WO2024001698A1 - 电化学装置及电子装置 - Google Patents

电化学装置及电子装置 Download PDF

Info

Publication number
WO2024001698A1
WO2024001698A1 PCT/CN2023/098659 CN2023098659W WO2024001698A1 WO 2024001698 A1 WO2024001698 A1 WO 2024001698A1 CN 2023098659 W CN2023098659 W CN 2023098659W WO 2024001698 A1 WO2024001698 A1 WO 2024001698A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive member
housing
pole piece
electrochemical device
cavity
Prior art date
Application number
PCT/CN2023/098659
Other languages
English (en)
French (fr)
Inventor
胡东阁
支英
李磊
陈宏浩
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Publication of WO2024001698A1 publication Critical patent/WO2024001698A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of energy storage technology, and in particular, to an electrochemical device and an electronic device having the electrochemical device.
  • Electrochemical devices are widely used in electronic products such as electronic mobile devices, power tools, and electric vehicles.
  • An electrochemical device typically includes an electrode assembly and a housing for housing the electrode assembly.
  • the shell is provided with a liquid injection port, and the electrolyte is injected into the shell through the liquid injection port. After the liquid is injected, in order to maintain a relatively sealed environment between the inside of the electrochemical device and the outside world, the liquid injection port will be sealed with a sealing nail.
  • the sealing nails will increase the height of the casing and partially extend into the casing and occupy a certain space, thus reducing the energy density of the electrochemical device.
  • the present application also provides an electronic device having the above electrochemical device.
  • a first aspect of this application provides an electrochemical device, including a housing, an electrode assembly and an electrolyte.
  • the housing includes a first housing and a second housing, and the first housing and the second housing are surrounded to form an accommodation space.
  • the electrode assembly and the electrolyte are located in the accommodation space.
  • the electrode assembly includes a first pole piece, a second pole piece, and an isolation film located between the first pole piece and the second pole piece.
  • the electrochemical device also includes a first conductive member and a second conductive member.
  • the first conductive component is disposed in the accommodation space and fixed to the first housing.
  • the first pole piece, the isolation film and the second pole piece are wound around the first conductive member to form an electrode assembly, and the first pole piece is electrically connected to the first conductive member.
  • the first conductive member is a hollow structure and defines a first cavity.
  • the first housing is also provided with a first through hole, and the first through hole is connected with the first cavity.
  • the second conductive member is disposed in the first cavity and is electrically isolated from the first conductive member, and the second pole piece is electrically connected to the second conductive member.
  • the second conductive member is a hollow structure and defines a second cavity.
  • the second conductive member includes an electrically connected body portion and a sealing portion.
  • the body part is provided with a second through hole, and the second through hole is connected to Passing through the second cavity and accommodation space.
  • the sealing part is sealingly connected to the body part to isolate the second cavity from the outside world.
  • the second conductive member serves as a pole to draw out the polarity of the second pole piece.
  • the second conductive member is also used for liquid injection.
  • the electrolyte can flow into the accommodation space through the second through hole.
  • the sealing portion of the second conductive member is sealed. Connecting the main body reduces the risk of leakage after filling.
  • This application does not require an additional liquid injection port on the casing, which reduces the risk of welding sealing nails in the liquid injection port after liquid injection to affect the surface flatness. It also reduces the risk of increasing the height of the electrochemical device due to the addition of sealing nails. The risk of occupying the internal space of the shell is conducive to increasing energy density.
  • a first insulating layer is provided between the first conductive member and the body part, and the first insulating layer is also used to sealingly connect the first conductive member and the body part. Therefore, the first insulating layer can reduce the risk of contact short circuit between the first conductive member and the body part, and can also reduce the risk of electrolyte overflowing through the gap between the first conductive member and the body part.
  • the first conductive member includes a first end and a second end opposite to the first end, and the first end is connected to the first housing.
  • the body part In a direction from the second end to the first end (hereinafter referred to as the first direction), the body part includes a third end and a fourth end opposite to the third end.
  • the sealing part is sealingly connected to the third end, and the second through hole is provided at the fourth end.
  • the second through hole is provided at the above-mentioned fourth end, that is, at the end of the second conductive member away from the liquid injection (that is, the end where the sealing part is installed). On the one hand, it improves the convenience of installing the sealing part, and on the other hand, it facilitates the installation of the sealing part.
  • the electrode liquid in the second cavity flows into the accommodating space in time, thereby reducing the risk that the electrolyte in the second cavity cannot flow into the accommodating space in time and cause the electrolyte to overflow.
  • the fourth end protrudes compared to the second end in a direction opposite to the first direction.
  • the fourth end includes an end surface away from the sealing part and a side surface connected to the end surface, and the second through hole is provided on the side surface. Therefore, when the electrolyte injected into the second cavity flows into the accommodation space through the second through hole, the obstruction of the electrolyte by the inner wall of the first conductive member is reduced.
  • the third end protrudes from the first through hole in the first direction. In this way, when the sealing portion is sealingly connected to the body portion, the risk of a short circuit between the sealing portion and the first housing can be reduced.
  • the protruding configuration of the third end also facilitates electrical connection between the second conductive member and external components.
  • the first pole piece includes a first current collector and A first active material layer is provided on the first current collector.
  • One end of the first current collector along the length direction has an empty foil area where the first active material layer is not provided.
  • the foil area is attached to the outer surface of the first conductive member.
  • the outer surface of the first conductive member is roughened, which can improve the friction between the empty foil area and the first conductive member, facilitate winding, and improve the quality of the wound electrode.
  • the tightness of the inner ring of the component, and on the other hand, the roughened first conductive member reduces the contact resistance between it and the empty foil, thereby reducing the internal resistance of the electrode assembly.
  • the second pole piece includes a second current collector.
  • the electrode assembly also includes a tab connected to the second current collector, and the tab is connected to the end surface of the fourth end. In this way, the second pole piece can be electrically connected to the second conductive member.
  • a second insulation layer is provided between the tab and the second housing.
  • the second insulating layer is used to electrically isolate the second housing and the tab to reduce the risk of short circuit.
