WO2024001261A1 - 一种高性能低成本碳纤维的制备方法 - Google Patents

一种高性能低成本碳纤维的制备方法 Download PDF

Info

Publication number
WO2024001261A1
WO2024001261A1 PCT/CN2023/078935 CN2023078935W WO2024001261A1 WO 2024001261 A1 WO2024001261 A1 WO 2024001261A1 CN 2023078935 W CN2023078935 W CN 2023078935W WO 2024001261 A1 WO2024001261 A1 WO 2024001261A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyacrylonitrile
carbon fiber
performance
low
polyacrylonitrile raw
Prior art date
Application number
PCT/CN2023/078935
Other languages
English (en)
French (fr)
Inventor
陈秋飞
王春华
陈肖寒
王晓旭
刘杰
Original Assignee
中复神鹰碳纤维股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中复神鹰碳纤维股份有限公司 filed Critical 中复神鹰碳纤维股份有限公司
Publication of WO2024001261A1 publication Critical patent/WO2024001261A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear

Definitions

  • the present disclosure relates to, but is not limited to, a method for preparing high-performance, low-cost carbon fibers.
  • Carbon fiber is a high-temperature-resistant fiber with high strength and modulus. Because of its excellent mechanical properties such as high strength, high hardness, light weight, chemical resistance, and high temperature resistance, it has been widely used in aerospace engineering, military and competitive sports. It has a wide range of applications; carbon fiber is mainly composed of carbon atoms, with a diameter of about 5-10um, and is an outstanding representative in the field of new material technology. Because the carbon fiber production process is long and each process item and parameter is diverse and complex, the production cost of general carbon fiber is high.
  • the carbonization link (including pre-oxidation and carbonization processes) in the carbon fiber production process accounts for the main part of the carbon fiber production cost; further, the cost of the pre-oxidation process accounts for about 70% of the overall carbon fiber production cost; Therefore, cost control of the pre-oxidation process in the carbonization process is of great significance to controlling the production cost of carbon fiber.
  • the pre-oxidation process of carbon fiber requires 4-6 temperature zones with different temperature gradients to air pre-oxidize the fiber.
  • the pre-oxidation time is 60 mins and above, and the temperature distribution in each temperature zone is 180-300°C.
  • the low-temperature carbonization process and the high-temperature carbonization process need to be carried out in a high-purity nitrogen atmosphere.
  • the temperature distribution in each temperature zone is 300-1800°C, and the duration is usually 1-10 mins.
  • too many pre-oxidation temperature zones and lengths lead to an increase in carbon fiber production costs, including equipment loss, energy consumption and labor costs.
  • the process parameters such as temperature, traction speed, etc.
  • the hard particles produced during the pre-oxidation process of the fiber oil (usually the product of the pre-oxidation pyrolysis of the silicone-containing oil) have an impact on the performance of the carbon fiber. Improper control will lead to poor stability of the carbon fiber product and a large coefficient of variation.
  • the carbon fiber finishing performance and mechanical properties are poor. Therefore, reducing the number of temperature zones in the pre-oxidation process and reducing the pre-oxidation time have become important research directions to reduce carbon fiber production costs and improve carbon fiber performance and stability.
  • the present disclosure provides a method for preparing high-performance and low-cost carbon fibers.
  • a first aspect of the present disclosure provides a method for preparing high-performance, low-cost carbon fibers, including the following steps:
  • the polyacrylonitrile raw filaments are sequentially subjected to a pre-oxidation process through multiple temperature zones to obtain pre-oxidized fibers; along the sequence of the polyacrylonitrile raw filaments passing through multiple temperature zones, the polyacrylonitrile raw filaments are The aromatization index of silk increases with equal amplitude;
  • the pre-oxidized fiber is subjected to a carbonization process to obtain carbon fiber.
  • the polyacrylonitrile raw filaments pass through each of the temperature zones, and the increasing amplitude of the aromatization index of the polyacrylonitrile raw filaments is 0.15-0.30.
  • the polyacrylonitrile raw filaments pass through each of the temperature zones, and the increasing amplitude of the aromatization index of the polyacrylonitrile raw filaments is 0.17 to 0.25.
  • the aromatization index of the pre-oxidized fiber is 0.6 and below.
  • the polyacrylonitrile raw filaments pass through 2-3 of the temperature zones in sequence.
  • the temperature range of each temperature zone is 200-300°C.
  • the temperature zone applies circulating wind to the polyacrylonitrile raw filaments at a wind speed of 5-10m/s, and the circulating wind adopts PM2 .5 ⁇ 100 ⁇ g/ m3 air.
  • the temperature zone applies circulating air to the polyacrylonitrile raw silk at a wind speed of 7-8m/s, and the circulating air adopts air with PM2.5 ⁇ 50 ⁇ g/ m3 .
  • the duration of the pre-oxidation process of the polyacrylonitrile raw filaments is 40 mins or less.
  • the duration of the pre-oxidation process of the polyacrylonitrile raw filaments is 30-40 mins.
  • the polyacrylonitrile raw filaments are pre-oxidized for the same length of time in each of the temperature zones.
  • the polyacrylonitrile raw silk is prepared by dry spinning, wet spinning, dry-jet wet spinning or electrostatic spinning.
  • the strength of the polyacrylonitrile raw yarn is ⁇ 7.0cN/dtex, and the fineness of the polyacrylonitrile raw yarn is ⁇ 0.75dtex.
  • Exemplary embodiments of the present disclosure provide a method for preparing high-performance, low-cost carbon fibers, including the following steps:
  • S1 Provide polyacrylonitrile raw yarn.
  • the polyacrylonitrile raw filaments are sequentially passed through multiple temperature zones for pre-oxidation process to obtain pre-oxidized fibers.
  • the polyacrylonitrile raw filaments are passed through multiple temperature zones in sequence.
  • the aromatization index of the polyacrylonitrile raw filaments is Increasingly.
  • the polyacrylonitrile raw filaments can be prepared by dry spinning, wet spinning, dry jet wet spinning or electrostatic spinning, or the polyacrylonitrile raw filaments can also be purchased.
  • the strength of polyacrylonitrile raw yarn is ⁇ 7.0cN/dtex, and the fineness of polyacrylonitrile raw yarn is ⁇ 0.75dtex.
  • the strength of polyacrylonitrile raw yarn can be 7.0cN/dtex, 7.5cN/dtex, 8.0cN/dtex, 9.0cN/dtex or greater; the fineness of polyacrylonitrile raw yarn can be 0.75dtex, 0.7dtex, 0.65 dtex, 0.5dtex or less.
  • Carbon fibers are prepared from polyacrylonitrile raw filaments with a strength of 7.0cN/dtex and above and a fineness of 0.75dtex and below.
  • the performance of the polyacrylonitrile raw filaments is more stable and reliable.
  • the shape is more uniform, the pre-oxidation process time can be shortened, and the production cost of preparing carbon fibers can be reduced.
  • the polyacrylonitrile raw filaments can be provided in the form of rolls.
  • the rolls of polyacrylonitrile raw filaments are placed on the unwinding mechanism, so that the polyacrylonitrile raw filaments can be continuously supplied through the unwinding mechanism to facilitate subsequent steps.
  • step S2 the polyacrylonitrile raw filaments are pulled through multiple temperature zones to undergo a pre-oxidation process.
