2)将电池放入夹具仓,用自动跌落设备将电池的底面、左侧面、右侧面、正面、反面、顶面为一轮的着地的方式依次从1.8m位置,以45±15度的角度跌落至钢板上,一个循环共计跌落14轮即84次。3)完成跌落后,检查若第一层和第一导电板之间的连接区域未发生漏液,且第一层露出壳体的区域未产生裂纹或断裂,则判断电池通过测试。
跌落+高温高湿测试的步骤包括:1)在25℃的环境条件下,将电池的电压调整至100%SOC(State of Charge,荷电状态)。2)完成跌落后将电池放入夹具仓,用自动跌落设备将电池的底面、左侧面、右侧面、正面、反面、顶面为一轮的着地的方式依次从1.8m位置,以45±15度的角度跌落至钢板上,一个循环共计跌落14轮即84次。3)将电池放入加热炉内存储30天,炉内温度为65℃,相对湿度为90%。4)取出电池,检查若第一层和第一导电板之间的连接区域未发生漏液,则判断电池通过测试。
大倍率充放电测试的步骤包括:1)以10.0C恒流充电至4.15V,再恒压充电至8C。2)以8.0C恒流充电至4.35V,再恒压充电至6C。3)以6.0C恒流充电至4.45V,再恒压充电至1C。4)以1.0C恒流充电至4.5V,再恒压充电至0.05C。5)以2C放电至电压为3.0V。6)循环过程中,分别在第100次、第500次、第1000次放电,检查若第一层和第一导电板之间的连接区域未发生漏液,则判 断电池通过测试。
钴溶出量测试的步骤包括:1)当电池完成第1000次放电后,对电池进行离心;2)将离心后得到的液体进行ICP(Inductive Coupled Plasma Emission Spectrometer,电感耦合等离子光谱)测试,得到电解液的钴含量,从而表征正极极片中钴酸锂的钴溶出量。
表1
Figure PCTCN2021142421-appb-000001
从表1数据可知,相较于对比例1,由于实施例1的第一层设置有第一凸部、第二凸部和第三凸部,因此第一层具有改善的密封性,使得实施例1的电池的跌落测试、跌落+高温高湿测试和大倍率充放电测试的通过率均较高,长期循环后钴离子溶出量较低。
当第一层设置有第一凸部、第二凸部和第三凸部时,H 3的值以及H 1/H 3的比值会进一步影响第一层的密封性。相较于实施例2,对比例2中H 3过小且H 1/H 3比值过大,因此第一层密封性相对下降,长期循环后大倍率充放电测试的通过率降低,钴离子溶出量也相对提高。对比例3中H 3过大且H 1/H 3比值过小,第一层在第一导电板的弯折位置处容易产生应力集中,因此产生裂纹或断裂的比例提高。
相较于实施例4,对比例5中H 1/H 3比值过大,因此第一层密封性相对下降,大倍率充放电测试的通过率降低,且长期循环后钴离子溶出量也相对提高。实施例3-5中H 3以及H 1/H 3的比值满足预定条件,因此电池的跌落测试、跌落+高温高湿测试和大倍率充放电测试的通过率均较高,长期循环后钴离子溶出量较低。
最后应说明的是,以上实施例仅用以说明本申请的技术方案而非限制,尽管参照较佳实施例对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换,而不脱离本申请技术方案的精神和范围。

Claims (15)

