WO2023115375A1 - 电化学装置和电子装置 - Google Patents

电化学装置和电子装置 Download PDF

Info

Publication number
WO2023115375A1
WO2023115375A1 PCT/CN2021/140364 CN2021140364W WO2023115375A1 WO 2023115375 A1 WO2023115375 A1 WO 2023115375A1 CN 2021140364 W CN2021140364 W CN 2021140364W WO 2023115375 A1 WO2023115375 A1 WO 2023115375A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode assembly
electrochemical device
wall
region
polymer layer
Prior art date
Application number
PCT/CN2021/140364
Other languages
English (en)
French (fr)
Inventor
戴文杰
周新辉
Original Assignee
东莞新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞新能源科技有限公司 filed Critical 东莞新能源科技有限公司
Priority to EP21957722.8A priority Critical patent/EP4228063A4/en
Priority to CN202180034844.6A priority patent/CN115668595A/zh
Priority to PCT/CN2021/140364 priority patent/WO2023115375A1/zh
Priority to US18/192,957 priority patent/US20230238626A1/en
Publication of WO2023115375A1 publication Critical patent/WO2023115375A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of energy storage, and in particular to an electrochemical device and an electronic device having the electrochemical device.
  • Electrochemical devices such as batteries are widely used in electronic products such as electronic mobile devices, electric tools, and electric vehicles, and people have higher and higher requirements for the safety performance of electrochemical devices.
  • the present application provides an electrochemical device, including a shell, an electrode assembly and a tab.
  • the housing includes a main body and a first part, the electrode assembly is arranged in the main body, and the tabs are electrically connected to the electrode assembly and extend out of the housing.
  • the main body includes The first wall and the second wall are oppositely arranged, and in the third direction, the main body part includes the first sidewall and the second sidewall arranged oppositely.
  • the first part includes a first edge seal and a second edge seal, the first edge seal is connected to the first side wall and the second wall, the second edge seal is connected to the first edge seal, and the second edge seal is arranged between the first edge seal and the second edge seal between one side wall.
  • the housing includes a first housing and a second housing oppositely arranged.
  • the first shell includes a first polymer layer
  • the second shell includes a second polymer layer
  • the first polymer layer and the second polymer layer are bonded to form a colloid
  • the colloid is located in the first part.
  • On a cross section perpendicular to the first direction there is a first connection point between the first edge seal and the first side wall. It is defined that the first side wall extends outward along the contour of the first side wall at the first connection point to form a first straight line.
  • the colloid is located in the space formed by the first part and the first straight line.
  • the impact force of the colloid on the first connection point during mechanical abuse is reduced, thereby reducing the risk of rupture at the connection point and improving the mechanical strength of the first part.
  • a straight line passing through the first connection point and extending along the second direction is defined as the second straight line.
  • the colloid is located in the space formed by the first part and the second straight line.
  • the second direction in the second direction, it is defined that in the second direction, the sum of the length of the first edge sealing and the length of the second edge sealing is L, and in the second direction, the thickness of the electrode assembly is H, then 3/4H ⁇ L ⁇ 5/4H. Therefore, the situation that the packaging strength of the first part is reduced when the L value is too small, thereby reducing the risk of the first part being washed away by the electrode assembly or electrolyte; at the same time, it also improves the situation that may cause The problems of increased cost and reduced energy density.
  • the second edge sealing includes a first end connected to the first edge sealing and a second end opposite to the first end. It is defined that the electrode assembly has a first surface perpendicular to the second direction, and in the second direction, the electrode assemblies located on both sides of the first surface have the same thickness. The first surface is located between the second end and the second wall. Therefore, the risk that the first part is easy to open compared to the first side wall when the second end is at a lower position (that is, the length of the second edge sealing is longer) is reduced.
  • the first edge sealing includes a first area and a second area, and the second area is connected between the first area and the second edge sealing.
  • the thickness of the first zone is greater than the thickness of the second zone.
  • a second connection point is provided between the first region and the second region.
  • the electrode assembly is defined to have a first face perpendicular to the second direction. In the second direction, the electrode assemblies located on both sides of the first surface have the same thickness.
  • the second connection point is located between the first face and the second wall.
  • a third connection point is provided between the second region and the second edge seal. It is defined that the electrode assembly has a second surface perpendicular to the second direction, and in the second direction, the thickness of the electrode assembly located between the second surface and the second wall is 3/4 of the total thickness of the electrode assembly. In the second direction, the third connection point is located between the second face and the second wall. Therefore, the risk that the first part is easy to open compared with the first side wall is reduced when the third connection point is relatively high (that is, the length of the second edge sealing is relatively large).
  • the first edge sealing includes a third area, and the first area is connected between the second area and the third area.
  • the first polymer layer in the third zone does not adhere to the second polymer layer.
  • On a cross section perpendicular to the first direction there is a first connection point between the first edge seal and the first side wall.
  • a straight line passing through the first connection point and extending along the second direction is defined as the second straight line, and the third area is set on one side of the second straight line.
  • the setting of the third zone further reduces the impact force of the colloid on the first connection point during mechanical abuse, and further reduces the risk of the colloid hitting the electrode assembly.
  • the third area forms a buffer space that can be used to accommodate the electrolyte, which reduces the risk of liquid leakage caused by the first part being washed away by the electrolyte in the event of mechanical abuse, and improves safety.
  • the first housing further includes a first metal layer stacked with the first polymer layer.
  • the second housing also includes a second metal layer laminated with the second polymer layer.
  • the area of the part of the third zone set between the first metal layer and the second metal layer is A1
  • the first zone is set between the first metal layer and the second metal layer
  • the area of the part between is A 2 , then 0.5 ⁇ A 1 : A 2 ⁇ 3.
  • the problem that the first part is not easy to bend at the junction with the first side wall when the ratio of A1 to A2 is too small is improved, and the size of the electrochemical device is reduced in the third direction after bending, which improves the volume Energy density; at the same time, it also reduces the risk of the first package strength decreasing when the ratio of A 1 to A 2 is too large.
  • the colloid in the first region includes corner points, and the corner points protrude toward the third region.
  • the first casing further includes a first metal layer stacked with the first polymer layer
  • the second casing further includes a second metal layer stacked with the second polymer layer. Define the third straight line passing through the corner point and parallel to the second straight line, the third straight line intersects the boundary line between the first metal layer and the first polymer layer of the first edge banding at the first intersection point, the third straight line and the first edge banding
  • the second metal layer intersects the second polymer layer at a second intersection point.
  • the distance between the first intersection point and the second intersection point is L 3
  • the distance between the corner point and the boundary line between the first area and the second area is L 4
  • the electrochemical device further includes a first bonding member, and the first bonding member bonds the second edge sealing and the outer surface of the first side wall.
  • first bonding member bonds the second edge sealing and the outer surface of the first side wall.
  • the electrochemical device further includes a second adhesive member, and the second adhesive member bonds the inner surface of the first side wall and the electrode assembly.
  • the electrochemical device further includes a third bonding member, which bonds the inner surface of at least one of the first wall or the second wall and the electrode assembly.
  • the electrode assembly is a wound structure.
  • the electrode assembly includes a first pole piece, a second pole piece and a separator arranged between the first pole piece and the second pole piece.
  • the first pole piece includes a first current collector and a first active material layer disposed on the first current collector.
  • the first current collector includes a first surface, and the outer surface of the outermost ring of the electrode assembly is the first surface. Even if the colloid impacts the electrode assembly, since the first surface is the outer surface, the situation that the active material is easily to fall off when the outer surface of the electrode assembly is provided with the active material is improved. On the other hand, the first current collector can increase the hardness of the electrode assembly and protect the electrode assembly.
  • the electrode assembly is a wound structure.
  • the electrode assembly includes a first pole piece, a second pole piece and a separator arranged between the first pole piece and the second pole piece.
  • the outermost ring of the electrode assembly is a separator.
  • the separation film can increase the frictional force between the electrode assembly and the casing, thereby improving the adhesive force between the electrode assembly and the first bonding part or the second bonding part, thereby better fixing the electrode assembly in the casing.
  • the separator can form a protective layer, avoiding the risk of short circuit caused by abrasion of the pole pieces inside the part of the separator, and increasing the mechanical shock resistance of the electrode assembly.
  • the main body in the first direction, further includes a first end wall and a second end wall that are oppositely arranged.
  • the housing also includes a second portion connected to the first end wall, and the tab protrudes from the edge of the second portion out of the housing. The second part can close the main body in the first direction, further reducing the risk of liquid leakage.
  • the second portion in the second direction, is closer to the second wall than the first wall.
  • the first end wall includes a first end surface and a second end surface located on both sides of the tab, the first end surface connects the second part and the first wall, and the second end surface connects the second part and the second wall.
  • the electrochemical device further includes a fourth bonding member, where the fourth bonding member bonds edges of the first part and the second part.
  • the fourth adhesive can be used to cover the exposed metal layer at the edge of the second part to improve safety.
  • the present application also provides an electronic device, including the above-mentioned electrochemical device.
  • FIG. 1 is a perspective view of an electrochemical device provided by an embodiment of the present application.
  • FIG. 2 is a cross-sectional view of the electrochemical device shown in FIG. 1 along II-II.
  • Fig. 3 is a sectional view along III-III of the electrochemical device shown in Fig. 1 .
  • FIG. 4 is a perspective view of the electrochemical device shown in FIG. 1 before packaging.
  • FIG. 5 is a cross-sectional view of a first casing of the electrochemical device shown in FIG. 4 .
  • FIG. 6 is a cross-sectional view of a second case of the electrochemical device shown in FIG. 4 .
  • FIG. 7 is a front view of the first part of the electrochemical device shown in FIG. 1 before being bent.
  • FIG. 8 is a cross-sectional view of the first part of the electrochemical device of FIG. 7 before being bent.
  • FIG. 9 is a cross-sectional view of the first part of the electrochemical device in FIG. 8 after being bent for the first time.
  • FIG. 10 is a schematic structural diagram of the first part of the electrochemical device before bending in some other embodiments.
  • FIG. 11 is a partially enlarged view of the electrochemical device shown in FIG. 3 .
  • Fig. 12 is a partially enlarged view of the electrochemical device shown in Fig. 3 in some other embodiments.
  • FIG. 13 is a partial enlarged view of the electrochemical device shown in FIG. 3 being ruptured near the first connection point.
  • Fig. 14 is a partially enlarged view of the electrochemical device shown in Fig. 3 in some other embodiments.
  • 15A is a schematic diagram of the first zone and the third zone of the first edge sealing of the electrochemical device shown in FIG. 14 .
  • FIG. 15B is a schematic diagram of the area between the first metal layer and the second metal layer of the first region and the third region shown in FIG. 15A .
  • Fig. 16 is a partially enlarged view of the electrochemical device shown in Fig. 3 in some other embodiments.
  • Figure 17 is a cross-sectional view of an electrochemical device in other embodiments.
  • FIG. 18 is a schematic diagram of the overall structure of an electronic device provided by an embodiment of the present application.
  • the first pole piece 21 is the first pole piece 21
  • the first colloid 110 The first colloid 110
  • the first bending section 202 The first bending section 202
  • an embodiment of the present application provides an electrochemical device 100 , including a housing 10 , an electrode assembly 20 , an electrolyte (not shown), a first tab 30 and a second tab 40 .
  • the electrode assembly 20 is located inside the case 10 .
  • the electrochemical device 100 may include an electrolyte (not shown), and the electrolyte is located in the casing 10 .
  • Both the first tab 30 and the second tab 40 are electrically connected to the electrode assembly 20 and extend out of the case 10 .
  • the first tab 30 and the second tab 40 can be connected to external components (not shown).
  • the electrode assembly 20 is a winding structure, including a first pole piece 21, a second pole piece 22 and a separator 23, and the separator 23 is arranged on the first pole piece 21 and the second pole piece. Between pole pieces 22. The first pole piece 21 , the separator 23 and the second pole piece 22 are stacked and wound to form the electrode assembly 20 .
  • the first pole piece 21 includes a first current collector 210 and a first active material layer 211 disposed on the first current collector 210 .
  • the second pole piece 22 includes a second current collector 220 and a second active material layer 221 disposed on the second current collector 220 .
  • the electrode assembly 20 has a winding center axis O perpendicular to the paper surface.
  • the winding direction D is a direction that rotates counterclockwise around the winding central axis O as shown in FIG. 3 .
  • the electrode assembly 20 includes a first segment 201 , a first bent segment 202 , a second segment 203 and a second bent segment 204 connected in sequence.
  • the first section 201 and the second section 203 may be oppositely arranged straight sections. In other embodiments, the first section 201 and the second section 203 may also be bent sections, which are not limited in this application.
  • the first tab 30 includes a plurality of connecting parts 31 and an adapter part 32 .
  • the connecting portion 31 is connected to the first current collector 210 .
  • the connecting portion 32 is connected to the connecting portion 31 and extends out of the casing 10 .
  • the connecting portion 31 can be integrally formed with the first current collector 210 (that is, the connecting portion 31 is formed by cutting the first current collector 210 ) or fixed by welding.
  • the transfer portion 32 is welded and fixed to the plurality of connecting portions 31 .
  • the electrode assembly 20 may also be a lamination structure, that is, the first pole piece 21 , the separator 23 and the second pole piece 22 are stacked in sequence to form the electrode assembly 20 .
  • the first pole piece 21 may be a positive pole piece or a negative pole piece.
  • the first current collector 210 may be a positive electrode current collector or a negative electrode current collector
  • the first active material layer 211 may be a positive electrode active material layer or a negative electrode active material layer.
  • the first pole piece 21 is a positive pole piece
  • the second pole piece 22 is a negative pole piece.
  • the positive current collector can be aluminum foil or nickel foil, and the negative current collector can be at least one of copper foil, nickel foil or carbon-based current collector.
  • the positive electrode active material is selected from lithium cobalt oxide (LiCoO 2 ), lithium nickel manganese cobalt ternary material (NCM), lithium nickel cobalt aluminum ternary material (NCA), lithium manganate (LiMn 2 O 4 ) , lithium nickel manganese oxide (LiNi 0.5 Mn 1.5 O 4 ) or lithium iron phosphate (LiFePO 4 ).
  • the negative electrode active material layer contains negative electrode active materials, and negative electrode active materials known in the art that can perform reversible deintercalation of active ions are used, which is not limited in this application.
  • negative electrode active materials known in the art that can perform reversible deintercalation of active ions are used, which is not limited in this application.
  • it may include but not limited to graphite, soft carbon, hard carbon, carbon fiber, mesocarbon microspheres, silicon-based materials, tin-based materials, lithium titanate or other metals that can form alloys with lithium, etc. combination of species.
  • graphite can be selected from one or more combinations of artificial graphite, natural graphite and modified graphite; silicon-based materials can be selected from one or more of elemental silicon, silicon oxide compounds, silicon-carbon composites, silicon alloys A variety of combinations; the tin-based material can be selected from one or more combinations of simple tin, tin oxide compounds, tin alloys, and the like.
  • the isolation film 23 includes at least one of polyethylene, polypropylene, polyvinylidene fluoride, polyethylene terephthalate, polyimide, or aramid.
  • polyethylene includes at least one selected from high-density polyethylene, low-density polyethylene, or ultra-high molecular weight polyethylene.
  • polyethylene and polypropylene have a good effect on reducing the risk of short circuit, and can improve the stability of the electrochemical device 100 through the shutdown effect.
  • the housing 10 includes a main body 13 and a first portion 11a.
  • the electrode assembly 20 is disposed in the main body 13 .
  • the direction in which the first tab 30 protrudes from the electrode assembly 20 that is, the direction from the electrode assembly 20 to the first tab 30
  • the direction along the first direction D 1 and the second direction D 2 is the third direction D 3 .
  • the first direction D 1 is the direction of the winding central axis O.
  • the second direction D 2 is the stacking direction of each layer of the first pole piece 21 in the first segment 201 or the second segment 203 .
  • the second direction D 2 is also a direction perpendicular to the surface of the first segment 201 or the surface of the second segment 203 .