  • the aromatization index of the polyacrylonitrile raw filaments is Increasing the amplitude, the polyacrylonitrile raw filaments pass through multiple temperature zones, and the aromatization index of the polyacrylonitrile raw filaments increases with the same amplitude.
  • the aromatization index of the polyacrylonitrile raw filaments increases by 0.15-0.30.
  • the aromatization index of the polyacrylonitrile precursor increases by 0.17-0.25.
  • the aromatization index of the polyacrylonitrile precursor increases by 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24 or 0.25.
  • the aromatization index of the pre-oxidized fiber obtained after the polyacrylonitrile raw silk is processed through multiple temperature zone pre-oxidation processes is 0.6 and below.
  • the polyacrylonitrile strands are passed through 2-3 temperature zones in sequence.
  • the temperature range of each temperature zone is 200-300°C.
  • the temperature of each temperature zone can be 200°C, 220°C, 240°C, 250°C, 270°C, 290°C or 300°C.
  • the temperature zone applies circulating air to the polyacrylonitrile raw filaments at a wind speed of 5-10m/s.
  • the circulating air uses air with PM2.5 ⁇ 100 ⁇ g/m 3 .
  • circulating air is applied to the polyacrylonitrile raw filaments during the pre-oxidation process, which improves the heat exchange rate of the polyacrylonitrile raw filaments.
  • the circulating air uses air with PM2.5 ⁇ 100 ⁇ g/m 3 to avoid Hard particles impact the polyacrylonitrile raw filaments, damage the polyacrylonitrile raw filaments, reduce the number of hair defects on the surface of the polyacrylonitrile raw filaments, and ensure that the formed carbon fiber has good performance stability, continuity and uniformity, which is conducive to improving the quality of carbon fiber. yield and output.
  • circulating air with a wind speed of 7-8 m/s is applied to the polyacrylonitrile raw filaments, and the circulating air uses air with PM2.5 ⁇ 50 ⁇ g/m 3 .
  • the polyacrylonitrile raw filaments undergo the pre-oxidation process in each temperature zone for the same length of time.
  • the pre-oxidation process of polyacrylonitrile raw filaments through multiple temperature zones takes less than 40 minutes.
  • the duration of the pre-oxidation process of polyacrylonitrile raw filaments through multiple temperature zones is 30-40 mins.
  • the number of temperature zones is set to 3, and the polyacrylonitrile raw filaments undergo the pre-oxidation process through the three temperature zones in sequence.
  • the polyacrylonitrile raw filaments undergo the pre-oxidation process in each temperature zone for the same length of time.
  • the aromatization index of the polyacrylonitrile raw yarn increases by 0.17-0.25 after passing through each temperature zone.
  • the aromatization index of the polyacrylonitrile raw yarn increases by 0.20 after passing through each temperature zone. After passing through 3 temperature zones, the aromatization index increases by 0.17-0.25.
  • the aromatization index of the pre-oxidized fiber obtained by oxidation treatment is 0.60.
  • the process conditions for the pre-oxidation process of polyacrylonitrile raw filaments are controlled in each temperature zone so that the aromatization index of the polyacrylonitrile raw filaments increases with the same index after passing through each temperature zone.
  • the density of the pre-oxidized fiber obtained in the pre-oxidation process is 1.33-1.36g/cm 3 , which improves the uniformity of the pre-oxidation reaction, shortens the duration of the pre-oxidation process, and effectively reduces the preparation cost of carbon fiber; at the same time, this embodiment
  • the number of temperature zones for pre-oxidation process is 2-3, which reduces equipment loss, energy consumption and labor costs during the pre-oxidation process.
  • step S3 the pre-oxidized fiber is subjected to a carbonization process, and the following implementation methods can be adopted:
  • the low-temperature carbonization temperature in each low-temperature carbonization zone is 400-800°C. For example, it can be 400°C, 500°C, 600°C, 700°C or 800°C.
  • the pre-oxidized fiber The processing time of the low-temperature carbonization process in each low-temperature carbonization zone is 2-3mins, for example, it can be 2mins, 2.5mins or 3mins. Then, the pre-oxidized fiber is pulled through five high-temperature carbonization zones in sequence.
  • the high-temperature carbonization temperature of each high-temperature carbonization zone is 1000-1800°C.
  • the processing time of the pre-oxidized fiber in the high-temperature carbonization process in each high-temperature carbonization zone is 2-3mins, for example, it can be 2mins, 2.5mins or 3mins.
  • the polyacrylonitrile raw filaments are sequentially passed through three temperature zones for pre-oxidation process.
  • the temperature distribution range of each temperature zone is 200-300°C.
  • the aromatization index of the polyacrylonitrile raw filaments is equal to 0.15 every time it passes through a temperature zone.
  • the temperature zone applies circulating air to the polyacrylonitrile raw silk at a wind speed of 5m/s.
  • the polyacrylonitrile raw silk passes through 3
  • the total processing time of the pre-oxidation process in the temperature zone is 40 minutes.
  • the polyacrylonitrile raw filaments are pre-oxidized through three temperature zones to form pre-oxidized fibers.
  • the pre-oxidized fiber is subjected to a carbonization process to obtain carbon fiber.
  • the pre-oxidized fiber passes through 5 low-temperature carbonization zones in sequence.
  • the temperature range of low-temperature carbonization in each low-temperature carbonization zone is 400-800°C.
  • the duration of low-temperature carbonization of the pre-oxidized fiber in each low-temperature carbonization zone is 2 -3mins; then, the pre-oxidized fiber passes through 5 high-temperature carbonization zones in sequence.
  • the temperature range of high-temperature carbonization in each high-temperature carbonization zone is distributed between 1000-1800°C.
  • the pre-oxidized fiber undergoes a high-temperature carbonization process in each high-temperature carbonization zone.
  • the duration is 2mins.
  • the aromatization index (OF-AI) of the pre-oxidized fiber and the density of the pre-oxidized fiber are measured; after the carbon fiber is formed, the tensile strength and variation coefficient of the carbon fiber are measured.
  • the measurement results are shown in the table 1.
  • OF-AI represents the aromatization index of pre-oxidized fiber
  • OF- ⁇ represents the density of pre-oxidized fiber
  • CF-TS represents the tensile strength of carbon fiber
  • CF-CV(TS) represents the coefficient of variation of carbon fiber.
  • the aromatization index (OF-AI) of the pre-oxidized fiber was measured using the following method.
  • IP is the diffraction peak intensity of the diffraction image of the pre-oxidized fiber near 17°
  • IA is the diffraction peak intensity of the diffraction image of the pre-oxidized fiber near 25.5°.
  • the polyacrylonitrile raw filaments are sequentially passed through three temperature zones for pre-oxidation process.
  • the temperature range of each temperature zone is 200-300°C.
  • the aromatization index of the polyacrylonitrile raw filaments increases by 0.17 every time it passes through a temperature zone.
  • the temperature zone applies circulating air to the polyacrylonitrile raw silk at a wind speed of 8m/s.
  • the polyacrylonitrile raw silk The total processing time of the pre-oxidation process through three temperature zones is 30 minutes.
