WO2023141831A1 - 电极组件、电化学装置以及电子装置 - Google Patents

电极组件、电化学装置以及电子装置 Download PDF

Info

Publication number
WO2023141831A1
WO2023141831A1 PCT/CN2022/074106 CN2022074106W WO2023141831A1 WO 2023141831 A1 WO2023141831 A1 WO 2023141831A1 CN 2022074106 W CN2022074106 W CN 2022074106W WO 2023141831 A1 WO2023141831 A1 WO 2023141831A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive
electrode assembly
end portion
conductive plate
Prior art date
Application number
PCT/CN2022/074106
Other languages
English (en)
French (fr)
Inventor
江南
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to PCT/CN2022/074106 priority Critical patent/WO2023141831A1/zh
Priority to CN202280005029.1A priority patent/CN117321786A/zh
Publication of WO2023141831A1 publication Critical patent/WO2023141831A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of energy storage devices, in particular to an electrode assembly and an electrochemical device and an electronic device including the electrode assembly.
  • Electrochemical devices such as batteries are widely used in electronic products such as electronic mobile devices, electric tools, and electric vehicles, and people have higher and higher requirements for the performance of electrochemical devices. Due to mechanical abuse such as dropping, impact, vibration, etc., during the use of electronic products, this may cause a short circuit inside the electrochemical device and reduce the service life of the electrochemical device.
  • the first aspect of the present application provides an electrode assembly formed by winding a stacked body.
  • the stacked body includes a first conductive layer, a second conductive layer, and a first layer disposed between the first conductive layer and the second conductive layer, and the first layer includes an insulating material.
  • the first conductive layer includes a first surface, a first end, and a second end disposed opposite to the first end, and the first surface is covered by the wound stack.
  • the electrode assembly also includes a first conductive plate, a second layer, and a third layer. The first conductive plate is connected to the first surface. A direction perpendicular to a surface of the first conductive plate is defined as a first direction.
  • the first conductive plate When viewed along the first direction, the first conductive plate partially coincides with the first surface, the second layer covers the area of the first conductive plate coincident with the first surface, and the second layer includes an insulating material.
  • the third layer covers the first surface, and the third layer includes an insulating material. In the first direction, the second layer is disposed between the first surface and the third layer.
  • the second layer is used to cover the protrusions between the first conductive plate and the first surface and the protrusions on the edge of the first conductive plate, so as to reduce the above-mentioned protrusions from piercing through the first layer and contacting the second conductive layer possibility of short circuit.
  • the third layer can play the role of insulation protection for the first surface, reducing the possibility of short circuit between the first surface and the second metal layer during mechanical abuse, and also reducing the contact between the first metal layer and the first metal layer during mechanical abuse. The possibility that a tear occurs at the surface and the torn first metal layer pierces the first layer and contacts the second metal layer for a short circuit. Therefore, the lifetime of the electrochemical device is improved.
  • the direction from the first end to the second end is defined as the second direction
  • the direction perpendicular to the first direction and the second direction is defined as the third direction
  • the first conductive layer further includes a third end and a fourth end located on the other side of the third end.
  • the third layer includes a fifth end and a sixth end located on the other side of the fifth end.
  • the third layer extends from the area coincident with the first surface to beyond the third end. Therefore, not only the third layer can fully protect the first surface, but also the part of the third layer beyond the third end can cover the protrusion produced by the first metal layer at the third end, and can also cover the edge of the first conductive plate generated convexity.
  • the third layer extends from the area coincident with the first surface to beyond the fourth end.
  • the third layer can sufficiently protect the first surface, but also the portion of the third layer beyond the fourth end can cover the protrusion produced by the first metal layer at the fourth end.
  • the second layer in the third direction, extends from the area coincident with the first surface to beyond the third end. Therefore, the part of the second layer beyond the third end can also cover the protrusion produced by the edge of the first conductive plate.
  • the second layer in the third direction, extends from the area coincident with the first surface to beyond the fifth end.
  • the part of the second layer beyond the fifth end can cover the protrusion on the edge of the first conductive plate.
  • the part of the second layer beyond the fifth end is bonded to the first conductive plate.
  • the part of the second layer beyond the third end is bonded to the first conductive plate. Parts are not prone to tipping over under mechanical abuse.
  • the first conductive layer includes a first metal layer and a first conductive material layer stacked in a first direction. In the second direction, the first conductive plate is located between the first end portion and the first layer of conductive material.
  • the third layer when viewed along the first direction, partially overlaps with the first conductive material layer. In this way, not only the third layer can fully protect the first surface, but also the lithium ions extracted from the first conductive material layer can be fully received by the first conductive material layer, reducing the risk of excess lithium ion accumulation and lithium dendrites.
  • the second layer further includes a seventh end portion located on a side of the first end portion and an eighth end portion located on a side of the second end portion in the second direction.
  • the third layer also includes a ninth end on a side of the first end and a tenth end on a side of the second end in the second direction.
  • the distance from the seventh end to the ninth end is defined as the first distance
  • the second distance from the eighth end to the tenth end is defined.
  • the first distance is set to be less than the first distance Two distances.
  • the first metal layer and the third layer can be cut together along the third direction, so as to reduce the of the convex part.
  • the first distance is set to be greater than the second distance.
  • the size of the area of the second layer that overlaps with the first surface in the third direction is the third distance
  • the distance from the third end to the fourth end of the first conductive layer in the third direction is is the fourth distance
  • the third distance is less than or equal to half of the fourth distance.
  • the first surface forms a first region and a second region after the stack is folded back once, and the first end is located in the first region.
  • the first conductive plate is connected to the first region.
  • the third layer extends from the first region to at least the second region.
  • the first conductive plate when viewed in the first direction, is separated from the third layer disposed in the second region.
  • the first conductive layer includes a first metal layer and a first conductive material layer stacked in a first direction.
  • the first conductive material layer is connected to the second region.
  • the first conductive layer includes a first metal layer and a first conductive material layer stacked in a first direction.
  • the first conductive plate is welded to the first metal layer, so that the connection strength between the second conductive plate and the first metal layer is high.
  • the first metal layer includes aluminum.
  • the first conductive layer is a positive electrode.
  • the second conductive layer includes a second metal layer and a second conductive material layer stacked in the first direction.
  • the electrode assembly also includes a second conductive plate welded to the second metal layer, so that the connection strength between the second conductive plate and the second metal layer is high.
  • the second metal layer includes copper.
  • the second conductive layer is a negative electrode.
  • the welding place between the first conductive plate and the first surface has a protrusion protruding from the first surface toward the first conductive plate.
  • the welding place between the first conductive plate and the first surface has a recess recessed from the first surface toward the first conductive plate.
  • the dimension of the area of the first conductive plate that coincides with the first surface in the third direction is the fifth distance, and the distance from the third end to the fourth end of the first conductive layer in the third direction is The distance is the fourth distance, and the fifth distance is less than or equal to one third of the fourth distance.
  • the first conductive layer further includes a second surface opposite to the first surface in the first direction.
  • the electrode assembly also includes a fourth layer.
  • a fourth layer covers the second surface, and the fourth layer includes an insulating material.
  • the fourth layer can play an insulating role for the second surface, which reduces the possibility of the second surface being in contact with the second metal layer during mechanical abuse, and also reduces the possibility of the first metal layer being in contact with the second metal layer during mechanical abuse.
  • the possibility of tearing at the second surface and the torn first metal layer piercing the first layer and contacting the second metal layer for a short circuit further increases the service life of the electrochemical device.
  • the second aspect of the present application also provides an electrochemical device, including a casing.
  • the electrochemical device also includes the above electrode assembly, and the electrode assembly is arranged in the casing.
  • the first conductive plate protrudes from one end of the housing.
  • the third aspect of the present application also provides an electronic device, including the above electrochemical device.
  • FIG. 1 is a front view of an electrochemical device provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the electrochemical device shown in FIG. 1 before packaging.
  • Fig. 3 is a sectional view along A-A of the electrochemical device shown in Fig. 1 .
  • FIG. 4 is a bottom view of an electrode assembly of the electrochemical device shown in FIG. 1 in some embodiments.
  • FIG. 5A is an enlarged view at VA of the electrode assembly shown in FIG. 4 .
  • FIG. 5B is a partial schematic diagram of the electrode assembly shown in FIG. 5A at VB.
  • Fig. 6 is a bottom view of the electrode assembly of the electrochemical device shown in Fig. 1 in some other embodiments.
  • FIG. 7 is a bottom view of an electrode assembly of the electrochemical device shown in FIG. 1 in yet other embodiments.
  • FIG. 8 is an expanded view of the first conductive layer of the electrode assembly shown in FIG. 4 .
  • FIG. 9 is an expanded view of the second conductive layer of the electrode assembly shown in FIG. 4 .
  • FIG. 10 is a front view of the first conductive layer shown in FIG. 8 .
  • Fig. 11 is a front view of the first conductive layer in some other embodiments.
  • FIG. 12 is a front view of the first conductive layer shown in FIG. 11 with the third layer removed.
  • FIG. 13 is a cross-sectional view along B-B of the first conductive layer shown in FIG. 12 in some embodiments.
  • FIG. 14 is a cross-sectional view along B-B of the first conductive layer shown in FIG. 12 in some other embodiments.
  • Fig. 15 is a bottom view of an electrode assembly of an electrochemical device provided in another embodiment of the present application.
  • Fig. 16 is a bottom view of an electrode assembly of an electrochemical device provided in another embodiment of the present application.
  • FIG. 17 is a cross-sectional view of the electrochemical device shown in FIG. 16 .
  • FIG. 18 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the second layer 50 is the second layer 50
  • the third layer 60 is the third layer 60
  • the first shell area 111 The first shell area 111
  • the first bending section 202 The first bending section 202
  • the third side 220a is the third side 220a
  • Second conductive material layer 221 Second conductive material layer 221
  • an embodiment of the present application provides an electrochemical device 100 , which includes a housing 10 and an electrode assembly 20 disposed in the housing 10 .
  • the electrode assembly 20 is formed by winding the stacked body 2 .
  • the stack 2 includes a first conductive layer 21 , a second conductive layer 22 and a first layer 23 disposed between the first conductive layer 21 and the second conductive layer 22 .
  • the electrode assembly 20 also includes a first conductive plate 30 and a second conductive plate 40 .
  • the first conductive plate 30 is electrically connected to the first conductive layer 21
  • the second conductive plate 40 is electrically connected to the second conductive layer 22 .
  • the first conductive plate 30 and the second conductive plate 40 protrude from one end of the housing 10 to connect to external devices (not shown).
  • a three-dimensional coordinate system is established according to the first direction X, the fourth direction Y' and the third direction Z which are perpendicular to each other.
  • the first direction X is a direction perpendicular to a surface of the first conductive plate 30
  • the fourth direction Y' is the direction from the first conductive plate 30 to the second conductive plate 40
  • the third direction Z is the first
  • the conductive plate 30 or the second conductive plate 40 protrudes in the direction of the stack 2 , which is also the direction of the winding central axis O of the electrode assembly 20 .
  • the first conductive layer 21 , the first layer 23 and the second conductive layer 22 are sequentially stacked and then wound around the winding central axis O to form the electrode assembly 20 .
  • the stacked body 2 may be wound clockwise around the winding central axis O to form the electrode assembly 20 .
  • the outermost layer of the first conductive layer 21 , the first layer 23 and the second conductive layer 22 is the first conductive layer 21 .
  • the first conductive layer 21 may be a positive electrode
  • the second conductive layer 22 may be a negative electrode.
  • the first conductive layer 21 can be a negative electrode
  • the second conductive layer 22 can be a positive electrode.
  • the hardness of the first conductive layer 21 is higher, the hardness of the electrode assembly 20 can be increased, thereby increasing the ability of the electrode assembly 20 to withstand mechanical impact.
  • the outermost layer of the first conductive layer 21 , the first layer 23 and the second conductive layer 22 may also be the second conductive layer 21 or the first layer 23 .
  • the electrode assembly 20 in the winding direction D, includes a first segment 201 , a first bent segment 202 , a second segment 203 and a second bent segment 204 connected in sequence.
  • the first direction X is also the stacking direction of the first conductive layer 21 in the first segment 201 or the second segment 203 .
  • the first section 201 and the second section 203 may be straight sections.
  • the electrode assembly 20 in the winding direction D, may also include four bent sections connected in sequence.
  • the first conductive plate 30 and the second conductive plate 40 can both be located in the first segment 201, which can reduce the bending of the first conductive plate 30 , so that the flatness of the first conductive plate 30 can be improved, and the stress of the burrs of the first conductive plate 30 piercing through the first layer 23 can also be reduced, thereby improving safety performance.
  • the first section 201 has a first outer surface 201a
  • the second section 203 has a second outer surface 203a.
  • the connection between the first section 201 located at the outermost side of the electrode assembly 20 and the first bent section 202 located at the outermost side of the electrode assembly 20 is the first connection end 205 .
  • the first connection end 205 is the starting part of the rightmost bending edge of the first bending section 202 in FIG.
  • the connection between the first bent section 202 located at the outermost side of the electrode assembly 20 and the second section 203 located at the outermost side of the electrode assembly 20 is the second connection end 206 .
  • the second connection end 206 is the ending part of the rightmost bending edge of the first bending section 202 in FIG.
  • the third connection end 207 is the starting part of the leftmost curve of the second bending section 204 in FIG.
  • the part where the dotted line A-A formed by the folded edge extending in the first direction X intersects with the second outer surface 203a.
  • connection between the second bent section 204 on the outermost side of the electrode assembly 20 and the first section 201 on the outermost side of the electrode assembly 20 is the fourth connection end 208 .
  • the fourth connection end 208 is the ending part of the leftmost curve of the second bending section 204 in FIG.
  • the first connection end 205 is aligned with the second connection end 206
  • the third connection end 207 is aligned with the fourth connection end 208 .
  • the casing 10 may be a packaging bag packaged with a packaging film, that is, the electrochemical device 100 is a pouch battery.
  • the casing 10 includes a first casing 11 and a second casing 12 oppositely arranged in the first direction X.
  • the first housing 11 includes a first housing area 111 and a second housing area 112 connected to each other. Three sides of the second housing region 112 are surrounded by the first housing region 111 .
  • the second housing 12 includes a third housing area 121 and a fourth housing area 122 connected to each other. Three sides of the fourth casing region 122 are surrounded by the third casing region 121 .
  • the second housing area 112 and the fourth housing area 122 together constitute an accommodating space (not shown) for accommodating the electrode assembly 20 .
  • the first housing area 111 is connected to the third housing area 121 to seal the accommodating space.
  • the first conductive plate 30 is electrically connected to the stack body 2, and extends out of the housing 10 from the junction of the first housing area 111 and the third housing area 121, so that the first conductive plate 30 can be used to connect the stack body 2 Connect with external devices.