  • the third direction is the extending direction of the first pole piece 21 in the first segment 201 or the second segment 203 .
  • the second direction D 2 is the lamination direction of each first pole piece 21 .
  • the first portion 11a is bent and disposed on the first side wall 133a, so as to reduce the size of the electrochemical device 100 in the third direction D3 and improve space utilization and energy density.
  • the main body portion 13 includes a first end wall 134 and a second end wall 135 disposed opposite to each other.
  • the surface where the first end wall 134 is located extends in the second direction D2 and the third direction D3
  • the surface where the second end wall 135 is located extends in the second direction D2 and the third direction D3
  • the first end wall 134 is connected between the first wall 131 and the second wall 132
  • the second end wall 135 is connected between the first wall 131 and the second wall 132 .
  • the housing 10 further includes a third portion 11b.
  • the third portion 11b is connected to the second side wall 133b.
  • the first wall 131 and the first segment 201 are disposed opposite to each other, and the second wall 132 is disposed opposite to the second segment 203 .
  • the first side wall 133 a is disposed opposite to the first bent section 202
  • the second side wall 133 b is disposed opposite to the second bent section 204 .
  • the two are arranged opposite to each other in a certain direction, which means that most of the projections of the two in this direction coincide.
  • the casing 10 may further include a second portion 12a.
  • the second portion 12a is connected to the first end wall 134 .
  • both the first tab 30 and the second tab 40 protrude from the casing 10 from the edge of the second portion 12a.
  • the transition portion 32 protrudes from the edge of the second portion 12 out of the casing 10 .
  • the second portion 12a does not need to be bent, that is, the second portion 12a is substantially perpendicular to the first end wall 134 .
  • the direction in which the first tab 30 extends out of the casing 10 is the first direction D 1 .
  • the second portion 12a can also be bent to the first end wall 134 , so as to reduce the size of the electrochemical device 100 in the first direction D 1 and improve space utilization and energy density. Since the second portion 12 a is bent onto the first end wall 134 , part of the first tab 30 (such as the transition portion 32 ) disposed in the second portion 12 a is also bent onto the first end wall 134 . At this time, the extending direction of the connecting portion 32 on the second portion 12a is perpendicular to the first direction D 1 .
  • the electrochemical device 100 further includes a first insulating glue 300 and a second insulating glue 400 .
  • the first insulating glue 300 is used for sealingly connecting the first tab 30 and the second portion 12a, and part of the first insulating glue 300 is disposed outside the second portion 12a.
  • the second insulating glue 400 is used for sealingly connecting the second tab 40 and the second portion 12a, and part of the second insulating glue 400 is disposed outside the second portion 12a.
  • FIG. 4 is a schematic structural diagram of the electrochemical device 100 before packaging.
  • the casing 10 includes a first casing 101 and a second casing 102 oppositely disposed in the second direction D2 .
  • the second housing 102 is folded relative to the first housing 101 .
  • the housing 10 includes the first part 11a, the second part 12a and the third part 11b, the folds of the first housing 101 and the second housing 102 correspond to the electrode assembly 20 away from the first tab 30 and the second tab. 40 tail.
  • the first housing 101 includes a first housing area 101a and a second housing area 101b connected to each other.
  • the second housing region 101b is surrounded on three sides by the first housing region 101a.
  • the second housing 102 includes a third housing region 102a and a fourth housing region 102b connected to each other. Three sides of the fourth housing region 102b are surrounded by the third housing region 102a.
  • the housing 10 is packaged by a first housing 101 and a second housing 102 . Specifically, the second housing area 101b of the first housing 101 is provided with a first recess 1010 , and the fourth housing area 102b of the second housing 102 is provided with a second recess 1020 . In this way, after the first housing 101 and the second housing 102 are packaged, the first housing area 101a is connected to the third housing area 102a to form the first part 11a, the second part 12a and the third part 11b .
  • the second shell area 101 b and the fourth shell area 102 b together form the main body 13 for accommodating the electrode assembly 20 .
  • the second housing 102 may also be a flat plate structure. After the first housing 101 and the second housing 102 are packaged, the first recess 1010 is closed by the fourth housing area 102 of the second housing 102 to form the above-mentioned main body 13 .
  • the first casing 101 and the second casing 102 can be obtained by folding a piece of packaging film, that is, the materials of the first casing 101 and the second casing 102 are both multi-layer sheets.
  • the first casing 101 may include a first protective layer 1011 , a first metal layer 1012 and a first polymer layer 1013 which are sequentially stacked. Compared with the first protection layer 1011 , the first polymer layer 1013 is closer to the electrode assembly 20 .
  • the material of the first protective layer 1011 can be a polymer resin, which can be used to protect the first metal layer 1012, reduce the risk of damage to the first metal layer 1012 due to external force, and at the same time delay the air penetration of the external environment and maintain the electrochemical device.
  • the material of the first protective layer 1011 can be selected from ethylene terephthalate, polybutylene terephthalate, polyvinylidene fluoride, polytetrafluoroethylene, polypropylene, polyamide , at least one of polyimide.
  • the thickness of the first protective layer 1011 may range from 15 ⁇ m to 35 ⁇ m.
  • the first metal layer 1012 can be used to delay moisture penetration of the external environment and reduce damage to the electrode assembly 20 caused by external forces.
  • the first metal layer 1012 may be an aluminum foil layer or a steel foil layer. The thickness of the first metal layer 1012 may range from 20 ⁇ m to 120 ⁇ m.
  • the first polymer layer 1013 has the property of heating and melting, can be used for encapsulation, and can reduce the risk of the multi-layer sheet being dissolved or swollen by the organic solvent in the electrolyte.
  • the first polymer layer 1013 can also be used to reduce the risk of corrosion of the metal layer caused by the contact of the electrolyte in the electrolyte with the first metal layer 1012 .
  • the first polymer layer 1013 includes a polymer material, which may be selected from at least one polymer material selected from polypropylene, propylene copolymer, polyethylene, and polymethyl methacrylate.
  • the thickness of the first polymer layer 1013 may range from 10 ⁇ m to 40 ⁇ m.
  • the first housing 101 may further include a first adhesive layer (not shown in the figure) and a second adhesive layer (not shown in the figure), the first adhesive layer is provided on the first protective layer 1011 and the second protective layer 1011
  • a metal layer 1012 can be used to bond the first protective layer 1011 and the first metal layer 1012 .
  • the second adhesive layer is disposed between the first metal layer 1012 and the first polymer layer 1013 and can be used for bonding the first metal layer 1012 and the first sealing layer.
  • the second housing 102 may include a second protective layer 1021 , a second metal layer 1022 and a second polymer layer 1023 which are sequentially stacked. It can be understood that when the first casing 101 and the second casing 102 can be obtained by folding a packaging film, the materials of the second protective layer 1021 , the second metal layer 1022 and the second polymer layer 1023 are respectively different from those of the first protective layer. The materials of the layer 1011 , the first metal layer 1012 and the first polymer layer 1013 are the same, and will not be repeated here.
  • the first polymer layer 1013 and the second polymer layer 1023 are not only located in the first part 11a, but also located in the main body part 13, and the first polymer layer 1013 and the The second polymer layer 1023 is disposed separately from each other in the main body portion 13 , that is, not bonded together. Therefore, the first glue 110 in the present application refers to the part where the first polymer layer 1013 and the second polymer layer 1023 are melted and adhered to each other in the first part 11a. Regions where the first polymer layer 1013 and the second polymer layer 1023 are phase separated and unbonded are not included in the first gel 110 . In order to facilitate distinction, the first colloid 110 in FIG. 11 and FIG.
  • first part 11a is melted to form the first gel 110, the main body part 13 for accommodating the electrode assembly 20 can be closed in the third direction D3 , reducing the risk of liquid leakage.
  • the second part 12a is provided with the second polymer layer 1013 and the second polymer layer 1023 which are fused and bonded to each other in the second part 12a. colloid (not shown).
  • the second part 12a can close the main body part 13 in the first direction D1 , reducing the risk of liquid leakage.
  • the first insulating glue 300 is also used to reduce the risk of a short circuit between the first tab 30 and the first metal layer 1021 or the second metal layer 1022, and The first insulating glue 300 is melted and bonded with the first polymer layer 1013 and the second polymer layer 1023 during packaging, thereby reducing the risk of liquid leakage.
  • the second insulating glue 400 is also used to reduce the risk of short circuit between the second tab 40 and the first metal layer 1021 or the second metal layer 1022, and the second insulating glue 400 is packaged with the first polymer Layer 1013 and second polymer layer 1023 are fused and bonded together, reducing the risk of leakage.
  • a third colloid (not shown) obtained by melting and bonding the first polymer layer 1013 and the second polymer layer 1023 may also be provided in the third part 11b.
  • the casing 10 does not include the third part 11 b.
  • the housing 10 further includes a fourth part 12 b connected to the second end wall 135 .
  • both the first tab 30 and the second tab 40 may protrude from the second part 12a.
  • both the first tab 30 and the second tab 40 may protrude from the fourth part 12b.
  • the first tab 30 protrudes from the second part 12a
  • the second tab 40 protrudes from the fourth part 12b.
  • the folds of the first housing 101 and the second housing 102 are located on the second side wall 133b opposite to the first part 11a.
  • the first casing 101 and the second casing 102 are not obtained by folding one packaging film, but are two independent packaging films. By encapsulating the four edges of two packaging films, the first part 11a, the second part 12a, the third part 11b and the fourth part 12b can be obtained simultaneously.
  • FIGS. 7 to 9 Please refer to FIGS. 7 to 9 together.
  • the first part 11a is bent twice to form a double-folded structure.
  • FIG. 7 and FIG. 8 show the structure of the first portion 11a before being bent, and at this moment, the extending direction of the first portion 11a is substantially parallel to the third direction D 3 .
  • Fig. 9 shows the structure of the first part after the first bending
  • Fig. 3 shows the structure of the first part after the second bending.
  • part of the first part 11a is bent for the first time, so as to protect the exposed metal layer at the edge of the first part 11a, and reduce the risk of short-circuiting with the outside after the metal layer is exposed. Improve security.
  • FIG. 8 shows the structure of the first portion 11a before being bent, and at this moment, the extending direction of the first portion 11a is substantially parallel to the third direction D 3 .
  • Fig. 9 shows the structure of the first part after the first bending
  • Fig. 3 shows the structure of the first
  • the first portion 11 a is bent to the first side wall 133 a for the second time. Therefore, as shown in FIG. 3 , the first portion 11 a includes a first edge seal 111 and a second edge seal 112 .
  • the first edge sealing 111 connects the first side wall 133 a and the second wall 132 .
  • the second sealing edge 112 is connected to the first sealing edge 111, and the second sealing edge 112 is disposed between the first sealing edge 111 and the first side wall 133a.
  • the second edge sealing 112 is formed by the first bending, and the first edge sealing 111 is formed by the second bending.
  • the bending sequence of the double-folded edge structure may also be: firstly, the first part 11a may be bent onto the first side wall 133a for the first time, and then part of the first part 11a may be folded 11a is bent for the second time, so as to protect the exposed metal layer at the edge of the first part 11a.
  • the order of the two bendings can be selected according to the actual situation, which is not limited in this application.
  • the first edge seal 111 there is a first connection point A between the first side wall 133a and the first side wall 133a.
  • the first connection point A is the connection point between the outer surface of the first edge seal 111 facing the first side wall 133a and the outer surface of the first side wall 133a.
  • intersection point 1320 is also a boundary point between the second wall 132 and the other outer surface of the first edge seal 111 away from the first side wall 133a.
  • the first glue 110 is located in a space surrounded by the first line X1 and the first portion 11a.
  • the corner point 110a is the shape on the edge of the first colloid 110 most prominent position.
  • the corner point 110 a may be a point on the edge of the first colloid 110 with the smallest radius of curvature.
  • the edge of the first colloid 110 is separated from the first straight line X1 . As shown in FIG. 11 , in some embodiments, on a cross section perpendicular to the first direction D1 , the edge of the first colloid 110 (that is, at the corner point 110a) is separated from the first straight line X1 . As shown in FIG.
  • the edge of the first colloid 110 may also be in contact with the first straight line X 1 .
  • the first straight line X 1 is a tangent line passing through the first connection point A. As shown in FIG.
  • the extension direction of the side wall at the junction with the first part that is, the first connection point A
  • the extension direction of the first connection point A changes further, so that the first connection point A protrudes toward the inside of the main body. Therefore, when the first connection point A is mechanically abused, stress concentration is likely to occur, and there is a risk of casing rupture, thereby causing liquid leakage and reducing the service life of the electrochemical device.
  • the hardness of the first colloid formed after fusion bonding is relatively high, and the first connection point A is closer to the first colloid, so that the bendability of the casing near the first connection point A is reduced.
  • This also makes it easy for stress concentration to occur at the first connection point A, which in turn causes fatigue damage and leads to cracking of the casing.
  • the first colloid is easy to push against the electrode assembly, resulting in stress concentration at the contact position of the two, resulting in damage to the electrode assembly or a decrease in cycle performance (such as stress concentration at the contact position, causing the active material layer to fall off the surface of the current collector, causing micro-short circuit, self-discharge increase).
  • the impact force of the first colloid 110 on the first connection point A during mechanical abuse is reduced, thereby reducing the risk of rupture at the first connection point A and improving the first part. 11a mechanical strength.
  • the problem that the protruding first colloid 110 affects the pitting of the electrode assembly 20 during packaging is also solved.
  • the edge of the first colloid 110 may also be in contact with the second straight line X 2 .
  • the first colloid 110 does not exceed the second line X 2 , so that a buffer space for accommodating the electrolyte is formed between the first line X 1 , the second line X 2 and the second wall 132 . Therefore, in the event of mechanical abuse, the buffer space can improve the situation that the electrolyte directly impacts the first colloid 110, thereby reducing the risk of liquid leakage caused by the first part 11a being washed away by the electrolyte, and improving safety.
  • the sum of the length L1 of the first edge seal 111 and the length L2 of the second edge seal 112 is defined as L, along the second direction D 2 , the thickness of the electrode assembly 20 is H, then 3/4H ⁇ L ⁇ 5/4H.
  • the present application sets the L value to satisfy the above relationship, which improves the situation that when the L value is too small, the packaging strength of the first part 11a decreases, thereby reducing the risk of the first part 11a being washed away by the electrode assembly 20 or the electrolyte; at the same time, it also The problem of cost increase and energy density decrease that may be caused when the L value is too large has been improved.
  • the data of multiple sampling points can be measured and averaged.
  • the second edge seal 112 includes a first end 1121 connected to the first edge seal 111 and a second end opposite to the first end 1121. 1122.
  • the first end 1121 is the bending position of the second sealing edge 112 compared to the first sealing edge 111 .
  • the second end 1122 is the end of the first part 11a away from the first side wall 133a, that is, the exposed position of the first metal layer 1012 and the second metal layer 1022 in the first part 11a, and the position of the second end 1122 reflects The length of the second edge seal 112 in the second direction D2 .
  • the electrode assembly 20 has a first plane P 1 perpendicular to the second direction D 2 , and the first plane P 1 is a virtual plane.
  • the electrode assemblies 20 on both sides of the first plane P1 have the same thickness. That is, the first plane P1 is the central plane of the electrode assembly 20 in the second direction D2 .
  • the first surface P 1 is located between the second end 1122 and the second wall 132 .
  • the first polymer layer 1013 and the second polymer layer 1023 at the encapsulation position are fused to form a first
  • the glue 110 pushes the first glue 110 to one side where the pressure is less, forming a glue overflow area that is thicker than the main body packaging area.
  • the head is a special-shaped head, and the distance between the upper and lower heads for encapsulating the first region 1111 is relatively large, and the first region 1111 with a relatively large thickness can also be formed after the upper and lower heads are directly hot-pressed.
  • the thickness variation of the second region 1112 is less than or equal to 10 ⁇ m, and the thickness variation of the first region 1111 is greater than 10 ⁇ m. That is, the thickness variation of the second region 1112 is relatively gentle, while the thickness variation of the first region 1111 is larger than that of the second region 1112 .
  • the above-mentioned thickness change is defined as: along the extending direction from the second edge seal 112 to the first edge seal 111 , the thickness increase value at opposite ends of the first zone 1111 or the second zone 1112 .