  • the polyacrylonitrile raw filaments are pre-oxidized through the three temperature zones to form pre-oxidized fibers.
  • the pre-oxidized fiber is subjected to a carbonization process to obtain carbon fiber.
  • the implementation of the carbonization process for pre-oxidized fibers in this embodiment is the same as that in Embodiment 1, and will not be described again.
  • the aromatization index (OF-AI) of the pre-oxidized fiber and the density of the pre-oxidized fiber are measured.
  • the carbon fiber is formed, the tensile strength and variation coefficient of the carbon fiber are measured. The measurement results are shown in the table 2.
  • OF-AI represents the aromatization index of pre-oxidized fiber
  • OF- ⁇ represents the density of pre-oxidized fiber
  • CF-TS represents the tensile strength of carbon fiber
  • CF-CV(TS) represents the coefficient of variation of carbon fiber.
  • the polyacrylonitrile raw silk is processed through the pre-oxidation process in two temperature zones in sequence.
  • the temperature range of each temperature zone is 200-300°C.
  • the aromatization index of the polyacrylonitrile raw silk increases by 0.25 every time it passes through a temperature zone.
  • the temperature zone applies circulating air to the polyacrylonitrile raw silk at a wind speed of 7m/s.
  • the polyacrylonitrile raw silk passes through three temperature zones.
  • the total time for pre-oxidation is 35 minutes.
  • the polyacrylonitrile raw filaments are pre-oxidized through two temperature zones to produce pre-oxidized fibers.
  • the pre-oxidized fiber is subjected to a carbonization process to obtain carbon fiber.
  • the method of carbonizing the pre-oxidized fiber in this embodiment is the same as that in Embodiment 1, and will not be described again.
  • the aromatization index (OF-AI) of the pre-oxidized fiber and the density of the pre-oxidized fiber are measured.
  • the carbon fiber is formed, the tensile strength and variation coefficient of the carbon fiber are measured. The measurement results are shown in the table 3.
  • OF-AI represents the aromatization index of pre-oxidized fiber
  • OF- ⁇ represents the density of pre-oxidized fiber
  • CF-TS represents the tensile strength of carbon fiber
  • CF-CV(TS) represents the coefficient of variation of carbon fiber.
  • the polyacrylonitrile raw filaments are sequentially passed through two temperature zones for pre-oxidation process.
  • the temperature range of each temperature zone is 200-300°C.
  • the aromatization index of the polyacrylonitrile raw filaments increases by 0.30 every time it passes through a temperature zone.
  • the temperature zone applies circulating air to the polyacrylonitrile raw silk at a wind speed of 10m/s.
  • the polyacrylonitrile raw silk passes through the two temperature zones.
  • the total duration of pre-oxidation treatment in each zone is 30 minutes.
  • the polyacrylonitrile raw filaments are pre-oxidized through two temperature zones to produce pre-oxidized fibers.
  • the pre-oxidized fiber is subjected to a carbonization process to obtain carbon fiber.
  • the method of carbonizing the pre-oxidized fiber in this embodiment is the same as that in Embodiment 1, and will not be described again.
  • the aromatization index (OF-AI) of the pre-oxidized fiber and the density of the pre-oxidized fiber are measured.
  • the carbon fiber is formed, the tensile strength and variation coefficient of the carbon fiber are measured. The measurement results are shown in the table 4.
  • OF-AI represents the aromatization index of pre-oxidized fiber
  • OF- ⁇ represents the density of pre-oxidized fiber
  • CF-TS represents the tensile strength of carbon fiber
  • CF-CV(TS) represents the coefficient of variation of carbon fiber.
  • the polyacrylonitrile raw silk is sequentially processed through three temperature zones for pre-oxidation process.
  • the temperature range of each temperature zone is 200-300°C.
  • the aromatization index of the polyacrylonitrile raw silk passing through a temperature zone is 0.1-0.4. -0.55 increases randomly.
  • the temperature zone applies circulating air to the polyacrylonitrile raw silk at a wind speed of 7m/s.
  • the polyacrylonitrile raw silk The total processing time of the pre-oxidation process through three temperature zones is 40 minutes, and the polyacrylonitrile raw filaments are pre-oxidized through the three temperature zones to form pre-oxidized fibers.
  • the pre-oxidized fiber is carbonized to obtain carbon fiber.
  • the pre-oxidized fiber passes through 5 low-temperature carbonization zones in sequence.
  • the low-temperature carbonization temperature range of each low-temperature carbonization zone is 400-800°C.
  • the pre-oxidized fiber is processed in the low-temperature carbonization process in each low-temperature carbonization zone.
  • the duration is 2-3mins; then, the pre-oxidized fiber passes through 5 high-temperature carbonization zones in sequence.
  • the temperature range of high-temperature carbonization in each high-temperature carbonization zone is 1000-1800°C.
  • the pre-oxidized fiber undergoes a high-temperature carbonization process in each high-temperature carbonization zone.
  • the processing time of the process is 2mins.
  • OF-AI represents the aromatization index of pre-oxidized fiber
  • OF- ⁇ represents the density of pre-oxidized fiber
  • CF-TS represents the tensile strength of carbon fiber
  • CF-CV(TS) represents the coefficient of variation of carbon fiber.
  • the polyacrylonitrile raw filaments are sequentially processed through three temperature zones for pre-oxidation process.
  • the temperature range of each temperature zone is 200-300°C.
  • the aromatization index of the polyacrylonitrile raw filaments is equal to 0.18 every time it passes through a temperature zone.
  • the temperature zone applies circulating air to the polyacrylonitrile raw silk at a wind speed of 8m/s.
  • the polyacrylonitrile raw silk passes through 3
  • the total processing time of the pre-oxidation process in each temperature zone is 40 minutes.
  • the polyacrylonitrile raw filaments are processed by the pre-oxidation process in three temperature zones to produce pre-oxidized fibers.
  • the pre-oxidized fiber is subjected to a carbonization process to obtain carbon fiber.
  • the implementation of the carbonization process on the pre-oxidized fiber in this comparative example is the same as that in Comparative Example 1, and will not be described again.
  • OF-AI represents the aromatization index of pre-oxidized fiber
  • OF- ⁇ represents the density of pre-oxidized fiber
  • CF-TS represents the tensile strength of carbon fiber
  • CF-CV(TS) represents the coefficient of variation of carbon fiber.
  • the process conditions of the thermal oxidation treatment are controlled so that the aromatization index of the polyacrylonitrile raw filaments increases by the same amount in each temperature zone, so that
  • the pre-oxidized fiber obtained by the pre-oxidation process has high uniformity, shortens the time required for pre-oxidation treatment, has a small number of temperature zones for pre-oxidation treatment, and reduces the time cost and equipment cost required for preparing carbon fibers; this method
  • the carbon fibers prepared in the disclosed embodiments have excellent properties, high tensile strength, small variation coefficient of tensile strength, and high added value, and are suitable for high-end application fields such as aerospace and aerospace.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Inorganic Fibers (AREA)