  • the second conductive plate 40 is connected with the stack body 2, and protrudes from the junction of the first housing area 111 and the third housing area 121 outside the housing 10, so that the second conductive plate 40 can be used to connect the stack body 2 with the External device connection.
  • the first conductive plate 30 and the second conductive plate 40 can protrude out of the casing 10 along the third direction Z.
  • the shell 10 may also be a metal shell, such as a steel shell or an aluminum shell.
  • the first conductive layer 21 includes a first metal layer 210 and a first conductive material layer 211 that are stacked.
  • the first metal layer 210 may have a current collecting function, for example, the first metal layer 210 may include aluminum or nickel. In some embodiments, the first metal layer 210 includes aluminum.
  • the first conductive material layer 211 contains active materials, which may include lithium cobalt oxide, lithium manganese oxide, lithium nickel oxide, lithium nickel cobalt manganese oxide, lithium iron phosphate, lithium manganese iron phosphate, lithium vanadium phosphate, lithium vanadyl phosphate, rich At least one of lithium-manganese-based materials or lithium-nickel-cobalt-aluminate.
  • the first metal layer 210 in the first direction X, includes a first surface 210 a and a second surface 210 b oppositely disposed. As shown in FIG. 4 , when viewed along the third direction Z, the first surface 210 a of the first metal layer 210 is closer to the winding central axis O of the electrode assembly 20 than the second surface 210 b. In some embodiments, the first surface 210 a includes a region 210 a 1 covered with the first conductive material layer 211 and regions 210 a 2 , 210 a 3 away from the first conductive material layer 211 .
  • the second surface 210b includes a region 210b1 covered with the first conductive material layer 211 and regions 210b2, 210b3 separated from the first conductive material layer 211 .
  • another three-dimensional coordinate system is established according to the mutually perpendicular second direction Y, third direction Z, and fifth direction X', and the second direction Y is defined as the first conductive layer before the stack 2 is wound.
  • the extension direction of the layer 21, the fifth direction X' is the stacking direction of the first metal layer 210 and the first conductive material layer 211 after the first conductive layer 21 is deployed, and also the stacking direction of the second metal layer 220 and the second metal layer 22 after the second conductive layer 22 is deployed.
  • the first metal layer 210 further includes a first end portion 2101 and a second end portion 2102 disposed opposite to each other.
  • the first end 2101 is used as the starting end of the winding of the first conductive layer 21
  • the second end 2102 is used as the ending end of the winding of the first conductive layer 21 .
  • Both the first end portion 2101 and the second end portion 2102 extend along the third direction Z.
  • the first end 2101 is located at the center of the electrode assembly 20
  • the second end 2102 is located at the second outer edge of the second section 203. surface 203a.
  • the region 210a2 of the first surface 210a that is closer to the first end 2101 than the second end 2102 and away from the first conductive material layer 211 is a surface of the first conductive layer 21 in the first direction X (hereinafter referred to as is: the first surface 21A), the second surface 210b is closer to the first end 2101 than the second end 2102 and the region 210b2 away from the first conductive material layer 211 is the first conductive layer 21 in the first direction Another surface on X (hereinafter referred to as: second surface 21B).
  • the first surface 21A and the second surface 21B are oppositely disposed, and both the first surface 21A and the second surface 21B are exposed to the first conductive material layer 211 .
  • the first surface 21A and the second surface 21B are covered by the wound stack 2 .
  • the first conductive plate 30 is connected to the first surface 21A. When viewed along the first direction X, the first conductive plate 30 partially overlaps with the first surface 21A. As shown in FIG. 8 , in some embodiments, in the second direction Y, the first conductive plate 30 may be located between the first end portion 2101 and the first conductive material layer 211 .
  • the first conductive plate 30 is welded to the first surface 21A, so that the connection strength between the first conductive plate 30 and the first surface 21A is high.
  • the first conductive plate 30 may include a first conductive region 31 and a second conductive region 32 .
  • the first conductive region 31 is soldered to the first surface 21A. When viewed along the first direction X, the first conductive region 31 coincides with the first surface 21A.
  • the second conductive region 32 is connected to the first conductive region 31 , and the second conductive region 32 is a region protruding from the casing 10 when viewed along the first direction X.
  • the first surface 210a is closer to the second end 2102 than the first end 2101 and a region 210a3 away from the first conductive material layer 211 is the first conductive layer 21
  • the second surface 210b is closer to the second end portion 2102 than the first end portion 2101 and is separated from the first conductive material layer 211
  • the region 210b3 is the other surface of the first conductive layer 21 in the first direction X (hereinafter referred to as: the fourth surface 21D).
  • the third surface 21C and the fourth surface 21D are disposed opposite to each other in the first direction X, and both the third surface 21C and the fourth surface 21D are exposed to the first conductive material layer 211 .
  • the fourth surface 21D forms the outer surface of the electrode assembly 20 , that is, the electrode assembly 20 ends with the first metal layer 210 .
  • the first metal layer 210 further includes a third end portion 2103 and a fourth end portion 2104 located on the other side of the third end portion 2103 .
  • the first conductive plate 30 protrudes from the third end portion 2103 .
  • the third end portion 2103 and the fourth end portion 2104 are also two end portions of the first conductive layer 21 in the third direction Z.
  • the second conductive layer 22 includes a second metal layer 220 and a second conductive material layer 221 stacked.
  • the second metal layer 220 may have a current collecting function, for example, the second metal layer 220 may include copper, nickel or carbon-based conductors.
  • the second metal layer 220 includes copper.
  • the second conductive material layer 221 contains active materials, which may be selected from at least one of graphite-based materials, alloy-based materials, lithium metal and alloys thereof.
  • the graphite-based material can be selected from at least one of artificial graphite and natural graphite; the alloy-based material can be selected from at least one of silicon, silicon oxide, tin, and titanium sulfide.
  • the second metal layer 220 includes a third surface 220 a and a fourth surface 220 b oppositely disposed. As shown in FIG. 4 , when viewed along the third direction Z, the third surface 220 a of the second metal layer 220 is closer to the winding central axis O of the electrode assembly 20 than the fourth surface 220 b.
  • the third surface 220a includes a region 220a1 covered with the second conductive material layer 221 and a region 220a2 separated from the second conductive material layer 221, and the fourth surface 220b includes a region 220b1 covered with the second conductive material layer 221 and separated from the second conductive material layer 221.
  • the second metal layer 220 further includes a first end 2201 and a second end 2202 disposed opposite to each other.
  • the first end 2201 is used as the starting end of the second conductive layer 22 to be wound, and the second end 2202 is used as the ending end of the second conductive layer 22 to be wound. Both the first end 2201 and the second end 2202 extend along the third direction Z.
  • the second conductive plate 40 is connected to a region 220 a 2 of the third surface 220 a that is closer to the first end 2201 than the second end 2202 and away from the second conductive material layer 221 .
  • the second conductive plate 40 is welded to the third surface 220a, so that the connection strength between the second conductive plate 40 and the third surface 220a is high.
  • the second metal layer 220 further includes a third end 2203 and a fourth end 2204 located on the other side of the third end 2203 .
  • the second conductive plate 40 protrudes from the third end 2203 .
  • the third end 2203 and the fourth end 2204 are also two ends of the second conductive layer 22 in the third direction Z.
  • the connection positions of the first conductive plate 30 and the second conductive plate 40 can be changed.
  • the first conductive plate 30 may be connected to a region 210b2 of the second surface 210b that is closer to the first end portion 2101 than the second end portion 2102 and away from the first conductive material layer 211 (ie, the second surface 21B).
  • the second conductive plate 40 can be connected to a region 220b2 of the fourth surface 220b that is closer to the first end 2201 than the second end 2202 and away from the second conductive material layer 221 .
  • the first layer 23 is used to prevent direct contact between the first conductive layer 21 and the second conductive layer 22 , thereby reducing the possibility of contact short circuit between the first conductive layer 21 and the second conductive layer 22 .
  • the first layer 23 comprises an insulating material, which may be selected from polypropylene, polyethylene, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polymethyl methacrylate or polyethylene glycol at least one of.
  • the first layer 23 may be a barrier film.
  • the first layer 23 in the second direction Y, the first layer 23 includes a first edge 231 and a second edge 232 disposed opposite to each other.
  • the first edge 231 is used as the starting end of the first layer 23 to be rolled, and the second edge 232 is used as the ending end of the first layer 23 to be rolled. Both the first edge 231 and the second edge 232 extend along the third direction Z. In the third direction Z, the first layer 23 further includes a third edge 233 and a fourth edge 234 located on the other side of the third edge 233 . Both the third edge 233 and the fourth edge 234 extend along the second direction Y. When viewed along the first direction X, both the first conductive plate 30 and the second conductive plate 40 protrude from the third edge 233 .
  • the third end 2203 of the second conductive layer 22 extends beyond the third end 2203 of the first conductive layer 21 .
  • the end portion 2103 , the fourth end 2204 of the second conductive layer 22 extends beyond the fourth end 2104 of the second conductive layer 22 .
  • the area where the second conductive layer 22 exceeds the first conductive layer 21 is the protruding area 222 .
  • the third edge 233 of the first layer 23 extends beyond the third end 2203 of the second conductive layer 22;
  • the fourth edge 234 of the first layer 23 extends beyond the fourth end 2204 of the second conductive layer 22 . Therefore, the third edge 233 and the fourth edge 234 of the first layer 23 are two edges of the stack 2 in the third direction Z.
  • At least one protrusion 33 may be formed at the welding place between the first conductive plate 30 and the first surface 21A.
  • a plurality of protrusions 33 arranged in a matrix may be formed at the welding place between the first conductive plate 30 and the first surface 21A.
  • the protrusion 33 protrudes from the first surface 21A toward the first conductive plate 30 .
  • the protrusion 33 may be formed during welding, but the present application is not limited thereto.
  • at least one protrusion 33a is formed on the surface of the first conductive plate 30 away from the first surface 21A, and at least one recess 33b is formed on the second surface 21B of the first metal layer 210 .
  • a protrusion 35 may be formed on the edge of the first conductive plate 30 .
  • the protruding portion 35 can be formed during the cutting process of the first conductive plate 30 , but this application is not limited thereto.
  • the protrusions 35 may also be called burrs.
  • the root of the protrusion 35 is connected to the first conductive plate 30 , and the head of the protrusion 35 may face in different directions.
  • the head of the protrusion 35 may face the second layer 50 .
  • the head of the protrusion 35' can also protrude along the extension plane of the first conductive plate 30.
  • the electrode assembly 20 further includes a second layer 50 and a third layer 60 .
  • the second layer 50 covers the area of the first conductive plate 30 coincident with the first surface 21A.
  • the second layer 50 is used to cover the protrusions 33 a and 35 to reduce the possibility of the protrusions piercing through the first layer 23 and contacting the second conductive layer 22 for short circuit.
  • the thickness T 1 of the second layer 50 is not less than the height T 2 at which the protrusion 33 a protrudes, and is not less than the height T 3 at which the protrusion 35 protrudes.
  • the thickness T4 of the first conductive plate 30 before welding is 50 ⁇ m to 200 ⁇ m
  • the height T2 of the convex portion 33a formed after welding is 1 ⁇ m to 10 ⁇ m
  • the height T3 of the protrusion 35 is 1 ⁇ m to 10 ⁇ m.
  • the thickness T 1 of the second layer 50 is 10 ⁇ m to 16 ⁇ m.
  • the height T 2 of the protrusion 33 a and the height T 3 of the protrusion 35 can be measured by an optical microscope after the second layer 50 is disassembled.
  • the thickness T 1 of the second layer 50 and the thickness T 4 of the first conductive plate 30 can be measured directly, such as using a caliper or other suitable measuring tools.
  • the second layer 50 can be single-sided tape or double-sided tape containing an insulating material, and the above-mentioned insulating material can be selected from polypropylene, polyethylene, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polyvinylidene fluoride At least one of methyl methacrylate or polyethylene glycol.
  • the second layer 50 can also be a ceramic coating.
  • At least one recess 34 may be formed at the welding place between the first conductive plate 30 and the first surface 21A.
  • a plurality of matrix-arranged recesses 34 may be formed at the welding place between the first conductive plate 30 and the first surface 21A.
  • the recess 34 may be formed during the welding process, but this application is not limited.
  • the recess 34 is recessed from the first surface 21A toward the first conductive plate 30 .
  • at least one convex portion 34a is correspondingly formed on the second surface 21B
  • at least one concave portion 34b is correspondingly formed on the surface of the first conductive plate 30 away from the first surface 21A.
  • the electrode assembly 50 may further include a fifth layer 54 disposed on the second surface 21B.
  • the fifth layer 54 covers the area of the first conductive plate 30 that coincides with the second surface 21B.
  • the fifth layer 54 is used to cover the above-mentioned convex portion 34a.
  • the thickness T 5 of the fifth layer 54 is not smaller than the height T 6 at which the convex portion 34 a protrudes.
  • the second layer 50 includes a seventh end portion 51 located on the side of the first end portion 2101 and an eighth end portion 52 located on the side of the second end portion 2102 .
  • the seventh end portion 51 and the eighth end portion 52 may both extend along the third direction Z.
  • the seventh end portion 51 intersects the third end portion 2103 of the first conductive layer 21, and the eighth end portion 52 also intersects the third end portion 2103 of the first conductive layer 21.
  • the third layer 60 when viewed along the fifth direction X', the third layer 60 at least covers the overlapping area of the convex portion 33a and the second layer 50, and the third layer 60 and the second layer 50 partially overlap.
  • the second layer 50 is disposed between the first surface 21A and the third layer 60 in the fifth direction X'. Therefore, the third layer 60 can further reduce the possibility of the protrusion 33 a piercing the first layer 23 and contacting the second conductive layer 22 for a short circuit.
  • the third layer 60 when viewed along the fifth direction X', the third layer 60 can at least cover the area where the second layer 50 overlaps with the first conductive region 31 of the first conductive plate 30.
  • the third layer 60 can further reduce the possibility that the protruding portion 35 on the edge of the first conductive plate 30 will pierce the first layer 23 and contact the second conductive layer 22 for short circuit. Furthermore, when viewed along the fifth direction X', the third layer 60 covers the entire first surface 21A. Therefore, the third layer 60 can provide insulation protection for the exposed first surface 21A, reducing the possibility of the first surface 21A being in contact with the second metal layer 220 and shorting the mechanical abuse, and also reducing the mechanical abuse.
  • the first metal layer 210 is torn at the first surface 21A, and the torn first metal layer 210 pierces the first layer 23 and contacts the second metal layer 220 with the possibility of short circuit.
  • the third layer 60 can be single-sided tape or double-sided tape containing an insulating material, and the above-mentioned insulating material can be selected from polypropylene, polyethylene, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polyvinylidene fluoride At least one of methyl methacrylate or polyethylene glycol.
  • the thickness of the third layer 60 may be 10 ⁇ m to 16 ⁇ m. In other embodiments, the third layer 60 can also be a ceramic coating.
  • the third layer 60 includes a fifth end portion 61 and a sixth end portion 62 located on the other side of the fifth end portion 61 .
  • the fifth end portion 61 and the sixth end portion 62 may both extend along the second direction Y.
  • the third layer 60 further includes a ninth end portion 63 on the side of the first end portion 2101 and a tenth end portion 64 on the side of the second end portion 2102 .
  • the ninth end portion 63 and the tenth end portion 64 may both extend along the third direction Z.
  • the ninth end portion 63 is connected between the fifth end portion 61 and the sixth end portion 62
  • the tenth end portion 64 is also connected between the fifth end portion 61 and the sixth end portion 62 .
  • the third layer 60 covers the entire exposed first surface 21A, in the second direction Y, the third layer 60 extends from the area coincident with the second layer 50 to beyond the seventh end portion 51 and the eighth end portion 52 . That is, in the second direction Y, the ninth end portion 63 of the third layer 60 exceeds the seventh end portion 51 of the second layer 50, and the tenth end portion 64 of the third layer 60 exceeds the eighth end portion of the second layer 50. Section 52. In some embodiments, in order for the third layer 60 to fully cover the entire first surface 21A, the third layer 60 at least completely overlaps the first surface 21A.