  • the tab and the end face are welded and fixed, thereby improving the stability and reliability of the connection between the tab and the end face.
  • the sealing part and the body part are welded and fixed, thereby improving the stability and reliability of the connection between the sealing part and the body part.
  • At least one of the first housing and the second housing is further provided with an explosion-proof valve.
  • the explosion-proof valve When gas is generated inside the electrochemical device and continues to accumulate, the explosion-proof valve is flushed open, causing the gas inside the casing to be released and the pressure in the accommodation space to drop, thereby improving the safety of the electrochemical device.
  • a second aspect of the present application also provides an electronic device, which includes the above electrochemical device.
  • the electronic device is powered by the electrochemical device described above.
  • Figure 1 is a schematic three-dimensional structural diagram of an electrochemical device according to an embodiment of the present application.
  • FIG. 2 is an exploded view of the electrochemical device shown in FIG. 1 .
  • FIG. 3 is a cross-sectional view along III-III of the electrochemical device shown in FIG. 1 .
  • Figure 4 is a partial enlarged view of the electrochemical device shown in Figure 3 at position A.
  • Figure 5 is a partial enlarged view of the electrochemical device shown in Figure 3 at position B.
  • Figure 6 is a cross-sectional view of an electrochemical device according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • spatially relative terms such as “on,” etc., may be used herein for convenience to describe the relationship of one element or feature to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device or device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the diagram is turned over, features described as “above” or “on” other features or features would then be oriented “below” or “beneath” the other features or features. Thus, the exemplary term “upper” may include both upper and lower directions. It will be understood that, although the terms first, second, third, etc.
  • parallel can refer to the angle range between two straight lines within ⁇ 10°
  • parallel can also refer to the dihedral angle range of two planes within ⁇ 10°
  • parallel can also refer to The angle range between the straight line and the plane is ⁇ 10°.
  • Verticality can refer to the angle between two straight lines within the range of 90 ⁇ 10°.
  • Verticality can also refer to the dihedral angle between two planes within the range of 90 ⁇ 10°.
  • Verticality can also refer to the angle between a straight line and a plane.
  • the angle range is between 90 ⁇ 10°.
  • the two components described as “parallel” and “perpendicular” may not be absolutely straight lines or planes, or they may be roughly straight lines or planes. From a macro perspective, if the overall extension direction is a straight line or a plane, the parts can be considered as "straight lines” or " flat".
  • an electrochemical device 100 including a housing 10 , an electrode assembly 20 and an electrolyte (not shown).
  • the housing 10 includes a first housing 11 and a second housing 12 .
  • the first housing 11 and the second housing 12 are surrounded by an accommodating space S.
  • the electrode assembly 20 and the electrolyte are both located in the accommodation space S.
  • the second housing 12 includes a bottom wall 121 and side walls 122 disposed around an edge of the bottom wall 121 .
  • the first housing 11 and the bottom wall 121 are oppositely arranged in the first direction X.
  • the first housing 11 and the bottom wall 121 may be arranged in parallel and both are perpendicular to the first direction X.
  • the first housing 11 is provided with a first through hole 110 communicating with the accommodation space S.
  • the bottom walls 121 of the first housing 11 and the second housing 12 may both be circular.
  • the first through hole 110 may also be circular.
  • the shapes of the first housing 11 , the second housing 12 and the first through hole 110 can also be changed, such as ellipse, square, hexagon, etc.
  • the electrochemical device 100 may be a button cell, and the housing 10 may be entirely made of steel.
  • the steel shell may include the elements Fe and C, and the steel shell may also include the elements Ni, Co, Al, Mn, Cr, Cu, Mg, Mo, S, Si, Ti, V, Pb, Sb, N, P One or several.
  • the second housing 12 can be integrally formed, and the first housing 11 and the side walls 122 of the second housing 12 can be fixed by welding.
  • the electrode assembly 20 includes a first pole piece 21 , a second pole piece 22 , and an isolation film 23 disposed between the first pole piece 21 and the second pole piece 22 .
  • the isolation film 23 is used to prevent the first pole piece 21 and the second pole piece 22 from direct contact, thereby reducing the possibility of contact short circuit between the first pole piece 21 and the second pole piece 22 .
  • the electrode assembly 20 has a wound structure, that is, the first pole piece 21 , the isolation film 23 and the second pole piece 22 are stacked in sequence and wound around the winding central axis O set along the first direction X to form the electrode assembly 20 .
  • the first pole piece 21 is a negative electrode
  • the second pole piece 22 is a positive pole.
  • the first pole piece 21 includes a first active material layer 21a, a first current collector 21c and a second active material layer 21b stacked in sequence.
  • the first current collector 21 c includes a first surface 211 and a second surface 212 that are oppositely arranged.
  • the first surface 211 is closer to the winding center axis O than the second surface 212 .
  • the first active material layer 21a is provided on the first surface 211, and the second active material layer 21b is provided on the second surface 212.
  • the first current collector 21c may have a current collecting function.
  • the first current collector 21c may be made of conductive materials such as copper, nickel, or carbon-based conductive materials.
  • the material of the first current collector 21c may be copper.
  • Both the first active material layer 21a and the second active material layer 21b include active materials, which may be selected from at least one of graphite-based materials, alloy-based materials, lithium metal and alloys thereof.
  • the graphite material can be selected from at least one of artificial graphite, soft carbon, hard carbon, and natural graphite;
  • the alloy material can be selected from at least one of silicon, silicon oxide, tin, and titanium sulfide.
  • the second pole piece 22 includes a stacked third active material layer 22a, a second current collector 22c and a fourth active material layer 22b.
  • the second current collector 22c includes a third surface 221 and a fourth surface 222 that are oppositely arranged.
  • the third surface 221 is closer to the winding center axis O than the fourth surface 222.
  • the third active material layer 22a is provided on the third surface 221,
  • the fourth active material layer 22b is provided on the fourth surface 222.
  • the second current collector 22c has a current collecting function.
  • the second current collector 22c may be made of aluminum or nickel.
  • the material of the second current collector 22c can be aluminum foil. The strength of aluminum foil is weak but has good conductive properties.
  • Both the third active material layer 22a and the fourth active material layer 22b include active materials, such as lithium cobalt oxide, lithium manganate, lithium nickel oxide, lithium nickel cobalt manganate, lithium iron phosphate, lithium manganese iron phosphate, and lithium vanadium phosphate. , lithium vanadium phosphate, lithium-rich manganese-based materials or lithium nickel cobalt aluminate, and related cathode materials for sodium batteries such as at least one Prussian compound.
  • the electrochemical device 100 further includes a first conductive member 30 and a second conductive member 40 .