Abstract

本公开提供一种高性能低成本碳纤维的制备方法,涉及碳纤维及碳纤维制造技术领域,一种高性能低成本碳纤维的制备方法包括:提供聚丙烯腈原丝;将聚丙烯腈原丝依次通过多个温区进行预氧化工艺过程处理,获得预氧化纤维,沿聚丙烯腈原丝依次通过多个温区的顺序,聚丙烯腈原丝的芳构化指数等幅度递增;对预氧化纤维进行碳化工艺过程处理,获得碳纤维。

Description

一种高性能低成本碳纤维的制备方法
本公开基于申请号为202210741252.4,申请日为2022年06月28日,申请名称为“一种高性能低成本碳纤维的制备方法”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及但不限于一种高性能低成本碳纤维的制备方法。
背景技术
碳纤维是一种具备高强度和模量的耐高温纤维,因其具备高强度、高硬度、重量轻、耐化学性、耐高温等优异的力学性能,使其在航天工程、军事及竞技体育等领域应用广泛;碳纤维主要由碳原子构成,直径约5-10um,是新材料技术领域的突出代表。因碳纤维的生产工艺流程较长,各工艺单项及参数多样复杂,致使一般的碳纤维生产成本较高。除各种化学原材料成本外,碳纤维生产过程中的碳化环节(含预氧化及碳化过程)占据碳纤维生产成本的主要部分;进一步地,预氧化过程的发生成本约占碳纤维整体生产成本的70%;因此,对于碳化环节的预氧化过程的成本控制对于控制碳纤维的生产成本意义重大。
一般来说,碳纤维的预氧化过程需要4-6个不同温度梯度的温区对纤维进行空气预氧化处理,预氧化时长为60mins及以上,每个温区的温度分布在180-300℃。其中,低温碳化过程和高温碳化过程需在高纯氮气气氛中进行,每个温区的温度分布在300-1800℃,时长通常为1-10mins。一般的,过多的预氧化温区及时长导致碳纤维生产成本的增加,其中包括设备损耗、能耗和人力等成本。
进一步地,对于碳纤维生产过程中的预氧化过程的工艺参数(如温度、牵引速度等)的控制尤为重要。比如,纤维油剂在预氧化过程中产生的硬质颗粒(通常为含硅油剂在预氧化热解的产物)对于碳纤维的性能有影响,如控制不当会导致碳纤维产品稳定性差、变异系数大,致碳纤维整理性能及力学性能表现不佳。因此,降低预氧化过程温区的数量及降低预氧化时长成为降低碳纤维生产成本、提升碳纤维性能及稳定性的重要研究方向。
发明内容
以下是对本公开及生产过程的概述,本概述并非是为了限制权利要求的保护范围。
本公开提供了一种高性能低成本碳纤维的制备方法。
本公开的第一方面提供一种高性能低成本碳纤维的制备方法,包括以下步骤:
提供聚丙烯腈原丝;
将所述聚丙烯腈原丝依次通过多个温区进行预氧化过程处理,获得预氧化纤维;沿所述聚丙烯腈原丝依次通过多个所述温区的顺序,所述聚丙烯腈原丝的芳构化指数等幅度递增;
对所述预氧化纤维进行碳化工艺过程处理,获得碳纤维。
其中,所述聚丙烯腈原丝通过每个所述温区,所述聚丙烯腈原丝的芳构化指数的递增幅度为0.15-0.30。
其中,所述聚丙烯腈原丝通过每个所述温区,所述聚丙烯腈原丝的芳构化指数的递增幅度为0.17~0.25。
其中,所述预氧化纤维的芳构化指数为0.6及以下。
其中,将所述聚丙烯腈原丝依次通过2-3个所述温区。
其中,每个所述温区的温度范围为200-300℃。
其中,所述聚丙烯腈原丝在每个所述温区进行预氧化处理时,所述温区以5-10m/s的风速向聚丙烯腈原丝施加循环风,所述循环风采用PM2.5≤100μg/m3的空气。
其中,所述温区以7-8m/s的风速向聚丙烯腈原丝施加循环风,所述循环风采用PM2.5≤50μg/m3的空气。
其中,所述聚丙烯腈原丝进行预氧化过程处理的时长为40mins及以下。
其中,所述聚丙烯腈原丝进行预氧化过程处理的时长为30-40mins。
其中,所述聚丙烯腈原丝在每个所述各温区中进行预氧化处理的时长相同。
其中,所述聚丙烯腈原丝采用干法纺丝、湿法纺丝、干喷湿纺法或静电纺丝制备。
其中,所述聚丙烯腈原丝的强度≥7.0cN/dtex,所述聚丙烯腈原丝的纤度≤0.75dtex。
在阅读并理解附图和详细描述后,可进一步地明确其他方面。
具体实施方式
下面将结合本公开实施例中的附图,对公开实施例中的技术方案进一步具体地、详细地描述。所述实施例仅是本公开一部分实施例,而不是所有实施例。基于本公开中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。需要明确说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合,均在本公开保护范围。
本公开示例性的实施例提供了一种高性能低成本碳纤维的制备方法,包括以下步骤:
S1:提供聚丙烯腈原丝。
S2:将聚丙烯腈原丝依次通过多个温区进行预氧化过程处理,获得预氧化纤维,沿聚丙烯腈原丝依次通过多个温区的顺序,聚丙烯腈原丝的芳构化指数等幅度递增。
S3:对预氧化纤维进行碳化工艺过程处理,获得碳纤维。
在步骤S1中,聚丙烯腈原丝可以采用干法纺丝、湿法纺丝、干喷湿纺法或静电纺丝制备,或者,聚丙烯腈原丝也可以通过购买获得。
聚丙烯腈原丝的强度≥7.0cN/dtex,聚丙烯腈原丝的纤度≤0.75dtex。例如,聚丙烯腈原丝的强度可以为7.0cN/dtex、7.5cN/dtex、8.0cN/dtex、9.0cN/dtex或更大;聚丙烯腈原丝的纤度可以为0.75dtex、0.7dtex、0.65dtex、0.5dtex或更小。采用强度7.0cN/dtex以上、纤度0.75dtex以下的聚丙烯腈原丝制备碳纤维,聚丙烯腈原丝预氧化处理后,聚丙烯腈原丝性能更加稳定及性 状更加均匀,且能够缩短预氧化过程时长,降低制备碳纤维的生产成本。
本实施例中,聚丙烯腈原丝可以卷料的形式提供,将聚丙烯腈原丝的卷料置于放卷机构上,以便于通过放卷机构连续提供聚丙烯腈原丝,以方便后续牵引聚丙烯腈原丝通过多个温区进行预氧化处理。
在步骤S2中,牵引聚丙烯腈原丝依次通过多个温区进行预氧化过程处理,聚丙烯腈原丝每经过一个温区进行预氧化过程处理后,聚丙烯腈原丝的芳构化指数增加一个递增幅度,聚丙烯腈原丝经过多个温区,聚丙烯腈原丝的芳构化指数等幅度递增。
聚丙烯腈原丝通过每个温区,聚丙烯腈原丝的芳构化指数的递增幅度为0.15-0.30。在一些实施例中,聚丙烯腈原丝通过每个温区,聚丙烯腈原丝的芳构化指数的递增幅度为0.17-0.25。例如,聚丙烯腈原丝通过每个温区,聚丙烯腈原丝的芳构化指数的递增幅度为0.17、0.18、0.19、0.20、0.21、0.22、0.23、0.24或0.25。