  1. 一种电化学装置,包括壳体、电极组件和第一导电板,所述电极组件设置于所述壳体内,所述第一导电板与所述电极组件电连接并从所述壳体伸出,其中,
    所述电化学装置还包括第一层,定义所述第一导电板的伸出方向为第一方向,在所述第一方向上,所述第一层包括相连接的第一区域和第二区域,所述第一区域设于所述壳体内,所述第二区域设于所述壳体外,定义与所述第一导电板的一个表面相垂直的方向为第二方向,沿所述第二方向观察,所述第二区域与所述第一导电板部分重叠,所述第一层包括绝缘材料;
    所述第二区域包括第一凸部和第二凸部,沿所述第二方向观察,所述第一凸部与所述第一导电板部分重叠且沿所述第一方向凸出,所述第二凸部与所述第一导电板部分重叠且沿所述第一方向凸出;定义第三方向、所述第一方向和所述第二方向相互垂直,在所述第三方向上,所述第一凸部与所述第二凸部相分离。
  2. 如权利要求1所述的电化学装置,其中,沿所述第二方向观察,所述第二区域还包括设于所述第一凸部与所述第二凸部之间的第三凸部,所述第三凸部沿所述第一方向凸出。
  3. 如权利要求2所述的电化学装置,其中,沿所述第二方向观察,所述壳体包括设于所述第一区域和所述第二区域之间的第一边,在所述第一方向上,定义所述第一边至所述第一凸部的顶点的距离为第一距离,所述第一边至所述第三凸部的顶点的距离为第二距离,所述第一距离大于所述第二距离。
  4. 如权利要求2所述的电化学装置,其中,所述第三凸部的数量为多个。
  5. 如权利要求1所述的电化学装置,其中,沿所述第二方向观察,定义所述第二区域与所述第一导电板重叠的部分为重叠区,所述重叠区包括第四凸部,所述第四凸部沿所述第二方向凸出。
  6. 如权利要求3所述的电化学装置,其中,所述第一层包括第二边,所述第二边沿所述第三方向延伸,在所述第三方向上,第一凸部设于所述第二边和所述第二凸部之间;
    在所述第一方向上,所述第一边至所述第二边的距离为第三距离,所述第一距离大于所述第三距离。
  7. 如权利要求6所述的电化学装置,其中,所述第二距离大于所述第三距离。
  8. 如权利要求6所述的电化学装置,其中,所述第三距离为0.2mm至3.5mm,所述第一距离与所述第三距离的比值范围为1.09至16。
  9. 如权利要求1所述的电化学装置,其中,沿所述第二方向观察,所述第一导电板包括相对设置的第一侧面和第二侧面,在所述第一方向上,所述第一凸部的顶点与所述第一侧面重叠,所述第二凸部的顶点与所述第二侧面重叠。
  10. 如权利要求1所述的电化学装置,其中,所述壳体包括主体部和连接所述主体部的连接部,所述连接部用于密封所述主体部,所述电极组件设置于所述主体部中,所述第一导电板与所述电极组件电连接并从所述连接部伸出,所述第一区域连接所述第一导电板和所述连接部。
  11. 如权利要求10所述的电化学装置,其中,所述壳体包括相对设置的第一壳体和第二壳体,所述第一壳体包括第一聚合物层,所述第二壳体包括第二聚合物层,所述第一聚合物层和所述第二聚合物层相互粘合以形成所述连接部。
  12. 如权利要求10所述的电化学装置,其中,所述第一聚合物层包括第一聚合物材料,所述第二聚合物层包括第二聚合物材料,所述第一聚合物材料和所述第二聚合物材料各自独立地选自聚丙烯、丙烯共聚物、聚乙烯或聚甲基丙烯酸甲酯中的至少一种。
  13. 如权利要求1所述的电化学装置,其中,所述第一层还包括第三区域,在所述第一方向上,所述第一区域连接于所述第二区域与所述第三区域之间,所述第三区域设于所述主体部内;所述第三区域包括第五凸部和第六凸部,沿所述第二方向观察,第五凸部与所述第一导电板部分重叠且远离所述第一方向凸出,所述第六凸部与所述第一导电板部分重叠且远离所述第一方向凸出;在所述第三方向上,所述第五凸部与所述第六凸部相分离。
  14. 如权利要求1所述的电化学装置,其中,所述绝缘材料选自聚丙烯、聚乙烯、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚丙烯改性材料或聚乙烯改性材料中的至少一种。
  15. 一种电子装置,其包括如权利要求1至14中任一项所述的电化学装置。
PCT/CN2021/142421 2021-12-29 2021-12-29 电化学装置和电子装置 WO2023123034A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/142421 WO2023123034A1 (zh) 2021-12-29 2021-12-29 电化学装置和电子装置
CN202180042767.9A CN115843399A (zh) 2021-12-29 2021-12-29 电化学装置和电子装置
JP2023563897A JP2024515180A (ja) 2021-12-29 2021-12-29 電気化学装置及び電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142421 WO2023123034A1 (zh) 2021-12-29 2021-12-29 电化学装置和电子装置