  • the first conductive member 30 is provided in the accommodation space S and fixed to the first housing 11 .
  • the second end 32 and the bottom wall 121 of the second housing 12 may be disposed apart.
  • the first conductive member 30 and the first housing 11 may be integrally formed.
  • the first conductive member 30 is directly formed by extending along the first direction X from the edge of the first through hole 110 .
  • the first conductive member 30 and the first housing 11 may also have a separate structure.
  • the first pole piece 21 , the isolation film 23 and the second pole piece 22 are wound around the first conductive member 30 to form the electrode assembly 20 , and the first pole piece 21 is electrically connected to the first conductive member 30 . Therefore, the first conductive member 30 and the housing 10 connected to the first conductive member 30 may exhibit the same polarity as the first pole piece 21 .
  • the first conductive member 30 is a hollow structure and defines a first cavity 300 connected to the first through hole 110 . Among them, along the cross section perpendicular to the first direction X, the shape of the first conductive member 30 can be set according to the required shape of the electrode assembly 20 .
  • the electrode assembly 20 may have a cross-section close to that of the first conductive member 30
  • the consistent shape can also be cylindrical.
  • the cross-sectional shape of the first conductive member 30 is circular (that is, the first conductive member 30 is hollow cylindrical as a whole), and the first through hole 110 and the first conductive member 30
  • the cross-sectional shape matches.
  • the cross-sectional shape of the first conductive member 30 may also be a rectangle, a hexagon, an ellipse, etc.
  • the second conductive component 40 is disposed in the first cavity 300 and is electrically isolated from the first conductive component 30 .
  • the cross-sectional shape of the first conductive member 30 when the cross-sectional shape of the first conductive member 30 is circular, the cross-sectional shape of the second conductive member 40 may also be circular.
  • the second pole piece 22 and The second conductive member 40 is electrically connected such that the second conductive member 40 can exhibit the same polarity as the second pole piece 22 .
  • the first pole piece 21 is a negative pole and the second pole piece 22 is a positive pole
  • the first conductive member 30 and the housing 10 simultaneously exhibit negative polarity
  • the second conductive member 40 exhibits positive polarity (the second conductive member 40 can be used as pole).
  • the second conductive member 40 is also a hollow structure and defines a second cavity 400 .
  • the second conductive member 40 includes an electrically connected body portion 41 and a sealing portion 42 .
  • the body part 41 is provided with a second through hole 410 that communicates with the second cavity 400 and the accommodation space S. Therefore, after the electrolyte is injected into the second cavity 400, the electrolyte can further flow into the accommodation space S through the second through hole 410.
  • the sealing part 42 is sealingly connected to the body part 41 to isolate the second cavity 400 from the outside world, and the sealing part 42 is sealingly connected to the body part 41 after liquid is injected.
  • the material of the sealing part 42 and the body part 41 may be aluminum.
  • the sealing part 42 and the body part 41 can be fixed by welding (such as resistance welding or laser welding), thereby improving the stability and reliability of their connection.
  • the body part 41 in the first direction, includes a third end 411 and a fourth end 412 opposite to the third end 411 .
  • the sealing portion 42 is sealingly connected to the third end 411 , and the second through hole 410 is provided at the fourth end 412 .
  • the sealing part 42 By sealing the sealing part 42 to the third end 411, the convenience of installing the sealing part 42 is improved.
  • By providing the second through hole 410 at the fourth end 412 most of the second cavity 400 can flow into the accommodation space S smoothly.
  • the first housing 11 equipped with the first conductive member 30 may be provided first.
  • the first pole piece 21 , the isolation film 23 and the second pole piece 22 are stacked in sequence and wound around the first conductive member 30 to form the electrode assembly 20 , so that the first pole piece 21 and the first conductive member 30 are electrically connected.
  • the first housing 11 with the electrode assembly 20 and the first conductive member 30 is fixed on the second housing 12 so that the first housing 11 and the second housing 12 surround and form an accommodation space S.
  • the electrolyte is injected into the second cavity 400 of the second conductive member 40 , so that the electrolyte further flows into the accommodating space S through the second through hole 410 to fully infiltrate the electrode assembly 20 .
  • the sealing portion 42 of the second conductive member 40 is sealingly connected to the body portion 41 so that the second cavity 400 is isolated from the outside world, thereby reducing the electrolyte in the accommodation space S from flowing through the second through hole 410 and the second cavity. 400 risk of flowing out of the housing 10.
  • the fourth end 412 when the second end 32 is disposed at a distance from the bottom wall 121 of the second housing 12 , the fourth end 412 may be disposed in a direction opposite to the first direction X. It extends in the opposite direction relative to the second end 32 . In this way, when the electrolyte injected into the second cavity 400 flows into the accommodation space S through the second through hole 410, the obstruction of the electrolyte by the inner wall of the first conductive member 30 can be reduced, which facilitates the smooth entry of the electrolyte into the cavity. placed in space S.
  • the fourth end 412 includes an end surface 4121 away from the sealing portion 42 and a side surface 4122 connected to the end surface 4121 .
  • the second through hole 410 can be provided on the side surface 4122 of the fourth end 412 or on the end surface 4121 of the fourth end 412 . In some specific embodiments, the second through hole 410 is provided on the side 4122 of the fourth end 412 . Moreover, the plurality of second through holes 410 are spaced on the side 4122 along the circumferential direction of the fourth end 412, thereby improving the infiltration efficiency and injection efficiency of the electrolyte into the electrode assembly 20.
  • the third end 411 may be configured to protrude from the first through hole 110 in the first direction X. That is, the third end 411 protrudes from the first housing 11 .
  • the sealing part 42 and the body part 41 are easily welded and fixed, and the risk of a short circuit caused by the sealing part 42 contacting the part of the first housing 11 around the first through hole 110 during welding can be reduced.
  • the protruding configuration of the third end 411 also facilitates electrical connection between the second conductive member 40 and external components. It can be understood that since the second conductive member 40 can serve as a pole, setting the third end 411 to protrude from the first housing 11 does not increase the height of the electrochemical device 100 like the sealing nail in the related art.
  • the second conductive member 40 can serve as a pole to lead out the polarity of the second pole piece 22 .
  • the second conductive member 40 is also used for liquid injection.
  • the sealing portion 42 of the second conductive member 40 is sealingly connected to the body portion 41, thereby reducing the risk of leakage after liquid injection. Therefore, the second conductive member 40 has the functions of connecting with external components and injecting liquid at the same time.
  • This application does not need to open an additional liquid filling port on the housing 10, which reduces the need to weld the sealing nail and the sealing nail in the liquid filling port after liquid filling.