  • the following steps may be used to determine the boundary line between the first region 1111 and the second region 1112: Obtain a cross-sectional view of the electrochemical device 100, measure in the cross-sectional view, start from the first end 1121, every predetermined interval at the second end A sampling point is selected on the edge seal 111, and the thickness of the first edge seal 111 at the sampling point is determined. When the difference between the thickness at the sampling point and the thickness at the first end 1121 is less than 10 ⁇ m, it is determined that the sampling point belongs to the second region 1112 . Then, continue to select the next sampling point at predetermined intervals until the difference between the thickness of the first edge 111 at the selected sampling point and the thickness of the first end 1121 is equal to 10 ⁇ m, then the sampling is stopped. At this time, the range from the first end 1121 to the selected sampling point is the second area 1112 , and the remaining range of the first edge banding 111 is the first area 1111 .
  • the first glue 110 may also be extruded toward the second edge seal 112
  • the glue overflow area of the first edge sealing 111 and the glue overflow area of the second edge sealing 112 are set separately. When determining the ranges of the first area 1111 and the second area 1112 above, the glue overflow area of the second edge banding 112 is not considered.
  • a second connection point B is provided between the first area 1111 and the second area 1112, the second The second connection point B is a point selected from the boundary line between the first area 1111 and the second area 1112 .
  • the position of the second connection point B reflects the lengths of the first region 1111 and the second region 1112 in the second direction D2 .
  • the second connection point B is located between the first surface P 1 and the second wall 132 .
  • the size of the first region 1111 in the second direction D2 is reduced, while the size of the second region 1112 with greater packaging strength in the second direction D2 is increased, thereby The packaging strength of the first portion 11a is improved. Therefore, the risk of liquid leakage caused by the first part 11a being washed away by the electrolyte is reduced, and the safety is improved.
  • a third connection point C is provided between the second region 1112 and the second edge seal 112 .
  • the third connection point C is the inflection point between the second area 1112 and the first area 1111 , that is, the intersection point of the first end 1111 on the above-mentioned cross section.
  • the position of the third connection point C also reflects the length of the second edge seal 112 in the second direction D2 .
  • the electrode assembly 20 also has a second plane P 2 perpendicular to the second direction D 2 , and the second plane P 2 is a virtual plane.
  • the thickness of the electrode assembly 20 located between the second surface P 2 and the second wall 132 is 3/4 of the total thickness of the electrode assembly 20 .
  • the third connection point C is located between the second plane P 2 and the second wall 132 . That is, in the second direction D2 , the third connection point C is not higher than 3/4 of the total thickness of the electrode assembly 20, thereby reducing the length of the third connection point C when the third connection point C is higher (that is, the length of the second edge sealing 112 (larger) the risk that the first portion 11a is easier to open than the first side wall 133a.
  • the first edge seal 111 when the edge of the first glue 110 is separated from the first straight line X1 , the first edge seal 111 also includes a third area 1113, and the first area 1111 is connected to the second area 1112 and the third area Between 1113.
  • the first polymer layer 1013 in the third region 1113 does not adhere to the second polymer layer 1023, that is, the first colloid 110 formed by melting the first polymer layer 1013 and the second polymer layer 1023 is not located in the third region Inside 1113. At this time, the corner point 110 a protrudes toward the third region 1113 .
  • FIG. 15A For the positions of the first area 1111 and the third area 1113, please refer to FIG. 15A in detail.
  • a straight line passing through the first connection point A and extending along the second direction D 2 is defined as the second straight line X 2
  • the third area 1113 is set on a side of the second straight line X 2 away from the electrode assembly 20. side.
  • the setting of the third area 1113 further reduces the impact force of the first gel 110 on the first connection point A during mechanical abuse, and further reduces the risk of the first gel 110 impinging on the electrode assembly 20 .
  • the third area 1113 forms a buffer space that can be used to accommodate the electrolyte.
  • the buffer space can further improve the situation that the electrolyte directly impacts the first colloid 110, thereby reducing the risk of liquid leakage caused by the first part 11a being washed away by the electrolyte, and improving safety.
  • the area of the part of the third region 1113 disposed between the first metal layer 1012 and the second metal layer 1022 is A 1
  • the area of the first region 1111 disposed between the first metal layer 1012 and the second metal layer 1022 is A 2
  • This application sets A 1 /A 2 to satisfy the above relationship, which improves when the ratio of A 1 to A 2 is too small (that is, the glue overflow area is large), which makes it difficult for the first part 11a to connect with the first side wall 133a.
  • the first part 11a may reduce the risk of encapsulation strength.
  • the first portion 11a has high packaging strength and is easy to bend at the connection with the first side wall 133a.
  • A2 can also be measured by image method.
  • a third straight line X 3 is defined passing through the corner point 110 a and parallel to the second straight line X 2 .
  • the third straight line X 3 intersects the boundary line between the first metal layer 1012 and the first polymer layer 1013 of the first edge seal 111 at the first intersection point J 1 , and the third straight line X 3 and the second metal layer of the first edge seal 111 Layer 1022 intersects second polymer layer 1023 at a second intersection J2 .
  • the distance between the first intersection point J1 and the second intersection point J2 is L3 (which can represent the maximum thickness H1 of the first zone 1111 along the extending direction from the first edge seal 111 to the second edge seal 112 value), in the second direction D2 , the distance between the corner point 110a and the boundary line between the first area 1111 and the second area 1112 is L4 (which can represent the length of the first area 1111 in the second direction D2 ), Then 0.1 ⁇ L 3 /L 4 ⁇ 0.6.
  • the distances from the corner point 110 a to both sides of the first edge seal 111 may also be the same.
  • L 3 /L 4 is set to satisfy the above relationship, which improves when the ratio of L 3 to L 4 is too small (that is, the thickness of the first zone 1111 is small) or when the ratio of L 3 to L 4 is too large (that is, the first zone When the length of 1111 is small), the heat sealing of the second area 1112 is insufficient, thereby improving the packaging strength of the first part 11a.
  • L 3 and L 4 can be measured by the direct measurement method, and the test steps include: intercepting the cross section of the first part 11a along the cross section direction perpendicular to the first direction D 1 , and marking the positions L 3 and L 4 on the cross section according to the above method After L4 , directly measure the values of L3 and L4 with a caliper or other suitable measuring tools, or collect images of the above cross-sections, and measure in the images.
  • the electrochemical device 100 further includes a first adhesive member 50 .
  • the first adhesive member 50 bonds the second edge seal 112 and the outer surface of the first side wall 133a, thereby fixing the second edge seal 112 to the first side wall 133a, further reducing the risk of the first part 11a being opened.
  • the first adhesive member 50 may be double-sided adhesive tape or hot melt adhesive, and the first adhesive member 50 is arranged continuously.
  • the material of the adhesive layer in the double-sided adhesive can be selected from one or more of acrylic, polyurethane, rubber and silica gel, and the hot melt adhesive can be selected from polyolefin hot melt adhesives, polyurethane hot melt adhesives, vinyl and others.
  • One or more of copolymer hot melt adhesives, polyester hot melt adhesives, polyamide hot melt adhesives, styrene and its block copolymer hot melt adhesives are not limited in this application.
  • the electrochemical device 100 may further include a second adhesive member 60 .
  • the second bonding member 60 bonds at least the inner surface of the first side wall 133 a and the electrode assembly 20 , so as to fix the electrode assembly 20 in the casing 10 .
  • the second adhesive member 60 may be double-sided adhesive or hot melt adhesive. As shown in FIG. 3 , in some specific embodiments, there are two second adhesive members 60 , which are respectively bonded to the inner surfaces of the first side wall 133 a and the second side wall 133 b.
  • the electrochemical device 100 may further include a third adhesive member 70 .
  • the third bonding member 70 bonds the inner surface of at least one of the first wall 131 or the second wall 132 and the electrode assembly 20 .
  • the third adhesive member 70 may be double-sided adhesive or hot melt adhesive. As shown in FIG. 3 , in some specific embodiments, there are two third adhesive members 70 , which are respectively bonded to the inner surface of the first wall 131 and the inner surface of the second wall 132 .
  • the second portion 12 a is closer to the second wall 132 than the first wall 131 .
  • the first end wall 134 includes a first end surface 1341 and a second end surface 1342 located on both sides of the first tab 30, the first end surface 1341 connects the second part 12a and the first wall 131, and the second The end surface 1342 connects the second portion 12a and the second wall 132 . That is, the first end surface 1341 is a deep pit surface, and the second end surface 1342 is a shallow pit surface.
  • the electrochemical device 100 may further include a fourth adhesive member 80 , and the fourth adhesive member 80 adheres the edge of the first part 1341 and the second part 12a. Therefore, the fourth adhesive member 80 can be used to cover the exposed metal layer at the edge of the second part 12a, improving safety. It can be understood that the third adhesive member 70 does not cover the entire edge of the second part 12a, so that the first tab 30 and the second tab 40 can still protrude from the edge of the second part 12a.
  • the fourth adhesive member 80 can be single-sided adhesive, double-sided adhesive or hot melt adhesive.
  • the material of the adhesive layer in the single-sided adhesive tape can be selected from one or more of acrylate, polyurethane, rubber and silica gel, which is not limited in this application.
  • the first current collector 210 includes a first surface 2101 and a second surface 2102 oppositely disposed.
  • the outer surface of the outermost circle of the electrode assembly 20 is the first surface 2101 . Therefore, even if the first colloid 110 impacts the electrode assembly 20 during mechanical abuse, since the first surface 2101 is the outer surface, the situation that the active material is easy to fall off when the outer surface of the electrode assembly 20 is provided with the active material is improved.
  • the first current collector 210 can increase the hardness of the electrode assembly 20 to protect the electrode assembly 20 .
  • FIG. 17 another embodiment of the present application also provides an electrochemical device 200 .
  • the difference from the above electrochemical device 100 is that the outermost ring of the electrode assembly 20 is a separator 23 . That is, in this embodiment, the isolation film 23 is extended and finished with the isolation film 23 . Since the separator 23 has a relatively large roughness, it can increase the friction between the electrode assembly 20 and the casing 10, thereby improving the adhesion between the electrode assembly 20 and the first adhesive member 50 or the second adhesive member 60. Relay, and then better fix the electrode assembly 20 in the casing 10 . Moreover, the isolation film 23 can form a protective layer, avoiding the risk of short circuit caused by abrasion of the pole pieces inside the part of the isolation film 23 , and increasing the mechanical shock resistance of the electrode assembly 20 .
  • the electrochemical device 100 (or electrochemical device 200 ) of the present application includes all devices capable of electrochemical reactions.
  • the electrochemical device 100 includes all kinds of primary batteries, secondary batteries, fuel cells, solar cells and capacitors (such as supercapacitors).
  • the electrochemical device 100 may be a lithium secondary battery, including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, and a lithium ion polymer secondary battery.
  • an embodiment of the present application further provides an electronic device 1 , and the electronic device 1 includes an electrochemical device 100 (or an electrochemical device 200 ).
  • the electrochemical device 100 of the present application is applicable to electronic devices 1 in various fields.
  • the electronic device 1 of the present application may be, but not limited to, a notebook computer, a pen input computer, a mobile computer, an e-book player, a portable phone, a portable fax machine, a portable copier, a portable printer, a head-mounted Stereo headphones, VCRs, LCD TVs, portable cleaners, portable CD players, mini-discs, transceivers, electronic organizers, calculators, memory cards, portable tape recorders, radios, backup power supplies, electric motors, automobiles, motorcycles, power-assisted bicycles , bicycles, lighting appliances, toys, game consoles, clocks, electric tools, flashlights, cameras, large household batteries and lithium-ion capacitors, etc.
  • Preparation of the negative pole piece mix the negative active material artificial graphite, conductive carbon black (Super P), and styrene-butadiene rubber (SBR) in a weight ratio of 96:1.5:2.5, add deionized water as a solvent, and prepare A slurry with a solid content of 70wt%, and stirred evenly.
  • the slurry was uniformly coated on one surface of a negative electrode current collector copper foil with a thickness of 10 ⁇ m, and dried at 110° C. to obtain a negative electrode sheet with a coating thickness of 150 ⁇ m coated on one side with a negative electrode active material layer.
  • the above steps are repeated on the other surface of the negative electrode sheet to obtain a negative electrode sheet coated with negative electrode active material layers on both sides.
  • the positive active material lithium cobaltate (LiCoO2), conductive carbon black (Super P), and polyvinylidene fluoride (PVDF) are mixed according to the weight ratio of 97.5:1.0:1.5, and N- Methylpyrrolidone (NMP) was used as a solvent, prepared into a slurry with a solid content of 75 wt%, and stirred evenly.
  • NMP N- Methylpyrrolidone
  • the slurry was uniformly coated on one surface of a positive electrode current collector aluminum foil with a thickness of 12 ⁇ m, and dried at 90° C. to obtain a positive electrode sheet with a positive electrode active material layer thickness of 100 ⁇ m.
  • the above steps were repeated to obtain a positive electrode sheet coated with a positive electrode active material layer on both sides.
  • the separator, the double-sided coated negative electrode sheet, the separator, and the double-sided coated positive electrode sheet are stacked and wound in sequence, and the thickness of the electrode assembly is H.
  • the electrode assembly includes a positive tab and a negative tab, the positive tab is aluminum (Al) and the negative tab is nickel (Ni), and the two tabs are arranged side by side;
  • the separator is made of polyethylene (PE) with a thickness of 15 ⁇ m membrane.
  • Liquid injection packaging inject electrolyte into the pit of the aluminum plastic film, and lead all the tabs of the electrode assembly out of the aluminum plastic film.
  • the edge of the aluminum-plastic film is pressurized by the head of the packaging device to form the first part.
  • the sum L of the lengths of the first edge seal and the second edge seal of the first part is equal to the thickness H of the electrode assembly.
  • Embodiment 2-7 and comparative example 1 are identical to Embodiment 2-7 and comparative example 1
  • the difference from Example 1 lies in the range of the first colloid, the relationship between L and H and/or the position of the second connection point.
  • the range of the first colloid can be adjusted by controlling the temperature or pressure of the sealing head; L can be adjusted by adjusting the width of the sealing head, and then the relationship between L and H can be adjusted; Adjust the position of the second connection point by the position of the bend.
  • the steps of the micro-drop test include: 1) Under the ambient condition of 25°C, discharge the battery at 0.2C DC to 0% SOC (State of Charge, state of charge); let it stand for 5 minutes; then charge it at a constant current of 0.5C to 50% SOC, then constant voltage charge to 0.05C; stand for 5 minutes, measure the voltage and internal resistance of the battery. 2) Put the battery into the fixture compartment, and use the automatic drop equipment to drop the bottom, left, right, front, back, and top of the battery from a position of 10cm onto the steel plate in one round, one cycle A total of 100 rounds of falling, or 600 times, were tested for a total of 3 cycles.
  • the steps of the drop test include: 1) Put the battery into the fixture compartment, change the drop height to 1.8m, and use the automatic drop equipment to place the fixture compartment with the battery on the bottom, left side, right side, front and back sides of the fixture head. ,
  • the top surface is a one-round landing method, which is dropped from the position of 1.8m to the steel plate in turn. A total of 3 rounds of falling in one cycle is 18 times; 2) Measure the voltage of the battery after each round of falling. Stop falling further, otherwise continue falling to complete 3 rounds. 3) Disassemble the battery cell after the drop is completed. If the first part is not opened, the first connection point is not broken, and there is no pit on the surface of the electrode assembly, it is judged that the battery has passed the drop test.
  • the steps of the drum test include: 1) Under the environmental condition of 25 degrees, fully charge the state of charge of the battery to 100%, and the battery voltage is 4.4V. 2) Put the battery into the fixture compartment, and use adhesive tape to glue the back of the battery to the fixture, then tighten the screws on the fixture, and then place the fixture with the battery in the roller testing machine for testing, and let it stand after the test is completed 24h. Among them, the speed of the roller is 7 circles per minute, the drop height is 1 meter, and the roller is rolled 1000 times in total. If the battery after the drum test has no leakage, fire, explosion, etc., it is judged that the battery has passed the drum test.
  • the passing rate of the slight drop test is 0/10, indicating that among the 10 tested batteries, the number of batteries that passed the test is 0.
  • the pass rate of the micro-drop test is 10/10, which means that among the 10 batteries that have been tested, the number of batteries that passed the test is 10. The meaning of other ratio values can be deduced by analogy.
  • both the L value and the position of the second connection point will further affect the test results.
  • the L value in Example 2 is smaller and the L value in Example 5 is smaller, which does not satisfy 3/4H ⁇ L ⁇ 5/4H, so the pass rate of the drop test is relatively reduced.
  • the second connection point in embodiment 6 is located above the first surface, so the passing rate of the drop test is relatively lower.
  • Example 7 On the premise that the first colloid does not exceed the first straight line, compared with Example 1, the first colloid of Example 7 does not exceed the second straight line, so the pass rate of the drop test is relatively improved.
  • Example 1 The difference from Example 1 is that the ratios of A 1 /A 2 and L 3 /L 4 are different. Among them, A 1 /A 2 and L 3 /L 4 can be adjusted by adjusting the structure of the overflow glue groove of the head.
  • Example 17-21 satisfies 0.1 ⁇ L 3 /L 4 ⁇ 0.6, and therefore has higher packaging strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