本实施例中,聚丙烯腈原丝通过多个温区预氧化过程处理后获得的预氧化纤维的芳构化指数为0.6及以下。
在一些实施例中,将聚丙烯腈原丝依次通过2-3个温区。每个温区的温度范围为200-300℃,例如,每个温区的温度可以为200℃、220℃、240℃、250℃、270℃、290℃或300℃。
聚丙烯腈原丝在每个温区进行预氧化过程处理时,温区以5-10m/s的风速向聚丙烯腈原丝施加循环风,循环风采用PM2.5≤100μg/m3的空气。本实施例中,在预氧化过程向聚丙烯腈原丝施加循环风,提高了聚丙烯腈原丝的换热速率,同时循环风采用PM2.5≤100μg/m3的空气,避免空气中的硬质颗粒撞击聚丙烯腈原丝损伤聚丙烯腈原丝,减少聚丙烯腈原丝表面的毛丝缺陷数量,确保形成的碳纤维具有良好的性能稳定性、连续性及均匀性,有利于提高碳纤维的良率和产量。在一些实施例中,在预氧化过程向聚丙烯腈原丝施加7-8m/s风速的循环风,循环风采用PM2.5≤50μg/m3的空气。
本实施例中,聚丙烯腈原丝在每个各温区中进行预氧化过程处理的时长相同。聚丙烯腈原丝经过多个温区进行预氧化过程处理的时长为40mins以下。在一些实施例中,聚丙烯腈原丝经过多个温区进行预氧化过程处理的时长为30-40mins。
示例性的,将温区的数量设置为3个,聚丙烯腈原丝依次通过3个温区进行预氧化过程处理,聚丙烯腈原丝在每个温区中进行预氧化过程处理的时长相同,聚丙烯腈原丝经过每个温区后芳构化指数的递增0.17-0.25,本示例中聚丙烯腈原丝经过每个温区后芳构化指数的递增0.20,经过3个温区预氧化处理获得的预氧化纤维的芳构化指数的为0.60。
本实施例中,通过控制每个温区对聚丙烯腈原丝进行预氧化过程处理的工艺条件,以使聚丙烯腈原丝经过每个温区后芳构化指数的递增指数相同,本步骤中预氧化过程获得的预氧化纤维的密度为1.33-1.36g/cm3,提高了预氧化反应的均匀性,缩短了预氧化过程的时长,有效降低了碳纤维的制备成本;同时,本实施例中,进行预氧化过程处理的温区的数量为2-3个,减少了预氧化过程中的设备损耗、能耗和人力等成本。
在步骤S3中,对预氧化纤维进行碳化工艺过程处理,可以采用以下实施方式:
牵引预氧化纤维依次通过5个低温碳化区,每个低温碳化区的低温碳化的温度为400-800℃,例如,可以为400℃、500℃、600℃、700℃或800℃,预氧化纤维在每个低温碳化区进行低温碳化过程的处理时长为2-3mins,例如可以为2mins、2.5mins或3mins。然后,牵引预氧化纤维依次通过5个高温碳化区,每个高温碳化区的高温碳化的温度为1000-1800℃,例如,可以为1000℃、1200℃、1400℃、1500℃、1700℃或1800℃,预氧化纤维在每个高温碳化区进行高温碳化过程的处理时长为2-3mins,例如可以为2mins、2.5mins或3mins。
为了进一步说明本公开的方案,下面通过实施例以及对比例对本公开的方案进行说明。
实施例1
提供聚丙烯腈原丝,聚丙烯腈原丝的强度≥7.0cN/dtex,聚丙烯腈原丝的纤度≤0.75dtex。
将聚丙烯腈原丝依次通过3个温区进行预氧化过程处理,每个温区的温度分布范围为200-300℃,聚丙烯腈原丝每经过一个温区芳构化指数按0.15等幅度递增,同时在预氧化过程中,温区以5m/s的风速向聚丙烯腈原丝施加循环风,循环风采用PM2.5=25μg/m3的洁净空气,聚丙烯腈原丝通过3个温区进行预氧化过程的处理总时长为40mins,聚丙烯腈原丝通过3个温区被预氧化形成预氧化纤维。
然后,对预氧化纤维进行碳化工艺过程处理后得到碳纤维。具体地,将预氧化纤维依次通过次通过5个低温碳化区,每个低温碳化区的低温碳化的温度范围为400-800℃,预氧化纤维在每个低温碳化区进行低温碳化的时长为2-3mins;然后,将预氧化纤维依次通过5个高温碳化区,每个高温碳化区的高温碳化的温度范围分布在1000-1800℃,预氧化纤维在每个高温碳化区进行高温碳化过程的处理时长为2mins。
本实施例中,形成预氧化纤维后,测定预氧化纤维的芳构化指数(OF-AI)以及预氧化纤维的密度;形成碳纤维后,测定碳纤维的拉伸强度和变异系数,测定结果见表1。
表1实施例1中预氧化纤维和碳纤维的性能测定表
其中,OF-AI代表预氧化纤维的芳构化指数,OF-ρ代表预氧化纤维的密度,CF-TS代表碳纤维的拉伸强度,CF-CV(TS)代表碳纤维的变异系数。
本实施例中,预氧化纤维的芳构化指数(OF-AI)采用以下方法测定。
采用X射线衍射(X-ray diffraction,XRD)仪器检测预氧化纤维,获得预氧化纤维的衍射图像,然后,根据计算公式计算预氧化纤维的芳构化指数(OF-AI)。
OF-AI(%)=IA/(IP+IA)*100%
其中,IP为预氧化纤维的衍射图像在17°附近的衍射峰强度,IA为预氧化纤维的衍射图像在25.5°附近的衍射峰强度。
实施例2
提供聚丙烯腈原丝,聚丙烯腈原丝的强度≥7.0cN/dtex,聚丙烯腈原丝的纤度≤0.75dtex。
将聚丙烯腈原丝依次通过3个温区进行预氧化过程处理,每个温区的温度范围为200-300℃,聚丙烯腈原丝每经过一个温区芳构化指数按0.17等幅度递增,同时在预氧化过程中,温区以8m/s的风速向聚丙烯腈原丝施加循环风,循环风采用PM2.5采用PM2.5=15μg/m3的洁净空气,聚丙烯腈原丝通过3个温区进行预氧化过程的处理总时长为30mins,聚丙烯腈原丝通过3个温区被预氧化过程处理即可形成预氧化纤维。
然后,对预氧化纤维进行碳化工艺过程处理后得到碳纤维。本实施例中对预氧化纤维进行碳化工艺过程处理的实施方式和实施例1相同,在此不再赘述。
本实施例中,形成预氧化纤维后,测定预氧化纤维的芳构化指数(OF-AI)以及预氧化纤维的密度,形成碳纤维后,测定碳纤维的拉伸强度和变异系数,测定结果见表2。
表2实施例2中预氧化纤维和碳纤维的性能测定表
其中,OF-AI代表预氧化纤维的芳构化指数,OF-ρ代表预氧化纤维的密度,CF-TS代表碳纤维的拉伸强度,CF-CV(TS)代表碳纤维的变异系数。
实施例3
提供聚丙烯腈原丝,聚丙烯腈原丝的强度≥7.0cN/dtex,聚丙烯腈原丝的纤度≤0.75dtex。
将聚丙烯腈原丝依次通过2个温区预氧化过程处理,每个温区的温度范围为200-300℃,聚丙烯腈原丝每经过一个温区芳构化指数按0.25等幅度递增,同时在预氧化过程中,温区以7m/s的风速向聚丙烯腈原丝施加循环风,循环风采用PM2.5=50μg/m3的洁净空气,聚丙烯腈原丝通过3个温区进行预氧化的总时长为35mins,聚丙烯腈原丝通过2个温区被预氧化过程即可制得预氧化纤维。