  • the risk of affecting surface flatness is also reduced, and the risk of increasing the height of the electrochemical device due to the addition of sealing nails is reduced, which is beneficial to increasing energy density.
  • the first conductive member 30 does not need to be extracted, but remains in the accommodation space S and the first electrode is The tab 21 is electrically connected to the housing 10 . Therefore, the risk of the first pole piece 21 , the second pole piece 22 or the isolation film 23 being brought out or dislocated when the winding needle is pulled out is reduced, and the safety of the electrochemical device 100 is improved. Moreover, the first conductive member 30 and the second conductive member 40 can be drawn out and placed in the electrode assembly by making full use of the winding needle in the prior art. 20.
  • the hollow position left at the starting end of the winding can also reduce the impact on the energy density due to the arrangement of the first conductive member 30 and the second conductive member 40.
  • the first conductive member 30 and the second conductive member 40 can also be provided when the center of the housing 10 undergoes sagging deformation (such as when it is subjected to mechanical abuse such as extrusion, collision, or when the electrode assembly 20 undergoes large expansion during cycling).
  • the supporting function reduces the possibility of deformation of the electrode assembly 20 due to the action of the housing 10 .
  • the first insulating layer 50 is disposed between the first conductive member 30 and the body portion 41 .
  • the first insulating layer 50 is used to electrically isolate the first conductive member 30 and the body part 41 to reduce the risk of short circuit between the first conductive member 30 and the body part 41 due to direct contact.
  • the first insulating layer 50 is also used to seal the connection between the first conductive member 30 and the body part 41, reducing the risk of the electrolyte overflowing through the gap between the first conductive member 30 and the body part 41, and also reducing the risk of external There is a risk of impurities entering the interior of the housing 10 through this gap.
  • the first insulating layer 50 may be configured to protrude from the first through hole 110 in the first direction X.
  • the material of the first insulating layer 50 can be polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), polyimide (PI), nylon and Teflon. (PTFE) at least one.
  • the first surface 211 includes a first region 2111, and the first region 2111 is exposed to the first active material layer 21a.
  • the first area 2111 may be an empty foil area or a single-sided area, and forms the innermost ring of the electrode assembly 20 after winding.
  • the first area 2111 is in contact with the outer surface 33 of the first conductive member 30 .
  • the first region 2111 can be electrically connected to the first conductive member 30 , so that the first conductive member 30 has the same polarity as the first pole piece 21 .
  • the pole tab on the first pole piece 21 can be omitted, thereby simplifying the manufacturing process.
  • the first region 2111 can stably fit against the outer side 33 of the first conductive member 30 after winding, thereby improving the stability of the electrical connection between the two.
  • the outer side 33 can be roughened to increase the friction between the first area 2111 and the outer side 33 to facilitate winding, improve the tightness of the inner ring of the winding core, and at the same time reduce the Contact resistance between the first region 2111 and the first conductive member 30 .
  • the electrode assembly 20 further includes a tab 24 connected to the second current collector 22 c.
  • the tab 24 is connected to the end surface 4121 of the fourth end 412,
  • the second pole piece 22 is electrically connected to the second conductive member 40 .
  • the second current collector 22c includes a first side 223 and a second side 224 arranged oppositely.
  • the first side 223 is closer to the bottom wall 121 of the second housing 12 than the second side 224 .
  • the tab 24 extends from the first side 223 and is connected to the end surface 4121 .
  • the tab 24 and the end surface 4121 can be fixed by welding (such as resistance welding or laser welding), thereby improving the stability and reliability of the electrical connection between the two.
  • the end surface 4121 can also be set as a flat surface.
  • the second insulating layer 60 can be disposed between the tab 24 and the second housing 12 .
  • the second insulating layer 60 is used to electrically isolate the second housing 12 from the end surface 4121 and the tab 24 to reduce the risk of short circuit.
  • the material of the second insulating layer 60 may be polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), polyimide (PI), nylon and Teflon. (PTFE) at least one. More specifically, the second insulating layer 60 may be a high-temperature resistant insulating tape, thereby reducing the risk of the second insulating layer 60 being damaged after the tabs 24 are welded.
  • an explosion-proof valve 70 is also provided on at least one of the first housing 11 and the second housing 12 .
  • the explosion-proof valve 70 When gas is generated inside the electrochemical device 100 and continues to accumulate, the explosion-proof valve 70 is opened, so that the gas inside the housing 10 is released, and the pressure in the accommodation space S is reduced, thereby improving the safety of the electrochemical device 100 .
  • the explosion-proof valve 70 may be provided on the first housing 11 .
  • the explosion-proof valve 70 may be a gap formed on the first housing 11 by laser etching and passing through part of the first housing 11 in the first direction X, and the shape and depth of the explosion-proof valve 70 may be set according to specific requirements. Therefore, when the internal pressure of the electrochemical device 100 reaches a certain level, the explosion-proof valve 70 will crack due to stress concentration, thereby achieving the purpose of pressure relief. Moreover, when viewed from the first direction cause impact.
  • another embodiment of the present application further provides an electrochemical device 200 .
  • the difference from the above-mentioned electrochemical device 100 is that the first pole piece 21 is a positive electrode and the second pole piece 22 is a negative electrode.
  • the first conductive member 30 and the housing 10 electrically connected to the first pole piece 21 exhibit positive polarity
  • the second conductive member electrically connected to the second pole piece 22 Piece 40 exhibits negative polarity.
  • the electrochemical devices 100 and 200 of the present application include all devices capable of generating electrochemical reactions.
  • the electrochemical devices 100 and 200 include all types of primary batteries, secondary batteries, fuel cells, solar cells, and capacitors (eg, supercapacitors).
  • the electrochemical devices 100 and 200 may be lithium secondary batteries, including lithium metal secondary batteries, lithium ion secondary batteries, lithium polymer secondary batteries and lithium ion polymer secondary batteries.
  • one embodiment of the present application further provides an electronic device 1 , including the above-mentioned electrochemical device 100 (or electrochemical device 200 ).
  • the electronic device 1 is powered by the electrochemical device 100 described above.
  • the electronic device 1 of the present application may be, but is not limited to, a notebook computer, a pen input computer, a mobile computer, an e-book player, a portable telephone, a portable fax machine, a portable copier, a portable printer, a head-mounted Stereo headphones, video recorders, LCD TVs, portable cleaners, portable CD players, mini discs, transceivers, electronic notepads, calculators, memory cards, portable recorders, radios, backup power supplies, motors, cars, motorcycles, power-assisted bicycles , bicycles, lighting equipment, toys, game consoles, clocks, power tools, flashlights, cameras, large household batteries and lithium-ion capacitors, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