一种电化学装置,包括壳体、电极组件和极耳。壳体包括主体部和第一部。在第二方向上,主体部包括相对设置的第一壁和第二壁,在第三方向上,主体部包括相对设置的第一侧壁和第二侧壁。第一部包括第一封边和第二封边,第一封边连接第一侧壁和第二壁,第二封边连接第一封边,第二封边设置于第一封边和第一侧壁之间。壳体包括相对设置的第一壳体和第二壳体。第一壳体包括第一聚合物层,第二壳体包括第二聚合物层,第一聚合物层和第二聚合物层相粘合形成胶体。在垂直于第一方向的横截面上,第一封边和第一侧壁之间具有第一连接点。定义第一侧壁在第一连接点处沿第一侧壁的轮廓向外延伸形成第一直线。胶体位于第一部和第一直线围设形成的空间内。本申请还提供一种电子装置。本申请具有改善的使用寿命和安全性。

Description

电化学装置和电子装置 技术领域
本申请涉及储能技术领域,尤其涉及一种电化学装置以及具有该电化学装置的电子装置。
背景技术
电化学装置(如电池)在电子移动设备、电动工具及电动汽车等电子产品中有着广泛使用,人们对电化学装置的安全性能要求也越来越高。
在电化学装置的制备过程中,需要通过封头对上下层的封装膜进行热封以形成壳体,从而将电极组件和电解液封装在壳体内。当发生机械滥用(跌落、碰撞、振动)时,壳体有破裂导致漏液或短路的风险,降低电化学装置的使用寿命和安全性。
发明内容
鉴于现有技术存在的不足,有必要提出一种电化学装置。
另,还有必要提供一种具有该电化学装置的电子装置。
本申请提供一种电化学装置,包括壳体、电极组件和极耳。壳体包括主体部和第一部,电极组件设置于主体部内,极耳电连接电极组件并伸出壳体。定义极耳凸出于电极组件的方向为第一方向,电极组件的厚度方向为第二方向,垂直于第一方向和第二方向的方向为第三方向,在第二方向上,主体部包括相对设置的第一壁和第二壁,在第三方向上,主体部包括相对设置的第一侧壁和第二侧壁。第一部包括第一封边和第二封边,第一封边连接第一侧壁和第二壁,第二封边连接第一封边,第二封边设置于第一封边和第一侧壁之间。壳体包括相对设置的第一壳体和第二壳体。第一壳体包括第一聚合物层,第二壳体包括第二聚合物层,第一聚合物层和第二聚合物层相粘合形成胶体,胶体位于第一部。在垂直于第一方向的横截面上,第一封边和第一侧壁之间具有第一连接点。定义第一侧壁在第一连接点处沿第一侧壁的轮廓向外延伸形成第一直线。胶体位于第一部和第一直线围设形成的空间内。
本申请通过限定胶体的范围,减少了机械滥用时胶体对第一连接点处的冲击力,进而减小了连接点处的破裂风险,提高了第一部的机械强度。而且,也有利于减小机械滥用时由于胶体顶到电极组件的风险,提高电化学装置的使用寿命和安全性。
在一些可能的实现方式中,定义经过第一连接点且沿第二方向延伸的直线为第二直线。胶体位于第一部和第二直线围设形成的空间内。通过限定胶体的位置,从而进一步减少了机 械滥用时胶体对第一连接点处的冲击力,也进一步减小了胶体顶到电极组件的风险。另外,使得第一直线、第二直线以及第二壁之间形成了可用于容纳电解液的缓冲空间,在发生机械滥用时,减小了第一部被电解液冲开而导致的漏液风险,提高了安全性。
在一些可能的实现方式中,在第二方向上,定义在第二方向上,第一封边的长度和第二封边的长度之和为L,在第二方向上,电极组件的厚度为H,则3/4H≤L≤5/4H。因此,改善了当L值过小时第一部的封装强度降低的情况,从而降低了第一部被电极组件或电解液冲开的风险;同时,也改善了当L值过大时可能会引发的成本提高和能量密度降低的问题。
在一些可能的实现方式中,第二封边包括连接第一封边的第一端和与第一端相对设置的第二端。定义电极组件具有垂直于第二方向的第一面,在第二方向上,位于第一面两侧的电极组件的厚度相同。第一面位于第二端与第二壁之间。从而,减少了当第二端位置较低(即第二封边长度较大)时第一部相较于第一侧壁容易张开的风险。
在一些可能的实现方式中,第一封边包括第一区和第二区,第二区连接于第一区和第二封边之间。第一区的厚度大于第二区的厚度。
在一些可能的实现方式中,在垂直于第一方向的横截面上,第一区和第二区之间设有第二连接点。定义电极组件具有垂直于第二方向的第一面。在第二方向上,位于第一面两侧的电极组件的厚度相同。第二连接点位于第一面与第二壁之间。通过限定第二连接点的位置,减小了第一区在第二方向上的尺寸,同时增加了封装强度更大的第二区在第二方向上的尺寸,从而提高了第一部的封装强度。
在一些可能的实现方式中,在垂直于第一方向的横截面上,第二区和第二封边之间设有第三连接点。定义电极组件具有垂直于第二方向的第二面,在第二方向上,位于第二面与第二壁之间的电极组件的厚度为电极组件总厚度的3/4。在第二方向上,第三连接点位于第二面与第二壁之间。从而,减小了当第三连接点较高(即第二封边长度较大)时第一部相较于第一侧壁容易张开的风险。
在一些可能的实现方式中,第一封边包括第三区,第一区连接于第二区与第三区之间。第三区内的第一聚合物层不粘合第二聚合物层。在垂直于第一方向的横截面上,第一封边和第一侧壁之间具有第一连接点。定义经过第一连接点且沿第二方向延伸的直线为第二直线,第三区设于第二直线的一侧。第三区的设置进一步减少了机械滥用时胶体对第一连接点处的冲击力,也进一步减小了胶体顶到电极组件的风险。而且,第三区形成了可用于容纳电解液的缓冲空间,在发生机械滥用时,减小了第一部被电解液冲开而导致的漏液风险,提高了安全性。
在一些可能的实现方式中,第一壳体还包括与第一聚合物层层叠设置的第一金属层。第二壳体还包括与第二聚合物层层叠设置的第二金属层。在垂直于第一方向的横截面上,第三区设于第一金属层和第二金属层之间的部分的面积为A 1,第一区设于第一金属层和第二金 属层之间的部分的面积为A 2,则0.5≤A 1:A 2≤3。因此,改善了当A 1与A 2的比值过小时导致第一部在与第一侧壁连接处不容易弯折的问题,且弯折后电化学装置第三方向上尺寸减小,提高了体积能量密度;同时,也降低了当A 1与A 2的比值过大时第一部封装强度下降的风险。
在一些可能的实现方式中,在垂直于第一方向的横截面上,第一区内的胶体包括角点,角点朝向第三区凸出。第一壳体还包括与第一聚合物层层叠设置的第一金属层,第二壳体还包括与第二聚合物层层叠设置的第二金属层。定义第三直线经过角点且平行于第二直线,第三直线与第一封边的第一金属层和第一聚合物层的分界线相交于第一交点,第三直线与第一封边的第二金属层与第二聚合物层相交于第二交点。第一交点与第二交点的距离为L 3,角点与第一区和第二区的分界线的距离为L 4,则0.1≤L 3/L 4≤0.6。因此,改善了当L 3与L 4的比值过小或过大时,第二区热封不充分的问题,从而提高了第一部的封装强度。
在一些可能的实现方式中,电化学装置还包括第一粘接件,第一粘接件粘接第二封边和第一侧壁的外表面。因此,减小了第一部张开的风险。
在一些可能的实现方式中,电化学装置还包括第二粘接件,第二粘接件粘接第一侧壁的内表面和电极组件。如此,当发生机械滥用时,能够减小电极组件在第三方向上于壳体内窜动的风险,进而减小电极组件对壳体的第一部的冲击,提高安全性。
在一些可能的实现方式中,电化学装置还包括第三粘接件,第三粘接件粘接第一壁或第二壁的至少一者的内表面和电极组件。如此,当发生机械滥用时,能够减小电极组件在第二方向上于壳体内窜动的风险,进而减小电极组件对壳体的第二部的冲击,提高安全性。
在一些可能的实现方式中,电极组件为卷绕结构。电极组件包括第一极片、第二极片以及设于第一极片和第二极片之间的隔离膜。第一极片包括第一集流体和设置于第一集流体上的第一活性物质层。第一集流体包括第一表面,电极组件的最外圈的外表面为第一表面。即便胶体对电极组件造成冲击,由于第一表面为外表面,因此改善了当电极组件的外表面设有活性物质时容易导致活性物质脱落的情况。另一方面,第一集流体可以增大电极组件的硬度,起到保护电极组件的作用。
在一些可能的实现方式中,电极组件为卷绕结构。电极组件包括第一极片、第二极片以及设于第一极片和第二极片之间的隔离膜。电极组件的最外圈为隔离膜。隔离膜能够增加电极组件与壳体之间的摩擦力,从而提高电极组件与第一粘接件或第二粘接件之间的粘接力,进而更好地将电极组件固定于壳体内。而且,隔离膜能够形成保护层,避免该部分隔离膜内侧的极片由于磨损带来的短路风险,增加了电极组件耐机械冲击的能力。
在一些可能的实现方式中,在第一方向上,主体部还包括相对设置的第一端壁和第二端壁。壳体还包括连接第一端壁的第二部,极耳从第二部的边缘伸出壳体。第二部能够在第一方向上封闭主体部,进一步减小漏液风险。
在一些可能的实现方式中,在第二方向上,第二部较第一壁更靠近第二壁。在第二方向上,第一端壁包括位于极耳两侧的第一端面和第二端面,第一端面连接第二部和第一壁,第二端面连接第二部和第二壁。
在一些可能的实现方式中,电化学装置还包括第四粘接件,第四粘接件粘接第一部分和第二部的边缘。第四粘接件可用于覆盖第二部边缘裸露的金属层,提高安全性。
在一些可能的实现方式中,第一聚合物层包括第一聚合物材料,第二聚合物层包括第二聚合物材料。第一聚合物材料和第二聚合物材料各自独立地选自聚丙烯、丙烯共聚物、聚乙烯、聚甲基丙烯酸甲酯中的至少一种。
本申请还提供一种电子装置,包括上述电化学装置。
附图说明
图1为本申请一实施方式提供的电化学装置的立体图。
图2为图1所示的电化学装置沿II-II的剖视图。
图3为图1所示的电化学装置沿III-III的剖视图。
图4为图1所示的电化学装置在封装前的立体图。
图5为图4所示的电化学装置的第一壳体的剖视图。
图6为图4所示的电化学装置的第二壳体的剖视图。
图7为图1所示的电化学装置的第一部在弯折前的主视图。
图8为图7的电化学装置的第一部在弯折前的剖视图。
图9为图8的电化学装置的第一部经第一次弯折后的剖视图。
图10为另一些实施例中的电化学装置的第一部在弯折前的结构示意图。
图11为图3所示的电化学装置的局部放大图。
图12为另一些实施例中图3所示的电化学装置的局部放大图。
图13为图3所示的电化学装置于第一连接点处附近发生破裂的局部放大图。
图14为另一些实施例中图3所示的电化学装置的局部放大图。
图15A为图14所示的电化学装置的第一封边的第一区和第三区的示意图。
图15B为图15A所示的第一区和第三区于第一金属层和第二金属层之间的面积的示意图。
图16为另一些实施例中图3所示的电化学装置的局部放大图。
图17为另一些实施方式中的电化学装置的剖视图。
图18为本申请一实施方式提供的电子装置的整体结构示意图。
主要元件符号说明
电子装置                      1
壳体                          10
第一部                        11a
第三部                        11b
第二部                        12a
第四部                        12b
主体部                        13
电极组件                      20
第一极片                      21
第二极片                      22
隔离膜                        23
第一极耳                      30
连接部                        31
转接部                        32
第二极耳                      40
第一粘接件                    50
第二粘接件                    60
第三粘接件                    70
第四粘接件                    80
电化学装置                    100、200
第一壳体                      101
第二壳体                      102
第一胶体                      110
角点                          110a
第一封边                      111
第二封边                      112
第一壁                        131
第二壁                        132
第一侧壁                      133a
第二侧壁                      133b
第一端壁                      134
第二端壁                      135
第一段                        201
第一弯折段                   202
第二段                       203
第二弯折段                   204
第一集流体                   210
第一活性物质层               211
第二集流体                   220
第一绝缘胶                   300
第二绝缘胶                   400
第一凹部                     1010
第一保护层                   1011
第一金属层                   1012
第一聚合物层                 1013
第二凹部                     1020
第二保护层                   1021
第二金属层                   1022
第二聚合物层                 1023
第一区                       1111
第二区                       1112
第三区                       1113
第一端                       1121
第二端                       1122
第一端面                     1341
第二端面                     1342
第一表面                     2101
第二表面                     2102
第一连接点                   A
第二连接点                   B
第三连接点                   C
第一直线                     X 1
第二直线                     X 2
第三直线                     X 3