然后,对预氧化纤维进行碳化工艺过程处理后得到碳纤维。本实施例中对预氧化纤维进行碳化工艺过程处理的实施方式和实施例1相同,在此不再赘述。
本实施例中,形成预氧化纤维后,测定预氧化纤维的芳构化指数(OF-AI)以及预氧化纤维的密度,形成碳纤维后,测定碳纤维的拉伸强度和变异系数,测定结果见表3。
表3实施例3中预氧化纤维和碳纤维的性能测定表
其中,OF-AI代表预氧化纤维的芳构化指数,OF-ρ代表预氧化纤维的密度,CF-TS代表碳纤维的拉伸强度,CF-CV(TS)代表碳纤维的变异系数。
实施例4
提供聚丙烯腈原丝,聚丙烯腈原丝的强度≥7.0cN/dtex,聚丙烯腈原丝的纤度≤0.75dtex。
将聚丙烯腈原丝依次通过2个温区进行预氧化过程处理,每个温区的温度范围为200-300℃,聚丙烯腈原丝每经过一个温区芳构化指数按0.30等幅度递增,同时在预氧化过程中,温区以10m/s的风速向聚丙烯腈原丝施加循环风,循环风采用PM2.5=100μg/m3的洁净空气,聚丙烯腈原丝通过2个温区进行预氧化处理的总时长为30mins,聚丙烯腈原丝通过2个温区被预氧化过程处理即可制得预氧化纤维。
然后,对预氧化纤维进行碳化工艺过程处理后得到碳纤维。本实施例中对预氧化纤维进行碳化处理的实施方式和实施例1相同,在此不再赘述。
本实施例中,形成预氧化纤维后,测定预氧化纤维的芳构化指数(OF-AI)以及预氧化纤维的密度,形成碳纤维后,测定碳纤维的拉伸强度和变异系数,测定结果见表4。
表4实施例4中预氧化纤维和碳纤维的性能测定表
其中,OF-AI代表预氧化纤维的芳构化指数,OF-ρ代表预氧化纤维的密度,CF-TS代表碳纤维的拉伸强度,CF-CV(TS)代表碳纤维的变异系数。
对比例1
提供聚丙烯腈原丝,聚丙烯腈原丝的强度≥7.0cN/dtex,聚丙烯腈原丝的纤度≤0.75dtex。
将聚丙烯腈原丝依次通过3个温区进行预氧化工艺过程处理,每个温区的温度范围为200-300℃,聚丙烯腈原丝每经过一个温区芳构化指数按0.1-0.4-0.55随机增加,同时在预氧化过程中,温区以7m/s的风速向聚丙烯腈原丝施加循环风,循环风采用PM2.5=50μg/m3的洁净空气,聚丙烯腈原丝通过3个温区进行预氧化过程的处理总时长为40mins,聚丙烯腈原丝通过3个温区被预氧化形成预氧化纤维。
然后,对预氧化纤维进行碳化处理后得到碳纤维。具体为,将预氧化纤维依次通过次通过5个低温碳化区,每个低温碳化区的低温碳化的温度范围为400-800℃,预氧化纤维在每个低温碳化区进行低温碳化工艺过程的处理时长为2-3mins;然后,将预氧化纤维依次通过5个高温碳化区,每个高温碳化区的高温碳化的温度范围为1000-1800℃,预氧化纤维在每个高温碳化区进行高温碳化工艺过程的处理时长为2mins。
形成预氧化纤维后,测定预氧化纤维的芳构化指数(OF-AI)以及预氧化纤维的密度,形成碳纤维后,测定碳纤维的拉伸强度和变异系数,测定结果如表5所示。
表5对比例1中预氧化纤维和碳纤维的性能测定表
其中,OF-AI代表预氧化纤维的芳构化指数,OF-ρ代表预氧化纤维的密度,CF-TS代表碳纤维的拉伸强度,CF-CV(TS)代表碳纤维的变异系数。
对比例2
提供聚丙烯腈原丝,聚丙烯腈原丝的强度≥7.0cN/dtex,聚丙烯腈原丝的纤度≤0.75dtex。
将聚丙烯腈原丝依次通过3个温区进行预氧化工艺过程处理,每个温区的温度范围为200-300℃,聚丙烯腈原丝每经过一个温区芳构化指数按0.18等幅度递增,同时在预氧化工艺过程中,温区以8m/s的风速向聚丙烯腈原丝施加循环风,循环风采用PM2.5=150μg/m3的洁净空气,聚丙烯腈原丝通过3个温区进行预氧化工艺过程的总处理时长为40mins,聚丙烯腈原丝通过3个温区被预氧化工艺过程处理即可制得预氧化纤维。
然后,对预氧化纤维进行碳化工艺过程处理后得到碳纤维。本对比例中对预氧化纤维进行碳化工艺过程处理的实施方式和对比例1相同,在此不再赘述。
形成预氧化纤维后,测定预氧化纤维的芳构化指数(OF-AI)以及预氧化纤维的密度,形成碳纤维后,测定碳纤维的拉伸强度和变异系数,测定结果见表6。
表6对比例2中预氧化纤维和碳纤维的性能测定表
其中,OF-AI代表预氧化纤维的芳构化指数,OF-ρ代表预氧化纤维的密度,CF-TS代表碳纤维的拉伸强度,CF-CV(TS)代表碳纤维的变异系数。
将实施例1-实施例4、对比例1、对比例2进行比较,同时参考表1-表6,可以看出,本实施例通过控制热氧化处理的工艺条件,以使聚丙烯腈原丝经过每个温区芳构化指数的增加幅度相同,制备获得的碳纤维的拉伸强度≥5.6GPa,拉伸强度的变异系数≤3.9%,碳纤维的性能更优异。
本说明书中各实施例或实施方式采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分相互参见即可。
在本说明书的描述中,参考术语“实施例”、“示例性的实施例”、“一些实施方式”、“示意性实施方式”、“示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施方式或示例中。
在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
可以理解的是,本公开所使用的术语“第一”、“第二”等可在本公开中用于描述各种结构, 但这些结构不受这些术语的限制。这些术语仅用于将第一个结构与另一个结构区分。
在一个或多个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的多个部分没有按比例绘制。此外,可能未示出某些公知的部分。为了简明起见,可以在一幅图中描述经过数个步骤后获得的结构。在下文中描述了本公开的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本公开。但正如本领域技术人员能够理解的那样,可以不按照这些特定的细节来实现本公开。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。
工业实用性
本公开实施例所提供的一种高性能低成本碳纤维的制备方法中,通过控制热氧化处理的工艺条件,以使聚丙烯腈原丝经过每个温区芳构化指数的增加幅度相同,以使预氧化工艺过程处理得到的预氧化纤维具有高均匀性,缩短了预氧化处理所需时长,用于预氧化处理的温区数量少,降低了制备碳纤维所需的时间成本和设备成本;本公开实施例制备获得的碳纤维的性能优异,拉伸强度高、拉伸强度的变异系数小,附加值高,适用于航空航天等高端应用领域。