一种电化学装置及电子装置。电化学装置包括壳体、电极组件和电解液。壳体包括第一和第二壳体,其围设形成容置空间。电极组件包括第一极片、第二极片及隔离膜。电化学装置还包括第一和第二导电件。第一导电件设于容置空间内且固定于第一壳体。第一极片、隔离膜和第二极片围绕第一导电件卷绕,第一极片与第一导电件电连接。第一导电件限定出第一腔体。第一壳体还设有与第一腔体连通的第一通孔。第二导电件设于第一腔体内且与第一导电件电性隔绝,第二极片与第二导电件电连接。第二导电件限定出第二腔体。第二导电件包括电连接的本体部和密封部。本体部设有连通第二腔体和容置空间的第二通孔。密封部密封连接本体部。本申请有利于提高能量密度。

Description

电化学装置及电子装置 技术领域
本申请涉及储能技术领域,尤其涉及一种电化学装置和具有所述电化学装置的电子装置。
背景技术
电化学装置(如二次电池)在电子移动设备、电动工具及电动汽车等电子产品中有着广泛使用。电化学装置通常包括电极组件和用于容置电极组件的壳体。壳体上设有注液口,电解液由注液口注入壳体。在注液后,为了使电化学装置内部保持与外界保持相对密闭的环境,注液口会采用密封钉进行密封。
然而,密封钉会增加壳体的高度,并且会部分伸入壳体并占用一定的空间,从而降低电化学装置的能量密度。
发明内容
鉴于以上不足之处,有必要提供一种有利于提高能量密度的电化学装置。
另,本申请还提供一种具有上述电化学装置的电子装置。
本申请第一方面提供一种电化学装置,包括壳体、电极组件和电解液。壳体包括第一壳体和第二壳体,第一壳体和第二壳体围设形成容置空间。电极组件和电解液设于容置空间内。电极组件包括第一极片、第二极片以及位于第一极片和第二极片之间的隔离膜。电化学装置还包括第一导电件和第二导电件。第一导电件设于容置空间内且固定于第一壳体。第一极片、隔离膜和第二极片围绕第一导电件卷绕形成电极组件,且第一极片与第一导电件电连接。第一导电件为中空结构且限定出第一腔体。第一壳体上还设有第一通孔,第一通孔与第一腔体连通。第二导电件设于第一腔体内且与第一导电件电性隔绝,第二极片与第二导电件电连接。第二导电件为中空结构且限定出第二腔体。第二导电件包括电连接的本体部和密封部。本体部设有第二通孔,第二通孔连 通第二腔体和容置空间。密封部密封连接本体部以使第二腔体与外界隔绝。
本申请中,第二导电件作为极柱将第二极片的电极性引出。同时还利用第二导电件进行注液,通过向第二导电件中注入电解液,使电解液可经由第二通孔流入容置空间内,注液完成后,第二导电件的密封部密封连接本体部,减小了注液后的漏液风险。本申请不需要在壳体上另外开设注液口,减小了注液后需在注液口内焊接密封钉影响表面平整度的风险,也减小了因增设密封钉导致电化学装置高度增加或占用壳体内部空间的风险,有利于提高能量密度。
在一些可能的实现方式中,第一导电件和本体部之间设有第一绝缘层,第一绝缘层还用于密封连接第一导电件和本体部。因此,第一绝缘层可减小第一导电件和本体部接触短路的风险,也可减小电解液经第一导电件和本体部之间的间隙溢出的风险。
在一些可能的实现方式中,第一导电件包括第一端和与第一端相对的第二端,第一端连接于第一壳体。在自第二端指向第一端的方向(后文称为第一方向)上,本体部包括第三端和与第三端相对的第四端。密封部密封连接第三端,第二通孔设于第四端。第二通孔设置在上述第四端,即设置在第二导电件远离注液的一端(即安装密封部的一端),一方面提高了密封部安装时的便捷性,另一方面便于在注液时,第二腔体内的电极液及时流入容纳空间,减小注液时第二腔体中的电解液无法及时流入容纳空间导致电解液溢出的风险。
在一些可能的实现方式中,在与第一方向相反的方向上,第四端相较于第二端伸出。第四端包括远离密封部的端面及连接端面的侧面,第二通孔设于侧面。因此,在注入第二腔体的电解液经第二通孔流入容置空间的过程中,减小了第一导电件的内壁对电解液的阻碍。
在一些可能的实现方式中,在第一方向上,第三端从第一通孔伸出。如此,在本体部上密封连接密封部时,可减小密封部与第一壳体接触短路的风险。第三端凸出设置也便于第二导电件与外部元件电连接。
在一些可能的实现方式中,所述第一极片包括第一集流体和 第一活性物质层,所述第一活性物质层设置在所述第一集流体上,所述第一集流体沿长度方向的一端具有未设置第一活性物质层的空箔区,所述空箔区与所述第一导电件外侧面贴合。如此,可在没有焊接或者在粘结的情况下实现第一极片和第一导电件的电连接,简化了工序。值得注意的是,在其它的实施例中,显然是可以通过空箔区与第一导电件焊接或者粘结的方式实现二者的电连接。
在一些可能的实现方式中,所述第一导电件的外侧面进行粗糙化处理,一方面可以提高空箔区和第一导电件之间的摩擦力,方便卷绕,提高卷绕后的电极组件内圈的紧密性,另一方面经过粗糙化的第一导电件降低其与空箔区间接触电阻,减小了电极组件的内阻。
在一些可能的实现方式中,第二极片包括第二集流体。电极组件还包括连接于第二集流体的极耳,极耳连接于第四端的端面。如此,可使得第二极片与第二导电件电连接。
在一些可能的实现方式中,极耳和第二壳体之间设有第二绝缘层。第二绝缘层用于使第二壳体与极耳之间电性隔绝,减小短路风险。
在一些可能的实现方式中,极耳与端面焊接固定,从而提高极耳与端面之间连接的稳定性和可靠性。
在一些可能的实现方式中,密封部与本体部焊接固定,从而提高密封部与本体部之间连接的稳定性和可靠性。
在一些可能的实现方式中,第一壳体和第二壳体的至少一者上还设有防爆阀。当电化学装置内部产生气体并持续累积时,防爆阀被冲开,使得壳体内部的气体得到释放,容置空间内压力下降,从而提高电化学装置的安全性。
本申请第二方面还提供一种电子装置,其包括如上电化学装置。电子装置通过上述电化学装置供电。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请一实施方式的电化学装置的立体结构示意图。
图2为图1所示的电化学装置的分解图。
图3为图1所示的电化学装置沿III-III的剖视图。
图4为图3所示的电化学装置于A处的局部放大图。
图5为图3所示的电化学装置于B处的局部放大图。
图6为本申请另一实施方式的电化学装置的剖视图。
图7为本申请一实施方式的电子装置的结构示意图。
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面对本申请实施例中的技术方案进行清楚、详细地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
下文,将详细地描述本申请的实施方式。但是,本申请可体现为许多不同的形式,并且不应解释为限于本文阐释的示例性实施方式。而是,提供这些示例性实施方式,从而使本申请透彻的和详细的向本领域技术人员传达。
另外,为了简洁和清楚,在附图中,各种组件、层的尺寸或厚度可被放大。遍及全文,相同的数值指相同的要素。如本文所使用,术语“及/或”、“以及/或者”包括一个或多个相关列举项目的任何和所有组合。另外,应当理解,当要素A被称为“连接”要素B时,要素A可直接连接至要素B,或可能存在中间要素C并且要素A和要素B可彼此间接连接。
进一步,当描述本申请的实施方式时使用“可”指“本申请的一个或多个实施方式”。
本文使用的专业术语是为了描述具体实施方式的目的并且不旨在限制本申请。如本文所使用,单数形式旨在也包括复数形式,除非上下文另外明确指出。应进一步理解,术语“包括”,当在本说明书中使用时,指存在叙述的特征、数值、步骤、操作、要素和/或组分,但是不排除存在或增加一个或多个其他特征、数值、步骤、操作、要素、组分和/或其组合。