厚度                         H、H 1、H 2
第一面                       P 1
第二面                        P 2
卷绕中心轴                    O
卷绕方向                      D
第一方向                      D 1
第二方向                      D 2
第三方向                      D 3
长度                          L 1、L 2、L 3、L 4
交点                          1320、1100
第一交点                      J 1
第二交点                      J 2
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面对本申请实施例中的技术方案进行清楚、详细地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
下文,将详细地描述本申请的实施方式。但是,本申请可体现为许多不同的形式,并且不应解释为限于本文阐释的示例性实施方式。而是,提供这些示例性实施方式,从而使本申请透彻的和详细的向本领域技术人员传达。
另外,为了简洁和清楚,在附图中,各种组件、层的尺寸或厚度可被放大。遍及全文,相同的数值指相同的要素。如本文所使用,术语“及/或”、“以及/或者”包括一个或多个相关列举项目的任何和所有组合。另外,应当理解,当要素A被称为“连接”要素B时,要素A可直接连接至要素B,或可能存在中间要素C并且要素A和要素B可彼此间接连接。
进一步,当描述本申请的实施方式时使用“可”指“本申请的一个或多个实施方式”。
本文使用的专业术语是为了描述具体实施方式的目的并且不旨在限制本申请。如本文所使用,单数形式旨在也包括复数形式,除非上下文另外明确指出。应进一步理解,术语“包括”,当在本说明书中使用时,指存在叙述的特征、数值、步骤、操作、要素和/或组分,但是不排除存在或增加一个或多个其他特征、数值、步骤、操作、要素、组分和/或其组合。
空间相关术语,比如“上”等可在本文用于方便描述,以描述如图中阐释的一个要素或特征与另一要素(多个要素)或特征(多个特征)的关系。应理解,除了图中描述的方向之外,空间相关术语旨在包括设备或装置在使用或操作中的不同方向。例如,如果将图中的设备翻 转,则描述为在其他要素或特征“上方”或“上”的要素将定向在其他要素或特征的“下方”或“下面”。因此,示例性术语“上”可包括上面和下面的方向。应理解,尽管术语第一、第二、第三等可在本文用于描述各种要素、组分、区域、层和/或部分,但是这些要素、组分、区域、层和/或部分不应受这些术语的限制。这些术语用于区分一个要素、组分、区域、层或部分与另一要素、组分、区域、层或部分。因此,下面讨论的第一要素、组分、区域、层或部分可称为第二要素、组分、区域、层或部分,而不背离示例性实施方式的教导。
请参阅图1至图3,本申请一实施方式提供一种电化学装置100,包括壳体10、电极组件20、电解液(图未示)、第一极耳30和第二极耳40。电极组件20位于壳体10内。在一些实施例中,电化学装置100可以包括电解液(图未示出),电解液位于壳体10内。第一极耳30和第二极耳40均电连接电极组件20,并伸出壳体10。第一极耳30和第二极耳40可以连接外部元件(图未示)。
如图3所示,在一些实施例中,电极组件20为卷绕结构,包括第一极片21、第二极片22和隔离膜23,隔离膜23设置于第一极片21和第二极片22之间。第一极片21、隔离膜23和第二极片22层叠卷绕以形成电极组件20。第一极片21包括第一集流体210和设置于第一集流体210上的第一活性物质层211。第二极片22包括第二集流体220和设置于第二集流体220上的第二活性物质层221。其中,如图3所示,电极组件20具有垂直于纸面的卷绕中心轴O。卷绕方向D为图3所示绕着卷绕中心轴O进行逆时针转动的方向。在卷绕方向D上,电极组件20包括依次连接的第一段201、第一弯折段202、第二段203和第二弯折段204。第一段201和第二段203可为相对设置的平直段。在另一些实施例中,第一段201和第二段203还可以为弯折段,本申请并不作限制。
如图2所示,在一些实施例中,第一极耳30包括多个连接部31和一个转接部32。连接部31连接第一集流体210。转接部32连接连接部31并伸出壳体10。其中,连接部31可与第一集流体210一体成型(即连接部31由第一集流体210裁切形成)或焊接固定。转接部32与多个连接部31焊接固定。
在其它实施例中,电极组件20还可以是叠片结构,即第一极片21、隔离膜23和第二极片22依次层叠以形成电极组件20。
第一极片21可以是正极极片或负极极片。对应地,第一集流体210可以是正极集流体或负极集流体,第一活性物质层211可以是正极活性物质层或负极活性物质层。在一些实施例中,第一极片21为正极极片,第二极片22为负极极片。
正极集流体可以采用铝箔或镍箔,负极集流体可以采用铜箔、镍箔或碳基集流体中的至少一种。
正极活性物质层包含正极活性物质,正极活性物质包括可逆地嵌入和脱嵌金属离子(如锂离子、钠离子等,以下以锂离子为例)的化合物(即,锂化插层化合物)。在一些实施例 中,正极活性物质可以包括锂过渡金属复合氧化物。该锂过渡金属复合氧化物含有锂以及从钴、锰和镍中选择的至少一种元素。在一些实施例中,正极活性物质选自钴酸锂(LiCoO 2)、锂镍锰钴三元材料(NCM)、锂镍钴铝三元材料(NCA)、锰酸锂(LiMn 2O 4)、镍锰酸锂(LiNi 0.5Mn 1.5O 4)或磷酸铁锂(LiFePO 4)中的至少一种。
负极活性物质层包含负极活性物质,采用本领域已知的能够进行活性离子可逆脱嵌的负极活性物质,本申请不做限制。例如,可以包括但不限于石墨、软碳、硬碳、碳纤维、中间相碳微球、硅基材料、锡基材料、钛酸锂或其他能与锂形成合金的金属等中的一种或多种的组合。其中,石墨可选自人造石墨、天然石墨以及改性石墨中的一种或多种的组合;硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅合金中的一种或多种的组合;锡基材料可选自单质锡、锡氧化合物、锡合金等中的一种或多种的组合。
隔离膜23包括聚乙烯、聚丙烯、聚偏氟乙烯、聚对苯二甲酸乙二醇酯、聚酰亚胺或芳纶中的至少一种。例如,聚乙烯包括选自高密度聚乙烯、低密度聚乙烯或超高分子量聚乙烯中的至少一种。其中聚乙烯和聚丙烯对降低短路风险具有良好的作用,并可以通过关断效应改善电化学装置100的稳定性。
请参照图1和图3,壳体10包括主体部13和第一部11a。电极组件20设置于主体部13内。定义第一极耳30凸出于电极组件20的方向(即从电极组件20至第一极耳30的方向)为第一方向D 1,电极组件20的厚度方向为第二方向D 2,垂直于第一方向D 1和第二方向D 2的方向为第三方向D 3。在一些实施例中,当电极组件20为卷绕结构时,第一方向D 1为卷绕中心轴O方向。第二方向D 2为第一段201或第二段203中各层第一极片21的层叠方向。当第一段201和第二段203为相对设置的平直段时,第二方向D 2为也垂直于第一段201的表面或第二段203表面的方向。第三方向为第一段201或第二段203中第一极片21的延伸方向。在另一些实施例中,当电极组件20为叠片结构时,第二方向D 2为各个第一极片21的层叠方向。
在第二方向D 2上,主体部13包括相对设置的第一壁131和第二壁132。第一壁131所在的表面在第一方向D 1和第三方向D 3上延伸,第二壁132所在的表面在第一方向D 1和第三方向D 3上延伸。在第三方向D 3上,主体部13包括相对设置的第一侧壁133a和第二侧壁133b。在第二方向D 2上,第一侧壁133a连接于第一壁131和第二壁132之间,第二侧壁133b连接于第一壁131和第二壁132之间。第一部11a经弯折后设于第一侧壁133a上,从而减小电化学装置100在第三方向D 3上的尺寸,提高空间利用率和能量密度。在第一方向D 1上,主体部13包括相对设置的第一端壁134和第二端壁135。第一端壁134所在的表面在第二方向D 2和第三方向D 3上延伸,第二端壁135所在的表面在第二方向D 2和第三方向D 3上延伸。在第二方向D 2上,第一端壁134连接于第一壁131和第二壁132之间,第二端壁135连接于第一壁131和第二壁132之间。在一些实施例中,壳体10还包括第三部11b。 第三部11b连接第二侧壁133b。
如图3所示,在一些实施例中,在第二方向D 2上,第一壁131和第一段201相对设置,第二壁132和第二段203相对设置。在第三方向D 3上,第一侧壁133a与第一弯折段202相对设置,第二侧壁133b和第二弯折段204相对设置。其中,在某一方向上两者相对设置,指的是在该方向上两者的投影大部分重合。由于电化学装置100在化成后需要抽真空以排出化成过程中产生的气体和/或过量的电解液,由于电极组件20侧壁的形状,使得第一侧壁133和第二侧壁133具有一定的弧度,即第一侧壁133a和第二侧壁133b可以均为弧形面。
请一并参照图1和图2,壳体10还可包括第二部12a。第二部12a连接第一端壁134。此时,第一极耳30和第二极耳40均从第二部12a的边缘伸出壳体10。当第一极耳30包括连接部31和转接部32时,转接部32从第二部12的边缘伸出壳体10。在一些实施例中,第二部12a不需要弯折,即第二部12a大致垂直于第一端壁134。此时,第一极耳30伸出壳体10的方向即为第一方向D 1。在另一些实施例中,第二部12a也可以弯折至第一端壁134上,从而减小电化学装置100在第一方向D 1上的尺寸,提高空间利用率和能量密度。由于第二部12a弯折至第一端壁134上,设于第二部12a中的部分第一极耳30(如转接部32)也弯折至第一端壁134上。此时,转接部32在第二部12a的延伸方向垂直于第一方向D 1
在一些实施例中,电化学装置100还包括第一绝缘胶300和第二绝缘胶400。第一绝缘胶300用于密封连接第一极耳30与第二部12a,且部分第一绝缘胶300设置于第二部12a外。第二绝缘胶400用于密封连接第二极耳40与第二部12a,且部分第二绝缘胶400设置于第二部12a外。
请参阅图4,为电化学装置100在封装前的结构示意图。壳体10包括在第二方向D 2上相对设置的第一壳体101和第二壳体102。在一些实施例中,第二壳体102相对于第一壳体101折叠。当壳体10包括第一部11a、第二部12a和第三部11b时,第一壳体101和第二壳体102的折叠处对应电极组件20远离第一极耳30和第二极耳40的尾部。第一壳体101包括相互连接的第一壳体区101a和第二壳体区101b。第二壳体区101b的三个侧边被第一壳体区101a包围。第二壳体102包括相互连接的第三壳体区102a和第四壳体区102b。第四壳体区102b的三个侧边被第三壳体区102a包围。壳体10由第一壳体101和第二壳体102封装而成。具体地,第一壳体101的第二壳体区101b设有第一凹部1010,第二壳体102的第四壳体区102b设有第二凹部1020。如此,当第一壳体101和第二壳体102封装后,所述第一壳体区101a与第三壳体区102a相连接以形成第一部11a、第二部12a和第三部11b。第二壳体区101b和第四壳体区102b共同组成用于收容电极组件20的主体部13。当然,在另一些实施例中,第二壳体102还可以为平板结构。当第一壳体101和第二壳体102封装后,第一凹部1010被第二壳体102的第四壳体区102封闭以形成上述主体部13。
第一壳体101和第二壳体102可由一张封装膜折叠后得到,即第一壳体101和第二壳体102的材料均为多层片材。如图5所示,第一壳体101可包括依次层叠设置的第一保护层1011、第一金属层1012和第一聚合物层1013。相较于第一保护层1011,第一聚合物层1013更靠近电极组件20。第一保护层1011的材质可以为高分子树脂,其可以用于保护第一金属层1012,降低第一金属层1012因外力作用破损的风险,同时能够延缓外部环境的空气渗透,维持电化学装置100内部处于正常运作的环境。在一些实施例中,第一保护层1011的材质可选自对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚偏氟乙烯、聚四氟乙烯、聚丙烯、聚酰胺、聚酰亚胺中的至少一种。第一保护层1011的厚度范围可以为15μm至35μm。第一金属层1012可以用于延缓外部环境的水分渗透,并减少外力对电极组件20造成的损伤。在一些实施例中,第一金属层1012可以为铝箔层或钢箔层。第一金属层1012的厚度范围可以为20μm至120μm。第一聚合物层1013具有加热熔融的性质,可以用于封装,且可以降低多层片材被电解液中的有机溶剂溶解或溶胀的风险。第一聚合物层1013还可用于降低电解液中的电解质与第一金属层1012接触而导致金属层被腐蚀的风险。在一些实施例中,第一聚合物层1013包括聚合物材料,其可选自聚丙烯、丙烯共聚物、聚乙烯、聚甲基丙烯酸甲酯中的至少一种聚合物材料。第一聚合物层1013的厚度范围可以为10μm至40μm。在一些实施例中,第一壳体101还可包括第一粘接层(图未示)和第二粘接层(图未示),第一粘接层设于第一保护层1011和第一金属层1012之间,可以用于粘接第一保护层1011和第一金属层1012。第二粘接层设于第一金属层1012和第一聚合物层1013之间,可以用于粘接第一金属层1012和第一密封层。
如图6所示,第二壳体102可包括依次层叠设置的第二保护层1021、第二金属层1022和第二聚合物层1023。可以理解,当第一壳体101和第二壳体102可由一张封装膜折叠后得到时,第二保护层1021、第二金属层1022和第二聚合物层1023的材质分别与第一保护层1011、第一金属层1012和第一聚合物层1013的材质相同,在此不作重复描述。
如图5和图6所示,制备壳体10时,可利用封装设备的封头同时在第一壳体101和第二壳体102的边缘处施加一定的温度和压力,使第一聚合物层1013和第二聚合物层1023相互熔融并粘合在一起,得到第一胶体110(在图3中示出)。第一胶体110位于第一部11a。其中,请一并参照图3、图11和图12,第一聚合物层1013和第二聚合物层1023不仅位于第一部11a,同时也位于主体部13,而第一聚合物层1013和第二聚合物层1023在主体部13内相互分离设置,即并未粘合在一起。因此,本申请的第一胶体110指的是第一聚合物层1013和第二聚合物层1023在第一部11a内熔融并相互粘合在一起的部分。第一聚合物层1013和第二聚合物层1023相分离未粘合的区域不包括在第一胶体110内。为了便于区分,图11和图12中第一胶体110相较于未粘合在一起的第一聚合物层1013和第二聚合物层1023分别采用不同的填充方式示出。然而可以理解,这并不意味着第一胶体110与未粘合在 一起的第一聚合物层1013和第二聚合物层1023采用不同的聚合物制得,两者之间并无明显界限。由于第一部11a熔融形成第一胶体110,因此能够在第三方向D 3上封闭用于容置电极组件20的主体部13,减小漏液风险。