Claims (13)

  1. 一种高性能低成本碳纤维的制备方法,包括以下步骤:
    提供聚丙烯腈原丝;
    将所述聚丙烯腈原丝依次通过多个温区进行预氧化工艺过程处理,获得预氧化纤维,沿所述聚丙烯腈原丝依次通过多个所述温区的顺序,所述聚丙烯腈原丝的芳构化指数等幅度递增;
    对所述预氧化纤维进行碳化工艺过程处理,获得碳纤维。
  2. 根据权利要求1所述的一种高性能低成本碳纤维的制备方法,其中,所述聚丙烯腈原丝通过每个所述温区,所述聚丙烯腈原丝的芳构化指数的递增幅度为0.15-0.30;
  3. 根据权利要求2所述的一种高性能低成本碳纤维的制备方法,其中,所述聚丙烯腈原丝通过每个所述温区,所述聚丙烯腈原丝的芳构化指数的递增幅度为0.17-0.25;
  4. 根据权利要求2所述的一种高性能低成本碳纤维的制备方法,其中,所述预氧化纤维的芳构化指数为0.6以下;
  5. 根据权利要求1所述的一种高性能低成本碳纤维的制备方法,其中,将所述聚丙烯腈原丝依次通过2-3个所述温区;
  6. 根据权利要求1所述的一种高性能低成本碳纤维的制备方法,其中,每个所述温区的温度范围分布在200-300℃;
  7. 根据权利要求6所述的一种高性能低成本碳纤维的制备方法,其中,所述聚丙烯腈原丝在每个所述温区进行预氧化工艺过程处理时,所述温区以5-10m/s的风速向聚丙烯腈原丝施加循环风,所述循环风采用PM2.5≤100μg/m3的空气;
  8. 根据权利要求7所述的一种高性能低成本碳纤维的制备方法,其中,所述温区以7-8m/s的风速向聚丙烯腈原丝施加循环风,所述循环风采用PM2.5≤50μg/m3的空气;
  9. 根据权利要求1所述的一种高性能低成本碳纤维的制备方法,其中,所述聚丙烯腈原丝进行预氧化工艺过程的处理时长为40mins及以下;
  10. 根据权利要求1所述的一种高性能低成本碳纤维的制备方法,其中,所述聚丙烯腈原丝进行预氧化工艺过程的处理时长为30-40mins;
  11. 根据权利要求9所述的一种高性能低成本碳纤维的制备方法,其中,所述聚丙烯腈原丝在每个所述各温区中进行预氧化工艺过程的处理时长相同;
  12. 根据权利要求1所述的一种高性能低成本碳纤维的制备方法,其中,所述聚丙烯腈原丝采用干法纺丝、湿法纺丝、干喷湿纺法或静电纺丝制备;
  13. 根据权利要求1所述的一种高性能低成本碳纤维的制备方法,其中,所述聚丙烯腈原丝的强度≥7.0cN/dtex,所述聚丙烯腈原丝的纤度≤0.75dtex。
PCT/CN2023/078935 2022-06-28 2023-03-01 一种高性能低成本碳纤维的制备方法 WO2024001261A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210741252.4A CN114941187B (zh) 2022-06-28 2022-06-28 一种高性能低成本碳纤维的制备方法
CN202210741252.4 2022-06-28