  • the third layer 60 at least satisfies: the fifth end 61 coincides with the third end 2103, the sixth end 62 coincides with the fourth end 2104, the ninth end 63 coincides with the first end 2101, and the tenth end 63 coincides with the first end 2101.
  • the end portion 64 is in contact with the first conductive material layer 211 .
  • the second layer 50 covers the area of the first conductive plate 30 that coincides with the first surface 21A
  • the third layer 60 covers the entire bare first surface 21A , thereby reducing the possibility of a short circuit in the electrochemical device 100, reducing the possibility of instantaneous high heat accumulation during a short circuit, and improving the service life of the electrochemical device 100.
  • the first surface 21A forms a first region 21A1 , a second region 21A2 and a third region 21A3 after the stack 2 is folded back once.
  • the first area 21A1 and the second area 21A2 may be oppositely disposed with the first layer 23 interposed therebetween.
  • the first area 21A1 is located in the first segment 201
  • the second area 21A2 is located in the second segment 203 .
  • the third area 21A3 is connected between the first area 21A1 and the second area 21A2
  • the third area 21A3 is located in the first bending section 202 .
  • the first end portion 2101 is located in the first region 21A1 , that is, the first region 21A1 is closer to the starting end of the winding of the first conductive layer 21 than the second region 21A2 .
  • the first conductive plate 30 is connected to the first region 21A1.
  • the third layer 60 extends from the first region 21A1 to the third region 21A3 , and further extends to the second region 21A2 .
  • the starting end 2111 of the first conductive material layer 211 is connected to the second region 21A2.
  • the first conductive plate 30 when viewed in the first direction X, is separated from the third layer 60 disposed in the second region 21A2 .
  • the first surface 21A can also be located only in the first segment 201 . That is, the first surface 21A does not extend to the first bent section 202 and the second section 203 after the stacked body 2 is folded back once. At this time, the third layer 60 is only located in the first section 201 , while the starting end 2111 of the first conductive material layer 211 extends to the first section 201 , thereby improving the energy density of the electrochemical device 100 .
  • the third layer 60 may extend from the area coincident with the first surface 21A to beyond the third end portion 2103 . That is, when viewed along the fifth direction X', the third layer 60 also covers at least part of the second conductive region 32 of the first conductive plate 30. Therefore, not only the third layer 60 can fully protect the first surface 21A, but also if the first metal layer 210 has a convex portion 210c at the third end 2103, the part of the third layer 60 beyond the third end 2103 can cover the first surface. The convex portion 210c at the third end portion 2103 .
  • the protrusion 210c may be formed during the cutting process of the first metal layer 210, and the protrusion 210c may also be called a burr.
  • the root of the protrusion 210c is connected to the third end 2103, and the head of the protrusion 210c may face in different directions.
  • the heads of the protrusions 210 c may protrude along the extension plane of the first metal layer 210 .
  • the head of the protrusion 210c' may also face the second layer 50. Referring to FIG.
  • the part of the third layer 60 beyond the third end 2103 can also cover the protrusion 35 on the edge of the second conductive region 32, so it can reduce the above-mentioned protrusions piercing the first layer 23 and contacting the second conductive layer 22 for short circuit. possibility.
  • the third layer 60 can also extend from the area coincident with the first surface 21A to beyond the fourth end portion 2104 . Therefore, not only the third layer 60 can fully protect the first surface 21A, but also if the first metal layer 210 has a convex portion 210d at the fourth end portion 2104 (the convex portion 210d can be formed during the cutting process of the first metal layer 210 , the convex portion 210d can also be called a burr), the part of the third layer 60 beyond the fourth end 2104 can also cover the convex portion 210d at the fourth end 2104, so as to reduce the penetration of the above-mentioned convex portion through the first layer 23 and contact with the fourth end portion 2104.
  • the second conductive layer 22 contacts the possibility of short circuit.
  • the ninth end portion 63 of the third layer 60 can also extend from the area coincident with the first surface 21A to beyond the first end portion 2101. If the first metal layer 210 has a convex portion 210e at the first end portion 2101 (the convex portion 210e can be formed during the cutting process of the first metal layer 210, and the convex portion 210e can also be called a burr), the third layer 60 protrudes beyond the first metal layer 210. A portion of the one end 2101 can cover the protrusion 210 e at the first end 2101 , reducing the possibility of the protrusion piercing the first layer 23 and contacting the second conductive layer 22 for short circuit.
  • the third layer 60 may partially overlap with the first conductive material layer 211.
  • the third layer 60 may further cover the winding starting end 2111 of the first conductive material layer 211 .
  • the third layer 60 further extends to the first region 21A2 after extending to the second region 21A2.
  • Conductive material layer 211 Usually, in order to reduce the possibility of lithium dendrites in the second conductive layer 22 , along the winding direction D, the starting end 2211 of the second conductive material layer 221 can be set beyond the starting end 2111 of the first conductive material layer 211 .
  • the third layer 60 by setting the third layer 60 to cover the starting end 2111 of the first conductive material layer 211 for winding, not only the third layer 60 can fully protect the first surface 21A, but even if the starting end 2211 of the second conductive material layer 221 is not Beyond the starting end 2111 of the first conductive material layer 211 (such as due to process errors, or the slurry of the second conductive material layer 221 flows too fast during coating), the lithium ions extracted from the first conductive material layer 211 can also be fully Received by the second conductive material layer 221, the risk of excess lithium ion accumulation and generation of lithium dendrites is reduced.
  • the tenth end portion 64 not only exceeds the eighth end portion in the second direction Y
  • the portion 52 further covers the first conductive material layer 211.
  • the distance defined from the seventh end portion 51 to the ninth end portion 63 is the first distance D 1 .
  • the second distance D 2 from the eighth end portion 52 to the tenth end portion 64 , the first distance D 1 is smaller than the second distance D 2 (D 1 ⁇ D 2 ). It can also be understood that because the second distance D 2 is relatively large, the first surface 21A can be bent from the first segment 201 to the second segment 203 after the stacked body 2 is folded once.
  • the first distance D 1 and the second distance D 2 are not limited thereto.
  • the first metal layer 210 and the third layer 60 may be cut along the third direction Y together. Due to the existence of the third layer 60 during the cutting process, the protrusion 210e generated by the first metal layer 210 at the first end portion 2101 is reduced.
  • the ninth end 63 of the third layer 60 does not need to exceed the first end 2101 in the second direction Y (at this time, when viewed along the fifth direction X', the ninth end 63 and the first end portion 2101 overlapping), also can improve the burr problem of the first end portion 2101.
  • the first distance D1 can be set to be greater than the second distance D 2 (D 1 >D 2 ).
  • the second layer 50 in the third direction Z, can extend from the area coincident with the first surface 21A to beyond the third end portion 2103 . That is, when viewed along the fifth direction X', the second layer 50 also covers at least part of the second conductive region 32 of the first conductive plate 30. Therefore, the portion of the second layer 50 beyond the third end portion 2103 can also cover the protrusion 35 on the edge of the second conductive region 32 .
  • the part of the second layer 50 beyond the third end 2103 can cover the protruding area 222 of the second conductive layer 22 in the third direction Z, thereby reducing the above-mentioned protrusions from penetrating the first end.
  • the layer 23 and the protruding region 222 of the second conductive layer 22 are in contact with the possibility of shorting.
  • the second layer 50 can further extend from the area coincident with the first surface 21A to beyond the fifth end portion 61 .
  • the third layer 60 can replace the second layer 50 covering the protrusion 35 on the edge of the second conductive region 32 of the first conductive plate 30.
  • the part of the third layer 60 beyond the third end 2103 is not bonded to the first surface 21A, so that the part of the third layer 60 beyond the third end 2103 is easily folded during mechanical abuse, which increases the stability of the first conductive plate 30.
  • the protrusion 35 pierces through the first layer 23 causing the possibility of a short circuit.
  • the present application limits the second layer 50 beyond the fifth end 61, because the part beyond the second layer 50 is bonded to the first conductive plate 30, it is not easy to be folded during mechanical abuse, thereby improving the reliability of the second layer 50 sex.
  • the size of the region coincident with the first surface 21A in the second layer 50 is defined as the third distance L 1 in the third direction Z, and the first conductive layer 21 in the third direction
  • the distance from the third end 2103 to the fourth end 2104 on Z is the fourth distance L 2
  • the third distance L 1 is less than or equal to half of the fourth distance L 2 (L 1 ⁇ 0.5L 2 ). It can be understood that if severe mechanical abuse occurs (eg, the electrochemical device is impacted), the first layer may break, and the first conductive layer or the second conductive layer may also generate debris, causing a short circuit.
  • the third distance L 1 is larger, the overlapping area of the second layer 50 and the third layer 60 is larger, that is, the area of the first surface 21A covered by the second layer 50 and the third layer 60 is larger. In this way, the first surface 21A is not easily broken, so that the first conductive plate 30 connected to the first surface 21A is not easily disconnected from the first conductive layer 21 .
  • the first surface 21A can be broken in time during severe mechanical abuse, so that the first conductive plate 30 is electrically disconnected from the first conductive layer 21, reducing the possibility of short circuit .
  • the size of the area of the first conductive plate 30 coincident with the first surface 21A in the third direction Z is the fifth distance L 3 , then the fifth distance L 3 is less than or equal to the fourth distance L 2 One-third (L 1 ⁇ L 2 /3). It can be understood that if the fifth distance L 3 is larger, the area of the first surface 21A covered by the first conductive plate 30 is larger. In this way, if severe mechanical abuse occurs, the first surface 21A is not likely to break, so that the first conductive plate 30 connected to the first surface 21A is not easily disconnected from the first conductive layer 21 . In the present application, by limiting the range of the fifth distance L3 , the first surface 21A can be broken in time during severe mechanical abuse, so that the first conductive plate 30 is electrically disconnected from the first conductive layer 21, reducing the possibility of short circuit .
  • another embodiment of the present application also provides an electrochemical device 200 .
  • the difference from the aforementioned electrochemical device 100 is that the electrode assembly 20 of the electrochemical device 200 further includes a fourth layer 70 .
  • the fourth layer 70 covers the second surface 21B.
  • the fourth layer 70 can provide insulation protection for the exposed second surface 21B, reducing the possibility of the second surface 21B contacting the second metal layer 220 for short circuit during mechanical abuse, and also reducing the second metal layer 220 during mechanical abuse.
  • a metal layer 210 is torn at the second surface 21B, and the possibility of the torn first metal layer 210 piercing the first layer 23 and contacting the second metal layer 220 for a short circuit further improves the reliability of the electrochemical device 100. service life.
  • the fourth layer 70 may be single-sided tape or double-sided tape containing insulating materials. The material of the fourth layer 70 may be substantially the same as that of the third layer 60 , and the description thereof will not be repeated here.
  • the first conductive plate 30 of the electrochemical device 300 includes at least two first conductive regions 31 and one second conductive region 32 .
  • the first conductive plate 30 may include two first conductive regions 31 .
  • One first conductive region 31 is connected to the first surface 21A, and the other first conductive region 31 is connected to the third surface 21C.
  • the second conductive area 32 is connected to each of the first conductive areas 31 through the transition portion 320 , and extends out of the housing 10 .
  • the current distribution of the first conductive layer 21 will not be too concentrated, and the internal resistance of the first conductive layer 21 is reduced, thereby improving the performance of the first conductive layer 21. charge-discharge rate.
  • the second conductive plate 40 includes at least two third conductive regions (not shown) connected to the second conductive layer 22, and a fourth conductive region connected to each third conductive region through a transfer portion. conductive area (not shown).
  • the electrochemical device 100 (or the electrochemical device 200, 300) of the present application includes all devices capable of electrochemical reactions.
  • the electrochemical device 100 includes all kinds of primary batteries, secondary batteries, fuel cells, solar cells, and capacitors (such as supercapacitors).
  • the electrochemical device 100 may be a lithium secondary battery, including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, and a lithium ion polymer secondary battery.
  • an embodiment of the present application further provides an electronic device 1 , including the aforementioned electrochemical device 100 (or electrochemical devices 200, 300).
  • the electrochemical device 100 of the present application is applicable to electronic devices 1 in various fields.
  • the electronic device 1 of the present application may be, but not limited to, a notebook computer, a pen input computer, a mobile computer, an e-book player, a portable phone, a portable fax machine, a portable copier, a portable printer, a head-mounted Stereo headphones, VCRs, LCD TVs, portable cleaners, portable CD players, mini-discs, transceivers, electronic organizers, calculators, memory cards, portable tape recorders, radios, backup power supplies, electric motors, automobiles, motorcycles, power-assisted bicycles , bicycles, lighting appliances, toys, game consoles, clocks, electric tools, flashlights, cameras, large household batteries and lithium-ion capacitors, etc.
  • the first conductive plate is welded to the first surface of the first metal layer, and the second conductive plate is welded to the second metal layer.
  • the second layer is bonded at the welding place between the first conductive plate and the first metal layer, and then the third layer is bonded on the first surface, and the third layer completely covers the first surface.
  • the first conductive layer, the first layer and the second conductive layer are sequentially stacked and wound to obtain an electrode assembly, and then liquid injection, chemical formation, and packaging are performed to form a battery.
  • Example 1 The difference from Example 1 is that L 2 /3 ⁇ L 1 ⁇ L 2 /2.
  • Embodiment 1 The difference from Embodiment 1 is that the third layer does not cover the entire first surface, but only covers the area where the first surface meets the first conductive material layer.
  • the third layer does not cover the entire first surface, but only covers the area where the first surface and the first conductive material layer meet.
  • Example 1 The difference from Example 1 is that the second layer is omitted. Meanwhile, when viewed along the first direction, the third layer does not cover the protruding area of the second conductive layer.
  • Comparative Example 3 The difference from Comparative Example 3 is that the third layer covers the protruding area of the second conductive layer when viewed along the first direction.
  • the steps of the drop test include: 1) Under normal temperature conditions, the battery is charged to the charging limit voltage with a current of 0.2C. 2) Put the battery into the fixture compartment, and use the automatic drop equipment to land the front, back, top, left, bottom, and right sides of the battery in a round from the position of 1.8m, and drop a total of six times in one cycle. Each time is a round. 3) After each round of drop, observe whether there is any damage on the surface of the battery, and measure the open circuit voltage of the battery. If the voltage is less than 3.0V, it is determined that the battery has failed.
  • the steps of the impact test include: 1) Under normal temperature conditions, the battery is charged to the charging limit voltage with a current of 0.2C. 2) Place the battery on the test table, and place a round bar with a diameter of 15.8mm vertically in the center of the front of the battery. 3) Using a weight of 9.1 ⁇ 0.1kg, drop it vertically and freely from a height of 610 ⁇ 25mm, and hit the intersection of the round bar and the front of the battery. 4) Observe whether the battery fails.
  • the impact test pass rate X/10 means that among the 10 samples tested, the number of samples that passed the test is X.
  • Embodiment 1-3 covered the second layer on the overlapping area of the first conductive plate and the first surface, and then covered the third layer on the entire first surface. layer, so the drop test and impact test pass rate is higher, that is, the service life of the battery is improved. Moreover, compared with Examples 2-3, Example 1 satisfies L 1 ⁇ L 2 /3 and L 1 ⁇ 0.5L 2 , so the passing rate of the impact test is the highest.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