当壳体10还包括第二部12a和第三部11b时,第二部12a中设有由第一聚合物层1013和第二聚合物层1023相互熔融并粘合在一起后得到的第二胶体(图未示)。第二部12a能够在第一方向D 1上封闭主体部13,减小漏液风险。当设置有第一绝缘胶300和第二绝缘胶400时,第一绝缘胶300还用于降低第一极耳30与第一金属层1021或第二金属层1022之间发生短路的风险,而且第一绝缘胶300在封装时与第一聚合物层1013和第二聚合物层1023熔融并粘合在一起,减小漏液风险。同理,第二绝缘胶400还用于降低第二极耳40与第一金属层1021或第二金属层1022之间发生短路的风险,而且第二绝缘胶400在封装时与第一聚合物层1013和第二聚合物层1023熔融并粘合在一起,减小漏液风险。第三部11b中也可设有由第一聚合物层1013和第二聚合物层1023相互熔融并粘合在一起后得到的第三胶体(图未示)。
如图10所示,在另一些实施例中,壳体10未包括第三部11b。除了第一部11a和第二部12a外,壳体10进一步包括第四部12b,第四部12b连接第二端壁135。此时,第一极耳30和第二极耳40可均从第二部12a伸出。或者,第一极耳30和第二极耳40可均从第四部12b伸出。或者,第一极耳30从第二部12a伸出,第二极耳40从第四部12b伸出。在这种情况下,封装前,第一壳体101和第二壳体102的折叠处位于与第一部11a相对的第二侧壁133b。
在另一些实施例中,在封装前,第一壳体101和第二壳体102并非由一张封装膜折叠得到,而是为相互独立的两张封装膜。通过封装两张封装膜的四个边缘,可同时得到第一部11a、第二部12a、第三部11b和第四部12b。
请一并参阅图7至图9,在封装后,将第一部11a进行两次弯折形成双折边结构。图7和图8示出第一部11a弯折前的结构,此时第一部11a的延伸方向大致平行于第三方向D 3。图9示出第一部经第一次弯折后的结构,图3示出第一部经第二次弯折后的结构。例如,如图8所示,先将部分第一部11a经第一次弯折,从而将第一部11a边缘裸露的金属层保护起来,减小金属层露出后容易与外界短接的风险,提高安全性。然后,如图3所示,再将第一部11a经第二次弯折至第一侧壁133a上。因此,如图3所示,第一部11a包括第一封边111和第二封边112。第一封边111连接第一侧壁133a和第二壁132。第二封边112连接第一封边111,且第二封边112设置于第一封边111和第一侧壁133a之间。第二封边112为经第一次弯折形成,第一封边111为经第二次弯折形成。或者,在另一些实施例中,双折边结构的弯折顺序也可以是:也可以先将第一部11a经第一次弯折至第一侧壁133a上,然后再将部分第一部11a经第二次弯折,从而将第一部11a边缘裸露的金属层保护起来。两次弯折的顺 序可以根据实际情况选择,本申请并不作限制。
如图11和图12所示,在垂直于第一方向D 1的横截面上(即该横截面所在的表面在第二方向D 2和第三方向D 3上延伸),第一封边111与第一侧壁133a之间具有第一连接点A。其中,第一连接点A为第一封边111面向第一侧壁133a的外表面与第一侧壁133a的外表面之间的连接点。第一侧壁133a以第一连接点A为起点,沿着第一侧壁133a的轮廓向外延伸形成第一直线X 1,第一直线X 1与第二壁132相交于交点1320。其中,交点1320为第一直线X 1与第二壁132的外表面之间的交点。在本申请中,第一直线X 1为在垂直于第一方向D 1的横截面上,第一部11a与主体部13之间的分界线。因此在垂直于第一方向D 1的横截面上,交点1320也为第二壁132与第一封边111远离第一侧壁133a的另一外表面之间的分界点。第一胶体110位于第一直线X 1与第一部11a围设形成的空间内。可以理解,在封装第一部11a时,封装位置处的第一聚合物层1013和第二聚合物层1023熔融形成第一胶体110并将第一胶体110挤向一侧压力较小的位置(即从第二封边112挤向第一封边111),因此在垂直于第一方向D 1的横截面上,第一胶体110可能会形成角点110a(即凸点),角点110a朝向主体部13内部凸出。例如,当第一胶体110被挤向一侧,并在垂直于第一方向D 1的横截面上形成朝向主体部13内部凸出的曲线时,角点110a为第一胶体110的边缘上形状最凸出的位置。如,当第一胶体110形成类似弧形的边缘时,角点110a可以为第一胶体110的边缘上曲率半径最小的点。如图11所示,在一些实施例中,在垂直于第一方向D 1的横截面上,第一胶体110的边缘(即角点110a处)与第一直线X 1分离设置。如图12所示,在另一些实施例中,第一胶体110的边缘(即角点110a处)也可以与第一直线X 1接触。在一些实施例中,当第一侧壁133a为弧形面时,第一直线X 1即为经过第一连接点A的切线。
如图13所示,由于对第一壳体和第二壳体进行封装形成第一部时,侧壁在与第一部连接处(即第一连接点A)的延伸方向发生变化,在将第一部进行弯折后,第一连接点A处的延伸方向变化程度进一步增大,使得第一连接点A朝向主体部内部凸出。因此第一连接点A处在机械滥用时容易发生应力集中,有壳体破裂的风险,从而引发漏液,降低电化学装置的使用寿命。而且,熔融粘合后形成的第一胶体硬度较大,而第一连接点A距离第一胶体较近,使得壳体于第一连接点A附近的弯折性降低。这同样使得第一连接点A处容易发生应力集中,进而发生疲劳损伤并导致壳体破裂。此外,第一胶体容易顶到电极组件,导致二者接触位置应力集中而造成电极组件损坏或循环性能降低(如接触位置应力集中,使活性物质层从集流体表面脱落,造成微短路,自放电增大)。本申请通过限定第一胶体110的范围,减少了机械滥用时第一胶体110对第一连接点A处的冲击力,进而减小了第一连接点A处的破裂风险,提高了第一部11a的机械强度。而且,也有利于减小机械滥用时由于第一胶体110顶到电极组件20的风险,提高电化学装置100的循环性能和使用寿命。另外,通过限定第一胶体110的范围,也改善了封装时凸出的第一胶体110影响电极组件20入坑的问题。
如图14和图16所示,在另一些实施例中,当第一胶体110的边缘与第一直线X 1分离设置时,定义经过第一连接点A沿第二方向D 2延伸的直线为第二直线X 2,第二直线X 2与第一部11a远离第一侧壁133a的外表面相交于交点1100。第一胶体110位于第二直线X 2与第一部11a围设形成的空间内。如图14所示,在一些实施例中,第一胶体110的边缘与第二直线X 2分离设置。如图16所示,在另一些实施例中,第一胶体110的边缘也可以与第二直线X 2接触。通过限定第一胶体110的范围,从而进一步减少了机械滥用时第一胶体110对第一连接点A处的冲击力,也进一步减小了第一胶体110顶到电极组件20的风险。另外,第一胶体110不超过第二直线X 2,使得第一直线X 1、第二直线X 2以及第二壁132之间形成了可用于容纳电解液的缓冲空间。因此,在发生机械滥用时,该缓冲空间能够改善电解液直接冲击第一胶体110的情况,从而减小了第一部11a被电解液冲开而导致的漏液风险,提高了安全性。
如图3所示,在一些实施例中,在第二方向D 2上,定义第一封边111的长度L 1和第二封边112的长度L 2之和为L,沿第二方向D 2上,电极组件20的厚度为H,则3/4H≤L≤5/4H。本申请设置L值满足上述关系,改善了当L值过小时,第一部11a的封装强度降低的情况,从而降低了第一部11a被电极组件20或电解液冲开的风险;同时,也改善了当L值过大时可能会引发的成本提高和能量密度降低的问题。
本申请中尺寸的测量,如电极组件20的厚度H,第一封边111的长度L 1和第二封边112的长度L 2,可以测量多个采样点的数据取平均值。
如图11、图12、图14和图16所示,在一些实施例中,第二封边112包括连接第一封边111的第一端1121和与第一端1121相对设置的第二端1122。其中,第一端1121为第二封边112相较于第一封边111的弯折处。第二端1122为第一部11a远离第一侧壁133a的末端,即为第一部11a中的第一金属层1012和第二金属层1022裸露出来的位置,第二端1122的位置反映了第二封边112在第二方向D 2上的长度。定义电极组件20具有垂直于第二方向D 2的第一面P 1,第一面P 1为一个虚拟的面。在第二方向D 2上,位于第一面P 1两侧的电极组件20的厚度相同。即,第一面P 1为电极组件20在第二方向D 2上的中心面。第一面P 1位于第二端1122与第二壁132之间。通过限定第二封边112的第二端1122的位置,减少了当第二端1122位置较低(即第二封边112长度较大)时第一部11a相较于第一侧壁133a容易张开的风险。
如图11、图12、图14和图16所示,在一些实施例中,在封装第一部11a时,封装位置处的第一聚合物层1013和第二聚合物层1023熔融形成第一胶体110并将第一胶体110挤向一侧压力较小的位置,形成相较于主体封装区厚度更大的溢胶区。即,第一封边111包括第一区1111(即溢胶区)和第二区1112(即主体封装区),第二区1112为与封装封头直接接触并被封装封头直接热压形成的区域,第一区1111为第一胶体110被挤压向一侧形成溢 胶的区域。第二区1112连接于第一区1111和第二封边112之间。第一区1111的封装强度小于第二区1112的封装强度。沿着从第一封边111至所述第二封边112的延伸方向上,第二区1112的长度通常小于第一区1111的长度。在一些实施例中,沿着从第一封边111至所述第二封边112的延伸方向上,第一区1111的厚度H 1可以逐渐减小(即H 1非恒定值),第二区1112的厚度H 2可以逐渐减小(即H 2非恒定值),且第一区1111的厚度H 1大于第二区1112的厚度H 2(即单位长度的第一区1111内第一胶体110的含量多于单位长度的第二区1112内第一胶体110的含量)。在另一些实施例中,第一区1111也可以是热压时与封装封头接触的区域,本申请并不作限制。如,封头为异形封头,用于封装第一区1111的上下封头距离相对较大,上下封头直接热压后也可以形成厚度相对较大的第一区1111。
在一些具体的实施例中,沿着从第二封边112至第一封边111的延伸方向上,第二区1112的厚度变化小于或等于10μm,第一区1111的厚度变化大于10μm。即,第二区1112厚度变化相对平缓,而第一区1111厚度变化相对于第二区1112较大。其中,定义上述厚度变化为:沿着从第二封边112至第一封边111的延伸方向上,第一区1111或第二区1112相对设置的两端处的厚度增大值。确定第一区1111与第二区1112之间的分界线可采用如下步骤:获取电化学装置100的截面图,在截面图中测量,以第一端1121为起点,每隔一预定间隔在第一封边111上选取一采样点,并确定第一封边111于该采样点处的厚度。当该采样点处的厚度与第一端1121的厚度差值小于10μm时,则确定该采样点属于第二区1112。然后,继续以预定间隔选取下一采样点,直至第一封边111于所选取的采样点处的厚度与第一端1121的厚度差值等于10μm,则停止采样。此时,第一端1121至所选取的采样点的范围即为第二区1112,第一封边111余下的范围即为第一区1111。
可以理解,在封装第一部11a时,封装位置处的第一聚合物层1013和第二聚合物层1023熔融形成第一胶体110后,也可能将第一胶体110挤向第二封边112的第二端1122。即第二封边112在第二端1122处也可能形成厚度较大的溢胶区。第一封边111的溢胶区和第二封边112的溢胶区分离设置。在上述确定第一区1111与第二区1112的范围时并不考虑第二封边112的溢胶区。
如图11、图12、图14和图16所示,在垂直于所述第一方向D 1的横截面上,第一区1111和第二区1112之间设有第二连接点B,第二连接点B为从第一区1111与第二区1112的分界线上选取的点。第二连接点B的位置反映了第一区1111和第二区1112在第二方向D 2上的长度。在一些实施例中,第二连接点B位于第一面P 1与第二壁132之间。通过限定第二连接点B的位置,减小了第一区1111在第二方向D 2上的尺寸,同时增加了封装强度更大的第二区1112在第二方向D 2上的尺寸,从而提高了第一部11a的封装强度。因此,减小了第一部11a被电解液冲开而导致的漏液风险,提高了安全性。
在一些实施例中,在垂直于第一方向D 1的横截面上,第二区1112和第二封边112之间 设有第三连接点C。第三连接点C即为第二区1112和第一区1111之间的弯折点,也即第一端1111在上述横截面上的交点。第三连接点C的位置也反映了第二封边112在第二方向D 2上的长度。定义电极组件20还具有垂直于第二方向D 2的第二面P 2,第二面P 2为一个虚拟的面。在第二方向D 2上,位于第二面P 2与第二壁132之间的电极组件20的厚度为电极组件20总厚度的3/4。在第二方向D 2上,第三连接点C位于第二面P 2与第二壁132之间。即在第二方向D 2上,第三连接点C不高于电极组件20厚度的总厚度的3/4处,从而减小了当第三连接点C较高(即第二封边112长度较大)时第一部11a相较于第一侧壁133a容易张开的风险。
如图14所示,当第一胶体110的边缘与第一直线X 1分离设置时,第一封边111还包括第三区1113,第一区1111连接于第二区1112与第三区1113之间。第三区1113内的第一聚合物层1013不粘合第二聚合物层1023,即第一聚合物层1013和第二聚合物层1023相互熔融形成的第一胶体110未设于第三区1113内。此时,角点110a朝向第三区1113凸出。第一区1111和第三区1113的位置请详细参照图15A。
如图14和图15A所示,定义经过第一连接点A且沿第二方向D 2延伸的直线为第二直线X 2,第三区1113设于第二直线X 2远离电极组件20的一侧。第三区1113的设置进一步减少了机械滥用时第一胶体110对第一连接点A处的冲击力,也进一步减小了第一胶体110顶到电极组件20的风险。另外,第三区1113形成了可用于容纳电解液的缓冲空间。因此,在发生机械滥用时,该缓冲空间能够进一步改善电解液直接冲击第一胶体110的情况,从而减小了第一部11a被电解液冲开而导致的漏液风险,提高了安全性。