空间相关术语,比如“上”等可在本文用于方便描述,以描述如图中阐释的一个要素或特征与另一要素(多个要素)或特征(多个特征)的关系。应理解,除了图中描述的方向之外,空间相关术语旨在包括设备或装置在使用或操作中的不同方向。例如,如果将图中的设备翻转,则描述为在其他要素或特征“上方”或“上”的要素将定向在其他要素或特征的“下方”或“下面”。因此,示例性术语“上”可包括上面和下面的方向。应理解,尽管术语第一、第二、第三等可在本文用于描述各种要素、组分、区域、层和/或部分,但是这些要素、组分、区域、层和/或部分不应受这些术语的限制。这些术语用于区分一个要素、组分、区域、层或部分与另一要素、组分、区域、层或部分。因此,下面讨论的第一要素、组分、区域、层或部分可称为第二要素、组分、区域、层或部分,而不背离示例性实施方式的教导。
如本文中所使用,属于“平行”、“垂直”用于描述两个部件之间的理想状态。实际生产或使用的状态中,两个部件之间可以存在近似于平行或垂直的状态。举例来说,结合数值描述,平行可以指代两直线之间夹角范围在±10°之间,平行也可以指代两平面的二面角范围在±10°之间,平行还可以指代直线与平面之间的夹角范围在±10°之间。垂直可以指代两直线之间夹角范围在90±10°之间,垂直也可以指代两平面的二面角范围在90±10°之间,垂直还可以指代直线与平面之间的夹角范围在90±10°之间。被描述“平行”、“垂直”的两个部件可以不是绝对的直线、平面,也可以大致呈直线或平面,从宏观来看整体延伸方向为直线或平面即可认为部件为“直线”或“平面”。
请参阅图1至图3,本申请一实施方式提供一种电化学装置100,包括壳体10、电极组件20和电解液(图未示)。壳体10包括第一壳体11和第二壳体12,第一壳体11和第二壳体12围设形成容置空间S。电极组件20和电解液均设于容置空间S内。在一些实施例中,第二壳体12包括底壁121和围绕底壁121边缘设置的侧壁122。第一壳体11和底壁121在第一方向X上相对设置。第一壳体11和底壁121可以平行设置且均垂直于第一方向X。侧壁122一端连接第一壳体11,另一端连接底壁121。第一壳体11设有与容置空间S连通的第一通孔110。在一些实 施例中,从第一方向X观察,第一壳体11和第二壳体12的底壁121可均为圆形。第一通孔110也可以为圆形。在另一些实施例中,第一壳体11、第二壳体12和第一通孔110的形状还可以作变更,如椭圆形、正方形、六边形等。在一些实施例中,电化学装置100可以为扣式电池,壳体10可整体为钢材质。钢壳体可包括元素Fe和C,钢壳体还可以包括元素Ni、Co、Al、Mn、Cr、Cu、Mg、Mo、S、Si、Ti、V、Pb、Sb、N、P中的一种或几种。而且,第二壳体12可一体成型,第一壳体11和第二壳体12的侧壁122之间可通过焊接方式固定。
如图3所示,电极组件20包括第一极片21、第二极片22以及设于第一极片21和第二极片22之间的隔离膜23。隔离膜23用于防止第一极片21和第二极片22直接接触,从而降低第一极片21和第二极片22发生接触短路的可能性。其中,电极组件20为卷绕结构,即第一极片21、隔离膜23和第二极片22依次堆叠并围绕沿第一方向X设置的卷绕中心轴O进行卷绕后形成电极组件20。在一些实施例中,第一极片21为负极,第二极片22为正极。
在一些实施例中,第一极片21包括依次堆叠的第一活性物质层21a、第一集流体21c和第二活性物质层21b。第一集流体21c包括相对设置的第一表面211和第二表面212,第一表面211相较于第二表面212更靠近卷绕中心轴O。第一活性物质层21a设于第一表面211,第二活性物质层21b设于第二表面212。第一集流体21c可以具有集流的功能,例如,第一集流体21c的材质可为铜或镍或碳基导电物等导电物质。在一些实施例中,第一极片21为负极时,第一集流体21c材质可以为铜。第一活性物质层21a和第二活性物质层21b均包含活性物质,其可选自石墨类材料、合金类材料、锂金属及其合金中的至少一种。石墨类材料可选自人造石墨、软碳、硬碳、天然石墨中的至少一种;合金类材料可选自硅、氧化硅、锡、硫化钛中的至少一种。
第二极片22包括堆叠设置的第三活性物质层22a、第二集流体22c和第四活性物质层22b。第二集流体22c包括相对设置的第三表面221和第四表面222,第三表面221相较于第四表面222更靠近卷绕中心轴O。第三活性物质层22a设于第三表面221, 第四活性物质层22b设于第四表面222。第二集流体22c具有集流的功能,例如,第二集流体22c材质可为铝或镍。在一些实施例中,第二极片22为正极时,第二集流体22c材质可为铝箔,铝箔的强度较弱但具有较好的导电性能。第三活性物质层22a和第四活性物质层22b均包含活性物质,如包含钴酸锂、锰酸锂、镍酸锂、镍钴锰酸锂、磷酸铁锂、磷酸锰铁锂、磷酸钒锂、磷酸钒氧锂、富锂锰基材料或镍钴铝酸锂以及钠电池的相关正极材料如普鲁士化合物中的至少一种。
请一并参照图3至图5,电化学装置100还包括第一导电件30和第二导电件40。第一导电件30设于容置空间S内且固定于第一壳体11。其中,在第一方向X上,第一导电件30包括相对设置的第一端31和第二端32,第一端31连接于第一壳体11。在第一方向X上,第二端32与第二壳体12的底壁121可相距设置。在一些实施例中,第一导电件30和第一壳体11可一体成型。如,第一导电件30直接由第一通孔110的边缘沿第一方向X上延伸形成。在另一些实施例中,第一导电件30和第一壳体11也可以为分体式结构。第一极片21、隔离膜23和第二极片22围绕第一导电件30卷绕形成电极组件20,且第一极片21与第一导电件30电连接。因此,第一导电件30以及与第一导电件30连接的壳体10均可呈现与第一极片21相同的电极性。第一导电件30为中空结构,且限定出与第一通孔110连通的第一腔体300。其中,沿垂直于第一方向X的横截面上,第一导电件30的形状可根据电极组件20所需的形状进行设置。当围绕第一导电件30卷绕形成电极组件20后,根据第一导电件30的尺寸以及电极组件20的卷绕层数的不同,电极组件20可以呈现与第一导电件30的横截面接近一致的形状也可以呈圆柱形。如图2所示,在一些实施例中,第一导电件30的横截面形状为圆形(即第一导电件30整体为中空的圆柱形),第一通孔110与第一导电件30的横截面形状匹配。在其它实施例中,第一导电件30的横截面形状还可以为矩形、六边形或椭圆形等。
第二导电件40设于第一腔体300内且与第一导电件30电性隔绝。在一些实施例中,当第一导电件30的横截面形状为圆形时,第二导电件40的横截面形状也可以为圆形。第二极片22与 第二导电件40电连接,使得第二导电件40可呈现与第二极片22相同的电极性。例如,当第一极片21为负极且第二极片22为正极时,第一导电件30和壳体10同时呈负极性,第二导电件40呈正极性(第二导电件40可作为极柱)。第二导电件40也为中空结构,且限定出第二腔体400。第二导电件40包括电连接的本体部41和密封部42。本体部41设有第二通孔410,第二通孔410连通第二腔体400和容置空间S。因此当将电解液注入第二腔体400后,电解液可进一步经由第二通孔410流入容置空间S内。密封部42密封连接本体部41以使第二腔体400与外界隔绝,且密封部42是在注液后再密封连接至本体部41。在一些实施例中,当第二导电件40呈正极性时,密封部42和本体部41的材质可以为铝。密封部42与本体部41可通过焊接方式(如电阻焊或激光焊)固定,从而提高二者连接的稳定性和可靠性。其中,在第一方向上,本体部41包括第三端411和与第三端411相对的第四端412。在一些实施例中,密封部42密封连接第三端411,第二通孔410设于第四端412。通过将密封部42密封连接第三端411,提高了密封部42安装时的便捷性。通过将第二通孔410设于第四端412,便于第二腔体400内的大部分顺利流入容纳空间S。
装配时,可先提供安装有第一导电件30的第一壳体11。将第一极片21、隔离膜23和第二极片22依次层叠并围绕第一导电件30卷绕形成电极组件20,使第一极片21与第一导电件30电连接。将第二导电件40插入第一导电件30中,并将第二导电件40与第二极片22电连接。再将带有电极组件20和第一导电件30的第一壳体11固定于第二壳体12上,使得第一壳体11与第二壳体12围设形成容置空间S。然后,向第二导电件40的第二腔体400中注入电解液,使得电解液进一步经由第二通孔410流入容置空间S内以充分浸润电极组件20。然后,将第二导电件40的密封部42密封连接本体部41,使得第二腔体400与外界隔绝,从而减小容置空间S内的电解液由第二通孔410和第二腔体400流出壳体10的风险。