一种电极组件,由堆叠体卷绕形成。堆叠体包括第一导电层、第二导电层、以及配置于第一导电层与第二导电层之间的第一层,第一层包含绝缘材料。第一导电层包括第一表面、第一端部、以及设于第一端部对侧的第二端部,第一表面被卷绕后的堆叠体覆盖。电极组件还包括第一导电板、第二层和第三层。第一导电板连接于第一表面。定义与第一导电板的一表面相垂直的为第一方向,沿第一方向观察时,第一导电板与第一表面部分重合,第二层覆盖第一导电板中与第一表面重合的区域,且第二层包含绝缘材料。沿第一方向观察时,第三层覆盖第一表面,且第三层包含绝缘材料;在第一方向上,第二层设于第一表面和第三层之间。本申请还提供一种电化学装置以及电子装置。

Description

电极组件、电化学装置以及电子装置 技术领域
本申请涉及储能装置领域,尤其是涉及一种电极组件及包括所述电极组件的电化学装置和电子装置。
背景技术
电化学装置(如电池)在电子移动设备、电动工具及电动汽车等电子产品中有着广泛使用,人们对电化学装置的各项性能要求也越来越高。由于电子产品在使用过程中常会发生跌落、撞击、振动等机械滥用,这可能会导致电化学装置内部发生短路,降低电化学装置的使用寿命。
发明内容
为解决以上不足之处,有必要提供一种能够降低短路可能性的电极组件和电化学装置。
另,还有必要提供一种具有上述电化学装置的电子装置。
本申请第一方面提供一种电极组件,由堆叠体卷绕形成。堆叠体包括第一导电层、第二导电层、以及配置于第一导电层与第二导电层之间的第一层,第一层包含绝缘材料。第一导电层包括第一表面、第一端部、以及设于第一端部对侧的第二端部,第一表面被卷绕后的堆叠体覆盖。电极组件还包括第一导电板、第二层和第三层。第一导电板连接于第一表面。定义与第一导电板的一表面相垂直的方向为第一方向。沿第一方向观察时,第一导电板与第一表面部分重合,第二层覆盖第一导电板中与第一表面重合的区域,且第二层包含绝缘材料。沿第一方向观察时,第三层覆盖第一表面,且第三层包含绝缘材料。在第一方向上,第二层设于第一表面和第三层之间。
本申请中,第二层用于覆盖第一导电板与第一表面之间的凸部以及第一导电板边缘的凸部,减小上述凸部刺穿第一层并与第二导电层接触短路的可能性。第三层可对第一表面起到绝缘保护的作用,减小了第一表面在机械滥用时与第二金属层接触短路的可能性,也减小了机械滥用时第一金属层于第一表面处发生撕裂、且撕裂的第一金属层刺穿第一层并与第二金属层接触短路的可能性。因此,提高了电化学装置的使用寿命。
在一些可能的实现方式中,定义自第一端部至第二端部的方向为第二方向,与第一方向和第二方向相垂直的为第三方向。在第三方向上,第一导电层还包括第三端部以及位于第三端部另一侧的第四端部。在第三方向上,第三层包括第五端部以及位于第五端部另一侧的第六端部。沿第一方向观察时,第一导电板伸出第三端部和第五端部。从而,便于第一导电板伸出壳体并连接外部设备。
在一些可能的实现方式中,在第三方向上,第三层自与第一表面重合的区域延伸至超出第三端部。从而,不仅使第三层可充分保护第一表面,且第三层超出第三端部的部分可覆盖第一金属层于第三端部处产生的凸部,还可覆盖第一导电板边缘产生的凸部。
在一些可能的实现方式中,在第三方向上,第三层自与第一表面重合的区域延伸至超出第四端部。从而,从而,不仅使第三层可充分保护第一表面,而且第三层超出第四端部的部分还可覆盖第一金属层于第四端部处产生的凸部。
在一些可能的实现方式中,在第三方向上,第二层自与第一表面重合的区域延伸至超出第三端部。因此,第二层超出第三端部的部分还可覆盖第一导电板边缘产生的凸部。
在一些可能的实现方式中,在第三方向上,第二层自与第一表面重合的区域延伸至超出第五端部。如此,第二层超出第五端部的部分可覆盖第一导电板边缘的凸部。而且,第二层超出第五端部的部分粘接于第一导电 板,相较于利用第三层超出第三端部的部分覆盖第一导电板边缘凸部的方案,第二层超出的部分不易在机械滥用时翻折。
在一些可能的实现方式中,第一导电层包括在第一方向上堆叠的第一金属层和第一导电材料层。在第二方向上,第一导电板位于第一端部和第一导电材料层之间。
在一些可能的实现方式中,沿第一方向观察时,第三层与第一导电材料层部分重合。如此,不仅使第三层可充分保护第一表面,而且能够使第一导电材料层脱出的锂离子能够充分被第一导电材料层接收,减少过量的锂离子囤积并产生锂枝晶的风险。
在一些可能的实现方式中,第二层还包括在第二方向上位于第一端部一侧的第七端部以及位于第二端部一侧的第八端部。第三层还包括在第二方向上的位于第一端部一侧的第九端部以及位于第二端部一侧的第十端部。在第二方向上,定义自第七端部至第九端部的距离为第一距离,自第八端部至第十端部的第二距离。为满足第九端部在第二方向上超出第七端部,同时,第十端部在第二方向上不仅超出第八端部,还进一步覆盖第一导电材料层,设置第一距离小于第二距离。
在一些可能的实现方式中,考虑到在第一表面上贴附第三层后,可以沿着第三方向一并裁切第一金属层和第三层,减少裁切后第一端部处的凸部。为了预留出第三层被裁切的空间,同时考虑若第三层在第二方向上尺寸过大可能导致的褶皱问题,设置第一距离大于第二距离。
在一些可能的实现方式中,第二层中与第一表面重合的区域在第三方向上的尺寸为第三距离,第一导电层在第三方向上自第三端部至第四端部的距离为第四距离,第三距离小于或等于第四距离的一半。如此,若发生严重的机械滥用时,第一表面能够及时断裂,从而使得第一导电板与第一导电层断开电连接,减小短路的可能性。
在一些可能的实现方式中,第一表面在堆叠体回折一次后形成第一区和第二区,第一端部位于第一区。第一导电板连接第一区。在第二方向上,第三层自第一区至少延伸至第二区。
在一些可能的实现方式中,在第一方向观察时,第一导电板和设于第二区的第三层相离。
在一些可能的实现方式中,第一导电层包括在第一方向上堆叠的第一金属层和第一导电材料层。第一导电材料层连接于第二区。
在一些可能的实现方式中,第一导电层包括在第一方向上堆叠的第一金属层和第一导电材料层。第一导电板焊接于第一金属层,从而使第二导电板与第一金属层之间具有较高的连接强度。
在一些可能的实现方式中,第一金属层包含铝。
在一些可能的实现方式中,第一导电层为正极。
在一些可能的实现方式中,第二导电层包括在第一方向上堆叠的第二金属层和第二导电材料层。电极组件还包括第二导电板,第二导电板焊接于第二金属层,从而使第二导电板与第二金属层之间具有较高的连接强度。
在一些可能的实现方式中,第二金属层包含铜。
在一些可能的实现方式中,第二导电层为负极。
在一些可能的实现方式中,沿第一方向观察时,第一导电板与第一表面的焊接处,具有自第一表面向第一导电板突出的凸部。
在一些可能的实现方式中,沿第一方向观察时,第一导电板与第一表面的焊接处,具有自第一表面向第一导电板凹进的凹部。
在一些可能的实现方式中,第一导电板中与第一表面重合的区域在第三方向上的尺寸为第五距离,第一导电层在第三方向上自第三端部至第四端部的距离为第四距离,第五距离小于或等于第四距离的三分之一。如此,若发生严重的机械滥用时,第一表面能够及时断裂,从而使得第一导电板与第一导电层断开电连接,减小短路的可能性。
在一些可能的实现方式中,第一导电层还包括在第一方向上与第一表面相对的第二表面。电极组件还包括第四层。第四层覆盖第二表面,且第 四层包含绝缘材料。如此,第四层可对第二表面起到绝缘保护的作用,减小了第二表面在机械滥用时与第二金属层接触短路的可能性,也减小了机械滥用时第一金属层于第二表面处发生撕裂、且撕裂的第一金属层刺穿第一层并与第二金属层接触短路的可能性,进一步提高了电化学装置的使用寿命。
本申请第二方面还提供一种电化学装置,包括壳体。电化学装置还包括如上电极组件,电极组件设于壳体内。第一导电板从壳体的一端伸出。
本申请第三方面还提供一种电子装置,包括如上电化学装置。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请一实施方式提供的电化学装置的正视图。
图2为图1所示的电化学装置在封装前的示意图。
图3为图1所示的电化学装置沿A-A的剖视图。
图4为一些实施例中图1所示的电化学装置的电极组件的仰视图。
图5A为图4所示的电极组件于VA处的放大图。
图5B为图5A所示的电极组件于VB处的局部示意图。
图6为另一些实施例中图1所示的电化学装置的电极组件的仰视图。
图7为又一些实施例中图1所示的电化学装置的电极组件的仰视图。
图8为图4所示的电极组件的第一导电层的展开图。
图9为图4所示的电极组件的第二导电层的展开图。
图10为图8所示的第一导电层的正视图。
图11为另一些实施例中第一导电层的正视图。
图12为图11所示的第一导电层去掉第三层后的正视图。
图13为一些实施例中图12所示的第一导电层沿B-B的剖视图。
图14为另一些实施例中图12所示的第一导电层沿B-B的剖视图。
图15为本申请另一实施方式提供的电化学装置的电极组件的仰视图。
图16为本申请又一实施方式提供的电化学装置的电极组件的仰视图。
图17为图16所示的电化学装置的剖视图。
图18为本申请一实施方式提供的电子装置的结构示意图。
主要元件符号说明
电子装置                                  1
堆叠体                                    2
壳体                                      10
第一壳体                                  11
第二壳体                                  12
电极组件                                  20
第一导电层                                21
第一表面                                  21A
第一区                                    21A1
第二区                                    21A2
第三区                                    21A3
第二表面                                  21B
第三表面                                  21C
第四表面                                  21D
第二导电层                                22
第一层                                    23
第一导电板                                30
第一导电区                                31
第二导电区                                32
凸部                                      33、33a、34a、35、35’
凹部                                      34、33b、34b
第二导电板                          40
第二层                              50
第七端部                            51
第八端部                            52
第五层                              54
第三层                              60
第五端部                            61
第六端部                            62
第九端部                            63
第十端部                            64
第四层                              70
电化学装置                          100、200、300
第一壳体区                          111
第二壳体区                          112
第三壳体区                          121
第四壳体区                          122
第一段                              201
第一外表面                          201a
第一弯折段                          202
第二段                              203
第二外表面                          203a
第二弯折段                          204