Publications (1)

Publication Number Publication Date
WO2023123034A1 true WO2023123034A1 (zh) 2023-07-06

Family

ID=85575101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142421 WO2023123034A1 (zh) 2021-12-29 2021-12-29 电化学装置和电子装置

Country Status (3)

Country Link
JP (1) JP2024515180A (zh)
CN (1) CN115843399A (zh)
WO (1) WO2023123034A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241328A (ja) * 2003-02-07 2004-08-26 Mitsubishi Chemicals Corp 平板積層型電池及び平板積層型電池の製造方法
CN1983669A (zh) * 2004-12-10 2007-06-20 索尼株式会社 电池
JP2016029617A (ja) * 2014-07-25 2016-03-03 株式会社デンソー 非水電解質二次電池
KR20180045667A (ko) * 2016-10-26 2018-05-04 현대자동차주식회사 관통 안정성이 향상된 파우치형 배터리 셀
CN211350702U (zh) * 2020-03-19 2020-08-25 宁德新能源科技有限公司 电芯的封装结构
CN113097436A (zh) * 2021-03-31 2021-07-09 宁德新能源科技有限公司 电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241328A (ja) * 2003-02-07 2004-08-26 Mitsubishi Chemicals Corp 平板積層型電池及び平板積層型電池の製造方法
CN1983669A (zh) * 2004-12-10 2007-06-20 索尼株式会社 电池
JP2016029617A (ja) * 2014-07-25 2016-03-03 株式会社デンソー 非水電解質二次電池
KR20180045667A (ko) * 2016-10-26 2018-05-04 현대자동차주식회사 관통 안정성이 향상된 파우치형 배터리 셀
CN211350702U (zh) * 2020-03-19 2020-08-25 宁德新能源科技有限公司 电芯的封装结构
CN113097436A (zh) * 2021-03-31 2021-07-09 宁德新能源科技有限公司 电池

Also Published As

Publication number Publication date
JP2024515180A (ja) 2024-04-05
CN115843399A (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
CN102222801B (zh) 二次电池
CN112002868B (zh) 一种电化学装置及电子装置
CA2563460C (en) Battery safety device and battery having the same
JP2012252888A (ja) 二次電池および組電池
CN111313102A (zh) 电芯及包含其的电化学装置和电子装置
CN113707975A (zh) 一种电化学装置及包含该电化学装置的电子装置
JP2022188177A (ja) フィルム外装電池、組電池および前記フィルム外装電池の製造方法
KR20220150255A (ko) 전극 조립체
JP2013033688A (ja) 二次電池
US20230246272A1 (en) Electrochemical apparatus and electronic apparatus
JP2023508012A (ja) 二次電池用スウェリングテープ及びこれを含む円筒型二次電池
JP2014032873A (ja) 二次電池
WO2023123034A1 (zh) 电化学装置和电子装置
US9373826B2 (en) Storage battery module
WO2022126547A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
JP2013246908A (ja) 非水電解質二次電池
KR20210124063A (ko) 이차전지용 스웰링 테이프 및 이를 포함하는 원통형 이차전지
CN116544345B (zh) 二次电池及电子装置
WO2023115375A1 (zh) 电化学装置和电子装置
WO2022168622A1 (ja) 二次電池、電子機器及び電動工具
WO2023102780A1 (zh) 电化学装置和电子装置
CN115347291B (zh) 电化学装置和电子装置
WO2023141831A1 (zh) 电极组件、电化学装置以及电子装置
WO2023164914A1 (zh) 电化学装置及电子装置
US20240136672A1 (en) Electrochemical apparatus and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969409

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023563897

Country of ref document: JP