请一并参照图15B,在一些实施例中,在垂直于第一方向D 1的横截面上,第三区1113设于第一金属层1012和第二金属层1022之间的部分的面积为A 1,第一区1111设于第一金属层1012和第二金属层1022之间的部分的面积为A 2,则0.5≤A 1/A 2≤3。本申请设置A 1/A 2满足上述关系,改善了当A 1与A 2的比值过小(即溢胶区较大)时,导致第一部11a在与第一侧壁133a连接处不容易弯折的问题,且弯折后电化学装置200在第三方向D 3上尺寸减小,提高了体积能量密度;同时,也降低了当A 1与A 2的比值过大(即主体封装区较大)时,第一部11a封装强度下降的风险。可选地,在一些具体的实施例中,1≤A 1/A 2≤2。在该范围内,第一部11a具有较高的封装强度,同时在与第一侧壁133a连接处容易弯折。其中,A 1可通过图像法测得,测试步骤包括:沿垂直于第一方向D 1的横截面方向截取第一部11a的截面,从第一方向D 1采集包括上述截面在内的图像,即为第一图像;采集一已知面积为S 0的参考目标的图像,即为第二图像;计算第一图像中第三区1113对应的像素点数量n 1,计算第二图像中参考目标对应的像素点数量n 0;根据面积A 0、数量n 1及数量n 0计算第三区1113的面积A 1,即A 1=(S 0×n 0)/n 1。类似地,A 2也可通过图像法测得。
如图14所示,在一些实施例中,在垂直于第一方向D 1的横截面上,定义第三直线X 3 经过角点110a且平行于第二直线X 2。第三直线X 3与第一封边111的第一金属层1012和第一聚合物层1013的分界线相交于第一交点J 1,第三直线X 3与第一封边111的第二金属层1022与第二聚合物层1023相交于第二交点J 2。第一交点J 1与第二交点J 2的距离为L 3(可表示沿着从第一封边111至所述第二封边112的延伸方向上,第一区1111的厚度H 1的最大值),在第二方向D 2上,角点110a与第一区1111和第二区1112的分界线的距离为L 4(可表示第一区1111在第二方向D 2上的长度),则0.1≤L 3/L 4≤0.6。在一些实施例中,在垂直于第一方向D 1的横截面上,角点110a距离第一封边111两侧的距离也可能相同。此时,第三直线X 3垂直于第一封边111任一侧。本申请设置L 3/L 4满足上述关系,改善了当L 3与L 4的比值过小(即第一区1111厚度较小)或当L 3与L 4的比值过大(即第一区1111的长度较小)时,第二区1112热封不充分的问题,从而提高第一部11a的封装强度。可选地,在一些具体的实施例中,0.3≤L 1/L 2≤0.5。在该范围内,第一部11a具有较高的封装强度。其中,L 3、L 4可采用直接测量法测得,测试步骤包括:沿垂直于第一方向D 1的横截面方向截取第一部11a的截面,按照上述方法在截面上标识处L 3和L 4后,采用卡尺或其它合适的量具直接测量L 3、L 4的数值,或者采集上述截面的图像,在图像中进行测量。
如图3所示,在一些实施例中,电化学装置100还包括第一粘接件50。第一粘接件50粘接第二封边112和第一侧壁133a的外表面,从而将第二封边112固定于第一侧壁133a,进一步减小第一部11a张开的风险。其中,第一粘接件50可以为双面胶或者热熔胶,且第一粘接件50连续设置。双面胶中粘结层的材质可以选自丙烯酸酯、聚氨酯、橡胶及硅胶中的一种或多种,热熔胶可以选自聚烯烃类热熔胶、聚氨酯类热熔胶、乙烯及其共聚物类热熔胶、聚酯类热熔胶、聚酰胺类热熔胶、苯乙烯及其嵌段共聚物类热熔胶中的一种或几种,本申请并不作限制。
电化学装置100还可包括第二粘接件60。第二粘接件60至少粘接第一侧壁133a的内表面和电极组件20,从而将电极组件20固定于壳体10内。如此,当发生机械滥用时,能够减小电极组件20在第三方向D 3上于壳体10内窜动的风险,进而减小电极组件20对壳体10的第一部11a的冲击,提高安全性。其中,第二粘接件60可以为双面胶或者热熔胶。如图3所示,在一些具体的实施例中,第二粘接件60的数量为两个,分别粘接第一侧壁133a和第二侧壁133b的内表面。
电化学装置100还可包括第三粘接件70。第三粘接件70粘接第一壁131或第二壁132的至少一者的内表面和电极组件20。如此,当发生机械滥用时,能够减小电极组件20在第二方向D 2上于壳体10内窜动的风险,进而减小电极组件20对壳体10的第二部12a的冲击,提高安全性。其中,第三粘接件70可以为双面胶或者热熔胶。如图3所示,在一些具体的实施例中,第三粘接件70的数量为两个,分别粘接第一壁131的内表面和第二壁132的内表面。
如图2所示,在一些实施例中,在第二方向D 2上,第二部12a较第一壁131更靠近第二壁132。在第二方向D 2上,第一端壁134包括位于第一极耳30两侧的第一端面1341和第二端面1342,第一端面1341连接第二部12a和第一壁131,第二端面1342连接第二部12a和第二壁132。即,第一端面1341为深坑面,第二端面1342为浅坑面。
进一步地,电化学装置100还可包括第四粘接件80,第四粘接件80粘接第一部分1341和第二部12a的边缘。从而,第四粘接件80可用于覆盖第二部12a边缘裸露的金属层,提高安全性。可以理解,第三粘接件70并未覆盖整个第二部12a的边缘,使得第一极耳30和第二极耳40仍可从第二部12a的边缘伸出。第四粘接件80可以为单面胶、双面胶或热熔胶。单面胶中粘结层的材质可以选自丙烯酸酯、聚氨酯、橡胶及硅胶中的一种或多种,本申请并不作限制。
如图3所示,在一些实施例中,第一集流体210包括相对设置的第一表面2101和第二表面2102。当电极组件20为卷绕结构时,电极组件20的最外圈的外表面为第一表面2101。因此,即便机械滥用时第一胶体110对电极组件20造成冲击,由于第一表面2101为外表面,因此改善了当电极组件20的外表面设有活性物质时容易导致活性物质脱落的情况。另一方面,第一集流体210可以增大电极组件20的硬度,起到保护电极组件20的作用。
请参阅图17,本申请另一实施方式还提供一种电化学装置200。与上述电化学装置100不同之处在于,电极组件20的最外圈为隔离膜23。即,本实施例将隔离膜23延长并利用隔离膜23进行收尾。由于隔离膜23具有较大的粗糙度,因此可以增加电极组件20与壳体10之间的摩擦力,从而提高电极组件20与第一粘接件50或第二粘接件60之间的粘接力,进而更好地将电极组件20固定于壳体10内。而且,隔离膜23能够形成保护层,避免该部分隔离膜23内侧的极片由于磨损带来的短路风险,增加了电极组件20耐机械冲击的能力。
其中,本申请的电化学装置100(或电化学装置200)包括所有能够发生电化学反应的装置。具体的,电化学装置100包括所有种类的原电池、二次电池、燃料电池、太阳能电池和电容器(例如超级电容器)。可选地,电化学装置100可以为锂二次电池,包括锂金属二次电池、锂离子二次电池、锂聚合物二次电池和锂离子聚合物二次电池。
请参阅图18,本申请一实施方式还提供一种电子装置1,电子装置1包括电化学装置100(或电化学装置200)。
其中,本申请的电化学装置100适用于各种领域的电子装置1。在一实施方式中,本申请的电子装置1可以是,但不限于笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行 车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
以下通过具体实施例和对比例对本申请作详细说明。其中,其中,以电化学装置为软包电池为例并结合具体制备过程和测试方法对本申请进行说明,本领域技术人员应理解,本申请中描述的制备方法仅是实例,其他任何合适的制备方法均在本申请的范围内。
实施例1
(1)负极极片的制备:将负极活性材料人造石墨、导电炭黑(Super P)、丁苯橡胶(SBR)按照重量比96:1.5:2.5进行混合,加入去离子水作为溶剂,调配成固含量为70wt%的浆料,并搅拌均匀。将浆料均匀涂覆在厚度为10μm的负极集流体铜箔的一个表面上,110℃条件下烘干,得到涂层厚度为150μm的单面涂覆有负极活性材料层的负极极片。在该负极极片的另一个表面上重复以上步骤,得到双面涂覆有负极活性材料层的负极极片。
(2)正极极片的制备:将正极活性材料钴酸锂(LiCoO2)、导电炭黑(Super P)、聚偏二氟乙烯(PVDF)按照重量比97.5:1.0:1.5进行混合,加入N-甲基吡咯烷酮(NMP)作为溶剂,调配成固含量为75wt%的浆料,并搅拌均匀。将浆料均匀涂覆在厚度为12μm的正极集流体铝箔的一个表面上,90℃条件下烘干,得到正极活性材料层厚度为100μm的正极极片。在正极集流体铝箔的另一个表面上,重复以上步骤,得到双面涂覆有正极活性材料层的正极极片。
(3)电解液的制备:在干燥氩气气氛中,首先将有机溶剂碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)以质量比EC:EMC:DEC=30:50:20混合,然后向有机溶剂中加入锂盐六氟磷酸锂(LiPF6)溶解并混合均匀,得到锂盐的浓度为1.15mol/L的电解液。
(4)电极组件的制备:将隔离膜、双面涂覆负极极片、隔离膜、双面涂覆正极极片依次层叠卷绕设置,电极组件的厚度为H。电极组件包含一个正极极耳和一个负极极耳,正极极耳为铝(Al)和负极极耳为镍(Ni),两个极耳并排设置;隔离膜选用厚度为15μm的聚乙烯(PE)膜。
(5)电极组件的组装:将冲坑成型的铝塑膜(厚度为150μm)置于组装夹具内,坑面朝上,将电极组件置于坑内,且隔离膜面朝上,并在铝塑膜的边缘处电极组件的极耳对应的区域设置极耳胶。
(7)注液封装:向铝塑膜的坑内注入电解液,并将电极组件的所有极耳引出铝塑膜外。利用封装设备的封头在铝塑膜的边缘处加压以形成第一部。第一部的第一封边和第二封边的长度之和L等于电极组件的厚度H。
(8)折边:将第一部进行两次弯折形成双折边结构,得到电池。取实施例1的电池,沿垂直于第一方向D 1的横截面方向截取电池的截面,经测量,第三区的面积A 1与第一区的面积A 2满足:A 1/A 2=0.4。第一交点与第二交点的距离L 3与角点与第一区和第二区的分 界线的距离L 4满足:L 3/L 4=0.3。第一区和第二区之间的第二连接点的位置位于第一面以下。
实施例2-7和对比例1
与实施例1不同之处在于第一胶体的范围、L与H的关系和/或第二连接点的位置。其中,可通过控制封头的温度或压力来调节第一胶体的范围;通过调节封头的宽度来调节L,进而调节L与H的关系;通过调节第一封边和第二封边之间的弯折处的位置来调节第二连接点的位置。
然后,对各实施例和对比例的电池分别进行微跌测试、跌落测试、滚筒测试、封装强度测试和能量密度测试。每组实施例和每组对比例的电池各取10个进行测试,对应的测试结果记录于表1中。
微跌测试的步骤包括:1)在25℃的环境条件下,将电池以0.2C直流放电至0%SOC(State of Charge,荷电状态);静置5min;再以0.5C恒流充电至50%SOC,然后恒压充电至0.05C;静置5min,测量电池的电压和内阻。2)将电池放入夹具仓,用自动跌落设备将电池的底面、左侧面、右侧面、正面、反面、顶面为一轮的着地的方式依次从10cm位置跌落至钢板上,一个循环共计跌落100轮即600次,共测试3个循环。3)再进行正、反面微跌测试,一个循环共计跌落500轮即1000次,共测试3个循环。4)将完成微跌后的电池放置于温度为(60±3)℃、相对湿度为90%的环境中,静置14天后检查第一连接点处是否发生破损和漏液,并记录电池的电压和内阻。若电压降<0.2V且第一连接点处未发生破裂,则判断电池通过微跌测试。
跌落测试的步骤包括:1)将电池放入夹具仓,跌落高度改为1.8m,用自动跌落设备将带有电池的夹具仓以夹具仓头底面、左侧面、右侧面、正面、反面、顶面为一轮的着地的方式依次从1.8m位置跌落至钢板上,一个循环共计跌落3轮即18次;2)每轮跌落后测量电池的电压,当电池出现起火、漏液时则停止继续跌落,否则继续跌落完成3轮。3)完成跌落后拆解电芯,若第一部未张开、第一连接点处未破裂且电极组件表面未出现凹坑,则判断电池通过跌落测试。
滚筒测试的步骤包括:1)在25度的环境条件下,将电池的荷电状态满充至100%,电池电压为4.4V。2)将电池放入夹具仓,并利用胶纸将电池的背部粘接至夹具,再拧紧夹具上的螺丝,然后将装有电池的夹具置于滚筒测试机中进行测试,测试完成后静置24h。其中,滚筒速度为7圈/分钟,跌落高度为1米,共滚1000次。若经滚筒测试后的电池若未出现漏液、起火、爆炸等现象,则判断电池通过滚筒测试。
表1
Figure PCTCN2021140364-appb-000001
表1中,微跌测试通过率为0/10,表明已测试的10个电池中,通过测试的电池数量为0个。微跌测试通过率为10/10,表明已测试的10个电池中,通过测试的电池数量为10个。其它比例值的含义以此类推。
从表1数据可知,相较于对比例1,由于实施例1中第一胶体未超过第一直线,因此微跌测试、跌落测试和滚筒测试通过率较高,安全性也较高。
在满足第一胶体未超过第一直线的前提下,L值与第二连接点的位置均会进一步影响测试结果。相较于实施例1、3、4,实施例2中L值较小而实施例5的L值较小,未满足3/4H≤L≤5/4H,因此跌落测试通过率相对降低。相较于实施例1,实施例6中第二连接点位于第一面以上,因此跌落测试通过率相对降低。
在满足第一胶体未超过第一直线的前提下,与实施例1相比,实施例7的第一胶体未超过第二直线,因此跌落测试通过率相对提高。
实施例8-22
与实施例1不同之处在于,A 1/A 2和L 3/L 4的比值不同。其中,可通过调节封头上溢胶槽的结构来调节A 1/A 2和L 3/L 4
然后,对各实施例的电池分别进行封装强度测试和能量密度测试。对应的测试结果记录于表2中。
封装强度测试的步骤包括:1)从壳体中取下第一部,作为样品1;2)将样品1裁剪为宽度L为8mm的试条,保证此试条完整保存了整个封印区域,同时封印区两侧的包装壳也完好无损,得到样品2;3)使用高铁拉力机,以180°角将两侧的壳体撕开,使得封印区域内两层壳体相互分离;4)记录上述两层3)分离时的稳定拉力F,计算封装强度σ=F/L。
能量密度测试的步骤包括:1)将电池在25℃环境下,以1C的充电速率从3.0V充电至4.4V,再以0.1C的放电速率放电至3.0V,测定0.1C放电容量,则0.1C放电能量密度=0.1C放电容量/电池的体积。
表2
Figure PCTCN2021140364-appb-000002
从表2数据可知,相较于实施例1和实施例15,实施例8-14满足0.5≤A 1/A 2≤3,因此同时具有较高的体积能量密度和较高的封装强度。相较于实施例16和实施例22,实施例17-21满足0.1≤L 3/L 4≤0.6,因此具有较高的封装强度。
最后应说明的是,以上实施例仅用以说明本申请的技术方案而非限制,尽管参照较佳实施例对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换,而不脱离本申请技术方案的精神和范围。