第一连接端                          205
第二连接端                          206
第三连接端                          207
第四连接端                          208
第一金属层                          210
第一面                              210a
区域                                210a1、210a2、210a3
第二面                              210b
区域                                210b1、210b2、210b3
凸部                                210c、210c’、210d、210e
第一导电材料层                      211
第二金属层                          220
第三面                              220a
区域                                220a1、220a2
第四面                              220b
区域                                220b1、220b2
第二导电材料层                      221
伸出区                              222
第一边缘                            231
第二边缘                            232
第三边缘                            233
第四边缘                            234
转接部                              320
第一端部                            2101
第二端部                            2102
第三端部                            2103
第四端部                            2104
起始端                              2111、2211
第一端                              2201
第二端                              2202
第三端                              2203
第四端                                             2204
虚线                                               A-A、B-B
卷绕方向                                           D
卷绕中心轴                                         O
第一方向                                           X
第二方向                                           Y
第三方向                                           Z
第四方向                                           Y’
第五方向                                           X’
第一距离                                           D 1
第二距离                                           D 2
第三距离                                           L 1
第四距离                                           L 2
第五距离                                           L 3
厚度                                               T 1、T 4、T 5
高度                                               T 2、T 3、T 6
具体实施方式
下面对本申请实施例中的技术方案进行清楚、详细地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
下文,将详细地描述本申请的实施方式。但是,本申请可体现为许多不同的形式,并且不应解释为限于本文阐释的示例性实施方式。而是,提供这些示例性实施方式,从而使本申请透彻的和详细的向本领域技术人员传达。
另外,为了简洁和清楚,在附图中,各种组件、层的尺寸或厚度可被放大。遍及全文,相同的数值指相同的要素。如本文所使用,术语“及/或”、“以及/或者”包括一个或多个相关列举项目的任何和所有组合。另外,应当理解,当要素A被称为“连接”要素B时,要素A可直接连接至要素B,或可能存在中间要素C并且要素A和要素B可彼此间接连接。
进一步,当描述本申请的实施方式时使用“可”指“本申请的一个或多个实施方式”。
本文使用的专业术语是为了描述具体实施方式的目的并且不旨在限制本申请。如本文所使用,单数形式旨在也包括复数形式,除非上下文另外明确指出。应进一步理解,术语“包括”,当在本说明书中使用时,指存在叙述的特征、数值、步骤、操作、要素和/或组分,但是不排除存在或增加一个或多个其他特征、数值、步骤、操作、要素、组分和/或其组合。
空间相关术语,比如“上”等可在本文用于方便描述,以描述如图中阐释的一个要素或特征与另一要素(多个要素)或特征(多个特征)的关系。应理解,除了图中描述的方向之外,空间相关术语旨在包括设备或装置在使用或操作中的不同方向。例如,如果将图中的设备翻转,则描述为在其他要素或特征“上方”或“上”的要素将定向在其他要素或特征的“下方”或“下面”。因此,示例性术语“上”可包括上面和下面的方向。应理解,尽管术语第一、第二、第三等可在本文用于描述各种要素、组分、区域、层和/或部分,但是这些要素、组分、区域、层和/或部分不应受这些术语的限制。这些术语用于区分一个要素、组分、区域、层或部分与另一要素、组分、区域、层或部分。因此,下面讨论的第一要素、组分、区域、层或部分可称为第二要素、组分、区域、层或部分,而不背离示例性实施方式的教导。
请参阅图1至图3,本申请一实施方式提供一种电化学装置100,包括壳体10和设于壳体10内的电极组件20。请一并参阅图4,电极组件20由堆叠体2卷绕形成。堆叠体2包括第一导电层21、第二导电层22和配置于第一导电层21和第二导电层22之间的第一层23。电极组件20还包 括第一导电板30和第二导电板40。第一导电板30电连接于第一导电层21,第二导电板40电连接于第二导电层22。第一导电板30和第二导电板40从壳体10的一端伸出,以连接外部设备(图未示)。根据相互垂直的第一方向X、第四方向Y’和第三方向Z建立三维坐标系。在本申请中,第一方向X为垂直于第一导电板30一表面的方向,第四方向Y’为自第一导电板30至第二导电板40的方向,第三方向Z为第一导电板30或第二导电板40凸出于堆叠体2的方向,也为电极组件20的卷绕中心轴O的方向。其中,第一导电层21、第一层23和第二导电层22依次堆叠后绕卷绕中心轴O卷绕形成电极组件20。如,堆叠体2可绕卷绕中心轴O进行顺时针卷绕以形成电极组件20。在一些实施例中,卷绕后,第一导电层21、第一层23和第二导电层22的最外层为第一导电层21。在一些实施例中,第一导电层21可为正极,第二导电层22可为负极。另一些实施例中,第一导电层21可为负极,第二导电层22可为正极。由于第一导电层21的硬度较大,因此可以增加电极组件20的硬度,从而增加电极组件20耐机械冲击的能力。在另一些实施例中,卷绕后,第一导电层21、第一层23和第二导电层22的最外层也可以是第二导电层21或第一层23。
如图4所示,在卷绕方向D上,电极组件20包括依次连接的第一段201、第一弯折段202、第二段203和第二弯折段204。第一方向X也为第一段201或第二段203中第一导电层21的层叠方向。在一些实施例中,第一段201和第二段203可以为平直段。在另一些实施例中,在卷绕方向D上,电极组件20也可以包括依次连接的四个弯折段。在一些实施例中,当第一段201和第二段203为平直段时,第一导电板30和第二导电板40可均位于第一段201,可以降低第一导电板30的弯曲,从而可以提高第一导电板30的平整性,还可以降低第一导电板30的毛刺刺穿第一层23的应力,提高安全性能。
其中,第一段201具有第一外表面201a,第二段203具有第二外表面203a。位于电极组件20最外侧的第一段201和位于电极组件20最外侧的第一弯折段202的连接处为第一连接端205。第一连接端205为图4中第一弯折段202最右侧的弯折边在卷绕方向D上的起始部分,第一连接端205也为位于电极组件10最内部且位于右侧的弯折边在第一方向X上延伸形成的虚线B-B与第一外表面201a相交的部分。位于电极组件20最外侧的第一弯折段202和位于电极组件20最外侧的第二段203的连接处为第二连接端206。第二连接端206为图4中第一弯折段202最右侧的弯折边在卷绕方向D上的收尾部分,第二连接端206也为位于电极组件10最内部且位于右侧的弯折边在第一方向X上延伸形成的虚线B-B与第二外表面203a相交的部分。位于电极组件20最外侧的第二段203和电极组件20的最外侧的第二弯折段204的连接处为第三连接端207。第三连接端207为图4中第二弯折段204最左侧的曲线在卷绕方向D上的起始部分,第三连接端207也为位于电极组件10最内部且位于左侧的弯折边在第一方向X上延伸形成的虚线A-A与第二外表面203a相交的部分。位于电极组件20的最外侧的第二弯折段204和位于电极组件20的最外侧的第一段201的连接处为第四连接端208。第四连接端208为图4中第二弯折段204最左侧的曲线在卷绕方向D上的收尾部分,第四连接端208也为位于电极组件10最内部且位于左侧的弯折边在第一方向X上延伸形成的虚线A-A与第一外表面201a相交的部分。在第一方向X上,第一连接端205和第二连接端206相对齐,第三连接端207和第四连接端208相对齐。
在一些实施例中,壳体10可以为采用封装膜封装得到的包装袋,即电化学装置100为软包电池。如图2所示,壳体10包括在第一方向X上相对设置的第一壳体11和第二壳体12。第一壳体11包括相互连接的第一壳体区111和第二壳体区112。第二壳体区112的三个侧边被第一壳体区111包围。第二壳体12包括相互连接的第三壳体区121和第四壳体区122。第四壳体区122的三个侧边被第三壳体区121包围。第二壳体区112 和第四壳体区122共同组成用于收容电极组件20的容置空间(图未标出)。第一壳体区111与第三壳体区121相连接,从而密封上述容置空间。第一导电板30与堆叠体2电连接,并自第一壳体区111与第三壳体区121的连接处伸出壳体10外,从而,第一导电板30可用于将堆叠体2与外部设备连接。第二导电板40与堆叠体2连接,并自第一壳体区111与第三壳体区121的连接处伸出壳体10外,从而,第二导电板40可用于将堆叠体2与外部设备连接。在一些实施例中,第一导电板30和第二导电板40可沿第三方向Z伸出壳体10外。在另一些实施例中,壳体10还可以为金属壳体,例如可以为钢壳或铝壳等。
如图3和图4所示,第一导电层21包括堆叠设置的第一金属层210和第一导电材料层211。第一金属层210可以具有集流的功能,例如,第一金属层210可包含铝或镍。在一些实施例中,第一金属层210包含铝。第一导电材料层211包含活性物质,其可包括钴酸锂、锰酸锂、镍酸锂、镍钴锰酸锂、磷酸铁锂、磷酸锰铁锂、磷酸钒锂、磷酸钒氧锂、富锂锰基材料或镍钴铝酸锂中的至少一种。