如图5所示,在一些实施例中,当第二端32与第二壳体12的底壁121相距设置时,可设置第四端412在与第一方向X相 反的方向上相较于第二端32伸出。如此,在注入第二腔体400的电解液经第二通孔410流入容置空间S内的过程中,可减小第一导电件30的内壁对电解液的阻碍,便于电解液顺利进入容置空间S内。在一些实施例中,第四端412包括远离密封部42的端面4121和连接端面4121的侧面4122。第二通孔410可设于第四端412的侧面4122,也可设于第四端412的端面4121。在一些具体的实施例中,第二通孔410设于第四端412的侧面4122。且,多个第二通孔410沿着第四端412的周向方向间隔分布于侧面4122上,从而提高电解液对电极组件20的浸润效率和注液效率。
如图4所示,进一步地,还可设置第三端411在第一方向X上从第一通孔110伸出。即,第三端411凸出于第一壳体11。如此,便于将密封部42与本体部41焊接固定,可减小了焊接时密封部42与位于第一通孔110周围的部分第一壳体11接触而导致短路的风险。第三端411凸出设置也便于第二导电件40与外部元件电连接。可以理解,由于第二导电件40可作为极柱,因此设置第三端411凸出第一壳体11并不会如现有技术的密封钉一样额外增加电化学装置100的高度。
本申请中,第二导电件40可作为极柱将第二极片22的电极性引出。同时还利用第二导电件40进行注液,通过向第二导电件40中注入电解液,使电解液可经由第二通孔410流入容置空间S内。第二导电件40的密封部42密封连接本体部41,从而减小了注液后的漏液风险。因此第二导电件40同时具有与外部元件连接和注液的功能,本申请不需在壳体10上另外开设注液口,减小了注液后需在注液口内焊接密封钉且密封钉可能会影响表面平整度的风险,也减小了因增设密封钉可能导致电化学装置高度增加的风险,有利于提高能量密度。
再者,围绕第一导电件30卷绕形成电极组件20后,不同于现有技术中的卷针,第一导电件30无需抽取出来,而是保留在容置空间S内并将第一极片21电连接至壳体10。因此,减小了卷针抽出时第一极片21、第二极片22或隔离膜23被带出或错位的风险,提高电化学装置100的安全性。而且,第一导电件30和第二导电件40可充分利用现有技术中卷针抽出并在电极组件 20卷绕起始端留出的中空位置,这也可减小由于设置第一导电件30和第二导电件40对能量密度的影响。第一导电件30和第二导电件40还可以在壳体10中心发生下陷变形时(如当受到挤压、碰撞等机械滥用,或者当电极组件20在循环过程中产生较大膨胀时)提供支撑作用,减小电极组件20由于壳体10作用发生变形的可能性。
在一些实施例中,由于第一导电件30和第二导电件40呈现相反的电极性,第一导电件30和本体部41之间设有第一绝缘层50。第一绝缘层50用于将第一导电件30和本体部41之间电性隔绝,减小第一导电件30和本体部41直接接触短路的风险。此外,第一绝缘层50还用于密封连接第一导电件30和本体部41,减小了电解液经第一导电件30和本体部41之间的间隙溢出的风险,也减小了外部杂质经该间隙进入壳体10内部的风险。在一些实施例中,为了提高第一导电件30与本体部41之间的隔绝性,可以设置第一绝缘层50在第一方向X上从第一通孔110伸出。其中,第一绝缘层50的材质可以为聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚苯乙烯(PS)、聚酰亚胺(PI)、尼龙和铁氟龙(PTFE)中的至少一种。
如图3所示,在一些实施例中,第一表面211包括第一区2111,第一区2111露出于第一活性物质层21a。具体地,第一区2111可以为空箔区或者单面区,并在卷绕后形成电极组件20的最内圈。第一区2111与第一导电件30的外侧面33贴合。如此,可使得第一区2111与第一导电件30电连接,使第一导电件30具有与第一极片21相同的电极性。此时,第一极片21上的极耳可以省略,从而简化了制造工序。可以理解,由于卷绕过程中存在张力,因此卷绕后第一区2111可稳定地贴合于第一导电件30的外侧面33,提高二者电连接的稳定性。在一些实施例中,可对外侧面33进行粗糙化处理,以提高第一区2111和外侧面33间的摩擦力,方便卷绕,提高卷绕后的卷芯内圈的紧密性,同时减小第一区2111与第一导电件30之间的接触电阻。
如图3和图5所示,在一些实施例中,电极组件20还包括连接于第二集流体22c的极耳24。当第二通孔410设于第四端412的侧面4122时,极耳24连接于第四端412的端面4121, 从而使第二极片22与第二导电件40电连接。在一些实施例中,当第四端412伸出第二端32时,还可减小极耳24与第二端32之间接触短路的风险。其中,在第一方向X上,第二集流体22c包括相对设置的第一边223和第二边224。在第一方向X上,第一边223相较于第二边224更靠近第二壳体12的底壁121。极耳24从第一边223伸出并连接于端面4121。一些实施例中,极耳24与端面4121之间可通过焊接方式(如电阻焊或激光焊)固定,从而提高二者电连接的稳定性和可靠性。为了便于极耳24与端面4121焊接,端面4121也可设置为平面。
进一步地,由于第二壳体12与极耳24之间呈现相反的负极性,因此可在极耳24与第二壳体12之间设置第二绝缘层60。第二绝缘层60用于将第二壳体12与端面4121及极耳24之间电性隔绝,减小短路风险。其中,第二绝缘层60的材质可以为聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚苯乙烯(PS)、聚酰亚胺(PI)、尼龙和铁氟龙(PTFE)中的至少一种。更具体地,第二绝缘层60可以是耐高温的绝缘胶纸,从而减小第二绝缘层60在极耳24焊接后被损坏的风险。
如图1和图2所示,在一些实施例中,第一壳体11和第二壳体12中的至少一者上还设有防爆阀70。当电化学装置100内部产生气体并持续累积时,防爆阀70被冲开,使得壳体10内部的气体得到释放,容置空间S内压力下降,从而提高电化学装置100的安全性。在一些具体的实施例中,防爆阀70可设于第一壳体11上。防爆阀70可以是通过激光刻蚀在第一壳体11上形成的沿第一方向X贯穿部分第一壳体11的缝隙,且防爆阀70的形状和深度可以根据具体需求进行设置。因此,当电化学装置100内部压力达到一定程度时会使得防爆阀70因应力集中裂开,达到泄压的目的。且,从第一方向X观察,密封部42与防爆阀70在第一壳体11上的位置相错开,因此设置防爆阀70不会对作为极柱与外部元件电连接的第二导电件40造成影响。
请参阅图6,本申请另一实施方式还提供一种电化学装置200。与上述电化学装置100不同之处在于,第一极片21为正极,第二极片22为负极。此时,与第一极片21电连接的第一导电件30和壳体10呈现正极性,而与第二极片22电连接的第二导电 件40呈现负极性。
其中,本申请的电化学装置100、200包括所有能够发生电化学反应的装置。具体的,电化学装置100、200包括所有种类的原电池、二次电池、燃料电池、太阳能电池和电容器(例如超级电容器)。可选地,电化学装置100、200可以为锂二次电池,包括锂金属二次电池、锂离子二次电池、锂聚合物二次电池和锂离子聚合物二次电池。
请参阅图7,本申请一实施方式还提供一种电子装置1,包括上述电化学装置100(或电化学装置200)。电子装置1通过上述电化学装置100供电。在一实施方式中,本申请的电子装置1可以是,但不限于笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
以上所揭露的仅为本申请较佳实施方式而已,当然不能以此来限定本申请,因此依本申请所作的等同变化,仍属本申请所涵盖的范围。