Publications (1)

Publication Number Publication Date
WO2024001261A1 true WO2024001261A1 (zh) 2024-01-04

Family

ID=82910893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078935 WO2024001261A1 (zh) 2022-06-28 2023-03-01 一种高性能低成本碳纤维的制备方法

Country Status (2)

Country Link
CN (1) CN114941187B (zh)
WO (1) WO2024001261A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114941187B (zh) * 2022-06-28 2023-04-11 中复神鹰碳纤维股份有限公司 一种高性能低成本碳纤维的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242249A (ja) * 2009-04-03 2010-10-28 Toho Tenax Co Ltd 高強度炭素繊維用耐炎化繊維及びその製造方法
CN105401262A (zh) * 2015-12-21 2016-03-16 中复神鹰碳纤维有限责任公司 一种基于快速纺丝和高纤度原丝的中模碳纤维制备方法
CN106222803A (zh) * 2016-07-04 2016-12-14 威海拓展纤维有限公司 制备大丝束碳纤维的预氧化方法
CN109306553A (zh) * 2017-07-28 2019-02-05 北京化工大学 制备聚丙烯腈碳纤维的方法
CN111560666A (zh) * 2020-06-17 2020-08-21 江苏恒神股份有限公司 一种聚丙烯腈基碳纤维原丝预氧化方法
CN112695412A (zh) * 2019-10-22 2021-04-23 中国石油化工股份有限公司 大丝束碳纤维快速预氧化方法
CN114941187A (zh) * 2022-06-28 2022-08-26 中复神鹰碳纤维股份有限公司 一种高性能低成本碳纤维的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242249A (ja) * 2009-04-03 2010-10-28 Toho Tenax Co Ltd 高強度炭素繊維用耐炎化繊維及びその製造方法
CN105401262A (zh) * 2015-12-21 2016-03-16 中复神鹰碳纤维有限责任公司 一种基于快速纺丝和高纤度原丝的中模碳纤维制备方法
CN106222803A (zh) * 2016-07-04 2016-12-14 威海拓展纤维有限公司 制备大丝束碳纤维的预氧化方法
CN109306553A (zh) * 2017-07-28 2019-02-05 北京化工大学 制备聚丙烯腈碳纤维的方法
CN112695412A (zh) * 2019-10-22 2021-04-23 中国石油化工股份有限公司 大丝束碳纤维快速预氧化方法
CN111560666A (zh) * 2020-06-17 2020-08-21 江苏恒神股份有限公司 一种聚丙烯腈基碳纤维原丝预氧化方法
CN114941187A (zh) * 2022-06-28 2022-08-26 中复神鹰碳纤维股份有限公司 一种高性能低成本碳纤维的制备方法

Also Published As

Publication number Publication date
CN114941187A (zh) 2022-08-26
CN114941187B (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
EP1130140B1 (en) Acrylonitril-based precursor fiber for carbon fiber and method for production thereof
CN110067044B (zh) 一种聚丙烯腈基石墨纤维及其制备方法
JP6119168B2 (ja) 耐炎化繊維束の製造方法、及び、炭素繊維束の製造方法
CN108486689B (zh) 一种高模量高导热沥青基炭纤维连续长丝的制备方法
WO2024001261A1 (zh) 一种高性能低成本碳纤维的制备方法
CN109402795B (zh) 提高碳纤维力学性能的预氧化方法和设备
JP4662450B2 (ja) 炭素繊維の製造方法
CN105714412A (zh) 一种静电纺聚丙烯腈预氧纤维和碳纤维的制备方法
CN108251919B (zh) 一种间歇加连续式的沥青基石墨纤维长丝制备方法
CN111945251A (zh) 超高强度中等模量聚丙烯腈基碳纤维及其制备方法
CN113174657A (zh) 一种掺杂石墨烯的碳纤维的制备方法及其应用
CN109402794B (zh) 减弱碳纤维中皮芯结构的设备和热处理方法
JP4088500B2 (ja) 炭素繊維の製造方法
JP2014125701A (ja) 炭素繊維束の製造方法
CN110592727A (zh) 一种高导热中间相沥青基石墨纤维长丝制备方法
JP2012193465A (ja) 炭素繊維用アクリル系前駆体繊維、その製造方法、及びその前駆体繊維から得られる炭素繊維
JP2005179794A (ja) 炭素繊維の製造方法
JP2004197278A (ja) 炭素繊維の製造方法
Mikolajczyk et al. Strength properties of polyacrylonitrile (PAN) fibres modified with carbon nanotubes with respect to their porous and supramolecular structure
TW201934840A (zh) 阻燃纖維束和碳纖維束的製造方法
CN112708975B (zh) 一种聚丙烯腈预氧化卷曲纤维的制备方法
JPH02264011A (ja) 黒鉛繊維製造用アクリル系繊維
JP7482667B2 (ja) 炭素繊維束の製造方法
CN114318593B (zh) 富勒烯掺杂高规整度的碳纳米纤维及其制备方法与应用
JP6191182B2 (ja) 炭素繊維束及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23828668

Country of ref document: EP

Kind code of ref document: A1