请一并参照图4、图5A和图8,在第一方向X上,第一金属层210包括相对设置的第一面210a和第二面210b。如图4所示,沿第三方向Z观察时,第一金属层210的第一面210a相较于第二面210b更靠近电极组件20的卷绕中心轴O。在一些实施例中,第一面210a包括覆盖有第一导电材料层211的区域210a1和与第一导电材料层211相离的区域210a2、210a3。第二面210b包括覆盖有第一导电材料层211的区域210b1和与第一导电材料层211相离的区域210b2、210b3。当第一导电层21展开后,根据相互垂直的第二方向Y、第三方向Z和第五方向X’建立另一三维坐标系,定义第二方向Y为堆叠体2卷绕前第一导电层21的延伸方向,第五方向X’为第一导电层21展开后第一金属层210和第一导电材料层211的堆叠方向,也为第二导电层22展开后第二金属层220和第二导电材料层211的堆叠方向。在第二方向Y上,第一金属层210还包括相对设置的第一端部2101和第二端部2102。第一端部2101作为第一导电层21进行卷绕的起始端,第二端部2102作为第一导电层21进行卷绕的收尾端。第一端部2101和第二端部2102均沿第三方向Z延伸。在一些实施例中,当堆叠体2绕卷绕中心轴O方向卷绕形成电极组件20后,第一端部2101位于电极组件20中心,第二端部2102位于第二段203的第二外表面203a上。第一面210a相较于第二端部2102更靠近第一端部2101且与第一导电材料层211相离的区域210a2为第一导电层21在第一方向X上的一表面(以下称为:第一表面21A),第二面210b相较于第二端部2102更靠近第一端部2101且与第一导电材料层211相离的区域210b2为第一导电层21在第一方向X上的另一表面(以下称为:第二表面21B)。第一表面21A和第二表面21B相对设置,第一表面21A和第二表面21B均露出于第一导电材料层211。第一表面21A和第二表面21B被卷绕后的堆叠体2覆盖。第一导电板30连接于第一表面21A。沿第一方向X观察时,第一导电板30与第一表面21A部分重合。如图8所示,在一些实施例中,在第二方向Y上,第一导电板30可位于第一端部2101和第一导电材料层211之间。
在一些实施例中,第一导电板30焊接于第一表面21A,从而使第一导电板30与第一表面21A之间具有较高的连接强度。更进一步地,第一导电板30可包括第一导电区31和第二导电区32。第一导电区31焊接于第一表面21A。沿第一方向X观察时,第一导电区31与第一表面21A重合。第二导电区32连接第一导电区31,且第二导电区32为沿第一方向X观察时伸出壳体10的区域。
如图4所示,在一些实施例中,第一面210a相较于第一端部2101更靠近第二端部2102且与第一导电材料层211相离的区域210a3为第一导电层21在第一方向X上的另一表面(以下称为:第三表面21C),第二面210b相较于第一端部2101更靠近第二端部2102且与第一导电材料层 211相离的区域210b3为第一导电层21在第一方向X上的另一表面(以下称为:第四表面21D)。第三表面21C和第四表面21D在第一方向X上相对设置,第三表面21C和第四表面21D均露出于第一导电材料层211。当堆叠体2绕卷绕中心轴O方向卷绕形成电极组件20后,第四表面21D形成电极组件20的外表面,即电极组件20采用第一金属层210收尾。
如图3所示,在第三方向Z上,第一金属层210还包括第三端部2103以及位于第三端部2103另一侧的第四端部2104。沿第一方向X观察时,第一导电板30伸出第三端部2103。第三端部2103和第四端部2104也为第一导电层21在第三方向Z上的两个端部。
请一并参照图3和图4,第二导电层22包括堆叠设置的第二金属层220和第二导电材料层221。第二金属层220可以具有集流的功能,例如,第二金属层220可包含铜、镍或碳基导电物。在一些实施例中,第二金属层220包含铜。第二导电材料层221包含活性物质,其可选自石墨类材料、合金类材料、锂金属及其合金中的至少一种。石墨类材料可选自人造石墨、天然石墨中的至少一种;合金类材料可选自硅、氧化硅、锡、硫化钛中的至少一种。
请一并参照图4和图9,在第一方向X上,第二金属层220包括相对设置的第三面220a和第四面220b。如图4所示,沿第三方向Z观察时,第二金属层220的第三面220a相较于第四面220b更靠近电极组件20的卷绕中心轴O。第三面220a包括覆盖有第二导电材料层221的区域220a1和与第二导电材料层221相离的区域220a2,第四面220b包括覆盖有第二导电材料层221的区域220b1和与第二导电材料层221相离的区域220b2。在第二方向Y上,第二金属层220还包括相对设置的第一端2201和第二端2202。第一端2201作为第二导电层22进行卷绕的起始端,第二端2202作为第二导电层22进行卷绕的收尾端。第一端2201和第二端2202均沿第三方向Z延伸。第二导电板40连接于第三面220a相较于第二端2202更靠近第一端2201且与第二导电材料层221相离的区域220a2。在一些实施例中,第二导电板40焊接于第三面220a,从而使第二导电板40与第三面220a之间具有较高的连接强度。
如图3所示,在第三方向Z上,第二金属层220还包括第三端2203以及位于第三端2203另一侧的第四端2204。沿第一方向X观察时,第二导电板40伸出第三端2203。第三端2203和第四端2204也为第二导电层22在第三方向Z上的两个端部。
请参阅图6,在另一些实施例中,第一导电板30和第二导电板40的连接位置可以变更。如,第一导电板30可连接于第二面210b相较于第二端部2102更靠近第一端部2101且与第一导电材料层211相离的区域210b2(即第二表面21B)。第二导电板40可连接于第四面220b相较于第二端2202靠近第一端2201且与第二导电材料层221相离的区域220b2。
第一层23用于防止第一导电层21和第二导电层22直接接触,从而降低第一导电层21和第二导电层22发生接触短路的可能性。其中,第一层23包含绝缘材料,上述绝缘材料可选自聚丙烯、聚乙烯、聚偏二氟乙烯、偏二氟乙烯-六氟丙烯共聚物、聚甲基丙烯酸甲酯或聚乙二醇中至少一种。如,第一层23可以是隔离膜。如图3和图4所示,在第二方向Y上,第一层23包括相对设置的第一边缘231和第二边缘232。第一边缘231作为第一层23进行卷绕的起始端,第二边缘232作为第一层23进行卷绕的收尾端。第一边缘231和第二边缘232均沿第三方向Z延伸。在第三方向Z上,第一层23还包括第三边缘233以及位于第三边缘233另一侧的第四边缘234。第三边缘233和第四边缘234均沿第二方向Y延伸。沿第一方向X观察时,第一导电板30和第二导电板40均伸出第三边缘233。
如图3所示,在一些实施例中,为了减小负极析锂的可能性,在第三方向Z上,第二导电层22的第三端2203延伸至超过第一导电层21的第三端部2103,第二导电层22的第四端2204延伸至超过第二导电层22的 第四端部2104。在第三方向Z上,第二导电层22超出第一导电层21的区域即为伸出区222。进一步地,为了充分避免第一导电层21和第二导电层22直接接触,在第三方向Z上,第一层23的第三边缘233延伸至超过第二导电层22的第三端2203;第一层23的第四边缘234延伸至超过第二导电层22的第四端2204。因此,第一层23的第三边缘233和第四边缘234即为堆叠体2在第三方向Z上的两个边缘。
如图13所示,在一些实施例中,第一导电板30与第一表面21A的焊接处可能会形成至少一凸部33。如,第一导电板30与第一表面21A的焊接处可形成多个呈矩阵排布的凸部33。凸部33自第一表面21A向第一导电板30突出。凸部33可在焊接过程中形成,但本申请并不作限制。同时,第一导电板30背离第一表面21A的表面对应形成至少一凸部33a,第一金属层210的第二表面21B对应形成至少一凹部33b。另一方面,第一导电板30边缘可能会形成凸部35。凸部35可在第一导电板30裁切过程中形成,但本申请并不作限制。凸部35也可称为毛刺。凸部35的根部连接第一导电板30,而凸部35的头部可能会朝向不同方向。例如,如图13所示,凸部35的头部可朝向第二层50。结合参阅图10,凸部35’的头部还可沿第一导电板30延伸平面伸出。
如图5A和图10所示,电极组件20还包括第二层50和第三层60。如图10所示,沿第五方向X’观察时,第二层50覆盖第一导电板30中与第一表面21A重合的区域。第二层50用于覆盖上述凸部33a、35,减小上述凸部刺穿第一层23并与第二导电层22接触短路的可性。第二层50的厚度T 1不小于凸部33a突出的高度T 2,且不小于凸部35突出的高度T 3。如,当第一导电板30焊接前的厚度T 4为50μm至200μm时,焊接后形成的凸部33a的高度T 2为1μm至10μm,凸部35突出的高度T 3为1μm至10μm。第二层50的厚度T 1为10μm至16μm。其中,凸部33a的高度T 2及凸部35的高度T 3可在拆解第二层50之后,采用光学显微镜测得。第二层50的厚度T 1和第一导电板30的厚度T 4可采用直接测量法测得,如采用卡尺或其它合适的量具直接测量。其中,第二层50可以为包含绝缘材料的单面胶或双面胶,上述绝缘材料可以选自聚丙烯、聚乙烯、聚偏二氟乙烯、偏二氟乙烯-六氟丙烯共聚物、聚甲基丙烯酸甲酯或聚乙二醇中至少一种。在其它实施例中,第二层50也可以为陶瓷涂层。
如图14所示,在另一些实施例中,第一导电板30与第一表面21A的焊接处还可以形成至少一凹部34。如,第一导电板30与第一表面21A的焊接处可形成多个呈矩阵排布的凹部34。凹部34可在焊接过程中形成,但本申请并不作限制。凹部34自第一表面21A向第一导电板30凹进。同时,第二表面21B对应形成至少一凸部34a,第一导电板30背离第一表面21A的表面对应形成至少一凹部34b。
请参阅图5A和图14,在一些实施例中,电极组件50还可包括第五层54,其设于第二表面21B。如图14所示,沿第五方向X’观察时,第五层54覆盖第一导电板30中与第二表面21B重合的区域。第五层54用于覆盖上述凸部34a。第五层54的厚度T 5不小于凸部34a突出的高度T 6
其中,在第二方向Y上,第二层50包括位于第一端部2101一侧的第七端部51以及位于第二端部2102一侧的第八端部52。第七端部51和第八端部52可均沿第三方向Z延伸。从第五方向X’观察时,第七端部51与第一导电层21的第三端部2103相交,第八端部52也与第一导电层21的第三端部2103相交。
如图10所示,沿第五方向X’观察时,第三层60至少覆盖凸部33a和第二层50重合的区域,第三层60和第二层50部分重合。在第五方向X’上,第二层50设于第一表面21A和第三层60之间。因此,第三层60可进一步减小凸部33a刺穿第一层23并与第二导电层22接触短路的可能性。进一步地,沿第五方向X’观察时,第三层60还可至少覆盖第二层50与第一导电板30的第一导电区31重合的区域。因此,第三层60还可进一步减小第一导电板30边缘的凸部35刺穿第一层23并与第二导电层22 接触短路的可能性。更进一步地,沿第五方向X’观察时,第三层60覆盖整个第一表面21A。因此,第三层60可对裸露的第一表面21A起到绝缘保护的作用,减小了第一表面21A在机械滥用时与第二金属层220接触短路的可能性,也减小了机械滥用时第一金属层210于第一表面21A处发生撕裂、且撕裂的第一金属层210刺穿第一层23并与第二金属层220接触短路的可能性。其中,第三层60可以为包含绝缘材料的单面胶或双面胶,上述绝缘材料可以选自聚丙烯、聚乙烯、聚偏二氟乙烯、偏二氟乙烯-六氟丙烯共聚物、聚甲基丙烯酸甲酯或聚乙二醇中至少一种。第三层60的厚度可以为10μm至16μm。在其它实施例中,第三层60也可以为陶瓷涂层。
其中,在第三方向Z上,第三层60包括第五端部61以及位于第五端部61另一侧的第六端部62。第五端部61和第六端部62可均沿第二方向Y延伸。在第二方向Y上,第三层60还包括位于第一端部2101一侧的第九端部63以及位于第二端部2102一侧的第十端部64。第九端部63和第十端部64可均沿第三方向Z延伸。第九端部63连接于第五端部61和第六端部62之间,第十端部64也连接于第五端部61和第六端部62之间。当第三层60覆盖整个裸露的第一表面21A时,在第二方向Y上,第三层60自与第二层50重合的区域延伸至超出第七端部51和第八端部52。即,在第二方向Y上,第三层60的第九端部63超出第二层50的第七端部51,第三层60的第十端部64超出第二层50的第八端部52。在一些实施例中,为了使第三层60充分覆盖整个第一表面21A,第三层60至少与第一表面21A完全重合。即,第三层60至少满足:第五端部61与第三端部2103重合,第六端部62与第四端部2104重合,第九端部63与第一端部2101重合,第十端部64与第一导电材料层211相接。
在本申请中,通过设置第二层50和第三层60,第二层50覆盖第一导电板30中与第一表面21A重合的区域,且第三层60覆盖整个裸露的第一表面21A,从而减小了电化学装置100发生短路的可能性,减少了短路时瞬时高热积累的可能性,提高了电化学装置100的使用寿命。
如图5A所示,在一些实施例中,第一表面21A在堆叠体2回折一次后形成第一区21A1、第二区21A2和第三区21A3。在第一方向X上,第一区21A1和第二区21A2可隔着第一层23相对设置。第一区21A1位于第一段201,第二区21A2位于第二段203。第三区21A3连接于第一区21A1和第二区21A2之间,第三区21A3位于第一弯折段202。第一端部2101位于第一区21A1,即第一区21A1相较于第二区21A2更靠近第一导电层21进行卷绕的起始端。第一导电板30连接第一区21A1。此时,在第二方向Y上,第三层60自第一区21A1延伸至第三区21A3,并进一步延伸至第二区21A2。从第一方向X观察时,第一导电材料层211的起始端2111连接于第二区21A2。