Claims (10)

  1. 一种电化学装置,包括壳体、电极组件和电解液,所述壳体包括第一壳体和第二壳体,所述第一壳体和所述第二壳体围设形成容置空间,所述电极组件和所述电解液设于所述容置空间内,所述电极组件包括第一极片、第二极片以及位于所述第一极片和所述第二极片之间的隔离膜,其特征在于,所述电化学装置还包括:
    第一导电件,设于所述容置空间内且固定于所述第一壳体,所述第一极片、所述隔离膜和所述第二极片围绕所述第一导电件卷绕形成所述电极组件,且所述第一极片与所述第一导电件电连接;所述第一导电件为中空结构且限定出第一腔体,所述第一壳体上还设有第一通孔,所述第一通孔与所述第一腔体连通;
    第二导电件,设于所述第一腔体内且与所述第一导电件电性隔绝,所述第二极片与所述第二导电件电连接;所述第二导电件为中空结构且限定出第二腔体,所述第二导电件包括电连接的本体部和密封部,所述本体部设有第二通孔,所述第二通孔连通所述第二腔体和所述容置空间,所述密封部密封连接所述本体部以使所述第二腔体与外界隔绝。
  2. 如权利要求1所述的电化学装置,其特征在于,所述第一导电件和所述本体部之间设有第一绝缘层,所述第一绝缘层密封连接所述第一导电件和所述本体部。
  3. 如权利要求1所述的电化学装置,其特征在于,所述第一导电件包括第一端和与所述第一端相对的第二端,所述第一端连接于所述第一壳体;在第一方向上,所述本体部包括第三端和与所述第三端相对的第四端;所述密封部密封连接所述第三端,所述第二通孔设于所述第四端;所述第一方向为自所述第二端指向所述第一端的方向。
  4. 如权利要求3所述的电化学装置,其特征在于,在与所述第一方向相反的方向上,所述第四端相较于所述第二端伸出,所述第四端包括远离所述密封部的端面及连接所述端面的侧面,所述第二通孔设于所述侧面。
  5. 如权利要求3所述的电化学装置,其特征在于,在所述 第一方向上,所述第三端从所述第一通孔伸出。
  6. 如权利要求1所述的电化学装置,其特征在于,所述第一极片包括第一集流体和第一活性物质层,所述第一活性物质层设置在所述第一集流体上,所述第一集流体沿长度方向的一端具有未设置所述第一活性物质层的空箔区,所述空箔区与所述第一导电件的外侧面贴合。
  7. 如权利要求6所述的电化学装置,其特征在于,所述第一导电件的外侧面进行粗糙化处理。
  8. 如权利要求4所述的电化学装置,其特征在于,所述第二极片包括第二集流体,所述电极组件还包括连接于所述第二集流体的极耳,所述极耳连接于所述第四端的所述端面。
  9. 如权利要求8所述的电化学装置,其特征在于,所述极耳和所述第二壳体之间设有第二绝缘层。
  10. 一种电子装置,其特征在于,所述电子装置包括如权利要求1至9中任一项所述的电化学装置。
PCT/CN2023/098659 2022-06-27 2023-06-06 电化学装置及电子装置 WO2024001698A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210734421.1A CN114824681B (zh) 2022-06-27 2022-06-27 电化学装置及电子装置
CN202210734421.1 2022-06-27

Publications (1)

Publication Number Publication Date
WO2024001698A1 true WO2024001698A1 (zh) 2024-01-04

Family

ID=82523012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098659 WO2024001698A1 (zh) 2022-06-27 2023-06-06 电化学装置及电子装置

Country Status (2)

Country Link
CN (1) CN114824681B (zh)
WO (1) WO2024001698A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824681B (zh) * 2022-06-27 2022-09-09 宁德新能源科技有限公司 电化学装置及电子装置
WO2024197876A1 (zh) * 2023-03-31 2024-10-03 宁德新能源科技有限公司 一种电池
CN118137061A (zh) * 2024-03-13 2024-06-04 上海用一精密五金制品有限公司 用于电池包的导电连接组件以及电池包

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312783A (ja) * 1997-05-09 1998-11-24 Sony Corp 二次電池及びその製造方法
CN112531242A (zh) * 2020-12-04 2021-03-19 珠海冠宇电池股份有限公司 扣式电池及电子设备
CN113597709A (zh) * 2020-10-20 2021-11-02 宁德新能源科技有限公司 电池和具有所述电池的电子装置
WO2022068027A1 (zh) * 2020-09-30 2022-04-07 天津力神电池股份有限公司 一种电池
WO2022104958A1 (zh) * 2020-11-18 2022-05-27 江门市元熙科技有限公司 一种扣式电池
CN114824681A (zh) * 2022-06-27 2022-07-29 宁德新能源科技有限公司 电化学装置及电子装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200990397Y (zh) * 2006-12-06 2007-12-12 中国电子科技集团公司第十八研究所 一种锂离子电池盖
CN103311495A (zh) * 2013-06-13 2013-09-18 高平唐一新能源科技有限公司 一种锂离子电池注液装置
CN105514303B (zh) * 2014-09-22 2019-08-23 中国电子科技集团公司第十八研究所 一体化电池槽的制备方法
CN109461589A (zh) * 2018-10-23 2019-03-12 江苏集盛星泰新能源科技有限公司 正负极同端的超级电容器
CN111613739B (zh) * 2020-06-03 2024-05-24 珠海冠宇电池股份有限公司 扣式电池及其制造方法、电子设备
CN111834578B (zh) * 2020-08-19 2024-04-16 江苏正力新能电池技术有限公司 一种阵列电芯及其装配方法
CN215816075U (zh) * 2021-08-19 2022-02-11 厦门海辰新能源科技有限公司 顶盖组件和电池
CN216720097U (zh) * 2022-02-10 2022-06-10 中创新航科技股份有限公司 电池盖板组件、电池及电池组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312783A (ja) * 1997-05-09 1998-11-24 Sony Corp 二次電池及びその製造方法
WO2022068027A1 (zh) * 2020-09-30 2022-04-07 天津力神电池股份有限公司 一种电池
CN113597709A (zh) * 2020-10-20 2021-11-02 宁德新能源科技有限公司 电池和具有所述电池的电子装置
WO2022104958A1 (zh) * 2020-11-18 2022-05-27 江门市元熙科技有限公司 一种扣式电池
CN112531242A (zh) * 2020-12-04 2021-03-19 珠海冠宇电池股份有限公司 扣式电池及电子设备
CN114824681A (zh) * 2022-06-27 2022-07-29 宁德新能源科技有限公司 电化学装置及电子装置

Also Published As

Publication number Publication date
CN114824681A (zh) 2022-07-29
CN114824681B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
WO2024001698A1 (zh) 电化学装置及电子装置
US7655353B2 (en) Battery
JP4359857B1 (ja) 角型電池
US8658297B2 (en) Cap assembly and secondary battery having the same
JP2013038055A (ja) 二次電池
WO2023025108A1 (zh) 电池单体、电池以及用电装置
US20090061307A1 (en) Can type lithium secondary battery
JP2008103302A (ja) 電池モジュール
US8940428B2 (en) Separator, a lithium rechargeable battery using the same and a method of manufacture thereof
KR20060034125A (ko) 리튬 이차 전지
US8440347B2 (en) Secondary battery
JP2006080066A (ja) リチウムイオン二次電池
WO2023160034A1 (zh) 电池箱体上盖、电池箱体、电池及用电设备
KR100614358B1 (ko) 캔형 이차 전지
KR100696844B1 (ko) 이차전지
JP2006093146A (ja) キャップ組立体及びこれを備えるリチウム二次電池
WO2023050191A1 (zh) 电池壳、电池及用电装置
WO2022126547A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
KR100760786B1 (ko) 이차 전지 및 이를 이용한 제조 방법
KR100709863B1 (ko) 이차 전지
JP2023538708A (ja) 電池セル、電池、電気設備および電池セルの製造設備
KR100670516B1 (ko) 이차 전지와 이를 이용한 이차 전지의 제조방법
WO2023236107A1 (zh) 电化学装置及电子装置
KR100614398B1 (ko) 각형 리튬 이차 전지
WO2023045490A1 (zh) 电极组件及制造方法和系统、电池单体、电池和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829882

Country of ref document: EP

Kind code of ref document: A1