Claims (20)

  1. 一种电化学装置,包括壳体、电极组件和极耳,所述壳体包括主体部和第一部,所述电极组件设置于所述主体部内,所述极耳电连接所述电极组件并伸出所述壳体;定义所述极耳凸出于所述电极组件的方向为第一方向,所述电极组件的厚度方向为第二方向,垂直于所述第一方向和所述第二方向的方向为第三方向,在所述第二方向上,所述主体部包括相对设置的第一壁和第二壁,在所述第三方向上,所述主体部包括相对设置的第一侧壁和第二侧壁;其中,
    所述第一部包括第一封边和第二封边,所述第一封边连接所述第一侧壁和所述第二壁,所述第二封边连接所述第一封边,所述第二封边设置于所述第一封边和所述第一侧壁之间;
    所述壳体包括相对设置的第一壳体和第二壳体,所述第一壳体包括第一聚合物层,所述第二壳体包括第二聚合物层,所述第一聚合物层和所述第二聚合物层相粘合形成胶体,所述胶体位于所述第一部;
    在垂直于所述第一方向的横截面上,所述第一封边和所述第一侧壁之间具有第一连接点,定义所述第一侧壁在所述第一连接点处沿所述第一侧壁的轮廓向外延伸形成第一直线,所述胶体位于所述第一部和所述第一直线围设形成的空间内。
  2. 如权利要求1所述的电化学装置,其中,定义经过所述第一连接点且沿所述第二方向延伸的直线为第二直线,所述胶体位于所述第一部和所述第二直线围设形成的空间内。
  3. 如权利要求1所述的电化学装置,其中,定义在所述第二方向上,所述第一封边的长度和所述第二封边的长度之和为L,在所述第二方向上,所述电极组件的厚度为H,则3/4H≤L≤5/4H。
  4. 如权利要求1所述的电化学装置,其中,所述第二封边包括连接所述第一封边的第一端和与所述第一端相对设置的第二端,定义所述电极组件具有垂直于所述第二方向的第一面,在所述第二方向上,位于所述第一面两侧的所述电极组件的厚度相同,所述第一面位于所述第二端与所述第二壁之间。
  5. 如权利要求1所述的电化学装置,其中,所述第一封边包括第一区和第二区,所述第二区连接于所述第一区和所述第二封边之间,所述第一区的厚度大于所述第二区的厚度。
  6. 如权利要求5所述的电化学装置,其中,在垂直于所述第一方向的横截面上,所述第一区和所述第二区之间设有第二连接点,定义所述电极组件具有垂直于所述第二方向的第一面,在所述第二方向上,位于所述第一面两侧的所述电极组件的厚度相同,所述第 二连接点位于所述第一面与所述第二壁之间。
  7. 如权利要求5所述的电化学装置,其中,在垂直于所述第一方向的横截面上,所述第二区和所述第二封边之间设有第三连接点,定义所述电极组件具有垂直于所述第二方向的第二面,在所述第二方向上,位于所述第二面与所述第二壁之间的所述电极组件的厚度为所述电极组件总厚度的3/4,在所述第二方向上,所述第三连接点位于所述第二面与所述第二壁之间。
  8. 如权利要求1所述的电化学装置,其中,所述第一封边还包括第三区,所述第一区连接于所述第二区与所述第三区之间,所述第三区内的所述第一聚合物层不粘合所述第二聚合物层;在垂直于所述第一方向的横截面上,所述第一封边和所述第一侧壁之间具有第一连接点,定义经过所述第一连接点且沿所述第二方向延伸的直线为第二直线,所述第三区设于所述第二直线的一侧。
  9. 如权利要求8所述的电化学装置,其中,所述第一壳体还包括与所述第一聚合物层层叠设置的第一金属层,所述第二壳体还包括与所述第二聚合物层层叠设置的第二金属层;在垂直于所述第一方向的横截面上,所述第三区设于所述第一金属层和所述第二金属层之间的部分的面积为A 1,所述第一区设于所述第一金属层和所述第二金属层之间的部分的面积为A 2,则0.5≤A 1/A 2≤3。
  10. 如权利要求8所述的电化学装置,其中,在垂直于所述第一方向的横截面上,所述第一区内的所述胶体包括角点,所述角点朝向所述第三区凸出;
    所述第一壳体还包括与所述第一聚合物层层叠设置的第一金属层,所述第二壳体还包括与所述第二聚合物层层叠设置的第二金属层;
    定义第三直线经过所述角点且平行于所述第二直线,所述第三直线与所述第一封边的所述第一金属层和所述第一聚合物层的分界线相交于第一交点,所述第三直线与所述第一封边的所述第二金属层与所述第二聚合物层相交于第二交点,所述第一交点与所述第二交点的距离为L 3,所述角点与所述第一区和所述第二区的分界线的距离为L 4,则0.1≤L 3/L 4≤0.6。
  11. 如权利要求1所述的电化学装置,其中,所述电化学装置还包括:
    第一粘接件,粘接所述第二封边和所述第一侧壁的外表面。
  12. 如权利要求1所述的电化学装置,其中,所述电化学装置还包括:
    第二粘接件,粘接所述第一侧壁的内表面和所述电极组件。
  13. 如权利要求1所述的电化学装置,其中,所述电化学装置还包括:
    第三粘接件,粘接所述第一壁或所述第二壁的至少一者的内表面和所述电极组件。
  14. 如权利要求1所述的电化学装置,其中,所述电极组件为卷绕结构,所述电极组件包括第一极片、第二极片以及设于所述第一极片和所述第二极片之间的隔离膜,所述第 一极片包括第一集流体和设置于所述第一集流体上的第一活性物质层,所述第一集流体包括第一表面,所述电极组件的最外圈的外表面为所述第一表面。
  15. 如权利要求1所述的电化学装置,其中,所述电极组件为卷绕结构,所述电极组件包括第一极片、第二极片以及设于所述第一极片和所述第二极片之间的隔离膜,所述电极组件的最外圈为所述隔离膜。
  16. 如权利要求1所述的电化学装置,其中,在所述第一方向上,所述主体部还包括相对设置的第一端壁和第二端壁,所述壳体还包括连接所述第一端壁的第二部,所述极耳从所述第二部的边缘伸出所述壳体。
  17. 如权利要求16所述的电化学装置,其中,在所述第二方向上,所述第二部较所述第一壁更靠近所述第二壁,在所述第二方向上,所述第一端壁包括位于所述极耳两侧的第一端面和第二端面,所述第一端面连接所述第二部和所述第一壁,所述第二端面连接所述第二部和所述第二壁。
  18. 如权利要求17所述的电化学装置,其中,所述电化学装置还包括:
    第四粘接件,粘接所述第一端面和所述第二部的所述边缘。
  19. 如权利要求1所述的电化学装置,其中,所述第一聚合物层包括第一聚合物材料,所述第二聚合物层包括第二聚合物材料,所述第一聚合物材料和所述第二聚合物材料各自独立地选自聚丙烯、丙烯共聚物、聚乙烯或聚甲基丙烯酸甲酯中的至少一种。
  20. 一种电子装置,其包括如权利要求1至19中任一项所述的电化学装置。
PCT/CN2021/140364 2021-12-22 2021-12-22 电化学装置和电子装置 WO2023115375A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21957722.8A EP4228063A4 (en) 2021-12-22 2021-12-22 ELECTROCHEMICAL DEVICE AND ELECTRONIC DEVICE
CN202180034844.6A CN115668595A (zh) 2021-12-22 2021-12-22 电化学装置和电子装置
PCT/CN2021/140364 WO2023115375A1 (zh) 2021-12-22 2021-12-22 电化学装置和电子装置
US18/192,957 US20230238626A1 (en) 2021-12-22 2023-03-30 Electrochemical device and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/140364 WO2023115375A1 (zh) 2021-12-22 2021-12-22 电化学装置和电子装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/192,957 Continuation US20230238626A1 (en) 2021-12-22 2023-03-30 Electrochemical device and electronic device

Publications (1)

Publication Number Publication Date
WO2023115375A1 true WO2023115375A1 (zh) 2023-06-29

Family

ID=85014974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140364 WO2023115375A1 (zh) 2021-12-22 2021-12-22 电化学装置和电子装置

Country Status (4)

Country Link
US (1) US20230238626A1 (zh)
EP (1) EP4228063A4 (zh)
CN (1) CN115668595A (zh)
WO (1) WO2023115375A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140099535A1 (en) * 2011-06-01 2014-04-10 Seungwoo Chu Pouch-Type Battery Cell
CN203674276U (zh) * 2014-01-20 2014-06-25 东莞新能源科技有限公司 软包装锂离子电池
US20170141361A1 (en) * 2015-11-17 2017-05-18 Samsung Electronics Co., Ltd. Electrochemical cell
CN207038562U (zh) * 2017-07-27 2018-02-23 宁德时代新能源科技股份有限公司 软包电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140099535A1 (en) * 2011-06-01 2014-04-10 Seungwoo Chu Pouch-Type Battery Cell
CN203674276U (zh) * 2014-01-20 2014-06-25 东莞新能源科技有限公司 软包装锂离子电池
US20170141361A1 (en) * 2015-11-17 2017-05-18 Samsung Electronics Co., Ltd. Electrochemical cell
CN207038562U (zh) * 2017-07-27 2018-02-23 宁德时代新能源科技股份有限公司 软包电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4228063A4 *

Also Published As

Publication number Publication date
EP4228063A4 (en) 2024-04-24
EP4228063A1 (en) 2023-08-16
CN115668595A (zh) 2023-01-31
US20230238626A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
CN112002868B (zh) 一种电化学装置及电子装置
US8986879B2 (en) Pouch type rechargeable battery
KR100624967B1 (ko) 파우치형 리튬 이차 전지 및 그의 제조 방법
CN110249473B (zh) 非水电解质二次电池
CN114843440B (zh) 电化学装置及其制备方法和电子装置
US20230216034A1 (en) Electrochemical apparatus and electronic apparatus including same
CN113707975A (zh) 一种电化学装置及包含该电化学装置的电子装置
US20220320595A1 (en) Electrochemical apparatus and electronic apparatus
CN114901766B (zh) 用于二次电池的溶胀带和包括其的圆柱型二次电池
US20230246272A1 (en) Electrochemical apparatus and electronic apparatus
CN211350883U (zh) 电芯及包含其的电化学装置和电子装置
WO2023115375A1 (zh) 电化学装置和电子装置
CN115347291A (zh) 电化学装置和电子装置
CN116544345B (zh) 二次电池及电子装置
WO2023123034A1 (zh) 电化学装置和电子装置
US20240136672A1 (en) Electrochemical apparatus and electronic apparatus
JP7494440B2 (ja) 二次電池用スウェリングテープ及びこれを含む円筒型二次電池
WO2022083542A1 (zh) 封装膜、电池及电子装置
WO2024026618A1 (zh) 电化学装置和电子装置
WO2023184369A1 (zh) 电化学装置、模组以及电子装置
US20230187655A1 (en) Composite current collector, electrode sheet, secondary battery, battery module, battery pack, and electrical apparatus
WO2024098175A1 (zh) 二次电池及其制备方法、用电装置
WO2023164914A1 (zh) 电化学装置及电子装置
WO2023141831A1 (zh) 电极组件、电化学装置以及电子装置
CN117480653A (zh) 一种电化学装置和电子装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021957722

Country of ref document: EP

Effective date: 20230330