在一些实施例中,在第一方向X观察时,第一导电板30和设于第二区21A2的第三层60相离。
请参阅图7,在另一实施例中,第一表面21A还可仅位于第一段201。即,第一表面21A在堆叠体2回折一次后并未延伸至第一弯折段202和第二段203。此时,第三层60也仅位于第一段201,而第一导电材料层211的起始端2111延伸至第一段201,从而利于提高电化学装置100的能量密度。
如图10所示,在一些实施例中,在第三方向Z上,第三层60可自与第一表面21A重合的区域延伸至超出第三端部2103。即,沿第五方向X’观察时,第三层60还覆盖第一导电板30的至少部分第二导电区32。从而,不仅使第三层60可充分保护第一表面21A,且若第一金属层210于第三端部2103处存在凸部210c,第三层60超出第三端部2103的部分可覆盖第三端部2103处的凸部210c。其中,凸部210c可在第一金属层210裁切过程中形成,凸部210c也可称为毛刺。凸部210c的根部连接第三端部2103,而凸部210c的头部可能会朝向不同方向。例如,如图10所示, 凸部210c的头部可沿第一金属层210延伸平面伸出。结合参阅图5B,凸部210c’的头部还可朝向第二层50。另外,第三层60超出第三端部2103的部分还可覆盖第二导电区32边缘的凸部35,因此可减小上述凸部刺穿第一层23并与第二导电层22接触短路的可能性。
进一步地,在第三方向Z上,第三层60还可自与第一表面21A重合的区域延伸至超出第四端部2104。从而,不仅使第三层60可充分保护第一表面21A,而且若第一金属层210于第四端部2104处存在凸部210d(凸部210d可在第一金属层210裁切过程中形成,凸部210d也可称为毛刺),第三层60超出第四端部2104的部分还可覆盖第四端部2104处的凸部210d,减小上述凸部刺穿第一层23并与第二导电层22接触短路的可能性。
进一步地,沿第五方向X’观察时,第三层60的第九端部63还可自与第一表面21A重合的区域延伸至超出第一端部2101。若第一金属层210于第一端部2101处存在凸部210e(凸部210e可在第一金属层210裁切过程中形成,凸部210e也可称为毛刺),第三层60超出第一端部2101的部分可覆盖第一端部2101处的凸部210e,减小上述凸部刺穿第一层23并与第二导电层22接触短路的可能性。
进一步地,沿第五方向X’观察时,第三层60还可与第一导电材料层211部分重合。第三层60还可进一步覆盖第一导电材料层211进行卷绕的起始端2111。例如,当第一表面21A在堆叠体2回折一次后形成第一区21A1、第二区21A2和第三区21A3时,第三层60在延伸至第二区21A2后,还进一步延伸至第一导电材料层211。通常情况下,为了减小第二导电层22产生锂枝晶的可能性,沿卷绕方向D,可设置第二导电材料层221的起始端2211超出第一导电材料层211的起始端2111。本申请通过设置第三层60覆盖第一导电材料层211进行卷绕的起始端2111,不仅使第三层60可充分保护第一表面21A,而且即便第二导电材料层221的起始端2211未超出第一导电材料层211的起始端2111(如由于工艺误差,或涂覆时第二导电材料层221的浆料流动过快),也能够使第一导电材料层211脱出的锂离子能够充分被第二导电材料层221接收,减少过量的锂离子囤积并产生锂枝晶的风险。
如图10所示,在一些实施例中,为满足第九端部63在第二方向Y上超出第七端部51,同时,第十端部64在第二方向Y上不仅超出第八端部52,还进一步覆盖第一导电材料层211,在一些实施例中,在第二方向Y上,定义自第七端部51至第九端部63的距离为第一距离D 1,自第八端部52至第十端部64的第二距离D 2,则第一距离D 1小于第二距离D 2(D 1<D 2)。而且可以理解,由于第二距离D 2相对较大,使得第一表面21A在堆叠体2回折一次后可由第一段201弯折至第二段203。
如图11所示,在另一实施例中,第一距离D 1和第二距离D 2并不限于此。例如,考虑到在第一表面21A上贴附第三层60后,可以沿着第三方向Y一并裁切第一金属层210和第三层60。由于裁切过程中第三层60的存在,使得第一金属层210于第一端部2101处产生的凸部210e减少。这种情况下,第三层60的第九端部63不需在第二方向Y上超过第一端部2101(此时沿第五方向X’观察时,第九端部63与第一端部2101重合),也可以改善第一端部2101的毛刺问题。为了预留出第三层60被裁切的空间,同时考虑若第三层60在第二方向Y上尺寸过大可能导致的褶皱问题,此时可以设置第一距离D 1大于第二距离D 2(D 1>D 2)。
如图10和图12所示,在一些实施例中,在第三方向Z上,第二层50可自与第一表面21A重合的区域延伸至超出第三端部2103。即,沿第五方向X’观察时,第二层50还覆盖第一导电板30的至少部分第二导电区32。因此,第二层50超出第三端部2103的部分还可覆盖第二导电区32边缘的凸部35。例如,在第五方向X’上,第二层50超出第三端部2103的部分可覆盖第二导电层22在第三方向Z上的伸出区222,从而减小上述凸部刺穿第一层23并与第二导电层22的伸出区222接触短路的可能 性。
进一步地,在第三方向Z上,第二层50还可自与第一表面21A重合的区域进一步延伸至超出第五端部61。可以理解,若第五端部61超出第三端部2103的距离较大,第三层60可取代第二层50覆盖第一导电板30的第二导电区32边缘的凸部35,然而由于第三层60超出第三端部2103的部分未粘接至第一表面21A,使得第三层60超出第三端部2103的部分容易在机械滥用时翻折,增加了第一导电板30的凸部35刺穿第一层23而导致短路的可能性。本申请通过限定第二层50超出第五端部61,由于第二层50超出的部分粘接于第一导电板30,不容易在机械滥用时翻折,从而提高了第二层50的可靠性。
如图10所示,在一些实施例中,定义第二层50中与第一表面21A重合的区域在第三方向Z上的尺寸为第三距离L 1,第一导电层21在第三方向Z上自第三端部2103至第四端部2104的距离为第四距离L 2,则第三距离L 1小于或等于第四距离L 2的一半(L 1≤0.5L 2)。可以理解,若发生严重的机械滥用(如电化学装置被撞击)时,第一层可能断裂,第一导电层或第二导电层也可能产生碎片,引发短路。若第三距离L 1较大,第二层50与第三层60的重合区域较大,即第一表面21A被第二层50和第三层60同时覆盖的区域面积较大。如此,第一表面21A不易发生断裂,使得连接于第一表面21A的第一导电板30也不易与第一导电层21断开电连接。本申请通过限定第三距离L 1的范围,使得严重的机械滥用时第一表面21A能够及时断裂,从而使得第一导电板30与第一导电层21断开电连接,减小短路的可能性。
在一些实施例中,第一导电板30中与第一表面21A重合的区域在第三方向Z上的尺寸为第五距离L 3,则第五距离L 3小于或等于第四距离L 2的三分之一(L 1≤L 2/3)。可以理解,若第五距离L 3较大,第一表面21A被第一导电板30覆盖的区域面积较大。如此,若发生严重的机械滥用时,第一表面21A不易发生断裂,使得连接于第一表面21A的第一导电板30也不易与第一导电层21断开电连接。本申请通过限定第五距离L 3的范围,使得严重的机械滥用时第一表面21A能够及时断裂,从而使得第一导电板30与第一导电层21断开电连接,减小短路的可能性。
请参阅图15,本申请另一实施方式还提供一种电化学装置200。与上述电化学装置100不同之处在于,电化学装置200的电极组件20还包括第四层70。沿第一方向X观察时,第四层70覆盖第二表面21B。第四层70可对裸露的第二表面21B起到绝缘保护的作用,减小了第二表面21B在机械滥用时与第二金属层220接触短路的可能性,也减小了机械滥用时第一金属层210于第二表面21B处发生撕裂、且撕裂的第一金属层210刺穿第一层23并与第二金属层220接触短路的可能性,进一步提高了电化学装置100的使用寿命。其中,第四层70可以为包含绝缘材料的单面胶或双面胶。第四层70的材质可大致与第三层60相同,在此不重复描述。
请参阅图16和图17,本申请又一实施方式还提供一种电化学装置300。与上述电化学装置200不同之处在于,电化学装置300的第一导电板30包括至少两个第一导电区31和一个第二导电区32。如,第一导电板30可包括两个第一导电区31。一个第一导电区31连接于第一表面21A,另一个第一导电区31连接于第三表面21C。第二导电区32通过转接部320连接每一第一导电区31,并伸出壳体10。通过在第一金属层210上设置至少两个第一导电区31,使得第一导电层21的电流分布不会过于集中,降低了第一导电层21的内阻,从而提高第一导电层21的充放电倍率。
在一些实施例中,同样可设置第二导电板40包括至少两个连接第二导电层22的第三导电区(图未示),以及通过转接部连接每一第三导电区的第四导电区(图未示)。
其中,本申请的电化学装置100(或电化学装置200、300)包括所有能够发生电化学反应的装置。具体的,电化学装置100包括所有种类的原 电池、二次电池、燃料电池、太阳能电池和电容器(例如超级电容器)。可选地,电化学装置100可以为锂二次电池,包括锂金属二次电池、锂离子二次电池、锂聚合物二次电池和锂离子聚合物二次电池。
请参阅图18,本申请一实施方式还提供一种电子装置1,包括上述电化学装置100(或电化学装置200、300)。其中,本申请的电化学装置100适用于各种领域的电子装置1。在一实施方式中,本申请的电子装置1可以是,但不限于笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
以下通过具体实施例和对比例对本申请提供的电化学装置的性能进行说明。其中,以电化学装置为软包电池为例并结合具体制备过程和测试方法对本申请进行说明,本领域技术人员应理解,本申请中描述的制备方法仅是实例,其他任何合适的制备方法均在本申请的范围内。
实施例1
将第一导电板与第一金属层的第一表面焊接,将第二导电板与第二金属层焊接。在第一导电板和第一金属层的焊接处粘接第二层,然后在第一表面上粘接第三层,第三层完全覆盖第一表面。然后,将第一导电层、第一层和第二导电层依次层叠卷绕得到电极组件,再进行注液、化成、封装,制成电池。其中,L 1≤L 2/3,L 1≤0.5L 2
实施例2
与实施例1不同之处在于,L 1=0.5L 2
实施例3
与实施例1不同之处在于,L 2/3<L 1≤L 2/2。
对比例1
与实施例1不同之处在于,第三层未覆盖整个第一表面,而是仅覆盖第一表面与第一导电材料层相接的区域。
对比例2
与实施例2不同之处在于,第三层未覆盖整个第一表面,而是仅覆盖第一表面与第一导电材料层相接的区域。
对比例3
与实施例1不同之处在于,省略第二层。同时,沿第一方向观察时,第三层未覆盖第二导电层的伸出区。
对比例4
与对比例3不同之处在于,沿第一方向观察时,第三层覆盖第二导电层的伸出区。
然后,对各实施例和对比例的电池分别进行跌落测试和撞击测试,其中,每组实施例和对比例的电池各取5个样品进行跌落测试,各取10个样品进行撞击测试。对应的测试结果记录于表1中。
跌落测试的步骤包括:1)在常温条件下,采用0.2C的电流对电池进行充电至充电限制电压。2)将电池放入夹具仓,用自动跌落设备将电池的正面、反面、顶面、左侧面、底面、右侧面为一轮的着地的方式依次从1.8m位置,一个循环共跌落六次为一轮。3)每一轮跌落后观察电池表面是否有破损,并测量电池的开路电压,若电压小于3.0V即判定为电池失效。若未出现破损且开路电压高于3.0V即判定为未失效,接着继续测试至失效,并记录电池失效时已进行的跌落次数。4)对电池进行拆解,观察第一表面处是否断裂。
撞击测试的步骤包括:1)在常温条件下,采用0.2C的电流对电池进行充电至充电限制电压。2)将电池放置于测试台面上,将直径为15.8mm圆棒垂直放置于电池正面的中心位置。3)使用9.1±0.1kg的重锤,从610±25mm的高度垂直自由状态下落,撞击于圆棒与电池正面的交叉处。 4)观察电池是否失效。
表1
Figure PCTCN2022074106-appb-000001
注:撞击测试通过率X/10表示测试10个样品中,通过测试的样品的个数为X个。
从表1测试结果可知,相较于对比例1-4,实施例1-3通过在第一导电板和第一表面的重合区域上覆盖第二层,然后在整个第一表面上覆盖第三层,因此跌落测试和撞击测试通过率较高,即电池的使用寿命提高。而且,相较于实施例2-3,实施例1满足L 1≤L 2/3及L 1≤0.5L 2,因此撞击测试通过率最高。
以上所揭露的仅为本申请较佳实施方式而已,当然不能以此来限定本申请,因此依本申请所作的等同变化,仍属本申请所涵盖的范围。

Claims (26)

  1. 一种电极组件,由堆叠体卷绕形成,所述堆叠体包括第一导电层、第二导电层、以及配置于所述第一导电层与第二导电层之间的第一层,所述第一层包含绝缘材料,其中,
    所述第一导电层包括第一表面、第一端部、以及设于所述第一端部对侧的第二端部,所述第一表面被卷绕后的所述堆叠体覆盖;
    所述电极组件还包括第一导电板、第二层和第三层,
    所述第一导电板连接于所述第一表面;
    定义与所述第一导电板的一表面相垂直的方向为第一方向,沿所述第一方向观察时,所述第一导电板与所述第一表面部分重合,所述第二层覆盖所述第一导电板中与所述第一表面重合的区域,且所述第二层包含绝缘材料;
    沿所述第一方向观察时,所述第三层覆盖所述第一表面,且所述第三层包含绝缘材料;在所述第一方向上,所述第二层设于所述第一表面和所述第三层之间。
  2. 如权利要求1所述的电极组件,其中,定义自所述第一端部至所述第二端部的方向为第二方向,与所述第一方向和所述第二方向相垂直的为第三方向;
    在所述第三方向上,所述第一导电层还包括第三端部以及位于所述第三端部另一侧的第四端部;在所述第三方向上,所述第三层包括第五端部以及位于所述第五端部另一侧的第六端部;沿所述第一方向观察时,所述第一导电板伸出所述第三端部和所述第五端部。
  3. 如权利要求2所述的电极组件,其中,在所述第三方向上,所述第三层自与所述第一表面重合的区域延伸至超出所述第三端部。
  4. 如权利要求2所述的电极组件,其中,在所述第三方向上,所述第三层自与所述第一表面重合的区域延伸至超出所述第四端部。
  5. 如权利要求2所述的电极组件,其中,在所述第三方向上,所述第二层自与所述第一表面重合的区域延伸至超出所述第三端部。
  6. 如权利要求5所述的电极组件,其中,在所述第三方向上,所述第二层自与所述第一表面重合的区域延伸至超出所述第五端部。
  7. 如权利要求2所述的电极组件,其中,所述第一导电层包括在所述第一方向上堆叠的第一金属层和第一导电材料层,在所述第二方向上,所述第一导电板位于所述第一端部和所述第一导电材料层之间。
  8. 如权利要求7所述的电极组件,其中,沿所述第一方向观察时,所述第三层与所述第一导电材料层部分重合。
  9. 如权利要求2所述的电极组件,其中,所述第二层还包括在所述第二方向上位于所述第一端部一侧的第七端部以及位于所述第二端部一侧的第八端部;所述第三层还包括在所述第二方向上的位于所述第一端部一侧的第九端部以及位于所述第二端部一侧的第十端部;
    在所述第二方向上,定义自所述第七端部至所述第九端部的距离为第一距离,自所述第八端部至所述第十端部的第二距离,所述第一距离小于所述第二距离。
  10. 如权利要求2所述的电极组件,其中,所述第二层还包括在所述第二方向上位于所述第一端部一侧的第七端部以及位于所述第二端部一侧的第八端部;所述第三层还包括在所述第二方向上的位于所述第一端部一侧的第九端部以及位于所述第二端部一侧的第十端部;
    在所述第二方向上,定义自所述第七端部至所述第九端部的距离为第一距离,自所述第八端部至所述第十端部的第二距离,所述第一距离大于所述第二距离。
  11. 如权利要求2所述的电极组件,其中,所述第二层中与所述第一表面重合的区域在所述第三方向上的尺寸为第三距离,所述第一导电层在所述第三方向上自所述第三端部至所述第四端部的距离为第四距离,所述第三距离小于或等于所述第四距离的一半。
  12. 如权利要求2所述的电极组件,其中,所述第一表面在所述堆叠体回折一次后形成第一区和第二区,所述第一端部位于所述第一区;所述第一导电板连接所述第一区;在所述第二方向上,所述第三层自所述第一区至少延伸至所述第二区。
  13. 如权利要求12所述的电极组件,其中,在所述第一方向观察时,所述第一导电板和设于所述第二区的所述第三层相离。
  14. 如权利要求12所述的电极组件,其中,所述第一导电层包括在所述第一方向上堆叠的第一金属层和第一导电材料层,所述第一导电材料层连接于所述第二区。
  15. 如权利要求1所述的电极组件,其中,所述第一导电层包括在所述第一方向上堆叠的第一金属层和第一导电材料层;所述第一导电板焊接于所述第一金属层。
  16. 如权利要求15所述的电极组件,其中,所述第一金属层包含铝。
  17. 如权利要求15所述的电极组件,其中,所述第一导电层为正极。
  18. 如权利要求1所述的电极组件,其中,所述第二导电层包括在所述第一方向上堆叠的第二金属层和第二导电材料层,所述电极组件还包括第二导电板,所述第二导电板焊接于所述第二金属层。
  19. 如权利要求18所述的电极组件,其中,所述第二金属层包含铜。
  20. 如权利要求18所述的电极组件,其中,所述第二导电层为负极。
  21. 如权利要求15所述的电极组件,其中,沿所述第一方向观察时,所述第一导电板与所述第一表面的焊接处,具有自所述第一表面向所述第一导电板突出的凸部。
  22. 如权利要求15所述的电极组件,其中,沿所述第一方向观察时,所述第一导电板与所述第一表面的焊接处,具有自所述第一表面向所述第一导电板凹进的凹部。
  23. 如权利要求2所述的电极组件,其中,所述第一导电板中与所述第一表面重合的区域在所述第三方向上的尺寸为第五距离,所述第一导电层在所述第三方向上自所述第三端部至所述第四端部的距离为第四距离,所述第五距离小于或等于所述第四距离的三分之一。
  24. 如权利要求1所述的电极组件,其中,所述第一导电层还包括在所述第一方向上与所述第一表面相对的第二表面,所述电极组件还包括第四层,所述第四层覆盖所述第二表面,且所述第四层包含绝缘材料。
  25. 一种电化学装置,包括壳体,其中,所述电化学装置还包括如权利要求1至24中任一项所述的电极组件,所述电极组件设于所述壳体内,所述第一导电板从所述壳体的一端伸出。
  26. 一种电子装置,其中,包括如权利要求25所述的电化学装置。
PCT/CN2022/074106 2022-01-26 2022-01-26 电极组件、电化学装置以及电子装置 WO2023141831A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/074106 WO2023141831A1 (zh) 2022-01-26 2022-01-26 电极组件、电化学装置以及电子装置
CN202280005029.1A CN117321786A (zh) 2022-01-26 2022-01-26 电极组件、电化学装置以及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/074106 WO2023141831A1 (zh) 2022-01-26 2022-01-26 电极组件、电化学装置以及电子装置

Publications (1)

Publication Number Publication Date
WO2023141831A1 true WO2023141831A1 (zh) 2023-08-03

Family

ID=87470164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074106 WO2023141831A1 (zh) 2022-01-26 2022-01-26 电极组件、电化学装置以及电子装置

Country Status (2)

Country Link
CN (1) CN117321786A (zh)
WO (1) WO2023141831A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289048A (ja) * 1990-04-03 1991-12-19 Toshiba Battery Co Ltd 電池用極板
CN201364922Y (zh) * 2009-03-23 2009-12-16 保定风帆新能源有限公司 一种锂电池正极极片结构
CN107681117A (zh) * 2017-09-19 2018-02-09 合肥国轩高科动力能源有限公司 一种涂有陶瓷浆料的锂离子电池极片及其制备工艺
CN108281609A (zh) * 2018-03-27 2018-07-13 横店集团东磁股份有限公司 一种带极耳的正极极片、其制备方法及包含该正极极片的锂离子电池
CN112820950A (zh) * 2021-03-12 2021-05-18 横店集团东磁股份有限公司 一种圆柱形锂离子电池及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289048A (ja) * 1990-04-03 1991-12-19 Toshiba Battery Co Ltd 電池用極板
CN201364922Y (zh) * 2009-03-23 2009-12-16 保定风帆新能源有限公司 一种锂电池正极极片结构
CN107681117A (zh) * 2017-09-19 2018-02-09 合肥国轩高科动力能源有限公司 一种涂有陶瓷浆料的锂离子电池极片及其制备工艺
CN108281609A (zh) * 2018-03-27 2018-07-13 横店集团东磁股份有限公司 一种带极耳的正极极片、其制备方法及包含该正极极片的锂离子电池
CN112820950A (zh) * 2021-03-12 2021-05-18 横店集团东磁股份有限公司 一种圆柱形锂离子电池及其制造方法

Also Published As

Publication number Publication date
CN117321786A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
CN101478034B (zh) 保护电路板、电池包及其制造方法
JP5174314B2 (ja) 電極組立体及びこれを用いる二次電池
WO2022267925A1 (zh) 电化学装置和电子装置
JP5121751B2 (ja) バッテリーパック
JP4497372B2 (ja) パウチ形リチウム二次電池
JP5520017B2 (ja) ラミネートフィルム外装体を有する蓄電素子
JP2006310281A (ja) 二次電池
JP2013080563A (ja) 積層型二次電池
KR100601547B1 (ko) 파우치형 이차 전지
JP2004063133A (ja) 薄型二次電池
CN113707975A (zh) 一种电化学装置及包含该电化学装置的电子装置
WO2024078295A1 (zh) 电化学装置和电子装置
WO2024001698A1 (zh) 电化学装置及电子装置
WO2023141831A1 (zh) 电极组件、电化学装置以及电子装置
KR20150029209A (ko) 배터리 팩 및 이를 구비한 배터리 모듈
JP2016170888A (ja) 扁平型電池
WO2023236101A1 (zh) 电化学装置以及电子装置
WO2023123034A1 (zh) 电化学装置和电子装置
WO2023102780A1 (zh) 电化学装置和电子装置
WO2024026618A1 (zh) 电化学装置和电子装置
CN116544345B (zh) 二次电池及电子装置
WO2024183073A1 (zh) 电化学装置及电子装置
US20240222814A1 (en) Electrochemical apparatus, module and electronic device
WO2023184369A1 (zh) 电化学装置、模组以及电子装置
EP4228063A1 (en) Electrochemical device and electronic device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280005029.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022922681

Country of ref document: EP

Effective date: 20240826